

1.1.1(3)

NRIA18 & NRIA20 CO-PO

NRI INSTITUTE OF TECHNOLOGY

Pothavarappadu(v), Agiripalli(M), VijayawadaRural-521 212

Reflection in Programme Outcomes (eg. B.Tech Programme)

Following are the Programme Outcome (PO) statements for all B.Tech Programmes.

Highlighted POs has direct relates to the local, national, regional and global developmental needs

- PO 01: Having an ability to apply mathematics and science in engineering applications.
- PO_02: Having a clear understanding of the subject related concepts and of contemporary issues and apply them to identify, formulate and analyse complex engineering problems.
- PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment
- PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information
- PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice
- PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems
- PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development
- PO 08: Having a clear understanding of professional and ethical responsibility
- PO 09: Having cross cultural competency exhibited by working as a member or in teams
- PO_10: Having a good working knowledge of communicating in English communication with engineering community and society
- PO_11: Having a good cognitive load management skills related to project management and finance
 - PO 12: Having interest and recognise the need for independent and lifelong learning

18A2100201- COMPLEX VARIABLES AND FOURIER SERIES Course Outcomes:

Upon successful completion of the course, the student will be able to:

- Write an analytic function if either real part or imaginary part is known and by using Cauchy-Riemann equations or apply Milne-Thompson method(L3)
- CO2 **Evaluate** the integral of complex function over the region bounded by the closed curves by **apply** either Cauchy-Goursat theorem or Cauchy's integral formula or Cauchy's Residue theorem (L5)
- CO3 Write the infinite series expansion of complex function by apply Taylor's/Maclaurin's/Laurent's series(L3)
- CO4 Write a Fourier series expansion of a periodic function by using Euler's formulae (L3)
- CO5 Solve the Partial difference equations (L3)
- CO6 Solve one dimensional wave and heat equations by using partial differential equations (L3)

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	P0 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P0 12
CO1	3	3	2	2	-	46		-	-		-	-
CO2	3	3	2	2	2	- 2	ě	-	-			
CO3	3	3	2	2	-	948	~	-	-	-	-	
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	_	-	-		
CO6	3	3	2	2	-	-	-	-	-	-	-	

18A2101401- STRENGTH OF MATERIALS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the concepts of stress, strain, generalized Hooke's law, elastic moduli and strain energy.
- CO2 Develop shear force and bending moment diagrams for different load cases.
- CO3 Compute the flexural stresses for different load cases and different cross-sections. Determine shear stresses for different cross-sections.
- CO4 Knowledge of bending concepts and calculation of section modulus and for determination of stresses developed in the beams and deflections due to various loading conditions
- CO5 Understand the basic concepts of Principal stresses developed in a member when it is subjected to stresses along different axes.
- CO6 Can Analyze members subjected to torsion, combined torsion and bending moment & asses stresses in different engineering applications like springs subjected to different loading conditions

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

,	P0 1	PO 2	P0 3	P0 4	P0 5	P0 6	PO 7	PO 8	P0 9	PO 10	P0 11	P0 12
CO1	3	-	-	2	-	-	-	3	-	-	-	-
CO2	3	-	-	2	-	-	-	3	-	-	-	-
CO3	3	_	-	2	-	-	-	3	-	-	-	-
CO4	3	-	-	2	-	-	-	3	-	-	-	-
CO5	3	-	-	2	-	-	-	3	-	-	-	-
C06	3	_	_	2	-	-		3	-	_	-	-

PO

18A2101402- FLUID MECHANICS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the principles of fluid statics, kinematics and dynamics
- Familiarize basic terms used in fluid mechanics CO2
- Understand flow characteristics and classify the flows CO3
- CO4 Apply the continuity, momentum and energy principles
- CO5 Estimate various losses in flow through channels
- Understand fundamentals of kinematics and equations Cartesian coordinates. C06

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

-PO PO PO PO

	1		3	4	5	ь	/	8	9	10	11	12
CO1	3	-	w)	-	-	2		1	-	-	-	-
CO2	3	-	-	-		641	-	-	-	-		-
CO3	3	-		-	2	2	-	-	-	-	-	-
CO4	3	2	-	3	75	-	-	2	-	-	-	-
CO5	2	2	-	3		2	-	2	-	2	-	-
CO6	2	2	-	2	-		_	-	-	N	-	100

18A2101403- SURVEYING & GEOMATICS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- Understand basics of surveying and identifying the needs of surveying.
- Apply the knowledge, techniques and survey tools in engineering practices CO2
- CO3 Calculate angles, distances and levels.
- Translate the knowledge gained for implementation infrastructure facilities. CO4
- Correlate knowledge to frontiers like Hydrography, Electronic Distance Measurement, CO5 Global Positioning System, Photogrammetric and Remote Sensing.
- Identify data collection methods and prepare field notes. Estimate errors in CO6 measurements and apply corrections

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	P0 2	P0 3	P0 4	PO 5	P0 6	PO 7	P0 8	P0 9	PO 10	P0 11	P0 12
CO1		3	-	-	1	-	-	-	-	-	-	-
CO2	-	3			1		-	-	-	-	-	-
CO3	-	3	ω.	1	-	-	-	-	-	60	-	-
CO4	źm	3	m*	-	1	-	-	n#:	-		14	-
CO5	-	3		-	1	-	3	1	-	-	-	-
C06	-	-	2	-	_	_	2	1	-	_	-	-

18A2101301- BUILDING PLANNING & DRAWING

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Student should be able to plan various buildings as per the building by-laws.
- CO2 Student should know the minimum standards for various parts of buildings &characteristics.
- CO3 The student should be able to distinguish the relation between the plan, elevation and cross section and identify the form and functions among the buildings.
- CO4 The student is expected to learn the skills of drawing building elements and plan
- CO5 Student should be able to understand various brick masonry & building elementsstandard drawings.
- CO6 Student should be able to develop drawing of building plan, section and elevation.

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

		<u></u>	,			8	,					
	P0 1	PO 2	PO 3	PO 4	P0 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P0 12
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	_	-	-	-	-	-	-	-
CO3	2	1	-	-	2	-	-	-	-	_	-	-
CO4	1	2	-	-	3	-	_	-	-	-	-	-
CO5	_	1	-	-	3	-	-	-	-	-	-	-
CO6	_	-	-	-	3	-	-	-	-	-	-	-

18A2101404- BUILDING CONSRUCTION PRACTICE

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Get the knowledge of different construction materials and their properties
- CO2 Know the classification of aggregates and their structural requirements.
- CO3 Understand properties and the components of lime and cement
- CO4 Understand the types of masonry, uses of timber and its properties
- CO5 Identify components of building and types of floors and roof
- CO6 Gain the knowledge of proofing materials and formworks

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	P0 4	PO 5	PO 6	PO 7	PO 8	P0 9	PO 10	PO 11	P0 12
CO1	2	1	-	1	-	-	-	-		-	70	150
CO2	2	1	-	-	-	-	_	-		5	- 22	-
CO3	2	2	-	3	-	-	ii =	- 2		=	-	-
CO4	2	2	-	3	-	_	:	.*:	(H)			-
CO5	2	1	-	2	-	-	-	-	-	2	-	-
CO6	2	1	-	1	-	-	_	-	-	-	-	-

18A2101491- SURVEYING LAB

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Conduct survey and collect field data.
- CO2 Prepare field notes from survey data
- CO3 Interpret survey data and compute areas and volumes.

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

0400	11100 (1 10	**, =	PACCETE	uii, o	111811	,					
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	-	1	1	-	-	-	-	-	-	2
CO2	2	1	-	1	1	-	-	-	-	-	-	-
CO3	3	3	-	2	1	-	-	-	-	_	-	2

18A2101492- STRENGTH OF MATERIALS LAB

Course Outcomes:

- CO1 Conduct tension test on steel
- CO2 Conduct compression tests on spring, wood, brick and concrete
- CO3 Conduct flexural and torsion test to determine elastic constants
- CO4 Determine hardness of metals

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	P0 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	1	2	-	-			2		-	-	2
CO2	3	1	2	_	-			2				2
CO3	3	1	2	2:	2	-	-	2	-	-	_	
CO4	3	1	2	-	-		-	2	_	-	-	2

18A2100801- PROFESSIONAL ETHICS AND HUMAN VALUES

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- **CO1** Grooms themselves ascetical, responsible and societal beings.
- CO2 Discuss ethics in society and apply the ethical issues related to engineering.
- CO3 Exhibit the understanding of ethical theories in professional environment.
- CO4 Recognize their roe as social experimenters (engineers) and comprehend codes of ethics.
- CO5 Identify the risks likely to come across in the professional world, analyzing them and find solutions.
- CO6 Realize the responsibilities and rights of engineers in the society.

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

:	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	_	-	-	-	1	1	2	_	-	_	1
CO2	-	-	_	-	-	1	1	2	-	-	-	1
CO3	-	-	-	-	-	1	1	2	-	-	-	1
CO4	-	-	-	-	-	1	1	2	-	-	-	1
CO5	_	-	-	-	-	1	1	2	-	. 4		1
C06	-		_	<u> </u>	-	1	1	2	-	-	*	1

18A2200201-PROBABILITY AND STATISTICS

Cour	se Ou	tcom	es:		-							
Upor	1 succ	essfu	comp	oletio	n of tl	ie cou	ırse, t	he stu	dent	will be	e able	to:
CO1	Stude	nt will b	e able t	o meas	ure the	central	tenden	cy and r	elation	betweer	them.	
CO2												gression.
CO3	variab	les fore	element	ary pro	blems.					pectatio		
CO4										ssion di		
CO5	of the	Normal	distribu	ition.	-							he relevance
CO6		nt will b ability.		o Const	ruct hy	pothesi	s and ca	rryout	appropr	riate tes	ts to che	ecks its
								chieve	ement	of Pr	ogram	
Outc	omes	(1 - L	ow, 2	- Med	lium,	3 - Hi	gh)		_	rate for the th		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO12
	1	2	3	4	5	6	7	8	9	10	11	ļ
CO1	3	3	2	2								
CO2	3	3	2	2							j	·
CO3	3	3	2	2								
CO4	3	3	. 2	2							-	
CO5	3	3	2	2								
C06	3	3	2	2								

18A2201401- CONCRETE TECHNOLOGY

			18A22	0140	T- COI	NCKE	EIE	THMOI	JUGY			
Cour	se Ou	tcome	es:									
Upor	1 succ	essful	comp	letion	of the	cour	se, the	stude	ent wi	ll be a	ble to	
CO1	Under	stand th	e basic o	concepts	s of cond	rete.	J-1					
CO2	Realiz	e the im	portance	e of qua	lity of co	ncrete						
CO3			e basic ii tsbehav			ncrete a	ind thei	r role in	the pro	duction	of	
CO4	Test th	ne fresh	concrete	proper	ties and	l the har	dened c	oncrete	propert	ies.		
CO5	Evalua	ite the ii	ngredien	ts of co	ncrete tl	nrough l	ab test i	results.	design th	ne concr	ete mix	
CO6			e basic c Jndersta									
			Course ow, 2-					ievem	ent of	Progi	am	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	2	3	2	-	-	-	2		-	-	-
CO2	_	2	3	2	-	-	-	2	-	-	_	_
CO3	_	2	3	2	_	_	-	2	_	-	-	_
CO4	-	2	3	2	, -	-	-	2	-	-	-	-
CO5	-	1	_	1	-	_	-	2	-	-	-	_

18A2201402- HYDRAULIC ENGINEERING

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand characteristics of laminar and turbulent flows.
- CO2 Analyze characteristics for uniform flows in open channels.
- CO3 Analyze characteristics for non-uniform flows in open channels.
- CO4 Design different types of turbines
- CO5 Design of centrifugal and multi stage pumps.
- CO6 Design of reciprocating pump

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P0	PO 12
			3		3	O	/	0	9	10	11	14
CO1	3	er	No.	-	-	~	-	-		-	with	876
CO2	3	**	~	1	-	-	2	2	-	-		20
CO3	3	75	-	1	73	=	2	2	-	-	-	-
CO4	2	7-	-	3	-	-	1,	2	-	-	- 41	28
CO5	2	-		3	-	-	1	2	=	**	-	-
CO6	2	Trial I	21	3	2	2	1	2	-	-	-	an.

18A2201403- ENGINEERING GEOLOGY

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Gain basic knowledge on characteristics of rocks and minerals.
- CO2 Identify and differentiate rocks using geological classification.
- CO3 Apply concepts of structural geology for civil engineering structures.
- CO4 Understand the seismic zones of India.
- CO5 Understanding about Geophysical investigation methods & Carryout geo physical investigations using various methods
- Investigate the project site for mega/mini civil engineering projects. Site selection for mega engineering projects like Dams, Tunnels, disposal sites etc.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO	PO 2	PO	P0	PO	PO	PO	PO	PO	PO	P0	P0	
	т_		3	4	5	6	7	8	9	10	11	12	
CO1	2	-	3	-	1	-	-0	-	-	-	-	-	
CO2	2	3	3	_	2	-	+	-	a	-	2	-	
CO3	2	3	3	-	3	, -	-	-	-	-	2	er	
CO4	-	2	3	-	.3	:=	i.	*	-	-	2	2	
CO5	3	-	3	-	2	-	-		-	-	2	1	
CO6		-	3	-	3	_	-	-	-	-	-	-	

18A2201404 - STRUCTURAL ANALYSIS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Apply Rankine's & Euler's theories for analysis of columns & struts
- CO2 Analyze indeterminate propped cantilever beams
- CO3 Analyze fixed beams using compatibility method
- CO4 Analyze continuous beams using Clapeyron's theorem of three moments Analysis
- CO5 Analyze continuous beams using slope deflection equation
- CO6 Identify the behavior of structures due to the expected loads, including the movingloads, acting on the structure. Estimate the bending moment and shear forces in beams for different fixity conditions

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

Oute	OHITCS	(L	U 11) =	A-TOOL	, .						1	
	P0 1	PO 2	PO 3	P0 4	PO 5	P0 6	PO 7	PO 8	P0 9	PO 10	P0 11	PO 12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	1	-	-	-	
CO3	3	-	-	-	-	-	-	1	-	-	-	-
CO4	3	-	-	-	-	-	-	1	-	-	-	-
CO ₅	3	-	-	-	-	-	-	1	-		-	-
CO6	2	2	-	-	_	-	-	1	-	_	_	

18A2201491- FLUID MECHANICS & HYDRAULIC MACHINES LAB

Course Outcomes:

CO1 Student will be able to utilize the knowledge in the design of water supply pipe networks and measure the rate of flow in pipes and channels.

CO2 Students will have confidence in the hydraulic design of turbines and should be able to identify suitable pumps and turbines for different working conditions.

Contri								evem	ent of	Progr	am	
	P0 1	P0 2	PO 3	P0 4	PO 5	PO 6	PO 7	PO 8	P0 9	PO 10	P0 11	PO 12
CO1	1	2	3	2	-	-	-	1	-	-	-	-
CO2	1	2	3	3	-	-	_	1	-	-	-	-

18A2201492- ENGINEERING GEOLOGY LAB

Course Outcomes:

- 1. Identify minerals and rocks
- 2. Measure strike and dip of the bedding planes
- 3. Interpret geological maps

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low 2- Medium 3 - High)

Outco	mes (I - LU	vv, Z- r	reulu	ш, э	High	}					
	P0 1	PO 2	PO 3	P0 4	P0 5	P0 6	PO 7	PO 8	P0 9	P0 10	PO 11	PO 12
CO1	-	2	3	3	2	1	1	1	-	-	_	-
CO2	2	-3	2	2	2	1	2	2	-	-	-	-
CO3	1	3	2	2	2	-	1	1	-	-	-	-

18A2201493- ADVANCED SURVEYING LAB

Course Outcomes:

- 1. Conduct survey and collect field data.
- 2. Prepare field notes from survey data
- 3. Interpret survey data and compute areas and volumes.

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low. 2- Medium. 3 - High)

			, -		tall, o	****						
	P0 1	P0 2	PO 3	PO 4	P0 5	PO 6	PO 7	PO 8	P0 9	PO 10	P0 11	P0 12
CO1	2	3	-	1	1	-	2 0	-	-	2	-	2
CO ₂	2	1	-	1	1		-	-	-			_
CO3	3	3	-	2	1	- 4	-	-	-	_	20	2

18A2201494- SURVEY CAMP

Course Outcomes:

- 1. Conduct survey and collect field data.
- 2. Prepare field notes from survey data
- 3. Interpret survey data and compute areas and volumes.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low. 2- Medium, 3 - High)

	P0 1	PO 2	PO 3	P0 4	P0 5	PO 6	PO 7	P0 8	P0 9	PO 10	P0	PO 12
CO1	2	3	-	1	1	-	28	-	-	-	-	2
CO2	2	1	-	1	1	w()	-	-	201	_	-	_
CO3	3	3	-	2	1	-	,-	-	*	-	-	2

18A2200801-IPR & Patents

Cours	se Outo	comes					19.5					
Upon	succes	ssful c	omple	etion (of the	cours	e, the	stude	nt wil	l be al	ole to:	
CO1	Under	stand th	e need	for Intel	lectual l	Property	Rights	and its	importa	nce		
CO2	Study	of Infor	mation '	Technol	ogy Act	2000 ar	d classi	fication	of Cybe	rcrimes		
CO3	Study	of Copy	rights A	ct and i	ts regist	rations	process				100	
CO4	Study	of Paten	ts Act a	nd it's ir	ıfringen	nent						
CO5	Study	of Trade	marks .	Act and	it's regi	stration	formali	ties				
C06	Under	stand th	e impoi	rtance o	f Trade	secrets a	and mai	ntaining	g trade s	ecrets		
Contr	ibutior	of Co	ourse	Outco	mes to	oward	s achi	eveme	ent of	Progra	am	
Outco	mes (1 - Lo	w, 2-1	Mediu	m, 3 -	High)			- 2		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	-	-	-	-	-	3	-	-	-	-
CO2	3	-	_ =	-	-	-	_	3	-	2	. '	_
CO3	2	-	2	-	-	-	-	3	-	-	-	-
CO4	2	-	-	2	-	-	-	3	=	-	-	-
CO5	2	-	2	-	-	-	-	3	-	-	-	-
C06	2		-	-	-	-	_	3	2	2	-	-

Open Elective-1 (Offered by Department of civil engineering) 18A2201601- ELEMENTS OF CIVIL ENGINEERING

cour	se Ou	tcome	s:									
Upor	ı suçce	essful	comp	letion	of the	cours	se, the	stude	nt wil	l beat	ole	
to:												
CO1	Attain	basic kr	owledg	e on sim	ple stre	ss & str	ains and	l civil en	gineerir	ng matei	rials.	
CO2		basic kr										
CO3	Attain	basic kn	owledg	e on pri	nciples	of surve	ying, vai	ious typ	es of su	rveying		_
CO4	Attain	basic kn	owledg	e on var	ious typ	es of tra	nsporta	ition sys	tems.			
CO5	Attain	basic kr	owledg	e on var	ious typ	es of br	idges				_	
CO6	Attain	basic kn	owledg	e on pui	pose, co	mpone	nts and	various	types of	dams.		
Cont	ributio	m of (0				_	_	_		
								ievem	ent of	Progr	am	
		(1 - Lo						ievem	ent of			
		(1 - Lo PO	PO		ım, 3 · PO			ievem PO	PO	PO	PO	PO
	PO 1	(1 - Lo PO 2	w, 2-	Mediu	ım, 3 ·	- High)					PO 12
Outc	omes PO	(1 - Lo PO	PO	Mediu PO	ım, 3 · PO	High PO	PO	PO	РО	PO	PO	
Outc	PO 1 3	(1 - Lo PO 2	PO	Mediu PO	ım, 3 · PO	PO 6	PO	P0 8	РО	PO	PO	
Outc CO1	PO 1 3	(1 - Lo PO 2	PO	Mediu PO	ım, 3 · PO	PO 6	PO	P0 8	РО	PO	PO	
0utc 001 002 003	90 1 3 3 3 3	(1 - Lo PO 2 2	PO	Mediu PO	ım, 3 · PO	PO 6	PO	PO 8 2	РО	PO	PO	
	90 1 3 3 3	(1 - Lo PO 2 2	PO	Mediu PO	ım, 3 · PO	P0 6 2 1 1	PO	PO 8 2	РО	PO	PO	

18A2201602-BASIC SURVEYING

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the principles of surveying and types of scales
- CO2 Understand the principles of chain surveying.
- CO3 Attain basic knowledge on compass surveying and various types of compass.
- CO4 Attain basic knowledge on bearings and included angles from bearings
- CO5 Compute areas of a given section.
- CO6 Compute volumes of a given section.

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

					•	-	,					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P0 9	PO 10	PO 11	PO 12
CO1	3	2	-		-	2	-	2	-	-	-	-
CO2	3	2	-	-	-	1	-	1	-	-	-	-
CO3	3	2			46	-		1	-			:=:
CO4	3	2		-	pac :	-	-	1	-	-	-	•
CO5	3	2	-	14	-	_	-	1	-	-	1/2	-
CO6	3	2	-	-	; m.	2	-	1	-	-	m	**

- 6			200	18A3	10140	1-50	L ME	CHAN	ICS		v ve v	·
Cour	se Ou	tcome	es:				Ya s					
Upon	succ	essful	comp	letio	n of th	e cou	rse, t	he stu	dent	will be	able t	to:
CO1					ased o							
CO2	Char	acteri	ze and	class	ify soil	ls base	ed on	differe	nt lim	its.		
CO3					and se							
CO4					bility o				ed soil	6		
CO5					naracte					.0		
C06										4 -5	31	
					rocess							
								chieve	ement	of Pr	ogram	
Oute		7	1		ium, 3	_		700	700			
	PO 1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
001		2	3	4	5	6	7	8	9	10	11	12
CO1	2	1	_	2	-	9.	-	-	-	-	-	: :-
CO2	2	-	14	-	μ.	-	12	1	-	-	-	_
CO3	2	1	-	-	-	1	%=	-	-	-	-	-
CO4	2	2	-	-	-	1	-	-	-	-	-	_
CO5	2	2	-	-	/.=	1	-	-	-	-	-	_
CO6	2	2	2	-	14	1	-	1	-	-		: <u>-</u>

18A3101402-REINFORCED CONCRETE STRUCTURES

		TOWO	TOTAC	2-KL	INFOR	KCED (CONC	RETE	STRU	CTUR	LES .	
Cour	se Ou	tcome	es:									
Upon	succ	essful	comp	letion	of th	e cou	rse, t	he stu	dent	will be	able t	0:
CO1				t types								
CO2	Carry	yout a	nalysi	s and	design	of fle	xural:	memb	ers an	d deta	iling	
CO3	Desig	gn of d	lifferer	it type	s of sl	abs sı	ibjecte	ed to s	hear,	bond a	and tor	sion
	Desig											
	Desig			_								
	Desig											
Cont	ributi	on of	Cours	e Out	come	s towa	rds a	chieve	ment	of Pro	ogram	
	omes											
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	3	-	-	2		2	-	-	-	-
CO2	3	3	3	-	-	2	-	2	-	-	-	_
CO3	3	3	3			2		2				

CO4	3	3	3	-	-	2	-	2	-	_	-	-
CO5	3	3	3	-	-	2	-	2		-	-	-
CO6	3	3	3			2	_	2	-	-	-	

18A3101403-WATER RESOURCE ENGINEERING-1

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Develop design storms and carry out frequency analysis
- CO2 Determine storage capacity and life of reservoirs.
- CO3 Develop unit hydrograph and synthetic hydrograph
- CO4 Estimate flood magnitude and carry out flood routing.
- CO5 Determine aquifer parameters and yield of wells.
- CO6 Model hydrologic processes

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

		/													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO			
	1	2	3_	4	5	6	7	8	9	10	11	12			
CO1	2	2	3	-	-	1	-	1	-	-	-	~			
CO2	2	$\bar{2}$	-	-	-	- 1	-	-	-	-					
CO3	3	2	2	_	-	1	-	1	-	-	-	-			
CO4	2	2	-	-	-	-	-	-	-	-	-	-			
CO5	2	2	-	_	_	-	-	-	-	-	-	-			
CO6	2	1	-	-	-	-	-	-	-	-	-]	-			

18A3101401 -STRUCTURAL ANALYSIS-II

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Analyze three Hinged Arches and two Hinged Arches
- CO2 Analyze structures using Slope deflection method
- CO3 Analyze structures using Moment Distribution method
- CO4 Carryout lateral Load analysis of structures
- CO5 Analyze structures using Flexibility Matrix method
- CO6 Analyze structures using StiffnessMatrix method

Contribution of Course Outcomes towards achievement of Program

Outcomes (1 - Low, 2- Medium, 3 - High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	. 3	3	-	-	-	2	-	1		-	-	-
CO2	3	3	-	-	-	2	-	1	-	-		-
CO3	3	3	-	-	-	2	_	1	-	-	-	-
CO4	3	3	-	-	-	2	-	1	_	-	-	-

CO5	3	3	-	-	- 1	2	-	1		-	-	-
CO6	3	3	-	-	12	2.	-	1	- 1	-	-	-

PROFESSIONAL ELECTIVE-1

18A3101511-SUBSURFACE INVESTIGATION AND INSTRUMENTATION Course Outcomes: Soil Mechanics

Upon successful completion of the course, the student will be able to:

- CO1 Plan and execute sub soil investigation programme.
- CO2 Different exploration techniques
- CO3 Handle both laboratory and in-situ testing techniques.
- CO4 Carry out collection, handling and preservation of samples.
- CO5 In situ exploration methods
- CO6 Handle instruments during sub soil exploration process.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	-	-	2	-	2	-	1	-	-	-	-
CO2	2	_	-	_	-	2	- 2	-	-	-	-	-
CO3	2	-	-	Е.	-	2	-	2	-	-	-	-
CO4	2	-	2	2	-	2	-	1	-	-	-	_
CO5	2	-	-	-	-	2	-	2	-	-	25=	-
CO6	2	-	-	-	-	1	<u>,-</u>	1	-	1,5	<u>,</u> -	(incl

PROFESSIONAL ELECTIVE-1 18A3101512-ADVANCED CONCRETE TECHNOLOGY

Course Outcomes: Upon successful completion of the course, the student will be able to: CO1 Understand the basic concepts of concrete. CO2 Realise the importance of quality of concrete. CO3 Familiarise the basic ingredients of concrete and their role in the production of concrete and its behaviour in the field. CO4 Fresh concrete properties and the hardened concrete properties. CO5 Familiarise the basic concepts of special concrete and their production and applications. C06 Understand the behaviour of concrete in various environments. Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High) PO 1 3 5 6 7 8 9 10 12 11 CO₁ 2 1 2 CO₂ 1

CO3	2	-	-	2	-	2	-	1	-	-	-	-
CO4	2	-	-			-	-	1	-			-
CO5	2	-		-	<i>-</i> :.		-	1	,	-	-	-
CO6	2	-	-	7_		3 40		1		-	-	-

PROFESSIONAL ELECTIVE-1

18A3101513-ENVIRONMENTAL POLLUTION AND CONTROL

O	O4-		_
Course	Outc	om	es:

Upon successful completion of the course, the student will be able to:

- CO1 Identify the air pollutant control devices
- CO2 Understand the fundamentals of solid waste management, practices adopted in his town/village and its importance in keeping the health of the city.
- CO3 Identify the air pollutant control devices and have knowledge on the NAAQ standards and air emission standards.
- CO4 Differentiate the treatment techniques used for sewage and industrial wastewater treatment.
- CO5 Inventing the methods of environmental sanitation and the management of community facilities without spread of epidemics.
- CO6 Appreciate the importance of sustainable development while planning a project or executing an activity.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 -

Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	-	-	-	2	-	2	1	=	-	-	-
CO2	2	-	-	-	-	-	2	1	-	-	-	-
CO3	2	3.	-	-	=	-	2	1	8	-	-	-
CO4	2	=::	(<u>=</u>)	2	2	_	2	1	-		-	-
CO5	2		90	=	2	2	2	1	_	-	-	_
CO6	2	2	5 4 01	-	~	-	2	1	-	-	-	-

18A3101514-AIRPORT PLANNING AND DESIGN

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Obtain a basic Knowledge of the fundamental issues in Airport engineering.
- CO2 Demonstrate the clear understanding of the airport components.
- CO3 Learn principles in airport components geometric
- CO4 Learn the airport components capacity and delays
- CO5 Learn critical factors consideration in airport design
- CO6 Design and be able to apply these principles in field

Contribution of Course Outcomes towards achievement of Program Outcomes (1

- Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5		PO 7	PO 8		PO 10	PO 11	PO 12
CO1	2	_	-	-	-	_	_	¥	=	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-

CO3	2	-	-	-	- ,	-	- 2	-	-	-	-	-
CO4	2	-	-	-	. -			-		-	-	-
CO5	-2	- I	(- T			1 ₂ ±.	-		> =	-	-	* ,
CO6.	2		3	والما	2 - 4	2:	git # A J	2	1.00	a Fr	7 - 3	Jan Ellis Ing

18A3101515-URBAN HYDROLOGY

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Impact of urbanization on catchment hydrology
- CO2 Develop intensity duration frequency curves for urban drainage systems.
- CO3 Peak flow estimations
- CO4 Develop design storms to size the various components of drainage systems.
- CO5 Apply best management practices to manage urban flooding.
- CO6 Develop master drainage plan for an urbanized area.

Contribution of Course Outcomes towards achievement of Program Outcomes (-Low, 2-Medium, 3-High)

- Low, 2- Medium, 3 - High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	-	-	_	-	-	ä	-	-	-	-	-
CO2	2	2	3	-	-	2	:-:	1	-	-	-	*
CO3	2	-	-	-	; =	-	:es:	-	-	-	-	.93
CO4	2	2	3	-	-	2	-	1	-	-	-	-
CO5	2	-	-	ù	12	-	(<u>a</u>	-	-	-	-	_
CO6	2	2	3		er.	2	-21	1	- 2	2:	-	-6

Open Elective-2 (Offered by Department of civil engineering) 18A3101601-BUILDING MATERIALS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the process of making quality stones with its applications.
- CO2 Understand the process of making quality bricks with its applications.
- CO3 Assess quality of lime in a detailed manner on the usage in the present-day construction.
- CO4 Assess quality of timber in a detailed manner on the usage in the present-day construction.
- CO5 Assess quality of steel in a detailed manner on the usage in the present-day construction.
- CO6 Acquire the knowledge about paints, varnishes, distempers

Contribution of Course Outcomes towards achievement of Program Outcomes (1

- Low, 2- Medium, 3 - High)

- 10	w, 2- 1	realui.	п, о –	nign)								
	PO	PO	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO	PO 10	PO	PO 12
	-	4	3		3	U		0	7	10	7.7	14
CO1	3	-	-	20	<u>~</u>	2	-	1	a	-	-	co-
CO2	3	-		-	-	1	2	1	-	-	-	₂ m
CO3	2	2	194	_		1	-	1		-	-	-

CO4	3	-	-	-	-	1	-	2 -		-	-
CO5	2	2	-	-	- "	-		1 -	-	-	-
CO6	3	1	_	-		1	_	2 -	-	-	-

Open Elective-2 (Offered by Department of civil engineering) 18A3101602-AIR POLLUTION & ITS CONTROL

Cour	se Ou	tcome	s:				,					
Upor	succ	essful	comp	letion	of the	cours	se, the	stude	ent wi	ll be a	ble to:	
CO1		rstand o										
CO2				comment of the commen		seemen and the seemen and the seemen	ces of a	ir pollu	tion.			
CO3		stand t		-				F				
CO4							polluti	on				
CO5							polluti					
	Classi				man Prince Print.			OII				
COO	UJASSI					וגיווצ ווו	POIES					
									4 1	C T2		
Cont	ributi	on of (Course	Outc				ievem	ent o	Prog	ram Out	comes (1
Cont		on of (Course	Outc				ievem	ent o	Prog	ram Out	comes (1
Cont	ributi	on of (Course	Outc				ievem PO	PO	PO	ram Out	comes (1
Cont	ribution, 2- M	on of (Iediun	Course 1, 3 –	Outc High)	omes	towar	ds ach					
Cont - Lov	ribution, 2- M	on of (lediun PO	Course 1, 3 - PO	Outc High) PO	omes PO	towar PO	ds ach	PO	PO	PO	PO	РО
Cont - Lov	ribution, 2- M PO 1	on of (lediun PO 2	Course 1, 3 - PO	Outc High) PO	omes PO	towar PO	ds ach	PO 8	PO	PO	PO	РО
Cont – Lov CO1	ribution, 2- Monage PO	on of (lediun PO 2 1	Course 1, 3 - PO	Outc High) PO	omes PO	towar PO	ds ach	PO 8	PO	PO	PO	РО
Cont – Lov	PO 1 3 2	on of (Iedium PO 2 1	Course 1, 3 - PO	Outc High) PO	omes PO	towar PO	ds ach	PO 8	PO	PO	PO	РО
Cont	PO 1 3 2 3	on of (ledium PO 2 1 2 2 2	Course 1, 3 - PO	Outc High) PO	omes PO	towar PO	ds ach	PO 8	PO	PO	PO	РО

18A3101602-MANAGEMENT SCIENCE

Cour	se Outo	omes	:									
Upon	succes	sful c	omplet	ion of	the cou	ırse, th	e stud	ent wi	ll be al	ole to:		
CO1	Design	of orga	anization	al struct	ture bot	h indust	ries and	acaden	nia.			
CO2	Analyz	e vario	us functi	ons of m	nanagen	nent tha	t includ	e operat	ions ma	nageme	nt, materi	al management,
	a - torus	7	nageme		T-1000-0100		****					
CO3	Under	stand th	ne impor	tance of	f plannir	ng for th	e long-t	erm thro	ough str	ategic m	anageme	nt.
CO4			uality co I academ		andards	& conte	mporar	y manag	ement p	oractices	being foll	owed both in
CO5	-		c <mark>eptual</mark> r			_	_			and its a	pplicabilit	ty in
CO6		stand that		mporary	y issues	in the fie	eld of m	anagem	ent scie	nce and	their appl	icability in the rea
	ributio um, 3 -			utcom	es tow	ards a	chieve	ment o	f Prog	ram Oı	ıtcomes	(1 - Low, 2-
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	. 1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	-	-	-	-	-	-	-	2	-	3	-
CO2	2					-		_	1	_	3	_

CO3	2	-	-	-	 -	-	2	-	3	-	
CO4	2	-	-	-	 -	-	1	-	3	-	
CO5	- 2	-		21			2	-	3		
C06	2	-		·		1-3 -V	2	-	3.	V	

18A3101491-Soil Mechanics Lab

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Determine index properties of soil and classify them.
- CO2 Determine permeability of soils
- CO3 Determine Compaction, Consolidation and shear strength characteristics

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

		PO 2										
CO1	3	3	*	3	-	2		2	-	**	-	-
CO2	3	3	2	3	_	2	-	2	-		2	-
CO3	3	3	-	3	- "	2	2	2	ä	2	-	28

18A3101492-Concrete Technology Lab

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Determine the consistency and fineness of cement.
- CO2 Determine the setting times of cement.
- CO3 Determine the specific gravity and soundness of cement.
- CO4 Determine the compressive strength of cement.
- CO5 Determine the workability of cement concrete by compaction factor, slump and Vee– Bee tests
- CO6 Determine the specific gravity of coarse aggregate and fine aggregate by Sieve analysis
- CO7 Determine the flakiness and elongation index of aggregates.
- CO7 Determine the bulking of sand.
- CO8 Understand the non-destructive testing procedures on concrete.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

			PO 3									
CO1	3	3	-	3	-	2		2	-	-	-	-
CO2												
CO3	3	3	-	3	-	2	39	2	-	-	-	-

18A3100801-INDIAN CONSTITUTION

Type of Course: Audit Course

							uit Cou					
Cours	e Outco	mes:										
Upon	success	ful com	pletion	of the c	ourse, tl	he stude	ent will	be able	to:			
CO1	Unde	rstand tl	ne mean	ing, hist	ory, feat	tures an	d charac	teristics	of India	n Const	itution	
CO ₂	Gain	knowled	lge on f	undame	ntal righ	ts duties	and Pri	nciples	and imp	ortance	of State	Policy
CO3		·		rs of Un			_					
CO4				ents of 1						ons		
Contr	ibution	of Con	rse On	tcomes	toward	s achie	vement	of Pro	gram (utcome	s (1 – 1	Low.
	ibution m, 3 – I PO		PO	PO	toward PO	s achie	PO	of Pro	gram C	outcome PO	s (1 –]	
	m, 3]	High)		·			·	·				
Mediu	m, 3]	High) PO	PO	PO	PO	PO	·	PO		PO	PO	PO
Mediu CO1	PO 1	High) PO 2	PO	PO	PO	PO	·	PO		PO	PO	PO
	PO 1 3	PO 2	PO 3	PO	PO	PO	·	PO 8		PO	PO	PO

18A3201401-FOUNDATION ENGINEERING

Cour	se Ou	tcome	es:					1.0				
Upon	succ	essful	comp	letior	of th	e cou	rse, tl	ne stu	dent	will be	able to	o:
CO1	Unde	erstan	d the r	nethod	ds of s	oil exp	olorati	on.				
CO2	Com	pile so	il inve	stigati	on rep	ort	.•					
CO3	Asse	ss stal	oility o	of slope	es and	earth	retair	ning st	tructu	res ·		
CO4	Dete	rmine	safe b	earing	capa	city an	d sett	lemen	t of sh	allow	foundat	ions.
CO5	Desig	gn pile	found	lations	S.							
CO6	Desig	gn wel	l found	dation	S.							
0 4			<u> </u>	- 04				4.4				
Cont	ributi	on or	Cours	e out	come	s towa	irds ac	chieve	ement	of Pro	ogram (Outcomes
	ow, 2					s towa	irds ac	chieve	ement	of Pro	ogram (Jutcomes
						s towa	PO	PO	PO	of Pro	PO	PO
	.ow, 2	- Med	ium, 🤅	3 – Hi	gh)	T		,	,		,	***
	.ow, 2	- Med PO	ium, 3 PO	PO	gh)_ PO	PO	РО	РО	РО	PO	PO	PO
(1 - I	PO 1	- Med PO	ium, 3 PO	PO	gh)_ PO	PO	РО	РО	РО	PO	PO	PO
(1 - I	PO 1 2	PO 2	ium, 3 PO	PO	gh)_ PO	PO 6	РО	РО	РО	PO	PO	PO
CO1 CO2	PO 1 2 2	PO 2	ium, 3 PO	PO	gh)_ PO	PO 6	РО	РО	РО	PO	PO	PO
CO1 CO2 CO3	PO 1 2 2 2	- Med PO 2 - 2 2	ium, 3 PO	PO	gh)_ PO	PO 6	РО	РО	РО	PO	PO	PO

18A3201402-HIGHWAY ENGINEERING

Cour	se Ou	tcome	es:									
				letio	of th	ne cou	rse, t	he stu	dent	will be	able to	0:
	Carry											
CO2	Unde	erstan	d char	acteri	stics o	f high	way m	ateria	ls.			
CO3	Geon	netric	design	and a	alignm	ent	·					
CO4	Desig	gn con	iponei	nts of	highw	ay.						
CO5	Desig	n hig	hway i	nterse	ections	S.						
C06	Desig	n higi	hway j	oavem	ents							
						s towa	rds a	chieve	ement	of Pr	ogram (Outcomes
	JUW, Z	- Med	ium, 3	3 – Hi	gh)						0	
.•	PO	- Med PO	ium, 3 PO	PO	gh) PO	РО	PO	РО	РО	РО	PO	PO
	· · · · · · · · · · · · · · · · · · ·											
CO1	· · · · · · · · · · · · · · · · · · ·	PO	PO	PO	PO	РО	РО	РО	РО	РО	PO	PO
CO1	PO 1	PO	PO	PO	PO	РО	РО	РО	РО	РО	PO	PO
CO1	PO 1 2	PO	PO	PO	PO	РО	РО	РО	PO 9	РО	PO	PO
CO1	PO 1 2 2	PO 2	PO 3 -	PO	PO	PO 6	РО	РО	PO 9	РО	PO	PO

CO6	2	-3	3	-	-	2	_	1	-	-	-	-	

		18	3A3201	403-E	NVIR	ONME	NTAL	ENGI	NEER	ING		
Cour	se Ou	tcome	s:	**								
Upon	succ	essful	comple	etion	of the	cour	se, th	e stud	lent w	ill be	able to	: -
CO1	Unde	erstand	d about	qualit	y of w	ater a	nd pu	rificat	ion pr	ocess		
CO2	Selec	t appr	opriate	techn	ique fo	or trea	tment	of wa	ste wa	ater.		
CO3			impact		_							
CO4			d conse		•		aste a	nd its	mana	gemei	nt.	
CO5			nestic p	•						0		
C06	,	_	suitable		0 0		raw wa	iter tre	atmen	ts.		
Cont	ributi	on of	Course	Outco	mes	towar	ds acl	niever	nent e	of Pro	gram O	utcome
			ium, 3								8	
•	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	-	_	-	-	_	-	1		-	-	20
CO2	2	-	-	-	-	-	-	1		-	- 1	(7.)
CO3	2	-	-	-	-	-	-	1	-	-	-	_
ÇO4	2	-	-	_	-	-	-	1	20	-	-	_
CO5	2	2	3	-	-	-	-	1	-	*	-	*
C06	2	-	960	9-	æ	ж:	-	1	960	- 54	-	-

PROFESSIONAL ELECTIVE-II

18A3201511-GROUND IMPROVEMENT TECHNIQUES

Cour	se Ou	tcome	s:									
Upon	succ	essful	compl	etion (of the	cours	e, the	stud	ent wi	ll be a	ble to:	
CO1		ve the kr tuations	_	of vario	us meth	ods of g	round ir	nprover	nent and	their s	uitability t	o different
CO2	Design	a reinfo	rced eart	h embar	nkment a	and che	ck its sta	bility.				
CO3	Under	stand the	e function	ns of Geo	-synthe	tics and	their ap	plicatio	ns in Civ	il Engine	ering pra	ctice.
CO4	Under	stand the	e concept	s and ap	plicatio	ns of gro	outing.					
CO5	Conce	pt of dev	vatering									
CO6	Stabiliz	zation of	soils									
			Course ium, 3			owar	ds ach	ieven	nent o	f Prog	ram O	itcome
	PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	-	*	-	-	1	-	1	-	-	-	_
CO2	2	-	_	_	_	1	-	1	_	_	_	_

CO3	2	-	-	-	-	1	-	1	-	-	-	- alea
CO4	2	-	-	-	-	1	-	1	-	-	-	-
CO5	2	-	-			- 1	-	1	-	-	·	-
CO6	2	-	-		_	1		1	-	-	_	<u>.</u>

18A3201512-WATER RESOURCE ENGINEERING-II

		10	M340	1917-	WAIL	K KES	OURC	e eng	MEER	114 G-11		
Cour	se Ou	tcome	es:									_
Upon	succ	essful	comp	letio	of th	ie cou	rse, t	he stu	dent	will be	able	to:
CO1	Estin	nate ir	rigatio	n wat	er req	uirem	ents					
CO2	Desig	gn irrig	gation	canal	s and	canal	netwo	rk				
CO3	Desig	n irrig	gation	canal	struc	tures		7				
CO4	Plan	and d	esign (divers	ion he	ad wo	rks					
								18				
									orks			
						-				of Pro	ogram	
									IIICIIC	01 1 1	Stam	,
CO5 Analyse stability of gravity and earth dams CO6 Design ogee spillways and energy dissipation works Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High) PO P												
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	_	-	-	2	-	1	-	_	-	-
CO2	2	3	3	-	-	2	-	1	-	-	-	-
CO3	2	3	3	_	-	2	-	1	-	-	-	-
CO4	2	3	3	-	-	2	-	1	-	-	-	-
CO5	2	2	-	-	-	2	-	1	-	-	-	-
CO6	2	3	3	_	-	2	-	1	-	-	-	-

			1	8A32	01513	3-AIR F	OLLUT	ION EN	GINEE	RING		
Cour	se Ou	tcome	es:									
Upon	succ	essful	comp	letio	of th	e cou	rse, t	he stu	dent	will be	able	to:
CO1		ıating tants	the	ambie	nt air	· qual	ity ba	ased o	n the	anal	ysis o	of air
CO2	Desig	gn par	ticulat	e and	gaseo	us coi	ntrol n	neasur	es for	an inc	lustry	
CO3	Judg	e the j	plume	behav	viour i	n a pr	evailir	ig envi	ronme	ental c	onditi	on
CO4					s for v							
CO5	Pollu	ion co	ntrol n	nethod	S							
C06	Prope	rties o	f atmo	sphere								
					come: ium, 3			chieve	ment	of Pro	ogram	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	_	-	-	-	-	-	_		-	-
CO2	2	3	3	-	-	1	-	ì	-	-	-	-
CO3	2	-	-	-	-	-	-	-	-	-	-	-

CO4	2	2	-		 1	-	1	-	-	-	-
CO5	2	-	-	-	 -	-	-1	-	-	-	-
CO6	2	-	-	-	 -		- 6	-	-		-, */-

18A3201514-RAILWAY ENGINEERING

			TC	A34U	1214-	KAILW	AI EN	GINE	NING			
Cour	se Ou	tcome	s:									× .
Upon	succ	essful	comp	letior	of th	e cou	rse, tl	ne stu	dent v	will be	able to):
CO1	Expla	ain coi	mpone	nts of	Railw	ay tra	ck, dif	ferent	Gauge	es.		
CO2	Desig	n Tra	ck Gra	dient	s.as pe	er give	n requ	iireme	nts.			
CO3	Desig	gning v	variou	s type	s of Tr	ack T	urnout	ts.				
CO4		, ,		V 1			railwa		ons.			
			_				ignal s	~				
CO6							0			media	l measu	ires
			Cours ium, : PO			s towa	rds ac	PO	PO	of Pro	ogram (PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	-	-	_	-	-	-	-	-	i.	-	¥
CO2	3	3	3	-	-	2	-	1	-	-	-	-
CO3	3	3	3	_	_	2	-	1	> "	-	-	_
CO4	2	-	-	-	14	-	-	-	154	-	-	-
CO5	2		-	-	MP.	-20	40	40	-8	1 44	-8:	11-
CO6	2	-	No.	-		-81	-60		-	:-	-	-

18A3201515-GREEN BUILDINGS AND SUSTAINABILITY

Upon	succ	essful	comp	letior	of th	e cou	ırse, t	he stu	dent	will b	e able t	0:
CO1											erials.	
CO2							portu					
CO3											buildi:	ngs.
CO4											climate	
CO5											social e	
CO6	Plan	land	use co	onfirm	ing to	zonal	regula	ations				
CO6 Cont:			use co						ement	of Pı	ogram	Outcome
Cont	ributi	on of		e Out	come				ement	of Pı	ogram	Outcome
Cont	ributi	on of	Cours	e Out	come				ement PO	of Pr	ogram	Outcome
Cont	ributi .ow, 2	on of - Med	Cours	e Out 3 – Hi	come gh)	s towa	ards a	chiev	- Division			
Cont	ributi .ow, 2 PO	on of - Med PO	Cours ium, a PO	e Out 3 – Hi PO	come gh) PO	s toward	PO	PO	PO	РО	PO	PO
Cont: (1 – I	ributi ow, 2 PO 1	on of - Med PO	Cours ium, a PO	e Out 3 – Hi PO	come gh) PO	s toward	PO 7	PO 8	PO	РО	PO	PO

CO4	2	-	-	-	-	-	2	1	-	-	-	-
CO5	2	-	-	-		- "	2	1	_	-	-	0 2
CO6	2	-	-	-	-	-	2	1	-	-	-	_

PROFESSIONAL ELECTIVE-III

18A3201521-EXPANSIVE SOILS

Cour	se Ou	tcome	es:	22								
Upon	succ	essful	comp	letion	of th	e cou	rse, tl	he stu	dent	will be	able to):
CO1	Dem	onstra	te beh	aviou	of ex	pansiv	e soils	s.				
CO2	Expla	ain ne	ed of f	ounda	tion p	ractice	e on ex	kpansi	ve soi	ls.		
CO3	Perfo	rm me	ethods	of sta	bilizat	tion of	expan	isive s	oils.			
			tives a							-		
CO5			gained									
			swellir									
Cont	ributi	on of	Cours	a Out	00000		-4	1. 2	4	C The		4
	ow, 2	- Med	ium, :	3 – Hi	gh)							PO
						PO 6	PO	PO 8	PO 9	PO 10	PO 11	PO 12
(1 – L	ow, 2 PO	- Med PO	ium, 3 PO	PO Hig	gh) PO	РО	PO	РО	РО	РО	PO	PO
(1 - I	PO 1	- Med PO	ium, 3 PO	PO Hig	gh) PO	РО	PO 7	РО	РО	РО	PO	PO
(1 - I CO1 CO2	PO 1 2	- Med PO	ium, 3 PO	PO Hig	gh) PO	РО	PO 7	РО	РО	РО	PO	PO
CO1 CO2 CO3	PO 1 2	- Med PO	ium, 3 PO	PO Hig	gh) PO	РО	PO 7	РО	РО	РО	PO	PO
	PO 1 2 2 2 2	- Med PO	ium, 3 PO	PO Hig	gh) PO	РО	PO 7 1 1 1 1 1	РО	РО	РО	PO	PO

18A3201522-REPAIR AND REHABILITATION OF STRUCTURES

Upoi	n successful completion of the course, the student will be able to:
CO1	Understand evaluation procedure and plan for repair.
CO2	Design suitable rehabilitation scheme for serviceability and durability.
CO3	Choose suitable repair material for different magnitudes of distress.
CO4	Apply efficient repair and retrofitting schemes.
CO5	Understand the methods of strengthening methods for concrete structures
C06	Physical evaluation on condition of the structure
	tribution of Course Outcomes towards achievement of Program Outcome

CO1	2	-	-	-	2	~ _	-	-	-	-	-	-
CO2	2	3	3	-	2	1	-	1	-	-	-	-
CO3	2	-	-	-	2	-	-	I	-	-	-	= X
CO4	2	-	-	7	2	,		1757.2	-	-	- 1	-,
CO5	2	-		-	2	-	-		-	-	- 1	
CO6	2	-	-	- 1	2		1 1		· ·	-	-	- 2

18A3201523-INDUSTRIAL WASTE &WASTE-WATER ENGINEERING

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Design treatment methods for any industrial wastewater.
- CO2 Examine the manufacturing process of various industries.
- CO3 Assess need for common effluent treatment plant for an industry
- CO4 Test and analyse BOD, COD, TSS and MPN in wastewater.
- CO5 Understand options for waste water disposal.
- CO6 Understand the character of waste water from Steel plants and refineries

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3	-	-	1	-	1	-	-	-	_
CO2	2	-	2	-	-	_	-	-	-	-	-	_
CO3	2	_	-	-	-	1940	-	-	-	140	-	_
CO4	2	-	=	-8		-	40			-	-	w)
CO5	2	2	-	-	-	-	-	-	-	₹:	-	-
CO6	2	-	-	-	-	_	4	-	-	-	-	-

18A3201524-DOCKS AND HARBOUR ENGINEERING

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Enhance the knowledge on Docks and Harbor Engineering for water transportation in the context of regional and intercontinental transportation.
- CO2 Know techniques of planning the Infrastructures required for Harbor and Port area.
- CO3 Know techniques of designing the Infrastructures required for Harbor and Port area.
- Analyze cargo and passenger demand forecasting cargo handling capacity of ports and economic evaluation of port project.
- CO5 Understand environmental and other impact impended due to water transportation and port activities.
- CO6 Procedure to follow during planning of ports.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2- Medium, 3 - High)

	PO	PO	PO	PO	PO			PO 12	
CO1								-	

CO2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	2	-	· -	-	-	-		-	-	-		
CO4	2	2	-	-	-	-	_	a -	-	-	-	-
CO5	2	-	-		- 1	-	-	-	-	-	-	-
CO6	2				4				-	-	-	-

18A3201525-WATER RESOURCES SYSTEM ANALYSIS

Cour	se Ou	tcome	es:									
Upon	succ	essful	comp	letior	of th	e cou	rse, t	he stu	dent	will be	able to	o:
CO1	Apply	y basic	princ	ciples	of syst	em ap	proac	h.				
CO2	Judg	ing Ec	conom	ics of	water	resoui	ces of	multi	purpo	se pro	ects.	
CO3	Appl	y optir	nizatio	n prin	ciples	to sir	igle ar	id mul	ti crop	appli	cations	
CO4	***************************************										er appli	
CO5								-		-		systems
CO6	Form	ulate o	ptimiz	ation n	nodels	for dec	cision r	naking	in wat	er reso	urces s	ystems.
Cant			_									
CORT	ributi	on of	Cours	e Out	comes	s towa	ırds ad	chieve	ment	of Pro	ogram (Outcome
						s towa	rds a	chieve	ment	of Pre	ogram (Outcome
				e Out 3 – Hi PO		s towa	rds ac	PO	ement PO	of Pro	pgram (Outcome PO
	ow, 2	- Med	ium,	3 – Hi	gh)				,			
(<u>1</u> – L	ow, 2 PO	- Med PO	ium, 3	PO	gh) PO	РО	PO	РО	РО	РО	PO	PO
	ow, 2 PO 1	- Med PO	ium, 3	PO	gh) PO	РО	PO	РО	РО	РО	PO	PO
(<u>1</u> - L	PO 1 2	- Med PO	ium, 3	PO	gh) PO	РО	PO	РО	РО	РО	PO	PO
(1 - I CO1 CO2	PO 1 2 2	- Med PO	ium, 3	PO	gh) PO	РО	PO	РО	РО	РО	PO	PO
CO1 CO2 CO3	PO 1 2 2 2	- Med PO 2	PO 3	PO	gh) PO	РО	PO	РО	РО	РО	PO	PO

Open Elective-3 (Offered by Department of civil engineering) 18A3201601-GREEN BUILDINGS

				IOAS	20100.	I-GKEE	N BUILI	DIMES				
Cours	se Out	come	s:			_						
Upon able		essful	compl	etion	of the	cours	se, the	stud	ent wi	ll be		
CO1	Under	stand v	vhy bui	ldings s	should l	be mad	e energ	y efficie	ent.			
CO2	Have a	a fuller	grasp o	n Rene	wable I	Energy	mechar	nisms s	uch as F	assive	Solar hea	ating and
CO3	Have a	fuller	grasp o	n Grou	nd sour	ce heat	pumps	s, and tl	neir ada	ption t	o green l	ouilding
CO4	Under	stand t	he cond	epts of	Site an	d Clima	te, Buil	lding Fo	rm, Bu	ilding F	abric.	
CO5	Under	stand t	he cond	epts of	Infiltra	tion an	d venti	lation,	Lighting	g, Heati	ng.	
CO6	Under	stand t	he cond	epts of	Cooling	g, Energ	gy Mana	agemen	t and w	ater co	nservati	on.
Conti	ributio	on of (Course	Outc	omes	towar	ds ach	ieven	ent o	f Prog	ram Ou	tcomes
(1 - L	ow, 2	- Medi	um, 3	- Hig	h)							
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	_	_	2	-	2	-	-	-	-

CO2	3	2	-	-	-	1	-	2	-	-	-	~
CO3	2	2	-	-	-	1	-	2	-	-	-	-
CO4	3	-	_	-	-	1	-	2	-	-	-	-
CQ5	2	2	-	-	-	-	-	2	-	-	-	
C06	3	1				2	Advisor -	2		-	-	_

Open Elective-3 (Offered by Department of civil engineering) 18A3201602-BUILDING CONSTRUCTION

Co	urs	e	O	ut	C	0	m	es	
TI					_	-4	C	1 .	_

Upon successful completion of the course, the student will be able to:

- CO1 Understand types of foundation
- CO2 Understand stone and brick masonry for the different construction activities in the
- CO3 Understand block masonry for the different construction activities in the building
- CO4 Comprehend the floors & roofs and their types
- CO5 Comprehend the application of damp proofing, scaffolding
- CO6 Comprehend the application of shoring, underpinning and formwork.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	-	-	-	-	-	2	-	-	-	-
CO2	2	2	-			2	-	-	-	-	-	94
CO3	3	2	-	-	2	-	90	1	46	=	e e	-
CO4	3	2	-		-	=	-	1	-	-	-	-
CO5	2	-	Di.	-	-	-	-,	-	-	-	-	-
C06	2	1	5 3	-	-	1	-	1	-	21	-	

18A3201491-HIGHWAY ENGINEERING LAB

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Ability to test aggregates and judge the suitability of materials for the road Construction
- CO2 Ability to test the given bitumen samples and judge their suitability for the road construction
- CO3 Ability to obtain the optimum bitumen content for the mix design
- CO4 Ability to determine the traffic volume, speed and parking characteristics

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

12 2	JU.W, Z	HICU	dutin,	O III	51								
	PO 1	_	PO 3					PO 8	PO 9	PO 10		PO 12	
CO1	3	3	-	3	-	2	-	2	-	-	-		
CO2	3	3	-	3	-	2	-	2	-	1	- `	_	

CO3	3	3	-	3	-	2	-	2	-	-	-	-	ž.
CO4	3	3	-	3	-	2	-	2	-	-		-	1 1

18A3201391-COMPUTER AIDED CIVIL ENGINEERING DRAWING

Cours	se Out	tcome	s:			_		,				
Upon	succ	essful	comp	letion	of th	e cou	rse, tl	ne stu	dent v	will be	able to	:
CO1	Deve:	lop dra	awing	skills	for eff	ective	demoi	nstrati	on of	buildir	ng detail	.S
CO2	Draw	build	ing pl	ans us	sing C	omput	er Aid	ed De	sign aı	nd Dra	afting so	ftware's.
CO3	Deve	lop ei	nginee	ring	projec	t drav	wings	incor	porati	ng de	tails a	nd design
				8 3D								
CO4	Exan	nine ef	ficacy	of CA	D desi	gn.						
Cont	ributi	on of	Cours	e Out	come	s towa	ırds a	chieve	ment	of Pro	ogram (Outcomes
(1 - L)	ow, 2	- Med	ium,	3 – Hi	gh)				.=			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	-	3	-	2	-	2	-	-	-	
CO2	3	3	-	3	-	2	-	2	-	-	-	-
CO3	3	3	_	3	-	2	-	2	-	-	-	-
COS												

	18A32	0080	1-ESS	ENCE	OF IN	DIAN	KNO	VLEDO	GE AN	D TRA	ADITIO	NS		
Cour	se Outc	omes:												
Upon	succes	sful co	mpleti	on of t	the cou	ırse, th	e stud	ent wil	l be ab	le to:				
CO1	Under	stand th	ne conce	pt of Tr	radition	al know	rledge a	nd its in	nportan	ce				
CO2	Know	the nee	d and in	nportan	ce of pr	otecting	g traditi	onal kn	owledge	e				
CO3	Know	the var	ious ena	ctment	s relate	d to the	protect	ion of ti	radition	al know	ledge			
CO4	Know the various enactments related to the protection of traditional knowledge Understand the concepts of Intellectual property to protect the traditional knowledge													
CO5	Develop comprehensive skills in planning, selecting, motivating, and developing the human resources for organizational effectiveness.													
CO6	Understand the broad scope of marketing, societal, ethical and other diverse aspects of marketing													
	ributio edium, :			utcom	es tow	ards a	chieve	ment o				(1 - Low,		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	2	_	-	-	-	-	-	2.		-	-	- .		
CO2	2	-	-	-		(-)	: - ::	2		-				
UUZ				1.		3		2						

18A4101401- PRESTRESSED CONCRETE

Cour	se Out	comes:												
Upor	1 succe	ssful co	omple	tion of	the co	urse, t	he stu	dent w	vill be	able to):			
CO1	Expla	in the	concep	ts of pi	e-stres	sing a	nd met	hods of	f pre st	ressing	5.			
CO2	Comp	ute los	ses of	pre-str	ess in p	ore-str	essed c	oncret	e mem	bers.				
CO3	Desig	n PSC k	oeams	under	flexure			man a ya		-				
CO4	Design PSC beams under flexure. Design PSC beams under shear.													
CO5					ong tei	m defl	ections	of PSC	beam	S				
C06					oncept									
	um, 3 -			PO	PO	PO	PO	PO	PO	PO	PO	s (1 - Low, 2-		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	2	2	-	-	-	-	3	-	-	-	-		
CO2	3	3	3	-	-	-	-	3	-	-	-	-		
CO3	3	3	3	-	-	-	-	3	-	-	-	-		
COA	2	2	3		-	-	_	3	-	-	-			
CO4	3	3	3									-		
CO5	$\frac{3}{3}$	3	3		-	-	-	3	_	-		-		

18A4101402-DESIGN OF STEEL STRUCTURES

Cour	se Outcomes:
Upon	successful completion of the course, the student will be able to:
CO1	Explain different types of Connections and relevant IS code provision.
CO2	Design beams and columns.
CO3	Design of truss elements
CO4	Design of column bases
CO5	Design Plate Girders with curtailment of flanges.
C06	Design principles of Gantry Girders with curtailment of flanges.
	ribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- um, 3 – High) PO

	1	2	3	4	5	6	7	8	9	10	11	12
CO1	. 3	2	2	-	-	-	-	3	-	-	- 1	-
CO2	3	3	3	-	-	-		3	-	-		-
CO3	3	3	3	-	-	_ = 5	100	3	-	-	-	-
CO4	3	3	3	- P	-	+		3	-	-	-	-
CO5	3	3	3	24	-	-	-	3	-	-	-	
C06	2	2	2	1.1-		941	-	2	¥.	-	-	-

18A4101403- CONSTRUCTION TECHNOLOGY & PROJECT MANAGEMENT

Cour	se Outo	omes:										
Upon	succes	sful co	mplet	ion of	the co	urse, t	he stu	dent w	ill be a	able to	:	
CO1			import									
CO2	Asses	s the r	roiect	manag	ement	and co	nstruc	tion te	chniqu	es		
CO3		_	out pro						_			
CO4			method	•					•			
CO5									pment			
C06								0 1	for the			
		_										- (d - Y
	um, 3 -			иссоп	ies tov	varus a	acniev	ement	OI Pro	gram (outcome	s (1 - Low, 2-
Medi	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	-	20	,e§	-	2	-	1	2	-	3	<u>.</u>
CO2	1	-	et;	-	-	-	-01	1	-	40	3	- ();
CO3	3	2	iii.	-	-	-	-	1	-	- 1	3	
CO4	2	-	-	-	-	-	20	1	-	-	3	21
CO5	1	-	-	-	-	-	-	1	-	-	3	-0

18A4101404- QUANTITY SURVEYING & PUBLIC WORKS

	se Outcomes:
Upon	successful completion of the course, the student will be able to:
CO1	Explain the methods of Estimation
CO2	Evaluate the quantities for structural components
CO3	Prepare detailed and general specifications for a project
CO4	Prepare documents for different types of contracts
CO5	Explain procedures for entries in measurement books and its importance
C06	Evaluate valuation of buildings.
	ribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 um, 3 - High)
	PO

	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3	-	-		2	-	1	-		-	-
CO2	3	3	-		-	2		1	-	-		. =
CO3	3	2	-	-		2	-	1	-	-	-	
C04	3	1	-	1.6	-	2	-	1	-	1-	-	-
CO5	3	2	-		-	.2	-	1	-	-	-	-
C06	3	2	-	-	-	2	-	1	-	-	-	-

PROFESSIONAL ELECTIVE-IV

18A4101511-FINITE ELEMENT METHODS

Cours	se Outo	omes:										
Upon	succes	ssful co	mplet	ion of	the co	urse, t	he stu	dent w	ill be a	able to	:	
CO1							& 2D pr					
CO2	Solve	comple	x proble	ems usi	ng FEM							
CO3							ferent i	rregula	r bound	daries.		
CO4	Imple	ment so	lution t	echniq	ues for	higher o	order p	oblems	in prac	ctice.		
CO5		n conce										
C06			Afternoon and the second			A	ar mate	rials an	d geom	etry		
									_		Outcom	es (1 – Low, 2-
	um, 3 -	High)										
	um, 3 - PO	High) PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO
	-	PO	PO 3	PO 4	PO 5	P0 6	PO 7	PO 8	P0 9		P0 11	
Medi	-									PO		PO
Medi	PO 1	PO 2								PO		PO
Medi	PO 1 3	PO 2 3								PO		PO
Media CO1 CO2	PO 1 3 3	PO 2 3 3								PO		PO
CO1 CO2 CO3	PO 1 3 3	PO 2 3 3 3 3								PO		PO

18A4101512- ADVANCED FOUNDATION ENGINEERING

Cour	se Outcomes:
Upon	successful completion of the course, the student will be able to:
CO1	Compute the safe bearing capacity of footings subjected to vertical and inclined loads.
CO2	Explain the advanced methods of settlement computations and proportion foundation footings.
CO3	Explain the methods of computing the pull-out capacity and negative skin friction of piles and compute the settlements of pile groups in clays.
CO4	Evaluate the problems posed by expansive soils and the different foundation practices devised.
CO5	Differentiate between isolated footings and combined footings and mat foundations.
C06	Design of piles and pile caps in different soils
	ribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2-ium, 3 - High)
-,	PO
	1 2 3 4 5 6 7 8 9 10 11 12

CO1	3	3		-	-	1-	-	-	-	-	1-	
CO2	2	2	-	-	-	-	-	-	-	-	-	-
CO3	1	1	-	-	-		-	-	-	-	-	-
CO4	3	3		-	-	- :	-	-	-		- 1	-
CO5	.1	1		2	-4.	-	30 je j	7.	-	-	-	
C06	3	3	3	-	U.S.	-		-	-		-	-

18A4101513-ENVIRONMENTAL IMPACT ASSESSMENT

Cours	se Outo	comes:										
Upon	succes	ssful co	omplet	ion of	the co	urse,	the stu	ident w	vill be	able to	:	
CO1											ion of EIA	
CO2			risks a							•		
CO3			ppropr									
CO4			EIA re				00					
CO5			e cost b	•	ratio o	f a pro	ject.					
C06		are EM				•	•					
	F	or o Tri	г, шо, с	and Dir	richor	CI						
Contr	ibutio	n of Co	urse ()				achiev	ement	of Pro	gram (Outcome	s (1 – Low, 2
Contr		n of Co	urse ()				P0 7	vement PO 8	of Pro	gram (PO	PO 11	PO 12
Contr Medi	ributio um, 3 - PO	n of Co High) PO	ourse O	utcom PO	es tov	vards P0	PO	PO	PO	РО	PO	PO
Contr Medi	ributio um, 3 - PO 1	n of Co High) PO 2	ourse O	utcom PO	es tov	PO 6	P0 7	PO 8	PO 9	РО	PO	PO
Control Medi CO1 CO2	ributio um, 3 - PO 1 3	n of Co High) PO 2 2	PO 3	PO 4	PO 5	PO 6	PO 7 3	P0 8	PO 9	PO 10	P0 11	PO
Control Medi CO1 CO2 CO3	ributio um, 3 - PO 1 3	n of Co High) PO 2 2	PO 3	PO 4 - 1	PO 5	PO 6	PO 7 3 3	PO 8 -	PO 9	PO 10 -	PO 11 -	PO
Contr	ributio um, 3 - PO 1 3 3	n of Co - High) PO 2 2	PO 3	PO 4 - 1	PO 5	PO 6 -	PO 7 3 3 3 3	PO 8 2	PO 9	PO 10 -	PO 11 -	PO 12

18A4101514- TRAFFIC ENGINEERING

CO1	successful completion of the course, the student will be able to:
	Explain principles in estimating stopping and passing sight distance requirements.
002	Analyse Traffic Problems And Plan For Traffic Systems Various Uses.
C O 3	Conduct different types of Traffic Surveys.
CO4	Explain traffic regulation and control devices.
CO5	Design Channels, Intersections, Signals and Parking Arrangements.
206	Develop Traffic Management Systems.

	P0 1	PO 2	PO 3	PO 4	P0 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	l.	PO 12
CO1	3	-		-		2	g '	2	-	-	-	-	
C02	3	2	1	-	-	2	-	2	-	-	-		
CO3	3	-	-		-	: 2		1	-	-	-	-	
C04	3	-	-	-		2	-	2	i	-	-	-	
C05	3	3	3	-	-	2	-	1	-	-	-	-	
C06	3	1	-	-	-	2	-	2	-	-	-	-	

PROFESSIONAL ELECTIVE-IV 18A4101515- SUSTAINABLE WATER RESOURCES DEVELOPMENT

Cours	se Out	comes:										
Upon	succe	ssful c	omple	tion of	the co	urse, t	he stu	dent w	vill be	able to	:	
CO1	Demo	nstrate	role of	water i	n natior	nal deve	elopmer	nt				
CO2	Expla	in the p	lanning	require	ements	of irrig	ation pr	oject.				
CO3	Desig	n distril	oution r	network	ks for ir	rigation	flood c	ontrol a	and pov	ver gen	eration	
C04	Expla	in the w	ater ma	anagem	ent stra	itegies						
CO5	Expla	in the in	mporta	nce of i	nterlink	ing of r	ivers					
C06	Expla	in inter	state wa	ater dis	putes a	nd arriv	e at fea	sible so	lutions			
Contr	ibutio	n of Co	urse C	utcon	nes tov	vards a	achiev	ement	of Pro	gram (Outcome	es (1 - Low, 2-
Medi	um, 3 -	- High)										•
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	-	-	2	2	-	*	-	-	-
CO2	3	-	-	-	-	2	2	-	*	-	-	
CO3	3	2	3	-	ā	2	2		ī	-	-	-
CO4	3	-	-			-	2	3	8	1		-
CO5	3	-	-	¥	=	74	2		丝	ŝ	1725	-
C06	3	-	-	-	-	200	2	-	14	¥	2=	-

Open Elective-4 (Offered by Department of civil engineering) 18A4101607- PROJECT MANAGEMENT

Cou	rse Outcomes:
_	n successful completion of the course, the student will be
CO1	Understand the project management and causes of failures
CO2	Knowledge on different methods of Planning
CO3	Knowledge on different methods of scheduling
CO4	Knowledge on project management through networks
CO5	A complete idea on developing networks using PERT method.
C06	A complete idea on developing networks CPM method.
Cont	tribution of Course Outcomes towards achievement of Program Outcomes (1

- Low	, 2- N	/lediu	m, 3 -	- High	ı)							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO:	PO 12
.CO1	3	_	~	-	-	2		2	-	-	-	-
CO2	3	2	_	7 -	-	1	-	2		-	2	-
CO3	2	2	-		-	1	_	2	-		-	-
CO4	3	-	- 50	4		1	-	2		-	-	-
CO5	2	2	-		-	-	-	2			100	-
CO6	3	1	-	-	e: .	2	_	2	-	-		-

Open Elective-4 (Offered by Department of civil engineering) 18A4101608- REMOTE SENSING AND GIS TECHNIQUES

Cour	se Ou	tcome	es:									
Upon	succ	essful	com	pletio	n of t	he co	urse,	the st	udent	will 1	e able t	:0:
CO1		rstand t										
CO2	Under	rstand r	emote s	ensing	sensor	s and pl	latform	s, their	propert	ies and	calibration	1.
CO3	Under	rstand t	he imag	e proce	essing s	equenc	e and it	s impor	tance ir	Remot	e Sensing	
CO4	Under	rstand t	he geog	raphica	l inforr	nation	system	and its	fundam	ental or	peration	
CO5	Under	rstand t	he class	ificatio	n of ma	ps, type	es of pro	ojection	s.	_		
CO6	Under	rstand t	he GIS	lata ren	resenta	ation an	d their	tynes				
			iic dio (autu i op	'I COCIICE	acton an	id dicii	Lypes				
Cont				_				- 1	zemen	t of P	rogram	Outcomes (1
		on of	Cours	se Out	tcome			- 1	zemen	t of P	rogram	Outcomes (1
	ributi	on of	Cours	se Out	tcome			- 1	emen PO	t of P	rogram	Outcomes (1
	ributi v, 2- N	on of Mediu	Cours m, 3 -	e Out	tcome	s tow	ards a	achiev				
	ributi v, 2- N	on of Medius PO	Cours m, 3 - PO	e Out High PO	come) PO	s tow	ards a	PO	РО	РО	PO	PO
– Lov	ributi v, 2- N PO 1	on of Medius PO 2	Cours m, 3 - PO	e Out High PO 4	PO 5	PO 6	PO 7	PO	РО	РО	PO	PO
- Lov	ributi v, 2- I PO 1 3	on of Medius PO 2 2	Cours m, 3 - PO	e Out High PO 4	PO 5	PO 6	PO 7	PO	PO 9	PO 10	PO	PO
- Lov CO1 CO2	ributi v, 2- N PO 1 3	on of Medius PO 2 2	Cours m, 3 - PO 3	e Out High PO 4	PO 5	PO 6 -	PO 7	PO	PO 9 -	PO 10	PO 11 -	PO
CO1 CO2 CO3	ributi v, 2- N PO 1 3 2	on of Medium PO 2 2 1	Cours m, 3 - PO 3	e Out High PO 4 -	PO 5 -	PO 6 - 2 -	PO 7	PO	PO 9 -	PO 10 -	PO 11 -	PO

18A4101491-STRUCTURAL DESIGNING AND DRAWING USING SOFTWARE

Course Outcomes:	
Upon successful completion of the course	the student will be able to

CO1 Evaluate cross sectional and reinforcement requirements of various structural elements by using STAAD.Pro

CO2 Evaluate quantities and prepare rate analysis for various works in construction of a building using Spread Sheets

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2-

Medium, 3 - High)

1													
		PO	PO	PO	PO	PO'	PO						
-		1	2	3	4	5	6	7	8	9	10	11	12
- NAVA	CO1	3	3	3	-	-	.3	-	3	3	-	-	3
	CO2	3	3	3	-	-	3	-	3	3	_		3

18A4101492- ENVIRONMENTAL ENGINEERING LAB

		18A	41014	49 Z - I	TIANIK	ONW	LIVIA.	LENG	INEE	KING	LAB	
Cour	se Out	comes										
Upor	succe	ssful c	omple	tion o	f the co	urse,	the stu	dent w	ill be	able to	1	
CO1	Deter	mine sc	me im	ortant	charact	eristics	of wate	er and w	astewa	ater in t	he laborato	ory
CO2	Outlin	e some	conclu	sion an	d decid	e wheth	er the v	vater is	potabl	e or not		
CO3					ody is p perimen		or not	with ref	erence	to the s	tate	
CO4	Deter	mine st	rength	of the	sewage	in term	s of BOI	and Co	OD			
Cont	ributio	n of Co	ourse (Outcor	nes tov	vards	achiev	ement	of Pro	gram	Outcome	s (1 – Low, 2-
Medi	ium, 3 -	High))									•
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	$\frac{12}{3}$
C01	3	3	-	-	-	3	-	2	3	-	_	3
CO2	3	3	-	-	-	3	-	2	3	-	-	3
CO2 CO3	3	3	-	-	-	3	-	2	3 3	-	-	3

18A4101791- PROJECT WORK-I

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Apply all levels of engineering knowledge in solving the Engineering problems

CO2 CO3		togeth ment th			Брите				4			
				utcon	nes tov	vards a	achiev	ement	of Pro	gram (Outcomes	s (1 – Low, 2-
Mean	um, 3 - PO	- High) PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
201	3	3	3	3	3	3		3	3	-	3	3
CO2	3	3	3	3.	3	3	-	3	3	-	3	3
CO3	3	3	2	3	3	3		3	3		2	2

18A4100801-ENTREPRENEURSHIP

Cour	se Outo	comes:										
Upon	succe	ssful co	mplet	tion of	the co	urse, t	he stu	dent w	ill be a	able to	:	
CO1	Analy	ze the	busine	ss envi	ronme	nt						
CO2	Analy	ze and	identif	y busii	ness op	portur	nities.					
CO3	Ident	ify the	elemen	its of si	uccess	of entr	eprene	urial v	enture	S.		
CO4	Statu	tory leg	gal and	financ	ial regu	ılation	s to sta	rt a bu	siness.			
CO5	Evalu	ate effe	ectiven	ess of o	differer	nt entre	eprene	urial st	rategie	s.		
C06		fy perfo					•					
Cont	nibutio	m of Co	11mao (1+	on tor	roude.	albiore		of Dwo	~~~~ ()+	o (1 I our 2
	um, 3 - PO	High) PO	PO	РО	PO	РО	PO	PO	РО	РО	РО	PO
Medi	um, 3 - PO 1	High) PO 2							PO 9		PO 11	
Medi	um, 3 - PO	High) PO	PO	РО	PO	РО	PO	PO	РО	РО	РО	PO
Medi CO1	um, 3 - PO 1	High) PO 2	P0 3	P0 4	P0 5	P0 6	PO	PO	PO 9	PO 10	PO 11	PO
Medi CO1 CO2	um, 3 - PO 1	High) PO 2 2	PO 3	P0 4	P0 5	P0 6	PO 7	PO 8	PO 9	PO 10	PO 11 2	PO 12
Medi CO1 CO2 CO3	um, 3 - PO 1 1	PO 2 2 2	PO 3	P0 4	P0 5	P0 6	PO 7 -	P0 8	PO 9 2 2 2	PO 10	PO 11 2 2	PO 12
	um, 3 - PO 1 1 1 1	High) PO 2 2 2 -	PO 3	PO 4	PO 5 -	PO 6	PO 7 -	P0 8	PO 9 2 2 2 2	PO 10	PO 11 2 2 2 2	PO 12

PROFESSIONAL ELECTIVE-V 18A4201511- CIVIL INFRASTRUCTURE FOR SMART CITY DEVELOPMENT (SWAYAM)

Cour	se Out	comes:										
Upor	succe	ssful c	omple	tion of	the co	urse, t	the stu	dent w	ill be a	able to	:	
CO1											ble citie	es,
CO2	Expla	in the co	ompone	ent of sr	nart cit	ies and	dwell in	ito thei	rtechno	logical	advance	ement.
CO3	Explain cities.		ivolven	nent of	stake h	olders i	in the d	esign aı	nd impl	ementa	tion of r	esponsive smar
CO4	Devel	op worl	k break	down s	tructur	e, sched	duling o	f smart	cities			
CO5	Expla		importa	ance of	differ	ent linl	kages a	nd the		includ	ling gov	ernment, urbar
CO6	Identi key is	-	ecogni	ze the r	ole of I	CT and	data an	alytics	in addr	essing t	he urba	n challenges and
	Key 15	sues										
	ributio	n of Co		utcon	nes tov	vards a	achiev	e ment	of Pro	gram (Outcom	nes (1 - Low,
		n of Co		outcon PO 4	PO 5	vards a	PO 7	PO.	of Pro PO 9	gram (PO	PO 11	PO 12
2- M€	ributio edium, PO	n of Co 3 – Hig PO	gh) PO	РО	РО	PO	РО	PO.	PO	РО	PO	PO
2- M e	ributio edium, PO 1	n of Co 3 – Hig PO 2	gh) PO	РО	РО	P0 6	PO 7	PO.	PO	PO 10	PO	РО
2- Me C O1 CO2	ributio edium, PO 1	n of Co 3 – Hig PO 2	gh) PO 3	PO 4	PO 5	PO 6 2	PO 7	PO. 8	PO 9	PO 10	P0 11	PO 12
2- Me CO1 CO2 CO3	ributio edium, PO 1 3	n of Co 3 – Hig PO 2	po 3 -	P0 4	P0 5	P0 6 2 2	PO 7 -	PO. 8	PO 9 .	PO 10	PO 11 -	PO 12 -
	ributio edium, PO 1 3 3	n of Co 3 – Hig PO 2	sh) PO 3 - - 2	PO 4	PO 5 -	P0 6 2 2 2	P0 7	PO. 8	PO 9	PO 10 -	PO 11 -	PO 12 -

18A4201512-GEO-TECHNIQUES FOR DESIGN OF UNDERGROUND STRUCTURES

	10A4201312-dEO-1ECHAIQUES FOR DESIGN OF UNDERGROUND STRUCTURES
Cours	se Outcomes:
Upon	successful completion of the course, the student will be able to:
CO1	Compute the safe bearing capacity of footings subjected to vertical and inclined loads.
CO2	Explain the advanced methods of settlement computations and proportion foundation footings.
C03	Identifying the methods of computing the pull-out capacity and negative skin friction of piles and compute the settlements of pile groups in clays.
CO4	Evaluate the problems posed by expansive soils and the different foundation practices devised.
CO5	Differentiate between isolated footings and combined footings and mat foundations.
C06	Design of piles and pile caps in different soils

	ributio edium,			Jutcon	nes tov	varas a	acnieve	ement	OI Pro	gram (Jutcon	nes (1 – Low,
	PO 1	PO 2	P0 3	PO 4	PO 5	P0 6	P0 7	PO 8	P0 9	PO 10	PO 11	PO 12
CO1	3	2	1	-		_	-	-	-	-	-	
CO2	3	-	-	-	*	2		-	-	-	-	-
CO3	3	-	-	-		2	-	-	-	-	-	-
CO4	3	2	1	-	-		-	*	-	-	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-
C06	3	3	3	-	-	2	-	22	-	-	-	-

18A4201513-REMOTE SENSING AND GIS

Cours	se Outc	omes:										
Upon	succes	sful co	mplet	ion of	the co	urse, t	he stu	dent w	ill be a	able to	:	
CO1	Comp	paring	with gr	ound,	air and	satell	ite bas	ed sens	or plat	forms.		
CO2	Inter	pret th	e aeria	l photo	graph	s and s	atellite	e image	ries.			
CO3	Creat	e and i	input s	patial d	lata fo	r GIS a	pplicat	ion.				
CO4	Expla	ain RS o	concept	ts in wa	ater re	source	s engii	neering	,			
CO5	Expla	ain GIS	concep	ts in w	ater r	esourc	es engi	neering	g.			
C06			s of var			W						
	ibution dium, 3 PO			utcom PO	es tov	vards a	PO	ement	of Pro	gram (PO	s (1 - Low, P0
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	-	-	-	-	-	-	- X	-	-		-
CO2	2	-	_	-	2	-	7.0	€x		-	-	-
CO3	2	-	-		2	-	-	3 7	-	-	-	-
CO4	2	-	-	-	2	-	20	:=:	-	- 2	-	-
CO5	2	-	-	-	2	-	*		-		-	-

18A4201514-ROAD SAFETY ENGINEERING

Upon	successful completion of the course, the student will be able to:
CO1	Explain the road accidents and road safety improvement strategies
CO2	Analyze the crash data using statistical methods
CO3	Conduct road safety audits
CO4	Explain the mechanism needed for crash reconstruction based on case studies
CO5	Apply accident mitigation measures in view of safety of user on a highway
C06	Explain the traffic management measures and its influence
Conti	ibution of Course Outcomes towards achievement of Program Outcomes (1 - Low

2- Me	dium,	3 – Hig	gh)									
	PO 1	PO 2	PO 3	PO 4	P0 5	PO	PO 7	PO .8	P0 9	PO 10	PO 11	PO 12
CO1	3	-	-		-	-3	-	٠ -	-	-	- 12	-
CO2	3	2	-	3	-	3	-		-	-		
CO3	3	-	-		-	3	-	-	-	-	-	
CO4	3	-	-	-	-	3	-	-	-		-	-
CO5	3	-	-	-	-	3	-	-	-	- 12	-	
C06	3	-	_	-,	-	3	-	-	-	-	-	

18A4201515 -RIVER BASIN MANAGEMENT

Cour	se Outo	omes										
Upon	succes	ssful c	omple	tion of	the co	ourse, t	he stu	dent v	vill be	able to):	
CO1	Sumn	narize	the cor	cepts	of rive	basin	 manag	ement				
CO2	Imple	ment t	the tecl	hnique	s in riv	er basi	n mana	agemei	ıt.			
CO3	Comp	are m	ethods	and to	ols in r	iver ba	sin ma	nagem	ent			
CO4	Check	the ri	ver bas	sin to o	btain r	nost po	ssible	benefit	S.			
CO5			river b			•						
C06		_		er basi	n							
400	1-Idild	Pomer	COLLIA	CI DUDI	LAAR							
		_				wards a	achiev	ement	of Pro	gram	Outco	mes (1 – Low
Cont		n of Co	ourse (wards a	achiev	ement	of Pro	gram	Outco	mes (1 – Low
Cont	ributio	n of Co	ourse (wards a	achiev P0	ement PO	of Pro	gram PO	Outco	mes (1 – Low PO
Cont	ributio edium,	n of Co 3 – Hi	ourse (gh)	Outcon	nes to							
Cont	ributio edium, PO	n of Co 3 – Hig PO	ourse (gh) PO	Outcon	nes to	PO	PO	PO	PO	РО	РО	PO
Conti 2- Me	ributio edium, PO 1	n of Co 3 – Hig PO 2	ourse (gh) PO 3	Outcon	nes to	PO	PO 7	PO	PO	РО	РО	PO 12
Cont : 2- M 6	ributio edium, PO 1	n of Co 3 – Hig PO 2	ourse (gh) PO 3	PO 4	PO 5	P0 6	PO 7 2	P0 8	PO	PO 10	P0 11	PO 12
Contraction CO1	ributio edium, PO 1 1	n of Co 3 – Hig PO 2	ourse (gh) PO 3	PO 4	PO 5	PO 6	PO 7 2 2 2	PO 8 -	PO	PO 10	P0 11	PO 12
CO1 CO2 CO3	ributio edium, PO 1 1 1	n of Co 3 – Hig PO 2	ourse (gh) PO 3	PO 4	PO 5	PO 6	PO 7 2 2 2 2	PO 8 -	PO	PO 10	PO 11	PO 12

PROFESSIONAL ELECTIVE-VI 18A4201521-ADVANCED STRUCTURAL DESIGN

Cours	se Outcomes:
Upon	successful completion of the course, the student will be able to:
CO1	Design of raft foundations
CO2	Design different types of RCC retaining walls
CO3	Carryout analysis and design of different types of RCC water tanks
CO4	Analyze and design Flat slabs
C05	Solve the problems design of RCC Bunkers, Silos
C06	Explain various types of transmission towers and loading on them.

1.10	arunit, d	- Higl	<u></u>								-	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PΟ
	1	2	3	.4	5	6	7	8	9	10	11	12
CO1	3	3	3	-		3	2	3	:	-	2	-
CO2	3	3	3	-		3	-	3	-	-		_
CO3	3	3	3	-		3	- 3	3	-	-	-	-
CO4	3	3	3	-	-	3	4	3	-	-	-	-
CO5	3	3	3	-	-	3	-	3	-	-	-	-
C06	3	3	3	:=:	-	2		3	(m)	_	- 1	-

18A4201522-GEOSYNTHETICS

Upon	succe	ssful c	omple	tion of	the co	urse. 1	he stu	dent w	ill be	able to	:	
CO1	-		nthetic									
CO2	Interp	ret the	test me	thods o	of differ	ent mat	erials o	f geosy	nthetics			
CO3	Interp	ret the	test me	thods o	of Geote	xtiles&	Geo-gri	ds				
CO4	Interp	ret the	test me	thods o	of Geo-n	nembra	nes					
CO5	Explai	n the m	anufac	turing a	ind mat	erials r	equired	-				
C06	Explai	in the a	pplicati	ons of g	eosynt	hetics in	n constr	uction				
I ODT	rihutin	n of Co	mrce ()utcon	age tou	varde :	achiov	omont	of Pro	gram (Outcome	se (1 _ I ou
	edium,	3 – Hig	gh)		,							
				PO 4	PO 5	PO 6	PO	PO 8	of Pro	PO 10	PO 11	es (1 – Lov PO 12
2- М€	edium, PO	3 – Hig PO	gh) PO	РО	PO	PO	PO	PO	PO	PO	PO	PO
2- M 6	PO 1	3 – Hig PO	gh) PO	РО	PO	P0 6	PO	PO	PO	PO	PO	PO
2- Me	PO 1 3	3 – Hig PO	gh) PO	РО	P0 5	P0 6 2	PO	PO	PO	PO	PO	PO
CO1 CO2 CO3	PO 1 3	3 – Hig PO	gh) PO	РО	P0 5	P0 6 2 2	PO	PO	PO	PO	PO	PO
	PO 1 3 3 3 3 3	3 – Hig PO	gh) PO	РО	PO 5	P0 6 2 2 2 2	P0 7 -	PO	PO	PO	PO	PO

18A4201523-ENVIRONMENTAL ECONOMICS

Cour	se Outcomes:
Upor	successful completion of the course, the student will be able to:
CO1	Examine the environmental issues in relation to the theory of externalities
CO2	Examine the environmental issues in relation to the public goods, and welfare
CO3	Illustrate and examine economic principles concerning the choice of instruments for controlling pollution and the relative strength and weaknesses of environmental policies
CO4	Examine various approaches developed for valuing environmental goods and services.
CO5	Examine various methods developed for valuing environmental goods and services.
C06	Examine issues in the contemporary environmental discourse from an economists' point of view.
Cont	ribution of Course Outcomes towards achievement of Program Outcomes (1 - Low,

2- Me	edium,	3 – Hig	gh)										
	P0 1	P0 2	PO 3	PO 4	PO 5	P0	P0	P0	P0 9	PO 10	P0 11	PO 12	1
CO1	2	2	-				2	-	-		-		
CO2	2	2	0 F	-	-	-	2		-		-	121-	
CO3	2	-	-	-	-		2	-	-	-	-	-	
CO4	2	- 2	-	-	_	-	2	-	-	- 1	-	-	
CO5	2	-	-	-	-	-	2	-	-	41	-		
C06	2	-	-		-	-	2	-	-	-		-	

18A4201524-URBAN TRANSPORTATION PLANNING

	se Outo											
Upor	succe	ssful co	omple	tion of	the co	urse, t	he stu	dent w	ill be a	able to	:	
CO1	Estim	ate tra	vel der	nand fo	or an u	rban ai	ea.					
CO2	Plan t	the tran	isporta	ation n	etwork	for a c	ity.					
CO3	Expla	in abou	ut colle	ction o	f data a	and typ	es of s	ources	of data			
CO4	Expla	in trip	genera	tion ar	nd distr	ibution	n					
CO5	Ident	ify the	corrido	or and	plan fo	r provi	ding go	od tra	nsporta	ation fa	cilities.	
C06	Evalu	ate var	ious al	ternati	ve trar	ısporta	tion pr	oposal	S.			
	0.7			_								
)utcon	nes tov	vards a	achiev	ement	of Pro	gram (Outcome	s (1 - Low
	edium,	3 – Hig	gh)									
				PO 4	PO 5	vards a	PO 7	ement PO 8	of Pro	gram (PO 10	PO 11	es (1 – Low PO 12
2- M	edium, PO	3 – Hig PO	gh) PO	PO	PO	РО	РО	РО	PO	PO	PO	PO
	edium, PO 1	3 - Hig PO 2	gh) PO	PO	PO	РО	РО	РО	PO	PO	PO	PO
2- Me	PO 1 3	3 - Hig PO 2	gh) PO 3	PO 4	PO 5	P0 6	PO 7	PO 8	P0 9	PO 10	P0 11	PO 12
2- Me	PO 1 3 3	3 - Hig PO 2 -	gh) PO 3 -	PO 4 -	PO 5	P0 6	PO 7	P0 8	P0 9	PO 10	PO 11 -	PO 12
CO1 CO2 CO3	PO 1 3 3 3 3 3	3 - Hig PO 2 - 2	gh) PO 3 -	PO 4 -	PO 5 -	P0 6	PO 7	P0 8 -	P0 9 -	PO 10 -	P0 11 -	PO 12

18A4201525-WATER SHED MANAGEMENT

Upor	successful completion of the course, the student will be able to:
CO1	Determine watershed parameters and analyse watershed characteristics to take appropriate management action.
CO2	Quantify soil erosion and design control measures.
CO3	Apply land grading techniques for proper land management.
CO4	Suggest suitable harvesting techniques for better watershed management.
CO5	Explain appropriate models for watershed management.
C06	Explain concepts of watershed modelling.

2- Me	dium,	3 – Hig	gh)									
	PO 1	PO 2	PO 3	P0	P0	P0 6	PO 7	PO 8	P0 ∷9	PO 10	PO 11	PO 12
CO1	-3	2	1.	2.	2	. = '	2	-	-	7, 2	1-61	
CO2	3	2	1	-	1:	4	2	-	-	-		-
CO3	3	-	-	-	-		2	-	-	-	-	-
C04	3	-	-	-	-	-	2	-	-	-	-	-
CO5	3		-	-	-	-	$\bar{2}$	-	-	-	-	-
C06	3	-	_	·-	-	-	2	-	-	-	-	-

18A4201791-PROJECT-II

				TOU	TLU.	L/JI	-1 IXU	JECI				
Cours	e Outc	omes:		•								
Upon	succes	sful co	mplet	ion of	the co	urse, ti	he stu	dent w	ill be a	able to	:	
CO1	Apply	all lev	els of	engine	ering k	nowle	lge in s	solving	the En	gineer	ing probl	ems
CO2	Use C	ivil En	gineeri	ng soft	ware a	at least	one.					
CO3	Work	togetł	ner wit	h team	spirit							
CO4	Docu	ment t	he proj	ect								
Contr	ibution	of Co	urse O	utcom	es tow	ards a	chieve	ement	of Pro	gram (Outcome	s (1 – Low,
2- Me	dium, 3	– Hig	h) .									
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	3	3	3	-	-	3	-	3	3
CO2	3	3	3	3	3	3		-	3	-	3	3
CO3	3	3	3	3	3	3		*	3	-	3	3
CO ₄	3	3	3	3	3	3	-	19	3	-	3	3

Head of The Department CIVIL ENGINEERING NRI institute of Technology POTHAVARAPPADU.

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Actredited by NAAC with "A" GRADE, Accredited by NBA.
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (AI). Eluru District, A.P., India, Pin: 521 112 URL: www.ariil.com.ii., email: pribady of Contact, Mobile: -8333882444

All Courses CO - PO & CO - PSO attainment including I-Year

For 2019-2023 Batch

DEPARTMENT OF CIVIL ENGINEERING

S.NO	NAME OF THE SUBJECT	SUBJECT CODE	P01	P02	PO3	PO4	POS	POG	PO7	000	000	9,00	3	
	PROFESSIONAL ENGLISH-I	18A1100103					3			5	703	2019	FOLI	P012
	ENGLISH COMMUNICATION SKILLS LAB-1	18A1100191						9/.7	2.15	2.3	-	2.21		1.84
-	ENGINEERING MATHEMATICS-1	18A1100201	164							-	1.65	1.26		1.89
	ENGINEERING CHEMISTRY	1841100201	1.04	7 4 7	1	1				Acceptance	-			
1	ENGINEERING CHEMISTRY I AR	1041100204	1.59	1.46	1.59	1.2			2.38					
-	BASIC ENGINEERING & IT WORKSHOP	18A1100293	1.86	1.56	1.12	1.39			1.4					
1	ENGLISHEN THE STATE OF THE WOLLDEN	18A1100391	0.99	0.99	1.96	0.99	2.45				0.00	000		
Ť	ENVIRONMENTAL STUDIES	18A1100801		1.75	1.46				263					1
-	ENGINEERING MECHANICS	18A1101401	3	2.5				-	20.3					1.75
_	PROFESSIONAL ENGLISH-II.	18A1200101						700	200	0				
	ENGLISH COMMUNICATION SKILLS LAB-II	18A1200191						70.7	79.7	1.88	1.88	2.35		1.88
	ENGINEERING MATHEMATICS-II	18A1200201	151								1.7	1.22		2.18
	ENGINEERING PHYSICS	18A1200202	137	1 27									· 5	
-	ENGINEERING PHYSICS LAB	18A1200201	10.4	10,4		7	0							
	ENGINEERING DRAWING	10 A 1001 A01		L.9	1	1.9	7.84				2.84			
+	PROCE AMMING AND DECEMBER 601 VIVE CONTRACTOR	18A1201401		0.84	1.05	0.84	1.12	1.68			0.84	0.84		0.84
-	C C C C C C C C C C C C C C C C C C C	18A1205301	164	1 28	n n									5
-	PROGRAMMING AND PROBIEM OF WING WITH	e;	1.01	1.40	0.00									
	CLAB	18A1205392	2 69	2 00	C									
-	COMPLEX VARIABLES AND FOURIER SERIES	18A2100201	2 10	1 86	6.0	1.20	0	6	ç					1.7
-	PROFESSIONAL ETHICS AND HUMAN VALUES	18A2100801	261	7 37	20.1	1.72	00.00	0.00	2.10	0.00	0.00	0.00	0.00	0.00
-	BUILDING PLANNING AND DRAWING	18A2101301	20.2	173	1.70	0000	0.00	0.00	19.7	0.00	0.00	0.00	0.00	0.00
	STRENGTH OF MATERIALS	1842101401	25.2	2000	2000	0.00	0.00	0.00	1.79	0.00	0.00	0.00	0.00	0.00
	FLUID MECHANICS	1842101401	261	2.20	2.00	1.75	0.00	0.00	2.56	0.00	0.00	0.00	0.00	0.00
	SURVEYING & GEOMATICS	10 40101400	2.01	2.23	2.03	1.70	0.00	0.00	2.61	0.00	0.00	0.00	0.00	0.00
-	BUILDING CONSTRUCTION AND PRACTICE	10 47101403	4.74	2.45	7.17	1.79	0.00	0.00	2.74	0.00	0.00	0.00	0.00	0.00
-	STIRVEVING LAR	10 10 10 10 10 10 1	1.82	1.22	0.00	1.86	0.00	0.00	0.00	0.00	0.00	00.0	0.00	00.0
1	STRENGTH OF MATERIAI STAB	1842101491	77.77	1.86	1.93	000	0.00	0.00	1.93	0.00	0.00	00.0	00.0	0.00
+	DROBARII ITVAND CTATICTIOC	1042101492	7.77	1.93	7.01	0.00	0.00	0.00	2.01	0.00	0.00	00.0	0.00	0.00
i	SOLICITATION OF THE STATE OF TH	18A2200201	1.80	1.61	1.41	1.20	000	000	100	000	000	000	100	

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affilhated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA.

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (Af), Eluru District, A.P., India, Pin: 521 212 URL:

I.C		UKL: Tricing email: incipa	. email:	fucipa				8333882	자 학					
700	t	18A2201494	2.27	1.90	1.98	0 00	000	000	1 00	000				
22	Ť	18A2201493	1.98	1.65	170	0000	00.0	0.00	1.98	0.00	0.00	0.00	0.00	0.00
67		18A2201492	7 18	50.1	1 00	0000	0.00	0.00	1.72	0.00	0.00	0.00	0.00	0.00
30	FLUID MECHANICS AND HYDRAULIC MACHINES LAB	18A2201491	2.32	1 94	2 02	000	0.00	0.00	1.90	0.00	0.00	0.00	0.00	0.00
3.1	STRUCTURAL ANALYSIS-I	10 4 2201 484			100	0.00	0.00	000	70.7	0.00	0.00	0.00	00.0	0.00
32	ENGINEERING GEOLOGY	19 4 2201 404	10.2	2.23	1.95	1.64	0.00	0.00	2.51	0.00	0.00	0.00	0.00	0.00
33	HYDRAULIC ENGINEERING	19 4 2201 402	2.04	2.36	2.06	1.77	0.00	0.00	2.64	0.00	0.00	0.00	0.00	0.00
34	CONCRETE TECHNOLOGY	18 4 250 1 40 2	2.55	2.27	1.99	1.69	0.00	0.00	2.55	0.00	0.00	0.00	0.00	000
35	IPR & PATENTS	18AZZ01401	2.59	2.31	2.02	1.72	0.00	0.00	2.59	0.00	0.00	0.00	00.0	0.00
36	INDUSTRIAL MATERIALS	1842200802	2.58	2.30	2.01	1.73	0.00	0.00	2.58	00.0	00.0	0.00	0.00	000
37	MANAGEMENT SCIENCE	1042205602	2.4%	2.21	1.94	1.67	0.00	0.00	2.48	0.00	0.00	0.00	0.00	000
38	INDIAN CONSTITUTION	10A3100001	7.65	2.38	2.07	1.79	0.00	00'0	2.65	0.00	00.0	0.00	0.00	000
39	SOIL MECHANICS	1043100801	7.04	2.36	2.06	700	0.00	0.00	2.64	0.00	00.0	0.00	0.00	000
40	REINFORCED CONCRETE STRICTIONES	1042101401	70.7	7.30	2.00	1.72	0.00	0.00	2.57	0.00	0.00	0.00	000	000
41	WATER RESOURCE ENGINEERING	1943101402	2.07	1.72	1.80	0.00	0.00	0.00	1.80	0.00	0.00	00.0	000	0000
42	STRUCTURAL ANALYSIS-11	18A3101403	2.61	2.34	2.03	1.74	0.00	00.0	2.61	0.00	0.00	0.00	000	000
43	SOIL MECHANICS I A D	18A > 10 1404	2.23	1.99	1.74	1.52	0.00	0.00	2.23	0.00	000	0.00	0000	00.0
44	CONCRETE TECHNOLOGY I AB	18A3101491	2.34	2.34	0.00	2.34	00.0	1.56	0.00	1.56	0.00	0000	000	00.00
45	FNVIRONMENTAL POLITICISM 1215 CO.	18A3101492	2.05	1.37	.000	0.00	0.00	00.0	0.00	000	0.00	000	00.0	00.00
	FRSENCE OF INDIAN EXPONE THE CONTROL	18A3101513	2.06	1.72	1.79	00.00	0.00	0.00	1.79	000	0000	00.00	00.00	0.09
46	TRADITIONS	18A3200801	2.72	2.41	7	1.83	0.00	00.0	272	000	0000	00.0	00.0	000
17	COMPUTER AIDED CIVIL ENGINEERING								1	00,0	0,00	20.0	00.0	0.00
4	DRAWING	18A3201391	2.26	1.89	1.97	0.00	0.00	0.00	1.97	0.00	0.00	0.00	000	00.0
84	FOUNDATION ENGINEERING	18A3201401	2.59	2.32	2.01	1 74	000	000	000	000			20.0	0.00
43	HIGHWAY ENGINEERING	18A3201402	2.50	2.23	1 96	1 67	00.0	00.00	4.3%	0.00	0.00	0.00	0.00	0.00
2	ENVIRONMENTAL ENGINEERING	18A3201403	2.68	2.40	2 07	1 77	00.0	00.00	00.7	0.00	0.00	0.00	0.00	0.00
70	HIGHWAY ENGINEERING LAB	18A3201491	2.23	1.86	1 04	0.00	00.0	00.0	2.08	0.00	0.00	0.00	0.00	0.00
70	WATER RESOURCE ENGINEERING - II	18A3201512	2.60	234	203	175	00.0	20.00	1.74	0.00	0.00	0.00	0.00	0.00
53	REPAIR AND REHABILITATION OF		2	-	CV.2	C/-T	0.00	0.00	7.60	0.00	0.00	0.00	0.00	0.00
	STRUCTURES	18A3201522	2.53	2.24	1.95	1.62	0.00	0.00	2.53	0.00	0.00	00.0	000	000
24	HYDRAULICS AND PNEUMATICS SYSTEMS	18A3203606	2.59	2.325	2.025	1.76	¢	C	2 50	c	0	c		
22	THE STREET CONTRACTOR	18A4100801	2.60	2.33	2.04	1.75	C	Ç	+	0		+	- 1	0.00
57	PRE- SI RESSED CONCRETE STRUCTURES	18A4101401	1.965	1.85	1.85	0	+	+	+	+	+	0.00	000	0.00
5	CONSTBICTION THEIR STRUCTURES	18A4101402	2.09	1.74	1.82	0.00	0.00	0.00	2	000	000	-	000	
280	MANAGEMENT	18A4101403	2.36	2.09	23	1 56	000	000	₩		20.0	0.00	-	0.00
	The state of the s	And the second s)	2	20.0	0.00	2.30	00.0	0.00	00.0	0.00	00.00

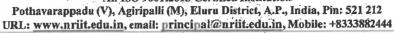
(An Autonomous Institution)

NA INSTITUTE OF TECHNOLOGY

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA.
An ISO 9001:2015 Certified Institution

9	OF TANITHMEN OF THE CONTROL OF THE C						a de la compansión de l	++++00000	*					
7	39 CUANTILLY SURVEYING &PUBLIC WORKS	18A4101404	2 00	1 67	1 11		000							
	Charles 1 1 august 14 august 19 augu	+01 101 177	7.70	1.07	1./4	00.0	00.0	000	174	000	000	000	000	
2	STRUCTURAL DESIGNING & DRAWING HSING								+/	0.00	0.00	0.00	00.0	00.0
20	SOFTWARES	18A4101491	2.21	1.85	1.92	0.00	0.00	0.00	1 92	000	000	000	000	0
61	ENLYID ONLY TATE AT THE STATE OF THE STATE O							,	1	2	0.00	0.00	0.00	00.0
5	ENVIRONMEN AL ENGINEERING LAB	18A4101492	216	1 00	1 07	000	000	000						
Cy	ENIMPONIATION TO THE PARTY OF T	771011763	7.10	1.00	1.87	0.00	0.00	0.00	200	000		000	000	000
75	ENVIRONMENTAL IMPACT ASSESMENT	18A4101513	2 53	200	1 00	1 00	000	000		2		0.00	0.00	0.00
63	NANO TECHNOLOGY	010101	4.33	2.20	1.70	1.09	0.00	0.00	2.53	00.0		000	000	000
3	TOTO TECHNOLOGI	18A4103606	255	227	200	1 70	0	000	0			200	20.0	0.00
64	REMOTE SENSING AND OF			77.7	2.00	1./0	0.00	00.0	2.55	0.00		000	000	000
5	TENOTE SENSING AND GIS	18A4201513	2.18	1 82	1 00	000	000	000	100	000			0.00	0.00
65	WATER SHED MANAGEMENT	100000000000000000000000000000000000000		20:1	2	0.00	0.00	0.00	7.70	0.00		00.0	000	0.00
	I NOTICE THE THE PARTY OF THE P	18A4Z015Z5	2.50	2.23	96	167	0.00	000	250	000				2
92	65 MAIOR PROFECT	104 400 400			2	7.0.	20.0	0.00	4.30	00.0		00.0	Ċ	000
		18A4Z01/91	ניז	2.5	5.6	,	,	¥	26	-	G.			2
				ale.					2			1		,


Direct Assessment	2.29	1.99	1.79	1.10	0.12		7 13	0 15		0,0	0	0		ł
A lease at 5 miles					1		C+.+	7.7		07.0	0.00	0.23	0.04	-
Alumni Survey	2.83	2.61	2.45	2.36	2.48	24	2 48	2 111	751	216	. 44	100		t
Decoration Park Commercial	4	1			1		2	7.77		7.40	74.7	7.3/	2.45	-
ringialli Exil Survey	7.68	7.76	2.39	7.31	2 36		ر ب	7 75			77.0		4	t
					2001		7.7	4.00		7.3	7.40	7.34	7.39	
PU Attainment(80%DA+10%AS+10%PES)	2.38	2.08	1 97	1 35	0.50		2 20	000		0				Ŧ
			1	1	5		7.70	20.00		9	570	2	0 23	


SIGNATURE OF THE HOD

NRI Institute of Technology POTHAVARAPPADU. Head of The Department CIVIL ENGINEERING

(An Autonomous Institution)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
COMP	LEX VARIABLES A	ND TRANSFORM TECH	NIQUES
REGULATION:	NRIA18	YEAR-SEM:	II-I

The student will be able to:

S.NO.	COURSE OUTCOME
1.	Write an analytic function if either real part or imaginary part is known and by using cauchy-riemann equations or apply milne-thompson method
2.	Evaluate the integral of complex function over the region bounded by the closed curves by apply either cauchy-goursat theorem or cauchy's integral formula or cauchy's residue theorem.
3.	Write the infinite series expansion of complex function by apply taylor's/maclaurin's/laurent's series
4.	Write a fourier series expansion of a periodic function by using euler's formulae
5.	Understand the concept of fourier transform and its properties
6.	Solve the difference equations using z-transforms and inverse z-transforms

promise ?

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	BASIC ELECTRONIC	DEVICES AND CIRC	UITS
REGULATION:	NRIA18	YEAR-SEM:	II-I

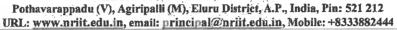
The student will be able to:

S.NO.	COURSE OUTCOME
1.	Understand the basic concepts of semiconductor physics
2.	Understand the formation of p-n junction and how it can be used as diode in different modes of operation
3.	Know the construction ,working principles of rectifiers
4.	Understands the working principles of rectifiers with and without filters
5.	Understand the construction, principle of operation of BJT and their V-I characteristics.
6.	Understand the construction, principle of operation of FET and their V-I characteristics.

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

B.Tech, M.Tech, Ph.D, MISTE


Controller of Examination

alessor of EEE

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	ELECTRICAL	CIRCUIT ANALYSIS-II	
REGULATION:	NRIA18	YEAR-SEM:)
REGULATION.	IVALIATO	TEATR SEAT.	

The student will be able to:

s.no.	COURSE OUTCOME
1.	Understand the basic concepts of three phase electrical circuits
2.	Measure the power in balanced three phase circuits.
3.	Understand the basic concepts of three phase electrical circuits
4.	Measure the power in Unbalanced three phase circuits.
5.	Determine the transient response of R-L, R-C, R-L-C Series circuits with ac and dc excitation
6.	Calculate the parameters for a given two port network

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	s surveint statements, consistent states bitemethick embases on to be some opening or specing of her all deals to declar		
	ELECTRICA	AL MACHINES - I	
REGULATION:	NRIA18	YEAR-SEM:	II-I

The student will be able to:

S.NO.	COURSE OUTCOME
1.	Analyze the basic operation of DC generators, their armature reaction.
2.	Analyze the conditions required for analyzing the performance of dc generators
3.	Analyze the operation of dc motors & the necessity of starters.
4.	Determine the performance of testing of dc motors.
5,	Determine the voltage regulation and efficiency of single phase transformer from test results
6.	Determine the operation of a poly phase transformers and their parallel operation.

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA HAU B.Tech, M.Tech, Ph.D, MISTE

(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

THERMAL	AND HYDRO LAB	
NRIA18	YEAR-SEM:	II-I
		THERMAL AND HYDRO LAB NRIA18 YEAR-SEM:

The student will be able to:

s.no.	o. COURSE OUTCOME		
1.	Test for the IC Engines valve/port timing diagram		
2.	Test for an I.C. Engines- 4 -stroke Diesel engine		
3.	Test on I.C. Engines 2-stroke petrol engine.		
4.	Analyze by the Study of boilers		
5.	Identify the Test conducted on Pelton Wheel, Francis Turbine, Kaplan Turbine		
6.	Choose on Reciprocating Pump, and can Calibrate the Venturimeter		

Dr. N. SAMBASIVA RAC

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name;	aperi amenjeji i iskritovelja dermin. I in tosidelima mani inny amenincia primamon va incimali ikiliki	de talle de service de prompte de la partir de la del de de la prompte d	
BAS	SIC ELECTRONIC I	DEVICES AND CIRCU	JITS LAB
REGULATION:	NRIA18	YEAR-SEM:	II-I

The student will be able to:

S.NO.	COURSE OUTCOME		
1.	Determine the characteristics of PN junction diode, zever diode		
2.	Experiment with rectifiers with and without C filters		
3.	Determine the characteristics of BJT, FET, UJT and SCR		
4.	Explain transistor biasing and CRO operation		
5.	Examine the characteristics of various amplifiers such as BJT -CE, Emitter Follower CC, FET-CS		
Utilize several equipment such as Ammeters, Voltmeters, Active & Pas Electronic Components, Regulated Power supplies, CRO's, Function Generators, Digital Multimeters, Résistance Boxes/Rheostats, Decade Capacitance			

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	***						
ELECTRICAL CIRCUITS LAB							
REGULATION:	NRIA18	YEAR-SEM:	11-1				

The student will be able to:

s.no.	COURSE OUTCOME			
1.	Solve different electrical networks by using Thevenin's, Norton's and superposition theorems			
2.	Solve different electrical networks by using maximum power transfer, compensation, reciprocity and millman's theorems			
3.	Solve different electrical networks by using series and parallel resonance			
4.	Determine the self, mutual inductances and coefficient of coupling			
5.	Analyze the networks by using Z, Y,ABCD,H parameters			
6.	Measure the 3 phase power by two wattmeter method for unbalanced loads			

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAQ

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriif.edu.in, email: principal@nriif.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	I described that the state of the second		The state of the s				
MANA	GERIAL ECONOMI	CS AND FINANCIAL	ANALYSIS				
THE RESERVE TO STATE OF THE PROPERTY OF THE PR							
REGULATION:	NRIA18	YEAR-SEM:	II-I				

The student will be able to:

S.NO.	COURSE OUTCOME
1.	Use the theory of managerial economics, demand, production analysis and forecasting theories.
2.	Analyse of production markets and pricing strategies. Functions and cost- price functions to manage markets & break-even point.
3.	Develop ability to identify, formulate and solve engineering problem by applying the knowledge of managerial economics.
4.	Theorize about characteristics features and types of industrial organization concept of changing business environment in post-liberalization scenario.
5.	Enhance their capabilities in the interpretation of b/s that are followed in industries, organizational and industries.
6,	Apply financial analysis, capital budgeting techniques in evaluating various investment opportunities.

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalii (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	ELECTRO N	MAGNETIC FIELDS	
REGULATION:	NRIA18	YEAR-SEM:	II-I

The student will be able to:

s.no.	· COURSE OUTCOME			
1.	Understand the concerned laws of Electro Statics.			
2.	Understanding and analyzing the behavior of conductors and dielectrics.			
3.	Understand the concerned laws of Magneto Statics and basic concepts of Magnetic Fields.			
4.	Solve the MFI for a current carrying wire.			
5.	Identify the need of Self and Mutual Inductance.			
6.	Understand the time varying fields.			

Dr. N. SAMBASIVA RAO
B.Tech, M.Tech, Ph.D, MISTE
Controller of Examinations & Professor of EEE

NRI INSTITUTE OF TECHNOLOGY (KN)

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

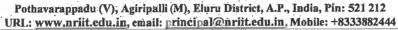
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:		and the second s	•			
CONTROL SYSTEMS						
REGULATION:	NRIA18	YEAR-SEM:	11-11			

The student will be able to:

s.no.	COURSE OUTCOME
1.	Learn the mathematical modeling of physical systems and to use block diagram algebra and signal flow graph to determine overall transfer function
2.	Study the time response of first and second order systems and improvement of performance by proportional plus derivative and proportional plus integral controllers
3.	Study the stability of closed loop systems using Routh's stability criterion and the analysis by root locus method.
4.	Present the Frequency Response approaches for the analysis of linear time invariant (LTI) systems using Bode plots, polar plots and Nyquist stability criterion.
5.	Learn basic aspects of design of linear control systems using Bode plots.
6.	Study state models & analyze the systems and to present the concepts of Controllability & Observability

Annie de Santiere de la constante de


HEAD OF THE DEPARTMENT

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:					
	ELECTRIC	AL MACHINES -II			
REGULATION: NRIA18 YEAR-SEM: II-II					
REGULATION.	INIAIO	I DAK-SEMI.	****		

The student will be able to:

s.no.	COURSE OUTCOME			
1.	Understand the constructional details and principle of operation of induction machines			
2.	Understand the starting methods of induction machines			
3.	Understand the operation of constructional features and principle of operation of single phase induction motors.			
4.	Understand the constructional details and principle of operation of synchronous generators.			
5.	Analyze the construction and principle of operation of synchronous motor.			
6.	Analyze the performance of the synchronous motor and its operation			

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

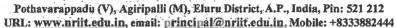
Course Name:	The second section of the second section is the second section of the sect		AM AND THE RESIDENCE OF THE PARTY OF THE PAR
	POWER	R SYSTEMS-I	
REGULATION:	NRIA18	YEAR-SEM:	11-11

The student will be able to:

s.no.	COURSE OUTCOME		
1.	Identify the different components of thermal power plants and principle of operation.		
2.	Identify the different components of nuclear Power plants and their principle of operation.		
3.	Identify the different components of hydel power plants and their classification and principle of operation		
4.	Identify the components of gas power station and their principle of operation		
5.	Identify different components of substation and their classification.		
6.	Calculate the different tariffs applicable to consumers.		

the same results of

HEAD OF THE DEPARTMENT


Dr. N. SAMBASIVA RAQ

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			British brushada
	DATA	STRUCTURES	
REGULATION:	NRIA18	YEAR-SEM:	п-п

The student will be able to:

s.no.	COURSE OUTCOME	
1.	Understand the deletion and traversal array, strings, string opeartion	
2.	Understand the operation of stack, queue and their application	
3.	Analyze pointers, arrays, linked lists	
4.	Identify the operation of trees, their representation and different types of trees	
5.	Explain graph theory, warshall's algorithm	
6.	Explain different search concepts, sorting and different types	

Same and the

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	market unspresses severeses and we were remedient fall to state that the beautiful the beautiful the de-		Addition to the Contract of th
]	PROFESSIONAL ETHIC	S AND HUMAN VAL	UES
	·		
REGULATION:	NRIA18	YEAR-SEM:	11-11

The student will be able to:

S.NO.	COURSE OUTCOME		
1.	Grooms themselves as ethical, responsible and societal beings.		
2.	Discuss ethics in society and apply the ethical issues related to engineering		
3.	Exhibit the understanding of ethical theories in professional environment.		
4.	Recognize their role as social experimenters (engineers) and comprehend codes of ethics.		
5.	Identify the risks likely to come across in the professional world, analyzing them and find solutions.		
6.	Realize the responsibilities and rights of engineers in the society		

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Electrical	Machines-I Lab	
NRIA18	YEAR-SEM:	ІІ-П
		Electrical Machines-I Lab NRIA18 YEAR-SEM:

The student will be able to:

S.NO.	COURSE OUTCOME		
1.	Evaluate the magnetization characteristics of a self excited DC generator		
2.	Determine the characteristics of DC generators at load condition.		
3.	summarize the efficiency of DC shunt machine both as generator and motor		
4.	experiment with the performance of DC motors at load condition by brake test		
5.	develop the Control the speed of DC shunt motor by applying the speed control methods		
6.	Analyze the performance of DC series machines by Field's test		

. Drawy

HEAD OF THE DEPARTMENT

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution
Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

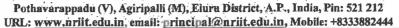
URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	having the sell population of the control of the co		
	Contro	l Systems Lab	
REGULATION:	NRIA18	YEAR-SEM:	11-11

The student will be able to:

S.NO.	COURSE OUTCOME		
1.	Tell the performance and working Magnetic amplifier, D.C. servo motors, A.C. Servo motors and synchronous motors.		
2.	Illustrate P,PI,PD and PID controllers		
3.	Build lag, lead and lag-lead compensators		
4.	Examine the temperature using PID controller		
5.	Determine the transfer function of D.C.motor		
6.	Evaluate the position of D.C servo motor performance		



Controller of Examinations & Professor of EEE NRI INSTITUTE OF TECHNOLOGY (KN)

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	ELECTRICA	L MEASUREMENTS	
REGULATION:	NRIA18	YEAR-SEM:	III-I
REGULATION.	THEOLIG	I EZAR-SENI.	111-1

The student will be able to:

course outcome		
1.	List the various measuring instruments available.	
2.	Compare various electrical quantities and measure them.	
3.	Design various instrument transformers.	
4.	Test various instrument transformers.	
5.	Design and Measure the passive elements R, L and C by using various bridges.	
6.	Design the Digital meters and measure the electrical parameters.	

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

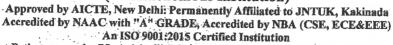
Course Name:			The state of the s
	SWITCHING THEO	RY AND LOGIC DESIG	N
REGULATION:	NRIA18	YEAR-SEM:	III-I
AGG CERTION	MALALIO	I DAR-SENA.	111-1

The student will be able to:

S.NO.	COURSE OUTCOME			
1.	Identify the features of various number systems.			
2,	Identify the features of various binary codes.			
3.	Apply the concepts of Boolean algebra for the analysis			
4.	Design of various combinational & sequential logic circuits.			
5.	Design various digital circuits starting from simple ordinary gates to complete programmable logic devices & arrays.			
6.	Analyze various synchronous and asynchronous sequential circuits.			

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA HAR


B.Tech, M.Tech, Ph.D, MISTE

Controller of Examinations & Professor of EEE

NRI INSTITUTE OF TECHNOLOGY (KN)

(An Autonomous Institution)

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	POWE	R SYSTEMS II	
REGULATION:	NRIA18	YEAR-SEM:	III-I

The student will be able to:

S.NO.	COURSE OUTCOME		
1.	Derive transmission line parameters for analyzing the behavior under different operating conditions.		
2.	Analyze the performance of short & medium transmission lines.		
3.	Analyze the performance of long transmission lines.		
4.	Understand the surge propagation, reflection and refraction in transmission lines and design the level of insulation coordination at various high voltages.		
5.	Utilize the knowledge on surge behavior of transmission line for protection of power equipment		
6.	Formulate physical and geometrical parameters of transmission line useful for its safe and efficient performance.		

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

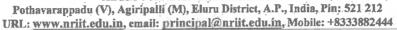
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution
Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email; principal@uriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:						
POWER ELECTRONICS						
REGULATION: NRIA18 YEAR-SEM: III-I						
		M.				

The student will be able to:


S.NO.	COURSE OUTCOME			
J	Demonstrate basic theory of operation of SCR, characteristics of power MOSFET & power IGBT and to design protection & Firing circuits.			
2.	Explore and interpret $1-\Phi$ Half Wave, Full wave converters, with the effect of source inductance and input harmonics.			
3,	Analyze various 3-Φ uncontrolled & controlled rectifier circuits and Understand their Applications			
4.	Analyze & design various BUCK,BOOST & BUCK - BOOST converters in different modes with ripple calculation & operation of different modes with ripple calculation & operation of fly back converter			
5,	Analyze steady –state performance of 1-\$\Phi\$ & 3-\$\Phi\$ inverters & applications of PWM techniques, operation of VSI & CSI			
6.	Analyze the operation of 1- Φ & 3- Φ AC - AC Regulators, Static V-I characteristics of TRAIC & operation of Tap changing Transformer with Antiparallel connection of Thyristors			

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAQ

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	ELECTRICAL M.	ACHINES-II LAB	
REGULATION:	NRIA18	YEAR-SEM:	111-1
REGULATION.	ITIMATO		

The student will be able to:

s.no.	COURSE OUTCOME	
1.	Solve the performance parameters of a single-phase transformer	
2.	Categorize the different performance characteristics of a three-phase induction motor	
3.	Measure the performance parameters of three-phase alternator	
4.	Analyze V and Inverted V curves of a three-phase synchronous motor	
5.	Contrast the performance parameters of single-phase induction motor	
6.	Demonstrate three phase to single phase conversion using Scott transformers.	

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Marie Company of the				
INDIAN CONSTITUTION						
REGULATION:	NRIA18	YEAR-SEM:	III-I			

The student will be able to:

S.NO.	COURSE OUTCOME			
1,	Understand the spirit and origin of the fundamental law of the land.			
2.	Understand how fundamental rights can be protected and understand the fundamental duties .			
3.	Understand the structure and formation of the Indian Government at center as well as state.			
4.	Understand when and how an emergency can be imposed and its consequences.			
5.	Gain consciousness on the fundamental rights and duties.			
6.	Be exposed to the reality of hierarchical Indian social structure and the ways the grievances of the deprived sections can be addressed to raise human dignity in a democratic way.			

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:						
	POWER EI	LECTRONICS LAB				
REGULATION:	NRIA18	YEAR-SEM:	III-I			
	112414					

The student will be able to:

s.no.	COURSE OUTCOME			
1.	Able to solve real world problems using OOP techniques.			
2.	Able to understand the use of abstract classes and Packages in java.			
3.	Able to develop and understand exception handling and Interfaces in ja			
4.	Able to understand multithreaded applications with synchronization an design GUI based applications and develop applets for web applications			
5.	To introduce the concepts of exception handling and multithreading.			
6.	To introduce the design of Graphical User Interface using applets.			

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

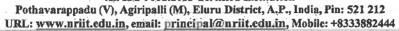
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	annen magament (gga eggentag) – gegg g propriosis meng gega magna menammen gamen mener yann ge	merennen del trad standert statute-und utwarterance hade stat sie faar en gewonert verwere veer veer	
	ELECTRICAL M	IEASUREMENTS LAB	
REGULATION:	NRJA18	YEAR-SEM:	ш-і

The student will be able to:

s.no.	COURSE OUTCOME		
1.	Analze the energymeter and wattmeter.		
2.	Make use of the three phase reactive power measurement.		
3.	Analyze the PMMC ammeter and voltmeter using a potentiometer.		
4.	Determine electrical parameters using different DC and AC bridges.		
5.	Evaluate the dielectric strength of insulating oil.		
6.	Determine characteristics of LVDT and Capacitive pick-up.		

HEAD OF THE DEPARTMENT


Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
PO	WER ELECTRONIC	C CONTROLLERS & DRI	VES
		1	
REGULATION:	NRIA18	YEAR-SEM:	III-II

The student will be able to:

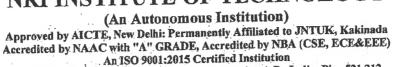
s.no.	COURSE OUTCOME		
1.	Learn the fundamentals of electric drive and different electric braking methods.		
2.	Analyse the operation of three phase converter controlled dc motors and Quadrant operation of dc motors using dual converters.		
3.	Discuss the converter control of dc motors in various quadrants		
4.	Understand the concept of speed control of induction motor by using AC voltage Controllers and voltage source inverters.		
5.	Learn the principles of static rotor resistance control and various slip power recovery schemes		
6.	Understand the speed control mechanism of synchronous motors		

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING


Course Name:			
	INSTRU	JMENTATION	
REGULATION:	NRIA18	YEAR-SEM:	ІП-П

The student will be able to:

s.no.	COURSE OUTCOME
1,	Solve different electrical networks by using Thevenin's, Norton's and superposition theorems
2.	Solve different electrical networks by using maximum power transfer, compensation, reciprocity and millman's theorems
3.	Solve different electrical networks by using series and parallel resonance
4.	Determine the self, mutual inductances and coefficient of coupling
5.	Analyze the networks by using Z, Y,ABCD,H parameters
6.	Measure the 3 phase power by two wattmeter method for unbalanced loads

Dr. N. SAMBASIVA RAQ

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
MIC	CROPROCESSOR A	AND MICROCONTROLLE	RS
REGULATION:	NRIA18	YEAR-SEM:	111-11

The student will be able to:

s.no.	COURSE OUTCOME
1.	Design circuits using operational amplifiers for various applications.
2.	Analyze and design amplifiers and active filters using Op-amp.
3.	Diagnose and trouble-shoot linear electronic circuits.
4.	Understand the gain-bandwidth concept.
5.	Understand the frequency response of the amplifier configurations.
6.	Understand thoroughly the operational amplifiers with linear integrated circuits.

(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada
Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	alle Mill Step to the published of the second state of the second		and the second s
	POWER S	YSTEM ANALYSIS	
REGULATION:	NRIA18	YEAR-SEM:	III-II

The student will be able to:

s.no.	COURSE OUTCOME		
1,	Explain the working principle and constructional features of different types of electromagnetic protective relays		
2.	Compare different types of static relays with a view to application in the system.		
3.	Relate the acquired in depth knowledge of faults that is observed in hig power generator and transformers and protective schemes used for all protections		
4.	Improve the ability to understand various types of protective schemes us for feeders and bus bar protection		
5.	Illustrate the principles of arc interruption for application to high voltage circuit breakers of air, oil, vacuum, SF6gas type		
6.	Explain different types of over voltages appearing in the system, including existing protective schemes		

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A". GRADE, Accredited by NBA (CSE, ECE&EEE).

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	7 //		
	MANAGEM	IENT SCIENCE	
REGULATION:	NRIA18	YEAR-SEM:	111-11

The student will be able to:

s.no.	COURSE OUTCOME			
1.	Design of organizational structure both industries and academia.			
2.	Analyse various functions of management that include operations management, material management, marketing management, HR management helpful in success of organisations.			
3.	Understand the importance of planning for the long-term through strategic management.			
4.	Understand quality control standards & contemporary management practices being followed both in industries and academia			
5.	Compare conceptual models of strategic management and to understand its applicability in understanding the constraints and opportunities in the sectors.			
6.	Understand the contemporary issues in the field of management science and their applicability in the real world at every level			

Dr. N. SAMBASIVA RAO

B.Tech, M.Tech, Ph.D, MISTE

Controller of Francis

MEEE

(KN)

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			The second secon
	UTILIZATION OF E	LECTRICAL ENERGY	7
REGULATION:	NRIA18	YEAR-SEM:	III-II

The student will be able to:

S.NO.	COURSE OUTCOME
1.	To acquaint with the different types of heating techniques.
2.	Demonstrate the concepts of electric welding.
3.	To study the basic principles of illumination and its measurement.
4.	To understand different types of lightning system including design.
5.	To understand the basic principle of electric traction including speed-time curves of different traction services.
6.	To understand the method of calculation of various traction system for braking, acceleration and other related parameters, including demand side management of energy.

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

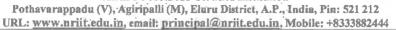
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	М	PMC LAB	
REGULATION:	NRIA18	YEAR-SEM:	III-II
AUSCEATION.	MAIN	K EPAR-CENT	X12-XX

The student will be able to:


s.no.	COURSE OUTCOME	
1.	Write Assembly Language Program Using 8086 Micro Based On Arithmetic Operations	
2.	Write Assembly Language Program Using 8086 Micro Based On Logical Operations	
3.	Write Assembly Language Program Using 8086 Micro Based On Shift Operations	
4.	Interface 8086 With I/O And Other Devices	
5.	Do Parallel Communication Using 8051 Micro Controllers	
6.	Do Serial Communication Using 8051 Micro Controllers	

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAC

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	en egyenne aasta aa aan aab aa ab aa aandherenb (bid ya y dha gaya y pagangayan y		amen a managan anna anna anna anna anna ann
	ELECTRICAL	SIMULATION LAB	
COLD SAN		the second section of the beat map by	
REGULATION:	NRIA18	YEAR-SEM:	III-II

The student will be able to:

s.no.	COURSE OUTCOME	
1.	Simulate integrator circuit, differentiator circuit,	
2.	Simulate transmission line by incorporating line, load and transformer models.	
3.	Perform transient analysis of RLC circuit .	
4.	Perform transient analysis single machine connected to infinite bus(SMIB).	
5.	Simulate Boost converter, Buck converter	
6.	Simulate full convertor and PWM inverter	

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

B.Tech . S. Ph.D. MISTE Controller of the

STOT EEE

NRIBEL

WALLD ...

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:		Harris - Lands	
	DIGITAL CO	ONTROL SYSTEMS	
REGULATION:	NRIA18	YEAR-SEM:	IV-I
	1122220		- 7 - 2

The student will be able to:

s.no.	COURSE OUTCOME	
1.	Explain advantages of discrete time control systems and the "know how" of various associated accessories	
2.	Evaluate mathematical analysis of discrete systems (Z-transforms)	
3.	Represent the discrete-time systems in state-space model and evaluation of state transition matrix.	
4.	Stability criterion for digital systems and methods adopted for testing the same are explained.	
5.	Explain conventional method of analyzing digital control systems in the w-plane	
6.	Design of state feedback control by "the pole placement method."	

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	SWITCH GEAR A	AND PROTECTION	
REGULATION:	NRIA18	YEAR-SEM:	ľV-I

The student will be able to:

S.NO.	COURSE OUTCOME	
1.	Explain the working principle and constructional features of different types of electromagnetic protective relays	
2.	Compare different types of static relays with a view to application in the system.	
3.	Relate the acquired in depth knowledge of faults that is observed in high power generator and transformers and protective schemes used for all protections	
4,	Improve the ability to understand various types of protective schemes used for feeders and bus bar protection	
5.	Illustrate the principles of arc interruption for application to high voltage circuit breakers of air, oil, vacuum, SF6gas type	
6.	Explain different types of over voltages appearing in the system, including existing protective schemes	

HEAD OF THE DEPARTMENT

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

An ISO 9001:2015 Certifica Insucation
Pothavarappadu (V), Agiripalli (M), Eluro District, A.P., India, Pin: 521 212
URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	HVDC T	RANSMISSION	
T			
REGULATION:	NRIA18	YEAR-SEM:	IV-I

The student will be able to:

s.no. COURSE OUTCOME	
1.	Learn different types of HVDC levels.
2.	Learn Basic Concepts of HVDC Transmission.
3.	Know the operation of converters.
4.	Acquire control concept of reactive power control and AC/DC load flow.
5.	Understand converter faults, protection and harmonic effects.
6.	Design low pass and high pass filters.

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Móbile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	ngan manangangapan ya Tarin man, yan ya ya ya mananan ya ya mana ya yi Arbindh Anbiddiniddini winda 1995 di 199		
	ELECTRICAL DISTR	UBUTION SYSTEMS	
REGULATION:	NRIA18	YEAR-SEM:	IV-I

The student will be able to:

s.no. COURSE OUTCOME		
1.	Explain advantages of discrete time control systems and the "know how" of various associated accessories	
2.	Evaluate mathematical analysis of discrete systems (Z-transforms)	
3.	Represent the discrete-time systems in state-space model and evaluation of state transition matrix.	
4.	Stability criterion for digital systems and methods adopted for testing the same are explained.	
5.	Explain conventional method of analyzing digital control systems in the w-plane	
6.	Design of state feedback control by "the pole placement method."	

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	IPR	& Patents	,
REGULATION:	NRIA18	YEAR-SEM:	IV-I

The student will be able to:

s.no.	COURSE OUTCOME
1.	Understand the Intellectual Rights
2.	To know the importance which plays a vital role in advanced Technical disciplines.
3.	To know the importance which plays a vital role in advanced Scientific disciplines.
4.	Imparting IPR protections
5.	Imparting IPR regulations for further advancement
6.	Familiar with latest developments

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	as amin' (6/4° library) minor demokra survendur) (60° (5/4° Verille 6° Game Appliphrish). It 1990, 4449° Adric Anno common committe de la 10° C	The state of the s	
	LINEAR INTEGRATED C	CIRCUIT APPLICATION	ONS
REGULATION:	NRIA18	YEAR-SEM:	IV-1

The student will be able to:

s.No.	COURSE OUTCOME	
1.	Design Differential amplifier circuits and gains knowledge in OP-AMPs	
2.	Understand and gains knowledge in various applications of OP-AMPS	
3.	Analyze amplifiers and active filters using Op-amp.	
4.	Design amplifiers and active filters using Op-amp.	
5.	Understand thoroughly the operational amplifiers with linear integrated circuits.	
6.	Understand the structure of commercially available Analog & Digital converters	

HEAD OF THE DEPARTMENT

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

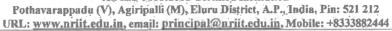
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	Electrical	Machines-II Lab	
REGULATION:	NRIA18	YEAR-SEM:	III-I

The student will be able to:

s.no.	COURSE OUTCOME
1.	Solve the performance parameters of a single-phase transformer
2.	Categorize the different performance characteristics of a three-phase induction motor
3.	Measure the performance parameters of three-phase alternator
4.	Analyze V and Inverted V curves of a three-phase synchronous motor
5.	Contrast the performance parameters of single-phase induction motor
6.	Demonstrate three phase to single phase conversion using Scott transformers.

HEAD OF THE DEPARTMENT


Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	POWER	SYSTEMS LAB	
REGULATION:	NRIA18	YEAR-SEM:	IV-I

The student will be able to:

S.NO.	COURSE OUTCOME
1.	Experiment With Three Phase Impedances Of Transformer And Alternator
2.	Determine Transmission Line Parameters
3,	Categorize Characteristics Of 3 Phase Alternator
4.	Experiment With Dielectric Stress Of Transformer Oil
5.	Explain About Tong Tester
6.	Illustrate Economic Load Dispatch

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

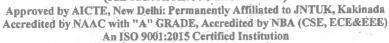
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	Special Ele	ectrical Machines	
REGULATION:	NRIA18	YEAR-SEM:	IV-II
	11242210	I BILK SEIVI.	14-11

The student will be able to:


s.no.	COURSE OUTCOME
1.	To explain theory of operation and control of switched reluctance motor.
2.	To explain the performance and control of stepper motors, and their applications
3.	To describe the operation and characteristics of permanent magnet dc motor.
4.	To distinguish between brush dc motor and brush less dc motor.
5.	To explain the theory of travelling magnetic field
6.	To explain the applications of linear motors.

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

B.Tech, M.Tech, Ph.D, MISTE Controller of Examinations Controller of Examinations Controller of EEE NRI INSTITUTE OF TRANSPORTED BY (KN)

(An Autonomous Institution)

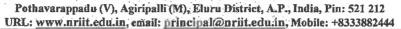
Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			A ministrant Connection (Control of Control
	Electrical	Workshop LAB	
		-	
REGULATION:	NRIA18	YEAR-SEM:	IV-I

The student will be able to:

S.NO.	COURSE OUTCOME
1.	Experiment with lighting connections
2.	Experiment with different types of lights
3.	Experiment on staircase wiring, hospital wiring
4.	Different types of switch connections available
5.	Function of CRO and CRT
6.	Various Electrical Symbols


HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
FACTS:	Flexible Alternatin	g Current Transmission	Systems.
REGULATION:	NRIA18	YEAR-SEM:	IV-II
		1	

The student will be able to:

s.no.	COURSE OUTCOME
1.	Understand power flow control in transmission lines using FACTS controllers
2.	Explain operation and control of voltage source converter
3.	Analyze compensation methods to improve stability and reduce power oscillations in the transmission lines.
4.	Explain the method of shunt compensation using static VAR compensators
5.	Understand the methods of compensations using series compensators.
6.	Explain operation of Unified Power Flow Controller (UPFC).

Dr. N. SAMBASIVA RAQ

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	and the second s		
	PRO	JECT	
REGULATION:	NRIA18	YEAR-SEM:	IV-II

The student will be able to:

s.no.	COURSE OUTCOME
1.	Evaluate Real world problem identification
2.	Make use of Communication Skills
3.	Develop Presentation skills
4.	Improve Research Skills
5.	Interpret Learner Autonomy
6.	Develop Report writing skills

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

							2018-2	2018-22 BATCH	LCH	O THE ST						STATE OF THE	
S.No	COURSE NAME	COURSE	INDEX	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 111	PO 12	PSO I	PSO II
1.	PROFESSI ONAL ENGLISH-	18A110010 1	C111		,	ı	0.81		2.5	2.5	2.5	1.64	1.505	ı	1.097	0.823333	1.653333
2.	ENGLISH COMMUN ICATION SKILLS LAB-I	18A110019 1	C112	1.85	1.04	1.55	,	,		'	,	ı	,	. 1	,	0.63	0.63
ŕ	ENGINEE RING MATHEM ATICS-I	18A110020	C113	2.06	1.14	0.96	0.70	0.71	1.92	1.94	,	-		2.02	1.94	1.79	1.52
4.	APPLIED CHEMIST RY	18A110020 5	C114	0.91	0.84	0.83	0.82	0.54		-	-		٠	ı	·	0.61	0.61
Ŋ.	APPLIED CHEMIST RY LAB	18A110029 4	C115	2.06	1.42	0.78	3		2.31	2.3117	2.3117	-		2.188	2.312		1.543333
.9	ENVIRON MENTAL STUDIES	18A110080 1	C116	1.86	0.62	,	0.62				1.825			1.84	·	1.133333	1.143333
7.	FUNDAM ENTALS OF ELECTRIC AL ENGINEE	18A110230 1	C117	1		•	1	1	2.37	1		1.58	1.842	,	2.235	,	0.793333
<u>«</u>	ENGINEE RING GRAPHIC S	18A110330 1	C118	1.41	1.8	1.28	1.8	1.15				1		ı		1.67	1.41
ő	PROFESSI ONAL ENGLISH- II	18A120010	C119	2.34	0.79	2.35	0.79	0.79	2.35	2.3433	2.34	1.876			2.34	2.186	2.08

0.75	1	,	1		1.238	1	1.57
0.76	0.8	0.72	1	1.73	1.501667		1.44
1.13	,		1.17			7	1.55
ı	व	1	-	1	ŧ	1	0.79
0.75	,	1	1.67	ı	i	0.792	0.78
0.745	1	ı	**1	1	0.58	0.7967	1
(6	ż	-	1	1	1.69	1	1
0.76	ı	į	à	1		,	,
0.76	1		1	9),	1.7	1	1.58
	1		-	1.18	0.56	í	0.78
	1	1	£	1	0.56	ı	0.78
1	2.35	1.82	1	1.77	0.75	,	1,18
	2.08	1.93	36	1.51	1.12	1	1.45
	2.33	2.18	14	£.73	1.685	1	1.97
C121	C122	C123	C124	C125	C126	C127	C128
18A120019	18A120020 1	18A120020 3	18A120029	18A120039	18A120240	18A120530 1	18A120539 2
ENGLISH COMMUN ICATION SKILLS LAB-II	ENGINEE RING MATHEM ATICS-II	APPLIED PHYSICS	APPLIED PHYSICS LAB	BASIC ENGINEE RING AND IT WORKSH OP	ELECTRIC AL CIRCUIT ANALYSI S-I	OGRA IING D OBLEM LVING	PROGRA MMING AND PROBLEM SOLVING WITH C LAB
10.	11.	12.	13.	14.	15.	16.	17.

6 0	1.32	1.49	1.05	1.43	1.39	1.2	2.23	
2.5	1.35	1.46	1.05	1.64	1.39	,	2.23	
	,	1			,	1.21	2. 1	
1		'	1	1	1	ı	-	
(*)	.5	\$ # 0	201		is a	ł	1	
0.79	'	1	,	,	,	ı		
	'	,	1	,	ı	1.96	,	
•	,	ı		,	ı	1.92	ı	
ı	1	ı	ı	ı	,	1	2.22	
	1.06	1.49	,	1	1.38	1.97	2.23	
ю	1.05	1.45	1	2.15	1.4	1	2.23	
1.5	1.44	1.45	1.32	1.46	1.4	ı	2.23	
ю	1.27	1.45	1.47	1.94	1.39	2.19	2.23	
ю	1.49	1.43	1.18	1.85	1.39		2.23	
18A210020	18A210240	18A210240 2	18A210249	18A210330 2	18A210339	18A210430	18A210439	,,
	ELECTRIC AL CIRCUITS ANALYSI S-II	CTRIC	() ro		A C	RO TS TS		
18.	19.	20.	21.	22.	23.	24.	25.	

(

				da:						
2.22	1.38	ı	2.5	2	2.67	1.15	1	-	1.33	. 2
2.23	1.6	2.67	2.5	2	2.6		ю	1.98	1.68	2
	1		1	-	,	1.03	1	1.49	1	1
	•	-	-	-	-	1.03		-	_	•
	1	9	ŧ	-	-	,	1	1	-	1
	B (ŧ	J	1	t	1.03	3	ı	ě	1
	1	-	1	8	1	1.03	-	ı	-	ı
	fig t	ı	1	1		1.1	ı	,	ť	2
2.24	*1		1		-	1.03	3		1	2
2.23	t	2	2.33	2	ı	ı	P)	1.24	1.39	1
2.25	1	7	t	2	23	ı	1	2.06	2.08	7
2.23	1.38	2.75	2,33	2	2,33	1	I.;	1	1.34	7
2.23	1.38	2.67	2.2	2	2	,	m	2.08	1.73	7
2.23	1.65	æ	2.4	2	2.33	1	Ę.	2.06	1.91	1
18A220010	18A220080	18A220240 1	18A220240 2	18A220240 3	18A220240	18A220249 1	18A220249 2	18A220560 1	18A310080	18A310240 1
MANAGE RIAL ECONOMI 18A220010 CS AND FINANCIA		ELECTRO MAGNETI C FIELDS	CONTROL	ELECTRIE LCALMA CHINES-II	POWER SYSTEMS	ELECTRIC AL MACHINE S-I LAB	S	D	INDIAN CONSTIT UTION	UC RE
26.	27.	28.	29.	30.	31.	32.	33.	34.	35.	36.

	_								_	
m	7	1.39	1.49	2.23	m 	2	1.52	1.44		2
ı	2	1.34	1.61	2.23	. m	2	1.53	1.55	0.77	7
2					ı					
	•		-	-	1	-	-	,	-	
7	2		ı	-	1	,	1	1		,
	•	1	1.25	,	အ	-	1.52	•	-	
	-	1	1	-	1	-	-	ı	-	1
	-	1	1			,	1.55	1	-	,
-	,	1		1		ı	ı	,		1
2.33	,	1.35	0.99	2.3		1		1	1.52	•
2.67	2.17	1.41	1.49	2.25	-	-	1.49	1	0.77	1.5
2	2	1.31	1.24	2.25	1	3	1.53	1.34	0.77	1.5
2.25	2.33	1.36	1.49	2.12	ю	2.5	1.51	1.17	1.52	7
2.83	2.67	1.33	1.74	2.24	ю	2.5	1.55	1.52	2.28	1.75
18A310240	18A310240 3	18A310249 1	18A310249 2	18A310249 3	18A310430	18A310560 2	18A320060	18A320230	18A320239	18A320240
POWER SYSTEMS- II	POWER ELECTRO NICS	S E	0 m	ELECTRIC AL MEASURE 3 MENTS 3 LAB		OOPS THROUG H JAVA		MICROPR OCESSOR S AND MICRO CONTROL LERS		0 7
37.	38.	39.	40.	41.	42.	43.	44.	45.	46.	47.

	1	ı	1.69	1.33	1			1.8	m	2.21
, es	2.5	0.75	1,41	1.3	1.54	1.67	1.82	2.25	8	.88
	2.5			-	1		,	i	-	t
-		,	1		,		- '		1	,
•	,	in	1	-	,	,		1	a	t
m	2.67		\$11	3	,	3	1	61	8	1.25
ja .	1	1	,	-0	1	,	E	1	,	,
1	т	,	-	-	ı		,	r/	1	
	Ð	Ť	1	-	ř.	F	1	11	,	
ŧ	1	1,49	0.0	1.3	1.63	2.34	1.84	N/s	1	1
ī	f	0.75	2.13	1.37	1.49	ė	1.79	Ē	t.	
,	2.5	0.75	1.89	1.93	1.53	2.16	1.83	2.12	33	
m	2.5	1.37	2.56	1.32	1.5	2.05	1.83	2.2	æ	1.81
m	2.33	2,24	1.69	1.47	1.43	1.73	1.83	2.7	3	1.76
					A LOS					
18A320240 2	18A320240 3	18A320240 4	18A320249	18A320279 1	18A410080 2	18A410240	18A410240 2	18A410240 3	18A410249	18A410249 2
INSTRUM ENTATIO	POWER SYSTEM 1 ANALYSI S	UTILIZAT ION OF ELECTRIC AL ENERGY	O E	CT	IPR& I	SWITCH GEAR AND PROTECTI ON	POWER SYSTEM OPERATI ON AND CONTROL	JC JC 4S		TRIC
48.	49.	50.	51.	52.	53.	54.	55.	.56.	57.	58.

. 1.81	1.75	1.07	2	1.65	2.77	1.776	2.	86.94	46	99	69.69	1.91
.1.81	2.02	1.07	2	1.65	2.77	1.783	2 .	102.472	52.	99	78.78	1.97
ı				ı	2.77	1	,	25.68	14	99	21.21	1.81
1.82	1.68	'	t	1	2.77			14.138	8	99	12.12	1.87
	1.68	,		ı	2.77	1		12.28	7	99	10.61	1.82
ı	1	-	-	1	,	1	-	27.0877	15	99	22.72	1.84
	-	-	ı	t	2.77	,	ı	13.9267	9	99	60.6	2.24
	1	1.09	1	ı	,			15.015	80	99	12.12	1.89
1.82	'	1.12		-	77.7	,	١	29.19	15	99	22.72	1.97
ı	1	1.05	2		77.7	ı	2	49.94	27	99	40.91	1.84
1.84	1	-	2	1.24	77.7	,	2	63.87	34	99	51.51	1.89
1	1.76	1	2	1.51	2.77	2.11	2	89.034	47	99	71.21	1.89
1.8	ı	1.05	2	1.65	2.77	1.755	2	108.34	99	99	84.84	1.95
1.81	1.84	1.08	2	1.65	2.77	2.32	2	115.742	55	99	83.33	2.11
18A410251	18A410252	18A410279 1	18A410279 2	18A410460	18A420251	18A420252 2	18A420279 1	al	Subjects	ubjects	ibution	AGE
RIC IBU	IM		TECHNIC AL SEMINAR	LINEAR INTEGRA TED CIRCUITS AND	BLE SMIS EMS	SPECIAL ELECTRIC AL MACHINES	PROJECT	Total	Mapped Subjects	Total Subjects	% Contribution	AVERAGE
59.	.09	61.	62.	63.	64.	65.	.99		The Party of	10000		

I-I SEMESTER

18A1100101- Professional English-I

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- Use grammar accurately in various formal and functional contexts. CO₁
- CO₂ Build good vocabulary and develop the ability to use in various contexts.
- CO₃ Comprehend, analyze and evaluate texts critically.
- CO₄ Develop effective reading and writing skills to enhance communicative competence.
- CO₅ Help the students to inculcate and apply human values and professional ethics in their academic, professional and social lives.
- CO6 Read texts for pleasure and analyze them critically.

Program Outcomes (1 – Low, 2- Medium, 3 – High)

Contribution of Course Outcomes towards achievement of

PO 1 2 3 4 5 6 7 8 9 10

CO1	-	-	-	-	-	-	-	-	-	3	-	2
CO2	-	-	-	-	-	-	-	-	-	3	-	2
CO3	-	-	-	-	-	1	1	-	-	-	•	2
CO4	-	-	-	-	-	-	-	-	-	-	-	2
CO5	-	-	-	-	-	1	1	3	-	-	-	2
CO6	-	-	-	-	-	-	-	-	-	-	-	2

PO

11

PO

12

18A1100191- English Communication Skills Lab-I

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the importance of communication skills and instill the need for life-long learning.
- CO2 Express themselves fluently and appropriately in social and professional contexts.
- CO3 Make sense of both verbal and non-verbal messages through selected listening activities.
- CO4 Aware of the need of pronunciation and intonation in improving their speaking skills.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2-

Medium, 3 – High)

LIMOUNG	ш, 5 — 1	11811										
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	-	-	-	-	1		-	1	3	-	2
CO2	-	=	-	-	-	1	-	-	1	3	-	2
CO3		660	-	n(0)	epo)	-	MAC)	=	1	3	-	2
CO4	+0	-	Ħ	-	-		-	7	=,	=	1	2

18A1100201- ENGINEERING MATHEMATICS-I

Upon suc	Outcomes: cessful completion of the course, the student will be able to: Student will be able to Student will be able to Student will be able to solve the linear system of homogeneous and non-homogeneous equations by applying using technology to facilitate row reduction determine the rank.
CO2	Student will be able to write eigenvalues and eigenvectors, diagonal form and different factorizations of a matrix. denote the control of a matrix of a matrix.
CO3	Students will be able to find an approximate root of algebraic and transcendental equations by applying Bisection, Regula-Falsi, Iteration and Newton-raphson methods. find the function values without knowing function by applying interpolation(equal/unequal) techniques with the help of data
CO4	Students will be able to □ evaluate the definite integrals without knowing integrand by Trapezoidal, Simpson's 1/3rd & 3/8th rules. □ solve initial value ordinary differential equations by applying Taylor's series, Pickard's, Euler's, Modified Euler's & Runge-Kutta methods.
CO5	Student will be able to □ find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies □ acquire the Knowledge maxima and minima of functions of several variable □ Utilize Jacobian of a coordinate transformation to deal with the problems in
CO6	change of variables. Student will be able to □ examine the properties of Laplace transformation. □ apply the Laplace and inverse Laplace transformations for different types of functions. □ evaluate ordinary differential equations by using Laplace transformation technique.

 $Contribution \ of \ Course \ Outcomes \ towards \ achievement \ of \ Program \ Outcomes \ (1-Low, 2-Low, 2-Low,$

Medium, 3 – High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7 7	8	9	10	11	12
CO1	3	3	2	2	-	<u>-</u>	-	="1"	- 13	-2-1	1 177	- 0
CO2	3	3	2 ,	2	-	-	-	-	-	-	-	÷
CO3	3	3	2	2	-	-	-	-	-	-	-	_ '
CO4	3	3	2	2	-	-	-	-	-	-	-	892
CO5	3	3	2	2	_	-	-	-	-	-	-	-
CO6	3	.3	2	2	-	-	-	-	7886	:=-	-	-

18A1100202- ENGINEERING PHYSICS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Impart Knowledge of Physical Optics phenomena like Interference, Diffraction and Polarization involving required to design instruments with higher resolution.
- CO2 Teach Concepts of coherent sources, its realization and utility optical instrumentation.
- CO3 Study the Structure-property relationship exhibited by solid crystal materials for their utility.
- CO4 Know the generation and propagation of sound in architectural design
- CO5 Understand about the production and detection of ultrasonic waves and its application in various fields.
- CO6 To impart the knowledge of electric and magnetic materials with characteristic utility in appliances.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1-Low,2-Medium,3-High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	-	3	-	-	-	-	3	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	3	-	3	-	-	-	-	-	-	-
CO5	3	-	-	-	2	-	-	_	-	-	-	-
CO6	3	-	-	-	2	-	-	-	-	-	-	-

18A1100292 - Engineering Physics Lab

COURSE OUTCOMES: Upon successful completion of the course, the student will be able to:

- CO1 Understand principle, concept, working of an instrument and can compare results with theoretical calculations.
- CO2 Analyze the physical principle involved in the various instruments; also relate the principle to new application.
- CO3 Understand design of an instrument with targeted accuracy for physical measurements.
- CO4 Develop skills to impart practical knowledge in real time solution.
- CO5 Acquires the Practical knowledge in the areas of optics, mechanics, Electricity and magnetism.
- CO6 Think innovatively and also improve the creative skills that are essential for engineering.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2 - Medium, 3 - High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	-	AT.	-	-	-	H ₂	-	==	-	***	7.	2.00	2.00	-
CO2	3	3	16	3		-1	20	-21	3	-	-	-2	2.00	2.00	(0)
CO3	3	3	1	3	-	-	-		3	-	-	٥	2.00	2.00	20.
CO4	3	3		3	-	-	-		-	<u>=</u> :	-	2	3.00	2.00	
CO5	3	-	-	-	-0	-	-	-		-	-	~	3.00	2.00	49
CO6	3	3	2	3	=0	-	-	-	-0	-:	-	-	3.00	2.00	(1)

18A1100801- ENVIRONMENTAL STUDIES

Course Outcomes:

Course Outcomes: Upon successful completion of the course, the student will be able to:

- Infer the existence of ecosystems in maintaining ecological balance. CO₁
- CO₂ Recall the importance of biodiversity and its conservation.
- Summarize the role of natural resources for the sustenance of life on earth and CO3 recognize the need to conserve them.
- Identify the environmental pollutants and the abatement devices to be used. CO4
- CO5 Interpret environmental related acts and social issues.
- CO6 Illustrate the importance of sustainability in the progress of a nation.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	2	-	-	2	3	2	-	-	2	2
CO2	3	2	2	-	-	2	3	2	-	-	2	2
CO3	3	2	2	-	-	2	3	2	-	-	2	2
CO4	3	2	2	-	-	2	3	2	-	-	2	2
CO5	3	2	2	-	-	2	3	2	-	-	2	2
CO6	3	2	2	-	-	2	3	2	-	-	2	2

18A1103401 – ENGINEERING DRAWING

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Graphically construct and understand the importance of mathematical curves, Polygons & Scales in Engineering applications
- CO2 Draw the basic views related to projections of Points and Lines
- Visualize and draw the orthographic projection of planes & solids at various positions with different reference planes.
- CO4 Understand the transformation of orthographic views to Isometric views and vice versa.
- CO5 Extract information from drawings and geometric models to solve engineering problems.
- CO6 Improve their technical communication skill in the form of communicative drawings.

COURSE OUTCOMES vs. PROGRAM OUTCOMES (CO-PO) MAPPING:

CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	2		1.5	-	-	-	Ä	2	-	-
CO2	3	80	2	-	66	5-	700	e	~	2	34	ii-
CO3	3	-	2	-	+0	-	*	-	# T	2	*	-
CO4	3	-1	2	-	2		2		¥	2	4	-
CO5	3	-	2	-	7	.₹e	-		-	-		-5
CO6	3	-	2	-	-		-	1 = 1	ä	2	Δ.	2

SEMESTER-II

18A1200101- Professional English-II

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Recognize the importance of the role of communication in the competitive world.
- CO2 Acquire the competence to write effectively in various formal and academic contexts.
- CO3 Acquire the jargon used in business communication and technical communication.
- CO4 Develop the ability to evaluate texts by inferring the implied sense of such texts and apply such knowledge globally.
- Gain knowledge about the significance of the universal human values through expression of human feelings of compassion and right understanding.
- Understand the importance of making meaningful connections between the grammar being introduced and how it works in the writing being taught.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2- Medium, 3 - High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	-	-	-	-	-	-	-	2	3	-	2
CO2	-	-	-	-	-	-	-	-	-	2	-	2
CO3	-	-	-	-	-	-	-	-	-	3	-	2
CO4	-	-	-	-	-	-	-	-	-	-	-	2
CO5	-	-	-	-	-	-	-	2	-	-	-	2
CO6	-	-	-	-	-	-	-	-	-	-	-	2

18A1200191- English Communication Skills Lab-II

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Attain better understanding of the nuances of English language to put into use in various situation and events.
- CO2 Acquire speaking skills with clarity and confidence which in turn enhances their employability skills.
- CO3 Communicate and present their ideas and sources accurately and effectively.
- CO4 Enhance their employability skills and critical thinking skills with participation in mock interviews and group discussions

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 – Low,	2- Mediun	n, 3 - High)
-----------	-----------	--------------

(x LA	J 44 5 20 - 14.	rcurum,	A IIII	111								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	*	-	i -	-	-	-	-	1	3	-	2
CO2	-	=7	-	-	-	#3	-		-	3	#6)	2
CO3	-	-	-	-	(6)	-	Ē		1	3	-	2
CO4	-	-	-	on	-	, = 2	-	:=:	1	-	-	2

18A1200201- ENGINEERING MATHEMATICS-II

Course (Outcomes:
_	ccessful completion of the course, the student will be able to:
CO1	Student will be able to ightharpoonup find the General/Particular solutions of first order and first degree ordinary differential equations by apply different methods. ightharpoonup find orthogonal trajectories of the given family of curves.
CO2	Student will be able to identify the essential characteristics of linear differential equations with constant coefficients. solve the linear differential equations with constant coefficients by appropriate method.
CO3	Student will be able to evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates. evaluate areas bounded by region by apply double integration techniques. evaluate volume of solids by apply triple integration techniques.
CO4	Student will be able to ightharpoonup find length of the arc, volume of solid of revolution and surface area of solid of revolution.
CO5	Student will be able to apply del to Scalar and vector point functions. lilustrate the physical interpretation of Gradient, Divergence and Curl.
CO6	Student will be able find the work done in moving a particle along the path over a force field. evaluate the rates of fluid flow along and across curves. apply Green's, Stokes and Divergence theorem in evaluation of double and triple integrals.

Contribution of Course Outcomes towards achievement of Program Outcomes (1-Low,2-Medium,3-High)

				10.0								
53	PO	_PO	PO	PO	PO	PO	PO	PO	PO	PO:	. PO	PO
	. 1	2	3	- 4	5 :	6	7	· 8	9	10	11	12
CO1	3	3	. 2	2	-	-	B1 - 12		-	W ₃	-	- ,
CO2	3	3	2	2	-	-	-	-	-	-	-	-
CO3	3	3	2	2	200 10	-	-	~	-	da		900
CO4	3	3	2	2	2 7.	-	-	-	-	12	-	-
CO5	3	3	2	2	-	-	-	-	-	==	-	-
CO6	3	3	2	2	-0:	w.	el.	mt))	-	-	1,41	-

18A1200204 - ENGINEERING CHEMISTRY

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 understand and apply polymers and plastic technologies along with their utilization to solve the problems of the society.
- CO2 Know cells and sensors utilized in many instruments in solving and applying to batteries and fuel cells.
- CO3 Understand electrochemical cells which is essential in understanding corrosion along with the methods of controlling
- CO4 Know about water and its hardness, boiler troubles and problems associated with the environment and its sustainability.
- CO5 Understand fuels and energy, their advantages & disadvantages should be known to solve and understand engineering problems.
- CO6 Know the design and analysis of materials should be understood in solving the complex problems of the society.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 11	****	icuiuii,	U AAIS	,								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	1	1	-	-	1	-	-	-	-	-
CO2	3	3	1	-	-	-	3	-	-	-	-	-
CO3	3	2	2	-	-	-	1	-	-	-	-	-
CO4	3	1	-	1	-	-	1	_	-	-	-	-
CO5	3	2	2	1	-	_	2	-		_	-	-
CO6	3	1	1	1	-	-	1	-	-	-	-	-

18A1200294 - ENGINEERINGCHEMISTRY LAB

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- Know the basic laboratory fundamentals and their knowledge and analysis of substances can solve some of the problems of the society.
- CO2 Understand neutralization reaction between acids & bases and alkalinity of water is performed and gains the knowledge in neutralization process.
- CO3 Know redox reactions are the most observed reactions in chemistry & nature and exposed to few of them.
- CO4 Understand complexometric reactions carried out by them as experiments and solve some of the engineering problems.
- CO5 Understand different ions in the environment and their identification & estimation which enable them to assess the environmental problems.
- Know conductivity and potentials in analysis of materials and should be able to develop and analyze the materials.

Contribution of Course Outcomes towards achievement of Program Outcomes (1-

Low, 2- Medium, 3 - High)

	PO	PO	PO	PO								
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	1	-	-	2	=	-	-	-	-
CO2	3	2	1	1	-	-	1	-	-	-	-	-01
CO3	3	-	-	1	-	-	1	-	na na	t e	.	-
CO4	3	2	1	1	-	-	2	2	-		-1	
CO5	3	2	1	1	-	-	2	-	-	1 -	-:	
CO6	3	2	1	1.	-	-	1	-		-	(40)	-

18A1201401 - ENGINEERING MECHANICS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Construct free body diagrams and develop appropriate equilibrium equations.
 CO2 Analyze system with concepts of friction & Determine the position of centroid.
- CO3 Determine moment of inertia for Composite Sections.
- CO4 Analyzing the rigid bodies under translation and rotation with and without considering forces.
- CO5 Apply Newton's laws and conservation laws to elastic collisions and motion of rigid bodies.
- Apply D-Alembert,,s principle, work-energy method and Impulse Momentum principle to solve dynamics problems.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1-L0	w, z- w	earum,	3-rugn)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	2	-	-	2	-	-	-	-	-	-
CO2	3	-	2	-	-	2	-	-	-	-	-	-
CO3	3	-	2	-	-	2	-	-	-	-	-	-
CO4	3	-	2	-	-	2	-	-	-	-	-	-
CO5	3	-	2	-	-	2	-	-	-	-	-	-
CO6	3	-	2	-	-	2	-	-	-	-	-	-

18A1205301- PROGRAMMING AND PROBLEM SOLVING WITH C

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Acquiring knowledge of basic terminologies, basic idea of writing and executing programs.
- CO2 Understanding working of various control statements.
- CO3 Apply concepts of Arrays, Modular Programming in solving problems.
- CO4 Apply and analyze the concepts of pointers and dynamic memory allocation.
- CO5 Understanding and Analyzing the concepts of strings and working of string manipulation functions.
- CO6 Understand and applying different user defined data types, their usage and the concepts of files and file handling functions.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	-	-	-	-	-	-	-	-	(10)	3
CO2	3	3	3	-	-	-		-	-	-	-	3
CO3	3	3	3	2	-	-0		-	2		10	3
CO4	3	3	3	2	-	-	-	-	-	i.		3
CO5	3	3	3	-	-	-	-	-	2	-	-	3
CO6	3	3	9	-	-	-	-	-	-	-	-	3

18A1205392- PROGRAMMING AND PROBLEM SOLVING WITH C LAB

Course Outcomes:

Upon succ	cessful completion of the course, the student will be able to:
CO1	Understand C programming development environment, compiling, debugging, linking
	and executing a program using the development environment
CO2	Program solutions for problems using conditional controlled statements
CO3	Differentiate the in-built and user defined functions and able to apply modular
	programming concepts in programming.
CO4	Analyze and program the concepts and applications of arrays, pointers and dynamic
	memory allocation.
CO5	Apply in-built string manipulation functions and design user-defined string
	manipulation functions.
CO6	Analyze and program the concepts of structures and apply the in-built concepts of files
	and file handling functions.

Contribution of Course Outcomes towards achievement of Program Outcomes

	U 11, 2-	ATCUIUII	1, 5 – 11	igu)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	_ 1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	-	-	-	-	-	-	-	-	3
CO2	3	3	3	-	-	-	-	-	-	-	-	3
CO3	3	3	3	2	2	-	-	-	2	-	-	3
CO4	3	3	3	2	-	-	-	-	-	-	-	3
CO5	3	3	3	2	-	-	-	-	2	-	-	3
CO6	3	3	3	-	-	-	-	-	-	-	-	3

2-1 SEMESTER

18A2100201-ENGG.MATHEMAICS-III

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 write an analytic function if either real part or imaginary part is known and by using Cauchy-Riemann equations or apply Milne-Thompson method(L3)

CO2 evaluate the integral of complex function over the region bounded by the closed curves by apply either Cauchy-Goursat theorem or Cauchy's integral formula or Cauchy's Residue theorem(L5)

CO3 write the infinite series expansion of complex function by apply Taylor's/Maclaurin's/Laurent's series(L3)

CO4 write a Fourier series expansion of a periodic function by using Euler's formulae (L3)

CO5 solve the Partial difference equations (L3)

CO6 solve one dimensional wave and heat equations by using partial differential equations (L3)

	ibution ow, 2-]				toward	ds achie	evemen	t of Pro	gram (Outcom	es	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-	-	-	-	-	-	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	_	_	-	-
CO6	3	3	2	2	-	-	-	-	-	-	-	-

18A2103301- Material Science and Engineering

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Estimate the properties of the metals and alloys based on structures.
- CO2 Classify, construct and analyze equilibrium diagrams.
- CO3 Analyze and distinguish various ferrous, non-ferrous metals and alloys.
- CO4 Identify the influence of mechanical working and heat treatment principles on materials.
- CO5 Classify, analyze and suggest the suitable manufacturing method for composite materials and Powder metallurgy.
- CO6 Able to suggest the suitable material for any applications demand by the society

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	_	-	-	_	_	_	(E	2	-	32
CO2	***	3	3	-	-	-	3	-	-	-5)	-	- 2
CO3	-	3	3	2	-	-	-	-	-	-	-	-
CO4	10"	3	3	3	-	2	_	-	e:			-
CO5		-	_	3	-	2	2	-	-	_0	2	2
CO6	-	3	3	3	-	-	-	_	-	-	-	-

18A2103401-BASIC THERMODYNAMICS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 The student should be able to understand the basic concepts of thermodynamics.

CO2 The student should be able to understand the first law of thermodynamics and its applications.

CO3 The student should be able to understand the second law of thermodynamics, use of Maxwells relations and thermodynamic functions and concept of entropy.

CO4 The student should be able to understand the formation of steam and calculate the quality of steam. CO5 The student should be able to understand the working of vapour power cycels and calculate their performance.

CO6 The student should be able to understand the Concept of standard cycles and should be able to calculate the efficiency and performance parameters

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	_	-	_	1	1	-	_	-	_	1
CO2	1	1	1	1	-	1	-	-	-	-	-	1
CO3	2	1	1	1	-	1	-	-	-	-	-	1
CO4	2	1	1	1	-	1	1	-	-	-	-	1
CO5	1	1	1	1	-	1	1	-	-	-	-	1
CO6	2	2	2	1	-	1	1	-	-	-	_	1

18A2103402- Mechanics of Materials

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Determine and illustrate principal stresses, principal strains, maximum shearing stress, and simple stresses acting on structural members.

CO2 Analyze bending stresses and shear stresses in structural members subjected to flexural loadings and draw the distribution diagrams.

CO3 Estimate the stresses and strains in circular torsion members

CO4 Determine the deflections and slopes produced in beams under loading conditions.

CO5 Analyze slender, long columns subjected to axial loads

CO6 Assess hoop and longitudinal stresses in thin and thick cylinders.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	20		1,	2:		i i	-	1
CO ₂	3	3	2	1		-	1		-	-	-	1
CO3	3	3	2	1		-	1	-		_	-	1
CO4	3	3	2	1	-	-	1		-	~	-	1
CO5	3	3	2	1	-	-	1	-	-	-0.0	-	1
CO6	3	3	2	1	28	~	1	-	-	الا	-	1

18A2103403- MANUFACTURING PROCESS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Understand the Technology of the casting processes.

CO2 Differentiate various casting methods and their applications.

CO3 Differentiate various joining processes with applications

CO4 Understand various bulk metal forming and sheet metal processes

CO5 Understand Various Plastic operations.

CO6 Evaluate the manufacturing processes being utilized in the present industrial scenario.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO110	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	2	1	-	-	-	-	-	1	-
CO2	2	1		1	1	-	-	-	•	-	1	-
CO3	3	2	2	-		_		-	-	-	_	2
CO4	3	1	2	-		- "	1	-	-	-	-	2
CO5	2	2	1	-	1	-	_	_	-	-	_	2
CO6	3	80	2	-	1	-	-	_	-	-	-	2

18A2102301- Essential Electrical and electronics Engineering

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Analyze the various electrical networks.

CO2 Able to understand the principle of operation of DC machines

CO3 Understand the principle of operation of AC machines

CO4 Understand the principle of operation of transformer.

CO5 Analyze the operation of half wave, full wave rectifiers and Transistor configurations

CO6 Able to analyze the operation of OP-AMPS

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1-1	-	-	*	-	-	-	-	-
CO2	3	2	-	ui.	-	-	NOT .	-	-	-	-	-
CO3	2	2		-	20	20	-	-	-	-	-	20
CO4	3	2	-	-	-	-	-	-	_	-,	-0	-
CO5	3	2	-		-		-		-	- 2	-	-
CO6	3	2	2	1		-	-	-	-	-	1-1	

18A2103491-MATERIALS TESTING AND METALLURGY LAB

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Prepare the specimens as per standards.
- CO2 Observe microstructure of different materials.
- CO3 Analyse the properties of materials based on microstructure.
- CO4 Perform hardness test and heat treatment of steels.
- CO5 Perform the UTM test of a material.
- CO6 Perform various test to know the mechanical properties of a material.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	-	2	-	-	-	-	-	2	-	-
CO2	1	2	-	2	-		-	-	-	-	-	-
CO3	-	3	_	2	-	-	-	-	-	-	-	-
CO4	-	3	-	2	-	-	-	-	-	-	-	-
CO5	-	3	-	-	-	1	-	-	-	-	-	-
CO6	-	2	-	3	-	-	1	-	-	-	-	_

18A2103492-MANUFACTURING PROCESS LAB

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Know how to design and making the pattern and mold preparation in sand castings.

CO2 Know to design the different types of weld joints and operating the weld machines

CO3 Know the difference between gas cutting gas welding operations and equipment.

CO4 Find out the performance characteristics of the different metal forming processes.

CO5 Know the different types of plastic processing types.

CO6 Able to determine the ripple factor of half wave & full wave rectifiers.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	_	-	-	-	-	-		-
CO2	2	2	1	3	-	-			-	-		
CO3	2	2	1	3	12	2	-	="	_	_	2	-
CO4	2	2	1	3		-	=	_	-0	-	-	
CO5	2	2	1	3	-	-	-	_	-	-	-	-
CO6	2	2	1	3	_		- 2	-		-	-	-

18A2102391- ESSENTIAL ELECTRICAL&ELECTRONICS ENGINEERING LAB

Terror Terror Arman provided and the Arman

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Able to find out the efficiency of dc shunt machine without actual loading of the machine.

CO2 Able to estimate the efficiency and regulation for different load conditions and power factors of single phase transformer with OC and SC test.

CO3 Able to analyze the performance characteristics and to determine efficiency of DC shunt motor &3-phase induction motor.

CO4 Able to pre-determine the regulation of an alternator by synchronous impedance method. Able to control the speed of dc shunt motor using speed control methods.

CO5 Able to find out the characteristics of PN junction diode & transistor

CO6 Able to determine the ripple factor of half wave & full wave rectifiers

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	-	-	_	-	-	-	-	_
CO2	2	2	1	3	-	-	-	-	-	_	-	-
CO3	2	2	1	3	-	-	-	-	-	-	-	-
CO4	2	2	1	3	-	-	_	-	-	_	_	-
CO5	2	2	1	3	-	-	-	_	-	_	-	-
CO6	2	2	1	3	-	-	-	-	-	-	_	-

2-2 SEMSTER

18A2200201 EM-IV - PROBABILITY AND STATISTICS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Find the measures of central tendency and relation between them. (L1)

CO2 Evaluate the correlation coefficient, rank coefficient and regression. (L5)

CO3 Understand probabilities of events and expectations of random variables for elementary problems. (L2)

CO4 Solve problems related to binomial and passion distribution. (L3)

CO5 Compare situations in which it is appropriate to consider the relevance of the Normal distribution. (L4)

CO6 Construct hypothesis and carryout appropriate tests to checks its acceptability. (L3)

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-			-	-	-	_	-
CO2	3	3	2	2	-	-	-	200		-	-	-
CO3	3	3	2	2	-	-	-	-	4	-		-
CO4	3	3	2	2	1.7		-	-	106	-	-	-
CO5	3	3	2	2	- m	2	-	-	-	-	-	-
CO6	3	3	2	2	-	-	-	-	-	-	-	-

18A2203401- DESIGN OF MACHINE MEMBERS – I

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Estimate safety factors of machine members subjected to static and dynamic loads.

CO2 Apply multi dimensional static failure criteria in the analysis and design of mechanical components.

CO3 Identify the loads, the machine members subjected and calculate static and dynamic stresses to ensure safe design.

CO4 Design fasteners subjected to variety of loads.

CO5 Select of standard machine elements such as keys, shafts, couplings.

CO6 Analyze and design mechanical springs

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	P5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2			2	2		3
CO2	3	3	3	2	2	2			2	2		3
CO3	3	3	3	2	2	2			2	2		3
CO4	3	3	3	2	2	2			2	2		3
CO5	3	3	3	2	2	2			2	2		3
CO6	3	3	3	2	2	2			2	2		3

18A2203402-FLUID MECHANICS& HYDRAULIC MACHINES

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Define fluid properties and explain procedure of dimensional analysis
- CO2 Explain procedure of measurement of fluid pressure and manometry
- CO3 Apply laws of conservation of mass, momentum and energy to fluid flow
- CO4 Analyze flow through different pipes
- CO5 Analyze the impact of jet on the vanes
- CO6 Evaluate performance of hydraulic machines

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	e0	=	-	-		-	-	-
CO2	3	2	1	+)		-	40	-	_	_	-	-
CO3	3	2	2	2:	25	-	4	_	-8	-	÷	-
CO4	3	2	2	-	-	-	-0	-	-0	-	-	-
CO5	3	2	2	-	-	-	-	_		-	-	-
CO6	3	2	2	-	- "	= 2	_	_	-	-	5	-

18A2203403- KINEMATICS OF MACHINERY

Course Outcomes:

- Upon successful completion of the course, the student will be able to:
- CO1 Understand Kinematic joint and mechanism and study the relative motion of parts in a machine without taking into consideration the forces involved
- . CO2 Understand various mechanisms for straight line motion and their applications.
- CO3 Draw the velocity and acceleration of four bar chain and slider crank chain graphically.
- CO4 Apply working principles of cams and also design the profile of cams
- . CO5 Decide the no of teeth on a gear and also select the gear teeth depending on the application in the unit of Gears.
- CO6 Understand various power transmission mechanisms and methodologies and working principles. Students are exposed to merits and demerits of each drive. Contribution

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	-	-	-	-	-	-	-	-	-	-
CO2	2	3	1	1	-	-	-	-	-	-	-	-
CO3	1	2	3	3	3	-	-	-	-	_	-	-
CO4	1	2	3	3	3	-	-	-	-	-	-	-
CO5	1	3	3	3	3	-	-	-	-	-	-	-
CO6	1	1	2	3	3	-	-	_	-	-	-	-

18A2203404- IC ENGINES AND GAS TURBINES

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Understand the working of various internal combustion engine components and their working Principles. CO2 Analyze the combustion phenomenon of SI engines and CI engines.

CO3 Comprehend the air standard, fuel air and actual cycles.

CO4 Compute the two stroke and four stroke engine performance characteristics.

CO5 Describe the components, functioning and performance of gas turbines.

CO6 Apply the principles of gas turbines and jet propulsion systems.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	i i	-	1	-	-	-	-	-
CO2	3	1	-	_	-	1	1	_	_	-		
CO3	3	2	1	-	_	-	1	-	-	-	-	9 =
CO4	2	2	2	1	164	25	-	-		-	27	_
CO5	1	2	1	-	-	-	-	**	-	=	-	_
CO6	2		-3	-0	-	1	1	-	-	-	-	_

18A2203601- BASICS OF MECHANICAL ENGINEERING

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Familiarize with the Engineering materials, their types, properties and applications.

CO2 Analyze coplanar concurrent systems and friction

CO3 Design Power transmission systems using belts, ropes and gear trains.

CO4 Solve Simple problems in stresses and strains

CO5 Familiarize with Basic manufacturing processes used in manufacturing of products.

CO6 Appreciate the Industrial safety, its requirement, goals, training, procedures followed in industries.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2-Medium, 3 – High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	-	-	-	-	-	-	-	-
CO2	3	2	1	-	-	-	-	-	-	-	-	-
CO3	3	2	1	-	-	-	-	_	-	_	_	-
CO4	3	2	1	-	-	-	-	-	-	-	-	-
CO5	3	2	1	-	-	-	-	-	-	_	-	-
CO6	3	2	1	_	_	_	_	-	-	-	-	-

18A2203601-INDUSTRIAL MATERIALS (OPEN ELECTIVE).

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Familiarize with the concepts of industrial materials, their classification, properties and applications.

CO2 Appreciate the types, structure and characteristics of composite materials.

CO3 Elaborate the applications of composite materials.

CO4 Understand the shape memory concept and its use in industry.

CO5 Elaborate nano materials and importance of nano materials over bulk materials

CO6 Examine the case studies and explore the significance of selection of materials in applications like aerospace, boiler tubes, turbine blades, automobiles, eco sustainable materials.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1		-	-	-	-	-	-	₩.	-
CO2	3	2	1	-		-	-	-	-	-		
CO3	3	2	1	=		2	21	-	-	-	-	-
CO4	3	2	1	-	-	-	₹1	-	10	ex	-	-
CO5	3	2	1	-	-	-	-	1	1	-	-	-
CO6	3	2	1	2	10	-	-	1	1	-	2	-

18A2203301- COMPUTER AIDED MACHINE DRAWING PRACTICE

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Demonstrate the conventional representations of materials and machine components.
- CO2 Model riveted, welded and key joints using CAD system.
- CO3 Create solid models and sectional views of machine components.
- CO4 Generate solid models of machine parts and assemble them.
- CO5 Translate 3D assemblies into 2D drawings.
- CO6 Create manufacturing drawing with dimensional and geometric tolerances.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO ₁	3	-	_	-	-	-	-	_	_	-	-	2
CO2	3	-	2	-	1	-	-	_	-		_	2
CO3	3	-	2	-	1	-	-	_	_	-	-	2
CO4	3	-	2	-	2	-	-	-	-	-	-	2
CO5	3	-	2	-	2	_	_	_	-	-	_	2
CO6	3	-	2	-	2	-	-	-	-	-	_	2

18A2203491- FLUID MECHANICS & HYDRAULIC MACHINES LAB

course outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Find coefficient of discharge for venture meter
- CO2 Demonstrate the concepts of discharge through orifice meter and mouth piece.
- CO3 Explain the concepts of loses in the pipe flow
- CO4 Explain the concepts of jet on vanes
- CO5 Demonstrate the concept of Bernoulli's theorem.
- CO6 Analyze the performance of deferent turbines of and pumps.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	Rp.	-	100	÷ .	-	_	1	-	-
CO2	3	2	-	~	-	los	-	-		1	-	-
CO3	3	2	-	-	-	be	_	-	-	1	-	-
CO4	3	2	-	-	_	-	-		-	2	-	-0
CO5	3	2	-	=	-	-	-	-	-	2	-	-
CO6	3	2	_	-		-	_	•	⊕ 0	2	-	_0

18A2203492- THERMAL ENGINEERING LAB

course outcomes:

After the completion of the course, students should be able to

CO1 Find the efficiency and performance of an I.C. engine system for a given set of conditions.

CO2 Calculate the various energy losses and heat balance of Internal Combustion Engines.

CO3 Evaluate the performance parameters of refrigeration system and Solar flat plate.

CO4 Analyze the Volumetric efficiency of air compressor.

CO5 Develop skills in data acquisition systems.

CO6 Study the various parameters of boilers

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	_	_	2	_	1
CO2	3	2	1	1	-	-	-	- 1	-	2	-	1
CO3	3	2	1	1	-	-	-	-	-	2	-	1
CO4	3	2	1	1	-	-	-	-	-	2	-	1
CO5	3	2	1	1	_	-	-	-	_	2	-	1
CO6	3	1	-	-	-	-	-	-	-	2	_	1

18a2200801- PROFESSIONAL ETHICS AND HUMAN VALUES

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Grooms themselves as ethical, responsible and societal beings.

CO2 Discuss ethics in society and apply the ethical issues related to engineering.

CO3 Exhibit the understanding of ethical theories in professional environment.

CO4 Recognize their roe as social experimenters (engineers) and comprehend codes of ethics.

CO5 Identify the risks likely to come across in the professional world, analyzing them and find solutions.

CO6 Realize the responsibilities and rights of engineers in the society.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	2	1	1	2	-	-	1=1	1
CO2	-	-	-	-	-	1	1	2	-	-	-	1
CO3	-	-	-	-	_	1	1	2	-	-	-	1
CO4		-	-	-	-	1	1	2		-	-	1
CO5		-	=	-	-	1	1	2	-	-	-	1
CO6	-	-	-	-	-	1	1	2	-	-	12	1

18A3103601

1. Introduction to Material Handling Equipment

Open Elective – II

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Understand the basic Fundamentals of Material Handling Equipment.

CO2 Identify, compare and select proper material handling equipment for specific applications.

CO3 Identify the various components of material handling systems.

CO₄

Understand the working principles of Components of material handling systems like Flexible hoisting, hooks, elevators.

CO₅

Understand the working principles of Components of material handling systems like conveyors.

CO6

Identify the surface transport to connect loading stations to the different discharge or unloading stations.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	1		1		1						
CO2	2	1		1		1						
CO3	2	1		1		1						
CO4	2	1		1		1						
CO5	2	1		1		1						
CO6	2	1		1		1						

18A3103602

2. Introduction to Robotics

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Identify various robot configurations.

CO2 Understand the basic components of robots.

CO3 Evaluate D-H notations for simple robot manipulator.

CO4 Perform trajectory planning for a manipulator by avoiding obstacles.

CO5 Select appropriate actuators and sensors for a robot.

CO6 Illustrate the industrial applications of robo

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3					1					2	
CO ₂	2		3								1	
CO3		3	2		1							
CO4		2	3									1
CO5	2	-	-	-	3						1	
CO ₆	2				3						1	

18A3103401 Design of Machine Elements-II

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Estimate the bearing life and selection of suitable bearing.

CO2 Analyze and design of chain drive.

CO3 Analyze the forces, calculate the static and dynamic loads on gears.

CO4 Analyze and design of different types of clutches and brakes.

CO5 Analyze and design of flywheel.

CO6 Analyze and design of IC Engine components.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO	PO	PO	P0	PO						
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	1		1			2	2	2
CO2	3	3	3	2	1		1			2	2	2
CO3	3	3	3	2	1		1			2	2	2
CO4	3	3	3	2	1		1			2	2	2
CO5	3	3	3	2	1		1			2	2	2
CO6	3	3	3	2	1		1			2	2	2

Dynamics of Machinery

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Analyze dynamic force analysis of slider crank mechanism.

CO2 Analyze and design a flywheel.

CO3 Compute balancing forces in systems with reciprocating and rotary masses.

CO4 Analyze the forces in governors.

CO5 Analyze stabilization of automobiles, airplanes and ships.

CO6 Estimate the effects of natural and forced undesirable vibrations.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	1			1						1
CO ₂	3	2	1									1
CO3	3	2	1									1
CO4	3	2	1									1
CO5	3	2	1									1
CO6	3	2	1									1

18A3103403

Manufacturing Technology

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Upon completion of this course, the students will be able to understand and compare the

functions and applications of different metal cutting tools.

CO2 Upon completion of this course, the students can able to apply the different metal removing

,finishing and super finishing and for component production

CO3 Learn the basic concepts of NTM.

CO4 Learn surface finishing techniques

CO5 Apply cutting mechanics to metal machining based on cutting force and power consumption

CO6 Get a basic knowledge on the importance of digital manufacturing.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2										
CO2	3		1		2							
CO3	3		2									
CO4	3		2									
CO5	3		2									
C06	3		2		3							

Applied Thermodynamics

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Describe the components and functioning of a Rankine cycle

CO2 Analyze the need of various boiler draught systems for a vapor power cycle.

CO3 Apply thermodynamic analysis to study the behavior of steam nozzles.

CO4 Evaluate the performance of impulse, reaction turbines.

CO5 To Understand different types of condensers and its performance analysis.

CO6 Evaluate the performance of reciprocating, rotary and dynamic compressors.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1									
CO ₂	3	2	1									
CO3	3	2	2									
CO4	3	3	2									
CO5	3	2	1									
CO6	3	3	2									

Professional Elective - I

1. Rapid Prototyping

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Understand the fundamentals of Additive Manufacturing Technologies for engineering and

industrial applications.

CO2 Understand the methodology to manufacture the products using SLA and SGC technologies

and study their applications, advantages and case studies.

CO3 Understand the methodology to manufacture the products using LOM and FDM technologies

and study their applications, advantages and case studies

CO4 Understand the methodology to manufacture the products using SLS and 3D Printing technologies and study their applications, advantages and case studies.

CO5 Evaluate performance of the different types of rapid tools using in RP technologies.

CO6 Evaluate the different types of STL formats, and other Translators.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2 - Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P0 12
CO1	3	2	2									
CO2	3	2	3									
CO3		3	2									
CO4	3	3	2									
CO5	3	3	2				2					
CO6	3	3	2		2							

18A3103512

2. Automation in Manufacturing

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Understand automation principles, strategies and types of automation.

CO2 Understand methods and equipment's used for inspection in an automated industry.

CO3 Understand transfer lines, automated flow lines and analyze transfer lines with and without

buffer storage.

CO4 Solve the assembly line balancing problems in the various flow line systems.

CO5 Understand the different automated material handling, storage and retrieval systems and automated inspection systems.

CO6 Explain adaptive control principles and implement the same online inspection and control.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 Dowy 2 Medium, o mgh)												
	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2									
CO2	3	2	3									
CO3		3	2									
CO4	3	3	2									
CO5	3	3	2									
CO6	3	3	2									

18A3103513

3. Hydraulic and Pneumatic Systems

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Explain the concepts of fluid power, its types, advantages, applications of fluid power systems and

compare mechanical, electrical, hydraulic and pneumatic systems.

CO2 Explain the basic working principles of the hydraulic pumps and actuators, types of pumpsactuators,

explain the design considerations of pumps, actuators and select the valves for hydraulic circuits.

CO3 develop the hydraulic circuits for practical applications, create circuits for various machines,

select the size of the accumulators and explain the working principles of safety circuits CO4 explain the fundamental concepts of pneumatic systems, list the properties of air for pneumaticsystem, demonstrate on F-R-L unit

CO5 identify various control elements in pneumatic system, develop electro pneumatic and electrohydraulic circuits for robotic applications, design a pneumatic circuit using classic, cascade andstep counter methods

CO6 select pneumatic components for installation and maintenance of power packs, explain thearchitectures of PLC and Microprocessors, develop logical circuits in PLC for automation anddetermine the faults in fluid power systems

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	2	1	2							
CO ₂	3	2	1	1	2							
CO3	1	3	2	2	1							
CO4	3	3	2	2	1							
CO4 CO5	3	3	2	1	2							
CO6	3	3	3	2	1							

4. Electric & Hybrid Vehicles 18A3103514

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Acquire basic knowledge of electric and hybrid vehicles.
- CO2 Describe the configurations and working principles of electric and hybrid vehicles.
- CO3 Identify the various energy resources used for hybrid vehicles.
- CO4 Choose the suitable drive systems for electric vehicles.
- CO5 Describe the fundamentals of power electronics.
- CO6 Apply the concept of power electronics for hybrid vehicles.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	1									1		
CO ₂	1	2										
CO3	1	2										1
CO4	1	2										1
CO5	1	2										
CO6	1	2										1

18A3103491 Machine Tools Lab

Course Outcomes:

Upon Successful Completion of the Course, The Student will be able to:

CO1 Apply The Procedures To Measure Length, Width, Depth, Bore Diameters, Internal And

External Tapers, Tool Angles, And Surface Roughness By Using Different Instruments

CO2 Measure Effective Diameter Of Thread Profile Using Different Methods

CO3 Conduct Different Machine Alignment Tests

CO4 Demonstrate Knowledge Of Different Machine Tools Used In Machine Shop

CO5 Perform Step, Taper Turning, Knurling And Threading.

CO6 Produce Stepped Surface Using Shaper And Keyway Using Milling Machine.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1-Low, 2-Medium, 3-High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2		2				1	1		
CO2	3		2		2				1	1		
CO3	3		2		2				1	1		
CO4	3		2		2				1	2		
CO5	3		2		2				1	2		
CO6	3		2		2				1	2		

List of Experiments:

- 1. Introduction of General Purpose Machines
- 2. Step Turning and

Taper Turning on

Lathe 3.Thread

Cutting and

Knurling on Lathe

Machine

- 4. Drilling and Tapping
- 5. Shaping and Planning
- 6. Slotting
- 7. Milling
- 8. Cylindrical Surface Grinding
- 9. Grinding of Tool Angle
- 10. Surface Grinding
- 11. Wood Turning Lathe
- 12. CNC XI Turn
- 13. CNC XI Mill

18A3103492 Theory of Machines Lab

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 To analyze the forces and motion of complex systems of linkages, gears and cams.
- CO2 To apply the principles of gyroscope and governors.
- CO3 To apply the principles of balancing of masses to various links, mechanisms and engines.
- CO4 To demonstrate the dynamics of flywheel and their motion.
- CO5 To analyze the motion and the dynamical forces acting on mechanical systems composed of

linkages, gears and cams.

CO6 To perform balancing, vibration and critical speeds with respect to Machine dynamics.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1- Low, 2- Medium, 3 - High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2		2								
CO2	3	2		2								
CO3	3	2		2								
CO4	3	2		2								
CO5	3	2		2								
CO6	3	2		2								

List of Experiments:

- 1. To determine whirling speed of shaft theoretically and experimentally
- 2. To determine the position of sleeve against controlling force and speed of a Hartnell governor
- 3. To analyze the motion of a motorized gyroscope when the couple is applied along its spin axis
- 4. To determine the frequency of undamped free vibration of an equivalent spring mass system
- 5. To determine the frequency of damped force vibration of a spring mass system
- 6. To analyze the static and dynamic balancing using rigid blocks
- 7. To find the moment of inertia of a flywheel
- 8. To plot follower displacement vs cam rotation for various Cam Follower systems
- 9. To find coefficient of friction between belt and pulley
- 10. Simulation and study of four bar mechanisms.
- 11. Simulation and study of slider crank mechanisms.
- 12. To study various types of gears-Spur, Helical, Worm and Bevel Gears.

(Any TEN of the above experiments are to be covered)

Course code-HEAT TRANFER

Course Objectives:

- 1. Student will be aware of various modes of heat transfer.
- 2. Student will be exposed to different types of fins.
- 3. Student will be aware of the concepts related to boundary layer theory and dimensional analysis.
- 4. Student will know about free and force convection.
- 5. Student will be in a position to classify heat exchangers.
- 6. Student will be exposed to the law of radiation.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Explain the basic heat transfer principles.
- CO2 Analyze study and unsteady state heat transfer concepts.
- CO3 Evaluate the rate of heat transfer from a finned surface.
- CO4 Explain convective heat transfer in natural and forced convection for both internal and external flow.
- CO5 Apply the concepts of heat transfer in Boiling and Condensation.
- CO6 Evaluate the radiation heat exchange between the surfaces and know the significance of radiation shields.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO	PO 3	PO 4	PO 5	PO 6	PO	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	3	4	2	0	1	0	9	10	2	12
CO2	3	3	2	3	1							
CO3	3	2	3		2							
CO4	2	3		2							1	
CO5	3	3	3		2							
CO6	3	2	3		2						1	

Course code-OPERATIONS RESEARCH

Course Objectives:

- 1. To impart the basic concepts of modeling models, and statements of the operations research. formulate and solve LPP
- 2.To solve Transportation and Assignment, sequencing problems to minimize the cost
- 3. Apply queuing theory to solve the problems of Traffic congestion and counters in banks in etc.. and Game theory to solve different games.
- 4. To acquire the knowledge on Inventory methods and solution of LPP through Dynamic programming

Course Outcomes:

Upon	successful completion of the course, the student will be able to:
CO1	Formulate and solve the problems using LPP using different methods
CO ₂	Find the appropriate times to replace items individually and as a group
CO3	Formulate and solve Transportation, Assignment, sequencing problems
CO4	Formulate and solve the problems having saddle and without saddle points
CO5	Solve the queuing problems using different methods
CO6	Solve different problems related to inventory maintenance, apply Dynamic programming Methods
	Methods

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2-Medium, 3 – High)

1710411		PO 2	PO 3	PO 4	PO 5	PO 6	PO	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	. 3	2	2								
CO2	3	3	2	2					ne de			
CO3	3	3	2	2								
CO4	3	3	2	2							-	
CO5	3	3	2	2	-	-5					-	
CO6	3	3	2	2	i							

Course codeINSTRUMENTATION AND CONTROL SYSTEMS

Course Objectives:

- 1. Introduce concepts of theory of elasticity.
- 2. To enable the students understand the mathematical and physical principles underlying the Finite Element Method (FEM) as applied to solid mechanics and thermal analysis.
- 3. To understand the basics of finite element formulation.
- 4. To introduce domain discretization, polynomial interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Apply the knowledge of Mathematics and Engineering to solve problems in structural engineering by approximate and numerical methods.
- CO2 Identify the application and characteristics of FEA elements such as bars, trusses, beams, plane and isoparametric elements.
- CO3 To use the techniques, skills, and modern engineering tools necessary for engineering practice.
- CO4 Able to apply Suitable boundary conditions to a global structural equation, and reduce it to a solvable form.
- CO5 Design a new component or improve the existing components using FEA
- CO6 Solve real life problems using finite element analysis.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	2	1	2	-	-	_	_	_	_	-	- 1.27
CO2	-	3	1	2	-		-	-	-	-	-	-
CO3	**	2	-	-	3	y tea	-	-	-	-	(may	-
CO4	-	2	3	-		-	-	-	-		-	44
CO5	-	2	-	-	-	100	2	-	-	-	-	_0
CO6	2	2	21	3	-	-		-	-	-	-	-

Course code-MECHATRONICS

Course Objectives:

- 1. Student will be able to Introduced to integrative nature of Mechatronics.
- 2. Student will be exposed to the various types of sensors and transducers.
- 3. Student will understand the fundamentals of solid state electronic devices.
- 4. Student will design various Hydraulic and Pneumatic circuits.
- 5. Student will apply basics of digital electronics for various applications of logic gates.
- 6. Student will relate different logic gates and their role in Programmable logic controllers.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Describe mechatronics system and their elements and levels
- CO2 Differentiate various sensors and transducers
- CO3 Understand solid state electronic devices, analog signal conditioning
- CO4 Demonstrate hydraulic and pneumatic actuating systems
- CO5 Understand Digital electronics and Logic gates
- CO6 Explain micro controllers and applications of PLC

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 1	01119 == 1	viculuii	1,5	1811/								
	PO	PO	PO	PO	PO	PO	PO	PO		PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3											
CO2	3		1								1 100	
CO3	3		1									
CO4	2		2		2							
CO5	3											
CO6	2				2							

Course code-HYDRAULIC AND PNEUMATIC SYSTEMS (Open Elective – III)

Course Objectives:

- 1. Familiarize on Fluid Power Engineering and Power Transmission System.
- 2. Introduce the students, the basic concepts of hydraulic and pneumatic systems.
- 3. Expose the students with various hydraulic and pneumatic actuators.
- 4. Familiarize on fluid power systems and its applications to real time.
- 5. Know the problem, which occur in fluid power systems and take necessary troubleshooting/maintenance activities.
- 6. Get practiced in designing hydraulic and pneumatic systems.
- 7. Understand the design procedure available for Hydraulic and Pneumatic circuits.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Explain the concepts of fluid power, its types, advantages, applications of fluid power systems and compare mechanical, electrical, hydraulic and pneumatic systems.
- CO2 Explain the basic working principles of the hydraulic pumps and actuators, types of pumpsactuators, explain the design considerations of pumps, actuators and select the valves for hydraulic circuits.
- CO3 develop the hydraulic circuits for practical applications, create circuits for various machines, select the size of the accumulators and explain the working principles of safety circuits
- CO4 explain the fundamental concepts of pneumatic systems, list the properties of air for pneumatic system, demonstrate on F-R-L unit
- CO5 identify various control elements in pneumatic system, develop electro pneumatic and electro hydraulic circuits for robotic applications, design a pneumatic circuit using classic, cascade and step counter methods
- CO6 select pneumatic components for installation and maintenance of power packs, explain the architectures of PLC and Microprocessors, develop logical circuits in PLC for automation and determine the faults in fluid power systems

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	2	1	2							
CO2	3	2	1	1	2							
CO3	1	3	2	2	1							
CO4	3	3	2	2	1							
CO5	3	3	2	1	2							
CO6	3	3	3	2	1							

Course code-ROBOTICS

Course Objectives:

- 1. Student will know the fundamental concepts of industrial robotic technology.
- 2. Student will be exposed to the various types of end effectors.
- 3. Student will apply the basic mathematics to calculate kinematic forces in robot manipulator.
- 4. Student will understand the robot controlling and programming methods.
- 5. Student will be in a position to describe various actuators, sensors.
- 6. Student will be aware of the various industrial applications of robots.

Course Outcomes:

Cours	se Outcomes:
Upon	successful completion of the course, the student will be able to:
CO1	Overview of Robotics and identify various robot configurations.
CO2	Identify various robot components and select different end effectors for specific application
CO3	Carryout Homogeneous transformations, kinematic analysis for various kinematic chains.
CO4	Perform differential transformations and calculate dynamic analysis for simple kinematic chains.
CO5	Perform trajectory planning for a manipulator by avoiding obstacles
CO6	Select appropriate actuators and sensors for a robot and to understand various robot applications in manufacturing.

(1 -	Low, 2	2- Med	lium, 3	– High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3					1					2	
CO2	2		3								1	
CO3		3	2	1	1							
CO4		3	2		ĺ							
CO5		2	3									1
CO6	2	!			3						1	

Course code-NON DESTRUCTIVE EVALUATION

Course Objectives:

- 1. Student will know about different techniques in NDT and usage of visual inspections, liquid penetration tests.
- 2. Student will know about usage of magnetic particle testing and liquid penetrant tests.
- 3. Student will know the concept of acoustic emission and eddy current testing.
- 4. Student will know about infrared and thermal testing.
- 5. Student will know radiography testing
- 6. Student will know the concepts of application of ndt in various fields

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Explain about ndt and explain different tests like visual inspection and liquid penetration.
- CO2 Define magnetic particle test ad liquid penetrant test.
- CO3 Explain the process of acoustic emission and eddy current testing.
- CO4 Analyze the process for infrared and thermal testing.
- CO5 Evaluate the process of radiography testing.
- CO6 Explain the applications of ndt in various fields.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	1									
CO2	3	2	1									
CO3	3	2	1									1
CO4	3	1	2									
CO5	3	1	2							1		
CO6	3	2	1									1

Course Code: INTRODUCTION TO MATERIAL HANDLING EQUIPMENT (Professional Elective – II)

Course Objectives:

- 1. The student will know the basic Fundamentals of Material Handling Equipment and control and safety measures incorporated on material handling equipments.
 - 2. The student will identify and select the different handling equipments in industry.
 - 3. The student will identify various components of material handling systems.
 - 4. The student will know the working principles of Components of material handling systems like Flexible hoisting, hooks, elevators.
 - 5. The student will know the working principles of Components of material handling systems like conveyors.
 - 6. To know the operational features of various material handling system used in industries how to connect loading stations to the different discharge or unloading conditions

Course Outcomes:

Court	o detection
Upon	successful completion of the course, the student will be able to:
CO1	Understand the basic Fundamentals of Material Handling Equipment.
CO2	Identify, compare and select proper material handling equipment for specific applications.
CO3	Identify the various components of material handling systems.
CO4	Understand the working principles of Components of material handling systems like Flexible hoisting, hooks, elevators.
CO5	Understand the working principles of Components of material handling systems like conveyors.
CO6	Identify the surface transport to connect loading stations to the different discharge or unloading stations.

71	l 1	O387	2-	Mo	dinm	3 _	- High)
		L/CEVV.		TVIE		7 -	- MIYIII

	PO											
!	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	1		1		1				į		
CO2	2	1		1		1						
CO3	2	Ī		Ī		1						
CO4	2	1		1		1						
CO5	2	1		Ī		1						
CO6	2	1		1		1						

Course code-HEAT TRANSFER LAB

Course Objectives:

- 1. To impart practical exposure on conduction through various geometries
- 2. To impart practical exposure on Heat Transfer through fins
- 3. To impart practical exposure on Types of Convection
- 4. To impart practical exposure on Heat Exchangers
- 5. To impart practical exposure on concepts of Radiation
- 6. To impart practical exposure on Types of Condensation

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1	Find Heat Transfer rate in different geometries
CO2	Explain performance parameters of a Pin Fin
CO3	Demonstrate the concepts of Natural and Forced Convection
CO4	Determine effectiveness in parallel flow and counter flow heat exchanger
CO5	Determine emissivity of the given surface
CO6	Demonstrate the concepts of Drop-wise and Film-wise Condensation

Contribution of Course Outcomes towards achievement of Program Outcomes

(1-Low, 2-Medium, 3-High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO1	3	3	3	2	2	-	-	3	-	3	2
CO2	3	3	-3	1	2	-	-	3	-	3	2
CO3	3	3	2	1	1	:=:	(-)	3	-	3	2
CO4	3	2	3	2	2	ie.	w.;	3	-	3	2
CO5	3	2	2	1	-	2	3	3	-,	3	2
CO6	3	2	2	1	-	2	2	3	-	3	2

LIST OF EXPERIMENTS:

- 1. Determination of overall heat transfer co-efficient of a composite slab
- 2. Determination of heat transfer rate through a lagged pipe.
- 3. Determination of heat transfer rate through a concentric sphere
- 4. Determination of thermal conductivity of a metal rod.
- 5. Determination of efficiency of a pin-fin
- 6. Determination of heat transfer coefficient in Natural convection
- 7. Determination of heat transfer coefficient in Forced convection
- 8. Determination of effectiveness of parallel and counter flow heat exchangers.
- 9. Determination of emissivity of a given surface.
- 10.Determination of Stefan Boltzman constant
- 11. Determination of heat transfer rate in drop and film wise condensation\
- 12. Determination of Unsteady state of Heat Transfer
- 13. Determination of Thermal conductivity of liquids
- 14. Determination of critical heat flux.

Course code-Simulation lab

	se Outco	omes:										
Upon	success	ful com	pletion	of the o	course,	the stud	dent wil	l be abl	e to:			
CO1	Design	and as	semble	of the co	ompone	nts usin	g geom	etric mo	deling s	oftware		
CO2	Constr	uct sket	ches in	Pro-E &	catl	A softw	are.					
CO3							ity of thoblems.	e tools	like AN	SYS or	FLUEN	IT in
CO4	Apply	the fini	te eleme	ent analy	ysis for	compon	ents des	sign.				
CO5	Develo	op NC c	ode for	differen	t part p	rofiles a	nd perfe	orm mad	chining	on CNC	Machi	nes.
CO6	Manip	ulate th	e robot l	y writi	ng prog	rams an	d execu	ting the	m.			
Contr	ibution	of Cou	rse Out	comes	towards	achiev	ement	of Prog	ram Oi	itcomes	(1 - I)	W 2-
	um, 3 –					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		orriog	i am Ot	ittomes	(1 110	,,, _
	PO 1		PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PC
Medi	PO	High) PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PC
Medii CO1	PO 1	High) PO	PO 3	PO	PO	PO	PO	PO	PO 9	PO	PO 11	PC
Media CO1 CO2	PO 1 1	High) PO	PO 3	PO	PO	PO	PO	PO	PO 9	PO	PO 11 3	PC
Media CO1 CO2 CO3	PO 1 1 1	High) PO	PO 3	PO	PO	PO	PO	PO	PO 9 2 2	PO	PO 11 3	PC
	PO 1 1 1 1 1	High) PO	PO 3	PO	PO	PO	PO	PO	PO 9 2 2 2 2	PO	PO 11 3 3 3	PO 12

- 1. Construction of 2D sketches.
- 2. Assembly Modeling (At least three examples)
- 3. Analysis of trusses
- 4. Analysis of Beams
- 5. Plane stress, plane strain analysis
- 6. Analysis of Axi-symmetric solids
- 7. Analysis of 3D solids
- 8. Estimation of natural frequencies and mode shapes for simple problems
- 9. Steady state heat transfer Analysis
- 10. Machining of simple components on NC lathe by transferring NC Code /from a CAM package
- 11. Machining of Simple components on NC-Mill by transferring NC Code/from a CAM Package
- 12. Robot programming, simulation and execution.

IV-I SEMESTER

18A4103401- INDUSTRIAL ENGINEERING & MANAGEMENT

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 acquire fundamental knowledge of Industrial management and its importance overview of scientific principles of management, various tools of Industrial Engineering & Productivity measurement
- CO2 understand the concept of system approach and different types of production layouts, process layouts and acquire the domain knowledge of maintenance
- CO3 understand different types of production, work study, method study, work measurement techniques and design a system, component, or process, and synthesize solutions to achieve desired needs
- CO4 identify the role of statistics in engineering problem solving process, use of graphical techniques in data analysis
- CO5 use the techniques, skills, and modern engineering tools necessary for engineering practice with appropriate considerations for public health and safety, cultural, societal, and environmental constraints
- CO6 Use the techniques and tools necessary to reduce cost of a product without compromising quality, reliability & performance, and function effectively within multi-disciplinary teams and understand the fundamental precepts of effective project management

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	-	-	-	-	-	-	2	1	-	-	-
CO2	-	-	3	1	2	-	-	-	-	-	1	-
CO3	-	-	1	-	3	2	-	-	-	-	-	-
CO4	-	3	2	-	1	-	-	-	-	-	-	_
C05	2	-	-	-	3	-	-	-	-	-	1	-
CO6	2	-	-	-	1	_	-	-	-	-	3	_

18A4103402-INTRODUCTION TO CAD/CAM

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 describe basic structure of CAD workstation, Memory types, input/output device sand display devices and computer graphics
- CO2 acquire the knowledge of geometric modeling and execute the steps required in CAD software for developing 2D &3D models and perform transformations
- CO3 understand the construction of database models and geometric modeling features
- CO4 understand how to write the part programs for different models by using part programming
- CO5 explain features of Group Technology (GT), CAPP & FMS
- CO6 illustrate CAQC and CIM concepts.

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	2	3	1	-	-	-	-	-	1
CO2	3	2	1	2	3	1	:(-	-	-	-	-	1
CO3	2	2	1	2	3	1	tet.	110	-	-	-	1
CO4	2	2	1	2	3	2	-	-	-	-	12	1
CO5	2	2	1	2	3	2	-	119		-	~	1
CO6	2	1	3	no/	2	1	-	-	-	-	1.0	1

18A4103403-METROLOGY

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Design limit gauges, tolerances, and fits for selected product quality.
- CO2 Evaluate various devices for linear and angular measurements.
- CO3 Outline the operation of optical and comparator measuring instruments
- CO4 Evaluate the surface roughness parameters.
- CO5 Demonstrate the flatness and interferometer measuring instruments
- CO6 Outline the working of gear and screw thread measuring instruments.

(1 -	Low,	2-	Medium,	3	- High)
---	-----	------	----	---------	---	---------

-	,	11100101	, , ,									
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	-	-	-	-	-	1	-	-	-
CO2	1	3	2	-	-	-	-	-	-	1	-	-
CO3	2	1	3	-	-	-	-	-	-	-	-	1
CO4	3	2	1	-	-	-	-		-	-	1	-
CO5	1	·3	2	-	-	-	-	-	-	1	-	-
CO6	2	3	3	-	-	-	-	-	-	-	-	1

ADDITIVE MANUFACTURING (Open Elective – III)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Paraphrase the fundamentals of AM.

CO2 Interpret the materials used in AM,

CO3 Illustrate the AM processes and analyse parameters controlling the AM process.

CO4 Relate the tools used for RP.

CO5 Analyse the application areas of AM

CO6 Discuss and analyse case studies on AM.

Contribution of Course Outcomes towards achievement of Program Outcomes

(I L	0.1119 22 2	viculai	119 5 1.	mgm,					5			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	8	1	w	П	-5)	-,	151	one	-	-	-
CO2	3	1	1	PN-	7	30		-5		-	-	1
CO3	-		1	-	-		= 1	-		and a	-	1
CO4	-		1	1	3	1		-	-	-	•	1
CO5	-	-	1	1	3	1	(Me)	-	-	-	-	1
CO6	,	1	-	1	3	-		(4)	-		-	1

18A4103511-UNCONVENTIONAL MACHINING PROCESSES (Professional Elective – III)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Describe unconventional machining methods and working principles of mechanical energy-based processes
- CO2 Demonstrate electro-chemical machining principles in grinding, honing and deburring process.
- CO3 Explain principle, working, applications and various characteristics of electric discharge machining process.
- CO4 Identify the difference between EBM and LBM based on its characteristics, parameters, and accuracy.
- CO5 Explain the applications, characteristics and process of plasma are machining based on MRR and accuracy.
- CO6 Compare different types of mechanical finishing process.

Contribution of Course Outcomes towards achievement of Program Outcomes

(T	0 44 , 2- 1	Itcului	190 11									
	PO	Po	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	1	2	-	-	-	-	-	-	_
CO2	3	-	-	1	2	-	-	-	-	-	-	-
CO3	3	-	-	1	2	-	-	-	-	-	-	-
CO4	3	-	-	1	2	-	-	-	-	-	-	-
CO5	3	-	-	1	2	-	-	-	-	-	-	-
CO6	3	-	-	1	2	-	-	-	-	-	-	-

POWER PLANT ENGINEERING (Professional Elective – III)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Explain various types of Coals and Illustrate Dust Collector, Cooling Tower and Heat Rejection Systems
- CO2 Outline the Diesel and Gas Turbine Power Plant
- CO3 Explain Hydrological Cycle, interflow measurements from Hydrographs
- CO4 Explain Working Principle of Nuclear Power Plants, Nuclear Fuels and Reactor Operations
- CO5 Explain Cost Factors, Load and Power Distribution Factors
- CO6 Summarize the impact of Power Plants on the Environment

Contribution of Course Outcomes towards achievement of Program Outcomes

		IVICUIUI	119 0 1.	6.7								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	1	1	2	3	3	2	-	-	in in	3
CO2	3	1	2	1	2	2	2	3		-	/to	2
CO3	2	3	1	2	1	3	2	2		-		2
CO4	2	2	1	2	2	2	1	2	-	-	-	3
CO5	2	3	2	1	2	3	2	.2	-	-	-	2
CO6	3	1	1	2	1	2	1	1	-	-	-	3

MECHATRONICS (Professional Elective – III)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Describe mechatronics system and their elements and levels
- CO2 Differentiate various sensors and transducers
- CO3 Understand solid state electronic devices, analog signal conditioning
- CO4 Demonstrate hydraulic and pneumatic actuating systems
- CO5 Understand Digital electronics and Logic gates
- CO6 Explain micro controllers and applications of PLC

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-
CO4	2	-	2	-	2	-	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-
CO6	2	-	-	-	2	-	-	-	-	-	-	-

ADVANCED MECHANICS OF MATERIALS Professional Elective – III)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Calculate deflections in fixed and continuous beams

CO2 Determine the stresses in thick cylinders

CO3 Analyse the curved beams for stresses with different cross sections

CO4 Calculate the stresses in rotating disks

CO5 Determine the Strain Energy under static and gradually applied load

CO6 Determine the Strain Energy under impact and shear stresses

Contribution of Course Outcomes towards achievement of Program Outcomes

(I - I)	U 17, Z-1	viealun	и, э — г	ugu)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	1	-	-	-	-	-	•	-	2
CO2	3	3	3	1	-	200	<u> </u>	-	w ²	-	=0	2
CO3	3	3	3	1	-	-	क्र	-	-	-	æ8:	2
CO4	3	3	3	1	_	5=1	-	*:	-	-	-	2
CO5	3	3	3	1	-	-	J	-	-	-	-	2
CO6	3	3	3	1	ed ;	-0	*	-	-	:=:		2

NANOTECHNOLOGY (Open Elective – IV)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Explain solids and their band structure and applications of nanotechnology.
- CO2 Demonstrate about properties of materials and their behaviour at nanoscale.
- CO3 Outline different characterization techniques and tools used at the nanoscale.
- CO4 Summarize about synthesis and fabrication of materials at nanoscale.
- CO5 Explain about applications of silicon carbide, alumina, and zirconia.
- CO6 Outline the applications of nanomaterials in various fields.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	2	-	-	-	-	-	1	-	-	-
CO2	3	2	1	-	-	-	-	-	-	1	-	-
CO3	3	2	1	-	-	-	-	-	-	-	-	1
CO4	3	1	2	-	-	-	-	-	-	-	1	-
CO5	3	1	2	-	-	-	-	-	-	1	-	-
CO6	3	2	1	-	-	-	-	-	-	-	-	1

MECHANICAL VIBRATIONS (Professional Elective – IV)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Analyze single degree freedom system for its natural frequency and vibration response
- CO2 Analyze single degree freedom system for its natural frequency and damped vibration response
- CO3 Determine response of Single degree freedom systems under harmonic excitations
- CO4 Understanding Vibration measuring instruments
- CO5 Determine the response of Two-degree freedom systems under free and forced vibrations
- CO6 Understanding Dynamic vibration absorber

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	1	-	-	-	-	1	-	-	2
CO2	3	3	3	1	30	-	-	-	=	-	-	2
CO3	3	3	3	1	-0	-0	410		-	-11	e4)	2
CO4	3	3	3	1			-	-	-	-	-	2
CO5	3	3	3	1	-00	(-)	40)		-	-	59 4 5	2
C06	3	3	3	1	= ,	=1	₹	-	77	_	1.71	2

18A4103522-INTRODUCTION TO COMPOSITE MATERIALS (Professional Elective – IV)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Identify various types of composites.
- CO2 Understand the basic concepts of reinforcements.
- CO3 Apply the fabrication and manufacturing techniques of composites.
- CO4 Understand the joining and theories of failures of composites.
- CO5 Select appropriate joining techniques of composites.
- CO6 Identify the characteristics of various composites.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO	PO	PO	PO 5	PO 6	PO	PO 8	PO 9	PO 10	PO 11	PO 12
	1		3	4	3	U	/	0	9	10		1.2
CO1	3	-	-	-	-	1	-	-	-	-	2	-
CO2	2	-	3	-	-	-	-	-	•	-	1	-
CO3	-	3	2	-	1	-	-	-	-	-	-	-
CO4	-	2	3	-	-	-	-	-	-	-	-	1
CO5	2	-	-	-	3	-	-	-	-	-	1	_
CO6	2	-	-	-	3	-	-	-	-	-	1	-

REFRIGERATION & AIR CONDITIONING (Refrigeration and Psychometric tables and charts allowed) (Professional Elective – IV)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the basic concepts of refrigeration and their applications.
- CO2 Identify eco-friendly refrigerants and use P-H charts to evaluate the performance of refrigeration systems.
- CO3 Explain the methods to improve performance of vapor compression systems.
- CO4 Analyse steam jet, vapor absorption, thermoelectric and vortex tube systems
- CO5 Analyse air conditioning processes using principles of psychometry.
- CO6 Design of Air Conditioning systems for human comfort conditions.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	- 8	9	10	11	12
CO1	3	3	1	-	-	-	1	-	-	-	-	~
CO2	3	2	1	(-)	1	-	1	-	-	-	-	2.5
CO3	3	3	2	-	-	-	1	-	-	-	-	ş. -
CO4	3	3	2	-	-	-	1	omi	-	-	-	200
CO5	3	3	1	20	-	-00	1	ü	-	-		J.
CO6	3	2	2	-6	38	-	3	-	-	-	31	-

JET AND ROCKET PROPULSION ENGINEERING (Professional Elective – IV)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Illustrate the thermodynamic aspects of gas turbines
- CO2 Analyse the performance of jet engines
- CO3 Compare different aspects of thermal jet engines
- CO4 Summarize the working of rocket engines
- CO5 Apply thrust mechanics to determine forces in rockets
- CO6 Contrast the aspects of electrical, nuclear and plasma arc propulsions

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	-	3	2	-	-	-	2	-	-		-	-
CO3	2	2	-	-	-	-	3	-	-	-	-	-
CO4	3	2	1	-	-	-	2	-	-	-	-	-
CO5	-	3	2	-	-	-	-	-	-	-	-	-
CO6	3	1	1	-	-	-	1	-	-	-	-	-

ICS metrology lab

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Explain the calibration of pressure gauge, temperature measuring instruments
- CO2 Demonstrate the calibration of displacement, speed measuring instruments
- CO3 Explain the calibration of vibration measuring instruments
- CO4 Explain the working of various instruments like vernier callipers, bevel protractor, micrometres and dial indicators
- CO5 Familiarize the working of tool maker's microscope and surface roughness measuring instruments.
- CO6 Demonstrate the Machine tool alignment test on the lathe, drilling and milling machines

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	cos	-	۵	800	-	-	1		0.00
CO2	3	3	2	-	-	1=	-	-	+	J#1	-	S#.
CO3	3	1	3	-	-	-	15	-	-	-	-	-
CO4	2	3	2	-	-	2.50	-	-	-	1		3.00
CO5	1	3	2	-	-		-	-	-	1	-,	-
CO6	2	3	2	-		-	-	-	-	Ĩ.	-	-

COMPUTATIONAL FLUID DYNAMICS LABORATORY

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Identify, model, analyse and solve mechanical engineering problems
- CO2 Understand basic knowledge of computational methods in Fluid flow applications.
- CO3 Analyse Initial Boundary value problems and determine various quantities of interest.
- CO4 Use modern modelling and simulation tools and techniques
- CO5 Develop practical solutions for mechanical engineering problems under professional and ethical constraints
- CO6 Design and conduct laboratory experiments for thermal, fluids and mechanical systems

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	_	3	1	2	3	1	2	-	-	-	-	1
CO2	2	-	2	-	2	-	2	-	-	-	-	2
CO3	2	1	-	1	-	2	-	-	-	-	-	2
CO4	2	1	2	2	1	2	2	-	-	-	-	2
CO5	2	3	3	2	3	3	2	-	-	-	-	3
CO6	3	3	3	3	3	3	3	-	-	-	-	3

IV-II SEMESTER NANOTECHNOLOGY (Professional Elective – V)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Explain solids and their band structure and applications of nanotechnology.
- CO2 Demonstrate about properties of materials and their behaviour at nanoscale.
- CO3 Outline different characterization techniques and tools used at the nanoscale.
- CO4 Summarize about synthesis and fabrication of materials at nanoscale.
- CO5 Explain about applications of silicon carbide, alumina, and zirconia.
- CO6 Outline the applications of nanomaterials in various fields.

Contribution of Course Outcomes towards achievement of Program Outcomes

PO PO<													
CO1 3 1 2		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
CO2 3 2 1		1	2	3	4	5	6	7	8	9	10	11	12
CO3 3 2 1	CO1	3	1	2	-	-	100	-		1			-
CO4 3 1 2	CO2	3	2	1	5	-	÷	2	-2	-	1	-	2
CO5 3 1 2 1 CO6 3 2 1	CO3	3	2	1	-	-	ETE.		27.	28	-		1
CO6 3 2 1 - 1	CO4	3	1	2	-	_	, m	_	-	_	-	1	-
CO6 3 2 1 1	CO5	3	1	2	-	-	-	_	_		1	-	-
	CO6	3	2	1	2	-	l _e e:	_	-		-	-	1

INTRODUCTION TO ROBOTICS (Professional Elective – V)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Identify various robot configurations.
 CO2 Understand the basic components of robots.
 CO3 Evaluate D-H notations for simple robot manipulator.

CO4 Perform trajectory planning for a manipulator by avoiding obstacles.

CO5 Select appropriate actuators and sensors for a robot.

CO6 Illustrate the industrial applications of robots.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	_	-	1	-	-	-	-	2	-
CO2	2	-	3	-	-	-	-	-	-	-	1	-
CO3	-	3	2	-	1	-	-	-	-	-	-	-
CO4	-	2	3	-	-	-	-	-	-	-	-	1
CO5	2	-	-	-	3	-	-	-	-	-	1	-
CO6	2	-	-	-	3	-	-	-	-	-	1	-

ENERGY CONSERVATION AND MANAGEMENT (Professional Elective – V)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- Student should be able to know basics of Energy conservation and Environmental Aspects Associated With Energy Utilization
- CO2 Student should be able to know basics of Energy Management.
- CO₃ Students should be able to Evaluate the energy saving & conservation in different Energy conservation in Electrical systems.
- Students should be able to Evaluate the energy saving & conservation in different CO4 Energy conservation in Thermal systems.
- CO5 Students should be able to prepare Energy demand estimation, Organizing and Managing Energy Management Programs.
- CO6 Students should be able to Economic Aspects Calculation of simple payback method and Applications of life cycle costing analysis

		10119		V COLUMN	, .	High)	T
- (1000	LOW.	Z= V 6	muun	1	Highi	ı

1-	30119 =	1110011		5.7								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	1	-	1	-	-	-	-	2	-
CO2	2	-	3	-	-	9	-	1	-	-	1	-
CO3	-	3	2	-	1	20	-	-	220	1	-	-
CO4	-	2	3	3	m) I	-0.5	1	-	10%	190	-	1
CO5	3	w.	-	2	-	-	-	1	±1	-	1	12
CO6	2	-	-	3	-	-	-		-	1	-:	-

COMPUTER GRAPHICS AND GEOMETRICAL MODELING (Professional Elective – V)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Student should be able to know basics of Energy conservation and Environmental Aspects Associated with Energy Utilization
- CO2 Student should be able to know basics of Energy Management.
- CO3 Students should be able to Evaluate the energy saving & conservation in different Energy conservation in Electrical systems.
- CO4 Students should be able to Evaluate the energy saving & conservation in different Energy conservation in Thermal systems.
- CO5 Students should be able to prepare Energy demand estimation, Organizing and Managing Energy Management Programs.
- CO6 Students should be able to Economic Aspects Calculation of simple payback method and Applications of life cycle costing analysis

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

(1-1	20119 2	IVICUIT	ш, 5 –	111611)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	1	-	1	-	-	-	-	2	-
CO2	2	-	3	-	-	-	-	1	-	-	1	-
CO3	-	3	2	-	1	-	-	-	-	1	. -	-
CO4	-	2	3	3	-	-	1	-	-	-	-	1
CO5	3	-	-	2	-	-	-	1	_	-	1	-
CO6	2	-	-	3	-	-	-	-	-	1	-	

DESIGN FOR MANUFACTURING (Professional Elective-VI)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- Understand the basic concept of DFMA for economical production
- Identify and select the proper materials. CO₂
- CO3 Apply the knowledge in the field of metal casting.
- Select the machining and forming considerations in Design for Manufacturing. CO4
- Apply the design considerations in joining and integrate the knowledge of compliance CO₅ analysis
- CO6 Apply the design considerations in interference analysis for assembly.

(1 - Lo	w, 2- N	ledium,	3 - Hi	gh)
	PO	PO	PO	PC

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	•		•	1	-			//dea	2	-
CO2	2	-	3	ш.	-		**	<u> </u>	14	-	1	ila
CO3	-	3	2	_	1	-	_	-	-	-	-	pol. I
CO4	-	2	3	-	-	-	-	_	-	-	-	1
CO5	2	-	-	#	3	Ψ.	-5	ä	-	p)	1	-
CO6	2	2	-	-	3	-	-	H	ī	8	1	-

AUTOMOBILE ENGINEERING (Professional Elective-VI)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Explain the basic layout of an automobile and the fuel systems used.
- CO2 Demonstrate the operation of cooling and lubrication systems in automobiles.
- CO3 Outline the operation of ignition, electrical, and air conditioning systems in automobiles.
- CO4 Summarize the operation of transmission and steering systems.
- CO5 Explain the operation of suspension and braking systems.
- CO6 Outline the emissions from automobiles and energy alternatives.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1-I)	ow, 2-	Mediur	m, 3 – F	ligh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	1	-	-	-	-	1	-	-	-	-
CO2	3	1	2	-	-	-	-	-	1	-	-	-
CO3	3	2	1	-	-	-	-	-	1	-	-	-
CO4	2	3	1	-	-	-	-	-	-	1	-	-
CO5	2	3	1	-	-	-	-	-	-	_	1	-
CO6	3	2	1	-	-	-	-	-	-	-	-	-

METAL FORMING PROCESS (Professional Elective – VI)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the fundamental concepts of metal forming.
- CO2 Know the various process parameters and applied loads in forging.
- CO3 Know the various process parameters and applied loads in sheet metal working.
- CO4 Analyze Rolling and Extrusion processes and associated parameters
- CO5 Analyze Drawing.
- CO6 Analyze various High Energy Rate forming processes.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2 - Medium, 3 - High)

	,		,	0 /								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2		2	-	3	-	- 4	+3	m)	- 20	-3	-
CO2	2		2	-	3	-	=		2	.B"	-	J
CO3	2	-	2	-	3	-	-	pi)	-	2	-	<u></u>
CO4	2	pa	3	100	3	1961	-	-	:=	<u>u</u>	-	-
CO5	2	-	2	¥ 8	3	-	-	-	-	-	-	-
CO6	2	we.	2	-	3	~	-	100	÷	=	-	-

PROJECT MANAGEMENT (Professional Elective – VI)

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the significance of project management its objectives and various phases involved in project management life cycle.
- CO2 Role and responsibilities of a Project Manager
- CO3 Gain knowledge regarding project feasibility study and various Organizational issues.
- CO4 Able to apply various tools like CPM & PERT in project management.
- CO5 Understand how to speed up a project's timeline by adding additional resources.
- CO6 Gain knowledge in risk management and role of IT in project management.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	DO.	DO	DO	DO	DO	DO	DO.	DO	DO	DO	DO	DO
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	-	-	-	-	-	-	-	-	-	-	3
CO2	2	-	-	-	-	-	-	-	-	-	-	3
CO3	2	·-	-	-	-	-	-	-	-	-	-	3
CO4	2	-	-	-	-	-	-	-	-	-	-	3
CO5	2	-	-	-	_	-	-	-	_	-	-	3
CO6	2	-	-	-	-	-	-	-	-	-	-	3

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

CRITERION 3

COURSE AND PROGRAM SPECIFIC OUTCOMES ATTAINMENT 2018-19 Admitted Batch

Direct Attainment

S.NO	Subject	Course	PS01	PSO2	PSO3
		SEMSSTER-I			4
1	Professional English-I	18A1100101	0.00	0.00	0.00
2	Engineering Mathematics-I	18A1100201	0.00	0.00	0.00
3	Engineering Physics	18A1100202	0.00	0.00	0.00
4	Engineering Drawing	18A1103401	0.00	0.00	0.98
5	Environmental Studies	18A1100801	0.00	0.00	0.00
6	English Communication Skills Lab-I	18A1100191	0.00	0.00	0.00
7	Engineering Physics Lab	18A1100292	0.00	0.00	0.00
8	Basic Engineering & IT Workshop	18A1100391	0.00	0.00	0.00
		SEMSSTER-2			
9	Professional English-II	18A1200101	0.00	0.00	0.00
10	Engineering Mathematics-II	18A1200201	0.00	0.00	0.00
11	Engineering Chemistry	18A1200204	0.00	0.00	0.00
12	Programming and Problem solving with C	18A1205301	0.00	0.00	0.00
13	Engineering Mechanics	18A1201401	0.00	0.00	0.00
14	English Communication Skills Láb-II	18A1200191	0.00	0.00	0.00
15	Engineering Chemistry Lab	18A1200294	0.00	0.00	0.00
16	Programming and Problem solving with C Lab	18A1205392	0.00	0.00	0.00

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

S.NO	Subject	Course	PSO1	PSO2	Dean
4-73		SEMESTER-3	1001	1.002	PSO3
17	Complex Variables and Fourier Series	18A2100201	0.00	0.00	0.00
18	Material Science and Engineering	18A2103301	0.81	0.00	0.81
19	Basic Thermodynamics	18A2103401	0.80	0.00	0.00
20	Mechanics of Materials	18A2103402	0.88	0.00	0.88
21	Manufacturing Process	18A2103403	0.85	0.00	0.85
22	Essential Electrical and Electronics Engineering	18A2102301	0.00	0.00	0.00
23	Material Testing& Metallurgy Lab	18A2103491	0.00	0.00	0.00
24	Manufacturing Process Lab	18A2103492	0.99	0.00	0.00
25	Essential Electrical & Electronics Engineering Lab	18A2102391	0.00	0.00	0.00
1,17		SEMSTER-4			THAT I
26	Mathematics- IV(Probability & Statistics)	18A2200201	0.00	0.00	0.00
27	Design of Machine Members -I	18A2203401	1.60	0.00	1.60
28	Fluid Mechanics and Hydraulic Machines	18A2203402	0.84	0.00	0.84
29	Kinematics of Machinery	18A2203403	0.85	0.00	0.00
30	IC Engines and Gas Turbines	18A2203404	0.86	0.00	0.86
31	Computer Aided Machine Drawing Practice	18A2203301	0.00	1.92	0.00
32	Basic Surveying	18A2201602	0.00	0.00	0.00
33	Data Structures	18A2205601	0,00	0.00	0.00
34	Fluid Mechanics & Hydraulic Machines Lab	18A2203491	0.00	0.00	0.00
35	Thermal Engineering Lab	18A2203492	1.00	0.00	0.00
36	Professional Ethics & Human Values	18A2200801	0.00	0.00	0.00

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

S.NO	Subject	Course	PSO1	PSO2	PSOS
		SEMESTER-5		F. There	
37	Design of Machine Elements-II	18A3103401	1.81	0.00	1.81
38	Dynamics of Machinery	18A3103402	0.81	0.00	0.81
39	Manufacturing Technology	18A3103403	0.00	0.00	0.00
40	Applied Thermodynamics	18A3103404	0.87	0.00	0.00
41	Automation in Manufacturing	18A3103512	0.86	0.00	0.00
42	Building Materials	18A3101601	0.00	0:00	0.00
43	OOPS through JAVA	18A3105602	0.00	0.00	0.00
44	Web Design	18A3112601	0.00	0.00	0.00
45	Machine Tools Lab	18A3103491	0.99	0.00	0.99
46	Theory of Machines Lab	18A3103492	0.00	0.00	0.00
47	Minor Project(Design and Fabrication)	18A3103791	0.99	0.99	0.99
		SEMESTER-6			
48	Instrumentation and Control Systems	18A3203301	0.00	0.00	0.84
49	Heat Transfer	18A3203401	0.89	0.00	0.00
50	Operations Research	18A3203402	0.00	0.00	0.00
51	Finite Element Methods	18A3203403	0.00	2.36	0.00
52	Introduction to Material Handling Equipment	18A3203514	0.00	0.00	0.00
53	Building Construction	18A3201602	0.00	0.00	0.00
54	Python Programming	18A3212602	0.00	0.00	0.00
55	IPR & Patents	18A3200802	0.00	0.00	0.00
56	Heat Transfer Lab	18A3203491	0.00	0.00	0.0
57	Simulation Lab	18A3203492	0.00	2.86	0.0

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

S.NO	Subject	Course	PSO1	PSO2	PSO3
Bredie		SEMESTER-7		1302	FSU3
58	Industrial Engineering and Management	18A4103401	0.00	0.00	0.00
59	Introduction to CAD/CAM	18A4103402	0.90	1.80	0.00
60	Metrology	18A4103403	0.94	0.00	0.00
61	Unconventional Machining Processes	18A4103511	0.00	0.00	0.00
62	Introduction to Composite Materials	18A4103522	0.94	0.00	0.00
63	Project Management	18A4101607	0.00	0.00	0.00
64	Energy Audit Conservation and Management	18A4102608	0.00	0.00	0.00
65	Instrumentation and Metrology Lab	18A4103491	0.00	0.00	0.00
66	Computational Fluid Dynamics Lab	18A4103492	0.00	0.00	0.00
67	Term Paper	18A4103791	0.00	0.00	0.00
		SEMESTER-8			
68	Introduction to Robotics	18A4203512	0.86	0.00	0.86
69	Automobile Engineering	18A4203522	0.00	0.00	0.00
70	Major Project	18A4203791	2.93	2.93	2.94
	No of Course	s	22	6	13
	Sum		23.26	12.86	15.07
	Average PSO Mappi	ng Value	1.06	2.14	1.16

Indirect Attainment

Assessment Tool	PSO1	PSO2	PSO3
Indirect Assessment tool Attainment level	2.90	2,88	2.89

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

Final Attainment

Assessment Tool	PSO1	PSO2	PSO3
	0.85	1.71	0.93
80% of Direct Attainment (I)	0.58	0.58	0.58
20% of Indirect Attainment (II) Final attainment level(I+II)	1.43	2.29	1.50

HEAD OF THE DEPARTMENT Head, Mechanical Departmen

NRI Institute of Technology
POTHAVARAPPADU(ViII)
Agiripalli (MdI), Krishna Dist

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

CRITERION 3

COURSE AND PROGRAM OUTCOMES ATTAINMENT 2018-19 Admitted Batch

Direct Attainment

Professional Engineering 18A1100201 1.38 0.00 0.	ON S	Subject		50	COA	POS	P.O.G.	100	200					4	100
Professional Light Salitotion 18A1100101 0.00 0.00 0.00 2.63 2.13 2.26 0.00 2.12 0.00 Engineering Physics 18A1100201 1.38 0.00							1	2	3	704	2	200		P011	P012
Professional Engish-1 18A1100101 0.00 0.00 0.00 0.00 2.63 2.13 2.26 0.00 2.12 0.00 Engilsh-1 Bagineering Physics 18A1100201 1.38 0.00 <						SEMI	STIER								
Engineering Nathematics-I 18A1100201 1.38 0.00	ī	Professional English-I	18A1100101	0.00	0.00	0.00	0.00	0.00	2.63	2.13	2.26	0.00	2.12	00.00	1.78
Engineering Drawing 18A1100202 1.53 1.53 0.00 1.46 0.00	2	Engineering Mathematics-I	18A1100201	1.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Engineering Drawing 18A11003401 2.92 0.00 <th< th=""><th>8</th><th>Engineering Physics</th><th>18A1100202</th><td>1.53</td><td>1.53</td><td>00.00</td><td>1.46</td><td>00.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>	8	Engineering Physics	18A1100202	1.53	1.53	00.00	1.46	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Environmental Studies 18A1100801 0.00 1.93 1.61 0.00 0.00 0.00 2.89 0.00 0.00 0.00 English Communication Skills Lab-I 18A1100191 0.00	4	Engineering Drawing	18A1103401	2.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
English Communication Skills Lab-I 18A1100191 0.00 <th>5</th> <th>Environmental Studies</th> <th>18A1100801</th> <td>0.00</td> <td>1.93</td> <td>1.61</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>2.89</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>1.93</td>	5	Environmental Studies	18A1100801	0.00	1.93	1.61	0.00	0.00	0.00	2.89	0.00	0.00	0.00	0.00	1.93
Engineering Physics Lab 18A1100292 0.00 2.00 0.00 2.00 3.00 0.00 3.00 0.00	9	English Communication Skills Lab-I	18A1100191	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	1.71	1.30	0.00	1.95
Basic Engineering & IT 18A1100391 2.78 0.00 0.00 0.00 0.00 0.00 0.00 1.86 0.93 0.00 Workshop	7	Engineering Physics Lab	18A1100292	0.00	2.00	0.00	2.00	3.00	0.00	0.00	0.00	3.00	0.00	0.00	0.00
	∞	Basic Engineering & IT Workshop	18A1100391	2.78	0.00	00.00	0.00	0.00	0.00	0.00	0.00	1.86	0.93	0.00	0.93

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVÄRAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

										1	-			0.00
			100	POS	P03	P04	P05	P06	PO7	P08	P09	P010	FOIL	2018
S.NO	Subject	Course	101		SEMI	SEMESTER 2								
0	Professional Fraction-II	18A1200101	00.00	00.00	0.00	0.00	0.00	2.91	2.91	1.94	1.90	2.38	00.00	1.94
101	Engineering	18A1200201	1.37	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	Mathematics-11	18A1200204	1.63	1.49	1.63	1.22	0.00	0.00	2.44	0.00	0.00	0.00	0.00	0.00
4 (Chemistry Programming and	18A1205301	1.67	1.68	1.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	Froblem Solving with C Engineering	18A1201401	2.56	1.68	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
3	Mechanics			_		000	000	0.00	0.00	0.00	1.74	1.25	0.00	2.24
14	Communication Skills Lab-II	18A1200191	0.00	0.00	5	3								
15	Engineering Chemistry Lab	18A1200294	1.95	1.63	1.17	1.46	0.00	0.00	1.46	0.00	0.00	0.00	0.00	0.00
16	Programming and Problem solving	18A1205392	2.39	2.07	0.96	00.00	00.00	0.00	0.00	0.00	0.00	00.00	00.00	1.91
	WITH C Lab													

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

PO12		0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.99	0.98
POIL		00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PO10		0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.99	0.98
P09		0.00	0.00	0.00	0.00	0.00	0.00	1.97	1.98	1.95
P08		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0.0	0.00
PO7		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PO6		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P05	60	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00
P04	SPAINSTAR	1.46	0.00	0.00	0.00	00.00	0.87	0.00	0.00	2.92
PO3	SEN	1.46	0.00	00.00	1.81	0.00	1.27	0.00	0.00	86.0
P02		2.19	1.96	1.47	2.27	1.69	1.80	0.99	1.98	1.95
PO1		2.19	1.85	2.40	1.74	2.53	2.37	0.00	0.00	1.95
Course		18A2100201	18A2103301	18A2103401	18A2103402	18A2103403	18A2102301	18A2103491	18A2103492	18A2102391
Subject	The second secon	Complex Variables and Fourier Series	Material Science and Engineering	Basic Thermodynamics	Mechanics of Materials	Manufacturing Process	Essential Electrical and Electronics Engineering	Material Testing& Metallurgy Lab	Manufacturing Process Lab	Essential Electrical & Electronics Engineering Lab
S.NO		17	18	19	20	21	22	23	24	25

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVÄRAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

	3		100	P02	P03	P04	PO5	P06	PO7	P08	P09	P010	POLL	POIZ
S.NO	Subject	Compc			SEME	SEMESTER 4	4							
90	Mathematics-	18A2200201	2.21	2.21	1.48	1.48	0.00	0.00	0.00	0.00	00.00	00.00	0.00	0.00
0	Statistics)										(0		
27	Design of Machine	18A2203401	1.55	1.87	2.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Members -1								(0		000	000	000
28	Fluid Mechanics and Hydraulic	18A2203402	1.38	2.23	1.91	0.85	0.85	0.00	0.00	0.00	0.00	0.00	0.0	2
	Machines				0				000	000	0.00	0.00	0.00	0.00
29	Kinematics of Machinery	18A2203403	2.53	1.57	00.00	0.00	0.00	0.0						000
30	IC Engines and	18A2203404	2.42	1.79	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	
31	Computer Aided Machine Drawing	18A2203301	1.92	0.00	0.00	0.00	1.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Practice							1		1	. 00 0	000	0.00	0.00
CC	Rosio Surveving	18A2201602	2.81	1.87	0.00	0.00	0.00	1.58	0.00	1.10	2000			
32	Dasic Survey and		2	1 75	0.31	1 63	0.00	0.00	00.00	0.00	0.00	0.00	0.00	2.44
33	Data Structures	18A2Z05601	7.7	7.70	1								(0
34	Fluid Mechanics & Hydraulic	18A2203491	0.00	1.97	0.00	0.00	0.00	0.00	00.00	0.00	1:97	0.99	0.00	66.0
	Machines Lab			-		(000		000	000	1 99	1.00	0.00	1.00
35	Thermal Engineering Lab	18A2203492	2.97	1.99	0.00	0.00	2.7	0.00	8.5	5	1) -		
36	Professional Ethics & Human	18A2200801	0.00	0.00	0.00	0.00	0.00	0.68	0.68	1.35	00.00	0.00	0.00	0.68
	values													

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

S.NO	Subject	Course	POI	P02	PO3	P04	P05	P06	P07	P08	P09	POTO	PO11	0100
					SEM	SEMESTER	m						1	1014
37	Design of Machine Elements-II	18A3103401	0.91	1.81	2.71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00
38	Dynamics of Machinery	18A3103402	0.81	2.42	1.41	00.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00
39	Manufacturing Technology	18A3103403	2.83	0.00	0.00	0.00	1.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40	Applied Thermodynamics	18A3103404	0.00	2.17	1.96	0.00	0.00	0.00	1.78	00.00	0.00	0.00	0.00	0.00
41	Automation in Manufacturing	18A3103512	0.00	2.26	1.76	1.75	0.00	0.00	1.28	00.00	0.00	0.00	0.00	1.75
42	Building Materials	18A3101601	2.45	1.52	0.00	0.00	0.00	1.08	0.00	1.23	0.00	0.00	0.00	0.00
43	OOPS through JAVA	18A3105602	1.52	1.71	1.55	1.52	1.71	1.55	1.52	0.00	1.55	0.00	1.52	1.55
44	Web Design	18A3112601	1.58	2.07	2.22	1.47	2.51	1.62	0.00	0.00	2.28	0.00	2.71	0.00
45	Machine Tools Lab	18A3103491	0.00	1.97	00.00	0.00	1.96	0.00	0.00	0.00	1.97	0.99	0.00	0.99
46	Theory of Machines Lab	18A3103492	0.00	1.96	1:96	0.00	0.00	0.00	0.00	0.00	1.96	0.98	00.00	0.98
47	Minor Project(Design and Fabrication)	18A3103791	2.81	1.65	2.31	1.98	1.59	1.65	1.65	1.59	2.15	1.98	0.99	1.59
										-				

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVÄRAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

	**************************************		POI	P02	P03	P04	P05	P06	PO7	PO8	P09	PO10	PO11	P012
S.NO	Subject	Course			SEMI	SEMESTER 6	9							
84	Instrumentation and Control	18A3203301	2.50	1.27	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
5	Hest Transfer	18A3203401	2,40	2.51	0.93	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00
t 05	Operations	18A3203402	0.00	1.83	2.74	1.83	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
) <u>r</u>	Finite Element	18A3203403	1.56	1.70	1.59	0.00	2.38	0.00	0.00	00.00	0.00	0.00	0.00	0.00
52	Methods Introduction to Material Handling	18A3203514	1.61	0.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Equipment						(10		000	000	00.0	0.00	00.00
53	Building Construction	18A3201602	1.96	1.41	0.00	0.00	0.00	1.18	0.00	0.93				
54	Python	18A3212602	1.99	1.98	2.27	1.71	2.27	1.55	0.00	0.00	2.38	0.00	2.62	0.00
វេ	IDE & Patents	18A3200802	0.00	0.00	0.00	00.00	0.00	2.29	0.00	2.25	2.17	0.00	2.29	2.14
3	Heat Transfer	1042003491	000	1.99	0.00	0.00	0.00	0.00	0.00	0.00	1.99	1.00	0.00	1.00
56	Lab Simulation Lab		_		-	0.00	2.86	0.00	0.00	0.00	1.91	0.96	0.00	0.96
5														

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

S.NO	Subject	Course	PO1	P02	PO3	P04	POS	P06	P07	PO8	P09	POTO	POIL	PO10
	To antidophysical and the state of the state				SBN	SHAIDSTIBE	7							
58	Industrial Engineering and Management	18A4103401	1.70	1.77	2.20	1.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
59	Introduction to CAD/CAM	18A4103402	1.79	0.00	0.00	1.81	1.78	0.00	0.00	0.00	0.00	0.00	00.00	0.00
09	Metrology	18A4103403	1.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61	Unconventional Machining Processes	18A4103511	2.19	1.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
62	Introduction to Composite Materials	18A4103522	2.87	1.73	1.24	0.97	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
63	Project Management	18A4101607	2.24	1.45	0.00	0.00	0.00	1.17	0.00	1.67	0.00	0,00	0.00	0.00
64	Energy Audit Conservation and Management	18A4102608	1.82	1.82	1.52	0.00	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00
65	Instrumentation and Metrology Lab	18A4103491	0.93	1.85	0.00	0.00	0.00	00.00	0.00	00.00	1.85	0.93	0.00	0.93
99	Computational Fluid Dynamics Lab	18A4103492	1.90	2.64	2.83	2.52	2.84	00.00	0.00	2.82	1.89	0.95	0.00	0.95
29	Term Paper	18A4103791	2.97	2.97	2.97	1.98	1.98	00.00	0.00	0.00	0.00	1.97	00.00	0.00

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVÄRAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

						700		200	704	PO8	200	POS PO9 PO10	LOIT	2014
	Cartinat	Course	PO1 P02	P02	PO3	PO3 PO4	202	201					9	
S.NO	Subject				SEM	SEMESTER 8	00							
89	Introduction to Robotics	18A4203512	0.00 1.85	1.85	2.68	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	1.78
69	Automobile Engineering	18A4203522	2.80	0.94	0.00	0.00	0,00	0.00	1.90	0.00	0.00	0.00	0.00	00.00
		100000	000	2.28	2.93	1.95	2.93	2.94	2.94	2.94	2.95	2.93	2.95	1.96
70	Major Project	18A4403131					,		ç	-	22	19	G	26
	No of courses	ses	51	26	33	22	16	13	77	1	77	})	
	Sum		106.3	102.7	61.16	36.60	34.49	22.83	23.58	20.14	45.09	25.60	13.08	37.31
	40 400 00000000000000000000000000000000	a	2	H	1.85	1.66	2.16	1.76	1.97	1.83	2.05	1.35	2.18	1.44

Indirect Attainment

Assessment	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	PO10 PO11 PO12	P012
tool												
Indirect			5	000	0 03	0 00	2.91	2.88	2.88	2.90	2.90	2.89
assessment	2.95	7.67	7.91		7.70							
attainment level												

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVÁRAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Final Attainment

Assessment tool PO1	POI		Pos	P04	POS	P06	P07	P08	POG	5010	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 DO10 PO3.	
80% of Direct										7	TTO	F012
Attainment (I)	1.67	1.47	1.48	1.33	1.72	1.41	1.47 1.48 1.33 1.72 1.41 1.57 1.46 1.64	1.46	1 64	00	1	,
20% of Indirect									-	7.70	1./4	1.15
Attainment (II)	0.59	0.58	0.58	0.58	0.59	0.58	0.58	0.58	T.	0.58 0.58 0.59 0.58 0.58 0.58 0.58 0.58	ŗ	1
Final attainment									2	0.00	0.38	0.58
level(I+II)	2.26	2.05	2.06	1.92	2.31	1.98	2.05 2.06 1.92 2.31 1.98 2.15 2.04 2.22	2.04	000	100	(

Gree

HEAD OF CHARCATES INTENT NR I Institute of Techn.
POTHAVARAPPADU (V...)
Agirpelli (Mdi). Krishna Dist.

(AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

Department of Electronics and Communication Engineering

Course Structure for B.Tech

R18 (18 & 19 Batches)

II-I Courses

COMPLEX VARIABLES AND TRANSFORMATION TECHNIQUES:

Course Outcomes:

Upon si	accessful completion of this course, students will be able to:
CO1	Write an analytic function if either real part or imaginary part is known and by using Cauchy-Riemann equations or by applying Milne-Thomson method
CO2	Evaluate the integral of complex function over the region bounded by the closed curves by apply either Cauchy -Goursat theorem or Cauchy's Integral formula or Cauchy's Residue theorem
CQ3	Write the infinite series expansion of a complex function by apply Taylor's /Maclaurin's /Laurant's series
CO4	Write a Fourier series expansion of a periodic function by using Euler's formula
CO5	Understand the concept of Fourier transformation and it's properties
CO6	Solve the difference equations using Z-transforms and inverse Z-transforms

DIGITAL ELECTRONICS LOGIC DESIGN:

Upon s	accessful completion of this course, students will be able to:
CO1	Understand the numeric information in different forms and interpret different logic gates.
CO2	Minimize the given Switching functions in SoP and PoS forms using K-Map and Tabulat Method.
CO3	Analyze and Design various combinational circuits like Encoders, Decoders, Multiplexers, Demultiplexers, and Arithmetic Circuits.
CO4	Design combinational logic circuits using different types of Programmable Logic Designs.
CO5	Design and implement various sequential circuits like flip flops, registers.
CO6	Design the state diagrams with the knowledge of Mealy and Moore conversions, state machines using various flip flops.

NETWORK ANALYSIS AND TRANSMISSION LINES:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Gain the knowledge on basic RLC circuits behavior
CO2	Analyze the steady state and transient states of RLC circuits
CO3	Analyze the two port network parameters.
CO4	Demonstrate the reflection and Refraction of EM waves at boundaries
CO5	Analyze basic transmission line parameters
CO6	Analysis and Design of a transmission lines

SIGNAL AND SYSTEMS:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
C O 1	Learn the basic concepts of signals and systems and represent signal in terms of Exponential and Trigonometric Fourier Series.
CO2	Transform the time domain signal into frequency domain by applying Fourier Transform,
CO3	Perform sampling and reconstruction of signals with the help of Nyquist criterion.
CO4	Analyze Linear systems in time and frequency domain and understand the properties of convolution and correlation.
CO5	Transform continuous time signals into complex frequency domain by applying Laplace Transforms.
CO6	Transform discrete time signals into complex frequency domain by applying Z – Transforms.

DATA STRUCTURE:

Upon s	accessful completion of this course, students will be able to:
C O 1	Ability to illustrate the concept of algorithm apply the learning concepts to design data structure for the given problem definition
CO2	Ability to design applications using stacks and queues and implements various types of queues
CO3	Analyze and implement operations on linked list and demonstrate their application
CO4	Ability to analyze and implement operations on trees
CO5	Ability to demonstrate various operations on binary search trees and its applications
CO6	Ability to evaluate the properties and operations on graphs and implement the graph applications

MANAGERIAL ECONOMIC AND FINANCIAL ANALYSIS:

Course Outcomes:

Upon successful completion of this course, students will be able to:	
CO1	Use the theory of managerial economics, demand, production analysis & forecasting theories
CO2	Analyze of production markets & pricing strategies & cost price functions to manage markets & break-even-point
CO3	Develop an ability to identify, formulate & solve engineering problems by applying the knowledge of managerial economics
CO4	Theorize the features and types of Industrial organization
CO5	Enhance their capabilities in the interpretation of balance sheet that are followed in industries organizations & institutes
CO6	Apply financial analysis, capital budgeting techniques in evaluating various investment opportunities

NETWORK ANALYSIS LAB:

Course Outcomes:

Upon successful completion of this course, students will be able to:	
CO1	Familiarity with DC and AC circuit analysis techniques.
CO2	Analyze complicated circuits using different network theorems.
CO3	Acquire skills of using MATLAB software for electrical circuit studies.
CO4	Acquire skills of two port network parameters (Z, Y, ABCD, h & g).
CO5	Determine the self and mutual inductance of coupled coils.
CO6	To draw the locus diagrams of series RL, RC circuits.

BASIC SIMULATION LAB:

opon si	accessful completion of this course, students will be able to:
CO1	Understand mathematical description and representation of different continuous and discrete time signals and sequences.
CO2	Perform operations on signals, computation of Energy and power of on signals & sequences, and extracting Even, odd, Real and Imaginary parts of on signals and sequences,
CO3	Understand the convolution, auto and cross correlation operators for continuous and discrete time system.
CO4	Develop input output relationship for linear shift invariant system and to compute step Sinusoidal and impulse responses
CO5	Understand and resolve the signals in frequency domain using Fourier transforms, develop the ability to analyze the systems in s- domain by waveform synthesis using Laplace transforms.
CO6	Verify sampling theorem and identification of poles and zeroes for a given transfer function.

ELECTRONICS AND CIRCUITS LAB:

Upon s	uccessful completion of this course, students will be able to:
CO1	Analyze the characteristics of the diodes in forward and reverse bias
CO2	To interpret the Diode application as rectifier and to analyze Half wave and full wave rectifier with filter action.
CO3	Analyze and understand the characteristics of BJT and FET in CE and CS configuration respectively.
CO4	Study and analyze the characteristics of UJT and SCR
CO5	Understand how to measure the parameters of the signal by using CRO
C06	Apply knowledge to calculate the Q-point of the Transistor and to construct amplifiers using BJT and FET

II-II Courses

PROBABILITY THEORY AND STOCHASTIC PROCESSES:

Course Outcomes:

Upon successful completion of this course, students will be able to:	
CO1	Identifying the basic concepts of probability and Probability functions.
CO2	Understand the concepts of expectation and moment generating functions.
CO3	Implementing the joint density function and joint moments to the multiple random variables
CO4	Interpreting the random process and stationary random process.
CO5	Determining the correlation function properties.
CO6	Defining the PSD, Cross PSD and its Properties and noise types.

ELECTROMAGNETIC WAVE THEORY:

Course Outcomes:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Interpret and apply the static electrostatic fields with respect to coordinate systems.	
CO2	Analyze and demonstrate the static magnetic fields in real time applications.	
CO3	Formulate the Maxwell's Equations in different forms.	
CO4	Associate the fundamental theory of electromagnetic waves in free space and their practical applications.	
CO5	Evaluate and Relate wave propagation characteristics in different conducting media.	
CO6	Demonstrate the reflection and Refraction of EM waves in normal and oblique incidences	

CONTROL SYSTEM:

CO1	Understand Closed/Open Loop Control Systems, derive the transfer function of physical systems and determine overall transfer function using block diagram algebra & signal flow graph reduction techniques
CO2	Study different types of standard test signals, find the output response of first and second order systems, determine time response specifications of second order systems and determine steady state error along with error constants
CO3	Acquire the skill to analyze absolute and relative stability of LTI systems using Routh-Hurwitz stability criterion and the Root Locus Plot
CO4	Analyze the stability of LTI systems using frequency response methods using Bode plots & Polar Plots.
CO5	Analyze the stability of LTI systems using frequency response methods using Nyquist Plots
CO6	Represent physical systems by State Transition Matrices based state space modeling and

determine the output response by understanding the concepts of controllability and observability

ANALOG AND PULSE CIRCUITS:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	To explain BJT amplifier using h parameter model
CO2	To analyze and design electronic subsystems such as feedback amplifiers and oscillators
CO3	To analyze power amplifiers such as Class A and Class B and compare their performance
CO4	To design linear and non-linear wave shaping circuits with different inputs
CO5	To design and analyze various multi vibrators using transistors
CO6	To remember and analyze unidirectional and bidirectional sampling gates

ANALOG COMMUNICATIONS:

Course Outcomes:

CO1	Demonstrate knowledge of various blocks of communication system and to analyze various modulation and demodulation schemes.
CO2	Understand the concepts of DSB-SC, SSB-SC, and VSB and to distinguish different amplitude modulation schemes with their merits, demerits and applications.
CO3	Analyze the concept of generation and detection of FM signal and to compare amplitude and angle modulation schemes.
CO4	Know the effect of noise on the performance of communication systems by computing noise figure of various analog and Frequency modulation techniques.
CO5	Explore the characteristics of AM and FM transmitters and receivers and to analyze the effect of feedback on the performance of AM and FM transmitters.
CO6	Demonstrate the generation and detection of various pulse modulation techniques.

OOPS THROUGH JAVA:

pon si	accessful completion of this course, students will be able to:
CO1	Basic programming understanding on Loops and conditional statements
CO2	Basic programming on Functions, Recursive functions and Arrays
CO3	Understand the concepts of Object-oriented programming Class, object and constructor
CO4	Understand the concepts of Object-oriented programming inheritance and abstraction
CO5	Concepts of exception handling and assertions
CO6	Concepts of multi-threading and applets

PROFESSIONAL ETHICS & HUMAN VALUES:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Understand moral values, work ethics, respect others and develop civic virtue.
CO2	Understand the ethical responsibilities of the engineer's different professional roles.
CO3	Demonstrate knowledge to become a social experimenter on framing of the problem and determining the facts.
CO4	Create awareness about safety, risk & risk benefit analysis and knowledge on intellectual property rights.
CO5	Develop knowledge about global issues creating awareness on computer and environmenta ethics
CO6	Analyze ethical problems in research and give a picture on weapons development.

ANALOG COMMUNICATIONS LAB:

Course Outcomes:

	Outcomes,
Upon s	accessful completion of this course, students will be able to:
CO1	Understand and analyze the modulation and demodulation outputs of AM, DSB-SC.
CO2	Analyze the outputs of FM modulation and demodulation circuits.
CO3	Verify the characteristics of diode detector, PLL and AGC circuits.
CO4	Verify the outputs of Pulse modulation and demodulation circuits such as PAM, PWM and PPM
CO5	Demonstrate the verification of sampling theorem.
CO6	Explain the characteristics of radio receiver and pre-emphasis and de-emphasis circuits.

ANALOG AND PULSE CIRCUITS LAB:

Course Outcomes:

Upon si	pon successful completion of this course, students will be able to:	
CO1	To analyze the frequency response of a CE amplifier	
CO2	To create feedback amplifier and oscillator circuits	
CO3	To find the efficiency of Class A power amplifier	
CO4	To examine the response of low pass and high pass RC circuit for a square input	
CO5	To discover the response of clippers and clampers for different voltage levels	
CO6	To demonstrate the design of various types of multivibrator circuits	

DIGITAL ELECTRONICS LOGIC DESIGN LAB:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Verify truth tables of basic and Universal gates.	
CO2	Design combinational circuits, obtain minimal expression and to verify the truth tables using digital trainer kit.	

CO3	Perform logic function verification of various standard combinational circuits.
CO4	Verify the functional tables of various flip-flops.
CO5	Design various sequential circuits using flip-flops and to verify their functionality.
C06	Perform functional verification of various standard sequential circuits.

III-I Courses

LINEAR AND DIGITAL INTEGRATED CIRCUITS:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Interpret the DC and AC analysis of differential amplifiers as a building block of operational amplifier
CO2	Explain the specifications of ideal and practical operational amplifier and their DC, AC characteristics.
CO3	Build various linear and non-linear applications using op-amp operating with negative and positive feedback in closed loop configuration.
CO4	Explain the fundamental frequency of monostable and astable Multivibrators using IC555 times. Determine the function of Phase Locked Loop and their applications using operational amplificate as IC565.
CO5	Choose appropriate Analog to Digital and Digital to Analog converters for data processing in Microprocessor, Digital signal processing and Communication
CO6	Make use of commercially available sequential and combinational digital ICs to function as Latch, Flip flop, Registers and Counters.

DIGITAL COMMUNICATIONS:

Course Outcomes:

Upon s	Jpon successful completion of this course, students will be able to:	
CO1	Apply the knowledge of statistical theory of communication and understand the basics of digita communication systems.	
CO2	Analyze the performance of digital modulation techniques for generation, detection and digital representation of the signal.	
CO3	Explore the probability of error for various digital modulation techniques with the help or random variables and filters.	
CO4	Integrate and apply the basics of information theory to the communication and compute entropy information rate of the source.	
CO5	Understand and analyze the source coding techniques and channel capacity.	
CO6	Compute and analyze different error control coding schemes for reliable transmission of digital information over the channel.	

ANTENNA AND WAVE PROPAGATION:

Upon si	accessful completion of this course, students will be able to:
CO1	Understand the basic antenna radiation parameters and radiation mechanism of single wire & two wire antennas with current distribution analysis
CO2	Quantify the radiation fields and power radiated by dipole antennas also analyze their radiation characteristics using mathematical approach
CO3	Illustrate the different types of arrays and their radiation patterns with both mathematical and geometrical analysis
CO4	Understand the geometry and working principle of operation of non-resonant radiators and microstrip antennas with qualitative analysis

CO5	Design Microwave antennas also Analyze antenna measurements to assess antenna's performance
CO6	Identify and distinguish the characteristics of different modes of radio wave propagation in the atmosphere with both qualitative and quantitative treatment

COMPUTER ORAGANISATION AND ARCHITECTURE:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:	
C01	Able to understand the basics, evolution and architecture of the computer.	
CO2	Able to analyze the machine instructions and how to write programs and can calculate the effective address of an operand by addressing modes.	
CO3	Demonstrate the memory organization and understand the concept of cache mapping technique and able to understand concepts of control unit	
CO4	Analyze the concept of I/O organization and design how to interface i/o devices.	
CO5	Able to understand the principles of operation of multiprocessor systems.	
C06	Demonstrate the relationship between the software and the hardware and focuses on the foundational concepts that are the basis for current computer design.	

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION:

Course Outcomes:

CO1	Understand the fundamental concepts instrumentation, basic concepts of measuring systems, and characteristics of measuring systems		
CO2	Describe different types of meters and understanding the operation of meters.		
CO3	Understand the Different types of signal generators and signal analyzers and their working principles		
CO4	Understand the different types of Oscilloscopes and their working principles.		
CO5	Understand the different types of Special Oscilloscopes and their working principles		
CO6	Explore the different types of A.C. and DC Bridges and their operations.		

PYTHON PROGRAMMING:

Jpon si	accessful completion of this course, students will be able to:
CO1	Understand basic python script execution and operators
CO2	Apply python conditional and loop statements
CO3	Understand python data types, memory allocation and methods
CO4	Understand functions and parameter passing and recursive calling of functions
CO5	Understand the object-oriented concepts
CO6	Write the test scripts in python

IPR & PATENTS:

Course Outcomes:

Upon sı	accessful completion of this course, students will be able to:
CO1	To understand the importance of Intellectual property rights
CO2	To understand the importance which plays a vital role in advanced technical
CO3	Understand and apply the vital role in advanced scientific disciplines
CO4	Understand and apply Intellectual property rights protections
CO5	Apply IPR regulations for further advancement
CO6	Apply latest developments in intellectual properties rights

LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB:

Course Outcomes:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Illustrate the block diagram, classifications, package types, temperature range specifications and characteristics of Op-Amp.	
CO2	Analyze and design linear and nonlinear applications using Op-Amp.	
CO3	Discuss various active filter configurations based on frequency response and construct using 74 OpAmp.	
CO4	Design bistable, monostable and astable multivibrators operation by using IC 555 timer and study their applications.	
CO5	Analyze the digital to analog converter technique such as weighted resistor DAC, R2R ladder DAC, inverted R-2R ladder DAC and IC 1408 DAC.	
CO6	Illustrate the block diagram, classifications, package types, temperature range specifications and characteristics of Op-Amp.	

DIGITAL COMMUNICATION LAB:

Upon si	accessful completion of this course, students will be able to:
CO1	Understand the Time-Division Multiplexing systems, and verify the output of pulse code modulation and demodulation.
CO2	Analyze the output of differential pulse code modulation and demodulation and verify the delta modulation.
CO3	Analyze the outputs of different digital modulation techniques-FSK, PSK.
CO4	Interpret the outputs of DPSK modulation and demodulation.
CO5	Analyze the outputs of source encoder and decoder, linear block codes, convolution codes and binary cyclic codes.
CO6	Perform and analyze the output of companding circuit.

VHDL PROGRAMMING LAB:

Upon si	uccessful completion of this course, students will be able to:
CO1	Distinguish logic gates for design of digital circuits
CO2	Design different types of Combinational logic circuits
CO3	Design different types of sequential logic circuits
CO4	Analyze the operation of flip-flops
CO5	Apply knowledge of flip-flops in designing of Registers and Counters
CO6	Analyze the operation of RAM and ALU

III-II Courses

VLSI DESIGN:

Course Outcomes:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Understand the CMOS fabrication flow and also electrical properties of MOS and Bi-CMOS circuit.	
CO2	Know the relationship between Ids vs Vds and threshold voltage of MOS transistors.	
CO3	Know three sets of design rules with which NMOS and CMOS transistors are fabricated.	
CO4	Estimate the scaling factors determining the characteristics and performance of MOS circuits.	
CO5	Analyze the concepts of sheet resistance and wiring capacitances of MOS circuits.	
CO6	Understand the concepts of FPGA design, synthesis and analyze the design for testability, package selection.	

DIGITAL SIGNAL PROCESSING:

Course Outcomes:

CO1	Understand the representation of different Discrete time signals and apply the difference equations concept in the analysis of discrete time systems
CO2	Interpret and explore the concepts of Discrete Fourier Transforms and Fast Fourier Transforms for various Discrete Time Signals and Sequences.
CO3	Construct the basic structures of Digital FIR and IIR systems.
CO4	Design the Digital IIR Filters from the analog filters using frequency transformations and FIF filters using windowing techniques.
CO5	Illustrate the sampling rate conversion by Decimation and Interpolation processes and extend the concepts to Digital Filter Banks and sub band coding of speech signals
CO6	Interpret the architectural and functional concepts of commercial programmable Digital Signa Processors.

MICROPROCESSOR AND MICROCONTROLLERS:

Upon successful completion of this course, students will be able to:	
CO1	Relate the basic concepts of microprocessor and structural design view
CO2	Illustrate the modes of 8086 by timing diagram.
CO3	Examine the functionality of addressing modes and instruction sets.
CO4	Apply the direct the basic peripherals to the microprocessor
CO5	Build the connection with different devices
CO6	Define the working function of microcontroller with interfacing devices.

CELLULAR AND MOBILE COMMUNICATIONS:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Demonstrate an understanding on cellular communication system, architecture, functioning various standards and different evolution of cellular communication systems up to 5G
CO2	Interpret the cellular system operation and design concepts, cell splitting.
CO3	Measure Co-Channel and Non-Co-Channel interferences for various mobile radio propagation models and interpret the C/I measurements for different antenna systems. Estimate the frequency management, channel assignment, channel sharing and channel borrowing techniques
CO4	Understand impairments due to multipath fading channel, and designing of different antennas Design the Omni-directional and directional antennas used at cell sites and their synthesis methods.
CO5	Demonstrates the fundamental techniques to assign a handoff without termination of call, different handoffs, how a dropped call can be overcome.
CO6	To analyze multiple accessing methods, CDMA technology, GSM Architecture and GSM Channels and familiar with 5G challenges

DIGITAL SYSTEM DESIGN:

Course Outcomes:

CO1	Model complex digital systems at several levels of abstractions, behavioral, structural simulation, synthesis and rapid system prototyping.
CO2	To write a test bench in Verilog
CO3	Analyze and design basic digital circuits with combinatorial and sequential logic circuits using Verilog HDL
CO4	Design Analysis of State Machines
CO5	Design of Feedback Sequential Circuits
CO6	Understand the concepts of Memory, CPLDs, FPGAs and ASICs

MACHINE LEARNING:

U pon si	uccessful completion of this course, students will be able to:	
CO1	Understand the machine learning concepts and how data is preprocessed	
CO2	Predict the linear models	
CO3	Analyze distance-based models complexity	
CO4	Understand and apply Probabilistic models	
CO5	Apply Nonlinear models to different applications to improve efficiency	
CO6	Understand how the neural network provide nonlinearity	

MICROPROCESSOR & MICROCONTROLLERS LAB:

Course Outcomes:

Upon s	opon successful completion of this course, students will be able to:	
CO1	Detect the ALP for Arithmetic and logical operations using 8086 microprocessors	
CO2	Judge the given elements in sorting order	
CO3	Implement the ADC & DAC interfacing with 8086	
CO4	Find number of ones and zeros in a given numbers using keil software	
CO5	Do applications using USART, LCD and TLC Interfacing with microcontroller	
CO6	Understand the functionality of ARM processor	

DIGITAL SIGNAL PROCESSING LABORATORY:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Make use of a software tool to generate various discrete time signals and perform different operations on them.
CO2	Examine Linear and Circular Convolution of discrete time signals.
CO3	Evaluate the Discrete Fourier Transform of a signal and its inverse.
CO4	Analyze the Frequency response of IIR Filters using Butterworth and Chebyshev Approximations.
CO5	Analyze the Frequency Response of FIR filters using windowing techniques.
CO6	Illustrate the Decimation and Interpolation processes on a given Sequence.

VLSI LABORATORY:

CO1	Design, implement, and simulate Basic logic gates using S. Edit of Tanner EDA toll and Microwind using at back end
CO2	Simulate and synthesize Universal gates using Tanner EDA tool and Micro wind Simulate circuits within a Tanner EDA tool and compare to design specifications.
CO3	Design, implement, and simulate circuits using Tanner EDA and Micro wind tool.
CO4	Design Digital logic Counters using Tanner EDA Tools and Implement Using Micro wind Tool,
CO5	Design RAM Cell using Tanner EDA Tools and Implement Using Micro wind Tool.
CO6	Understand Various Design Rules to Obtain the CMOS logic Circuits.

IV-I Courses

MICROWAVE ENGINEERING:

Course Outcomes:

Upon si	accessful completion of this course, students will be able to:
CO1	Define the basics of microwaves and microwave engineering.
CO2	Study the performance and applications of Reflex klystron.
CO3	Described the operation of microwave solid state device.
CO4	Analyze the modes of operation of Magnetron and Traveling wave tubes.
CO5	Understand the fundamental characteristics of Microstrip lines through electromagnetic fiel analysis.
CO6	Evaluate the various microwave parameters using a microwave bench setup.

OPTICAL COMMUNICATION:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Understand the overview of optical fiber communication and classify the types of optical fibers, analyze cylindrical fibers using mathematical equations.
CO2	Design the optical fibers using various materials and to illustrate various attenuation losses.
CO3	Illustrate various dispersion models Apply splicing techniques on fibers and choose low loss connectors to minimize joint losses.
CO4	Analyze different types of optical sources and photo detectors, External quantum efficiency, and analyze signal transmission, receiver operation and error sources of optical fiber.
CO5	Evaluate the power coupled in to optical fibers and Measurement of Attenuation and Dispersion Eye pattern.
CO6	Design optical system with budget analysis and to classify principles and types of WDM.

DIGITAL IMAGE PROCESSING:

Upon sı	accessful completion of this course, students will be able to:
CO1	Understand the fundamentals of Digital Image Processing and its applications
CO2	Demonstrate the need for transforms, explain DFT properties and discuss some basic intensit transformation functions
CO3	Explain the fundamentals of spatial and frequency domain filters, restoration techniques an apply various filters to remove noise and enhance quality of image
CO4	Understand color image fundamentals and apply techniques to enhance color images and conve from gray scale to color and vice versa
CO5	Choose various Image compression techniques to reduce the size of image and to transmit within given bandwidth
CO6	Understand and apply various Morphological operations and segmentation techniques to improve the quality of image

SATELLITE COMMUNICATIONS AND RADAR ENGINEERING:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
C01	Understand the concepts of satellite communications and to analyze the orbital mechanics and launching vehicles.
CO2	Acquire knowledge about various satellite subsystems and basic transmission theory.
CO3	Understand the basic concepts of satellite uplink and downlink design and to analyze the principles of satellite navigation and Global positioning system.
CO4	Acquire the knowledge of Radar system to apply and to design required parameters for RADAR system and to derive the RADAR Equation.
C05	Analyze the working principle of CW and Frequency Modulated Radar and their applications.
C06	Analyze different types of tracking RADARs and to study different types of Radar receivers and displays.

EMBEDDED SYSTEM DESIGN:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Describe the differences between general computing system and the embedded systems,
CO2	Recognize the classification of embedded systems, core of the embedded systems and need for communication interfaces.
CO3	Understand design approaches of embedded hardware and firmware.
CO4	Understand RTOS, RTOS principles, kernel, tasks, threads, multitasking and multiprocessing
CO5	Apply threads, tasks, process, semaphores and RPC for IPC.
CO6	Understand different embedded software development tools and ARM processor architecture.

DATA COMMUNICATIONS:

-	accessful completion of this course, students will be able to:	
C O 1	Understand the concepts of Data Communication networks, different protocols, Standards and layering.	
CO2	Analyze open systems interconnection model and various Data Communication circuits.	
CO3	Explore the error investigation techniques in data transmission process. Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats.	
CO4	Analyze different Data-Link Protocols and Data Communications Networks.	
CO5	Demonstrate Synchronous Data-Link Control, Frame format, loop operation, message abort	
CO6	Elaborate the Congestion control and Quality of Service in Data traffic control.	

OPERATING SYSTEMS:

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:	
CO1	Describe the important computer system resources and the structure and functioning of operating system, their process management policies and scheduling of processes by CPU.	
CO ₂	Design various Scheduling algorithms.	
CO3	Compare and contrast various memory management schemes.	
CO4	Evaluate the requirement for process synchronization and coordination handled by operating system. Describe and analyze the memory management and its allocation policies.	
CO5	Understand demand paging, thrashing and principles of deadlocks.	
CO6	Understand File system Interface, File System implementation, Mass-storage structure and disk scheduling algorithms.	

INDIAN CONSTITUTION:

Course Outcomes:

Upon successful completion of this course, students will be able to:		
CO1	Understand the meaning, history, features and characteristics of Indian Constitution.	
CO2	Gain knowledge on fundamental rights duties and Principles and importance of State Policy.	
CO3	Understand the powers of Union, the States and Indian President.	
CO4	Know about amendments of the constitution and Emergency Provisions	
CO5	Understand the functioning of three wings of the government i.e., executive, legislative and judiciary.	
CO6	Analyze the decentralization of power between central, state and local self-government.	

MICROWAVE ENGINEERING & OPTICAL COMMUNICATION LAB:

Upon s	accessful completion of this course, students will be able to:	
CO1	Verify the characteristics of Reflex Klystron.	
CO2	Verify the characteristics of the Gunn diode.	
CO3	Measure the attenuation, frequency, and wavelength using Microwave Bench Setup.	
C04	Measure the characteristics of the multihole Directional Coupler.	
C05	Demonstrate the characteristics of various optical sources and measure different losses that occur in optical fiber link.	
C06	Measure digital data rate and numerical aperture in optical fiber link	

IV-II Courses

WIRELESS COMMUNICATIONS NETWORKS:

Course Outcomes:

CO1	Understand the functioning of wireless communication system and evolution of different wireless communication systems and standards.		
CO ₂	Compare different technologies used for wireless communication systems.		
CO3	Explore the architecture, functioning, algorithms, protocols, capabilities and application of various wireless communication networks.		
	The cost continuing all on networks		
CO4			
CO4	Analyze various equalization and diversity techniques. Analyze various multiple access techniques for Wireless Communication and security issues associated with wireless networks.		

COMPUTER NETWORKS:

Course Outcomes:

	uccessful completion of this course, students will be able to:	
CO1	Acquire knowledge about various reference models like OSI and TCP/IP and various networt topologies like WAN, LAN and MAN	
CO2	Demonstrate the Functions of various protocols of Data link layer and understand the basics of error detection including parity, checkware and ODG.	
CO3	Analyze different services provided to the network layer using Flow control, error detection and correction, different sliding window protocols. MAC layer protocols and LAN technologies and analyzed.	
CO4	Design different routing protocols in a network layer using store and forward packet switching with the help of connection oriented and connection less services.	
CO5	and confidential less services.	
CO6	Acquire knowledge on significance of various Flow control and Congestion control Mechanisms. Relationship between Transport and network layer. Acquire Knowledge on Connection less Transport services and functioning of various Application layer Protocols.	

INTERNET OF THINGS & APPLICATIONS:

Course O	utcomes.
----------	----------

Upon s	Understand the design at the d
CO1	Understand the design concents, protected will be able to:
CO ₂	Understand the design concepts, protocols, privacy and security of Internet of Things Demonstrate IoT communication models, IoT A. I.
CO3	Comprehend and analyze Software defined networks, YANG-NETCONF, IoT nodes, edge
CO4	Develop IT Access Technologies and security for IEEE 802.15.4, 802.15.4g, 802.15.4e, 802.11ah and Lora WAN.
CO5	Develop and build different applications of Arduino and Raspberry Pi projects. Implement interfacing
CO6	Analyze the methods of data acquiring, organizing and analytics using Cloud platform for IoT applications. Apply the steps of the design methodology in developing IoT applications.

Head, Signature of HOD
NRI Institute of Technology
POTHAVAPAPPAPING
Head Residual Control Cont

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Department of Electronics and Communication Engineering

PO & PSO ATTAINMENTS - BATCH WISE

2018-22 BATCH

S.No	COURSE NAME	COURSE CODE	INDE	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
1	PROFESSIONAL ENGLISH-I	18A1100101	C111			-	-		2.71	2.11	2.26	-	2.17	-	1.81	-	
2	ENGINEERING MATHEMATICS-I	18A1100201	C113	1.8	-	-	-	-				-	-	-	-	-	-
3	APPLIED CHEMISTRY	18A1100205	C118	1.41	1.72	1.88	1.57	-	-	2.66	-		-	-	-	-	-
4	FUNDAMENTALS OF ELECTRICAL ENGINEERING	18A1103401	C1114	1.95	1.64	1.34	-		_	_			_	4		1.64	1.78
5	ENGINEERING GRAPHICS	18A1103301	C1113	-	-	_	0.93	0.93	-	0.92	-		0.93	-		_	_
6	ENGLISH COMMUNICATION SKILLS LAB-I	18A1100191	C112	-	-	-		-	_	-		1.74	1.33	-	1.74		
7	APPLIED CHEMISTRY	18A1100294	C119	1.97	1.64	1.58	1.48	-	-	2.14	-	-	-		-		_
8	AUTOMATION TOOLS PROFESSIONAL WORKSHOP	18A1100391	C1118	0.97 5	0.975	0.975	1.95	1.95	_	_	_	2.42	2.185	2.67	2,428	_	-
9	PROFESSIONAL ENGLISH-II	18A1200101	C121	_		-	_		2.79	2.79	1.86	1.86	2.42	_	1.86		
10	ENGINEERING MATHEMATICS-II	18A1200201	C123	1.8	_	-	-	-	-	-	-			-	-	-	
11	APPLIED PHYSICS	18A1200203	C125	1.85	1.85	-	-	1.85	-	-	-	-	-	-		-	
12	PROGRAMMING AND PROBLEM SOLVING WITH C	18A1205301	C1216	2.8	2.71	2.08		1.97	_			_		_	1.97	_	_
13	ELECTRONIC DEVICES AND CIRCUITS	18A1204401	C1215	2.34	1.84	2.33	2.34	_	-		1.55	-	-	-	2.27	2.34	1.95
14	ENVIRONMENTAL STUDIES	18A1200801	C1210	-	1.92	1.6		-		2.87	-	-		-	1.92	-	
15	ENGLISH COMMUNICATION SKILS LAB-II	18A1200191	C122		-	-	_	-	-		_	1.74	1.24	_	2.23	-	_
16	APPLIED PHYSICS LAB	18A1200292	C126	-	1.97	-	1.97	2.96	-	-	-	2.96		-	-	-	_
17	PROGRAMMING AND PROBLEM SOLVING WITH C LAB	18A1205302	C1217	2.88	2.72	2.08	_	1.92	_		_		-	_	1.92	_	-
18	COMPLEX VARIABLES AND TRANSFORM TECHNIQUES	18A2100202	C211	1.47	_		_		_	_	-	_	-	_		-	
19	DIGITAL ELECTRONICS AND LOGIC DESIGN	18A2104201	C212	1.9	1.72	1.88	_	-		-		-	1.89	-	1.89	2.37	2.89
20	NETWORK ANALYSIS AND TRANSMISSION LINES	18A2102302	C213	1.57	1.57		_	_	_		_	-	-		1.58	1.56	1.56

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

21	SIGNALS AND SYSTEM	s 18A2104401	C214	2.2	1.96	1.48	1.48	1,23	T .	T .	Τ.		Ι.	1.45		1.11	1.47
22	DATA STRUCTURES	18A2105601	C215	2.55	-	1.69	_		<u> </u>	T.			<u> </u>	1.45	2.53		
23	MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS	18A2100101	C216	1.21	1.24	1.63	-	_		2.45	1.63	-	-	.2.36	-	2.51	0.82
24	NETWORK ANALYSIS	18A2102392	C217	2.52	2.520	2.140	-	-	-	1.5	-	0.940	-	-	2.820	1.580	-
25	BASIC SIMULATION	18A2104392	C218	2.71	1.990	1.810	2.720	1.213	-	1	~		2	1.810	1	2.250	1.810
26	ELECTRONIC DEVICES AND CIRCUITS LAB	18A2104491	C219	2.29	2.140	2.570	2.150	-	L.				2.580		2.000	1.570	2.150
27	PROBABILITY THEORY AND STOCHASTIC PROCESS	18A2200202	C220	1.73	1.85	0.7	0.7		1		2	4	0.7		-		1.39
28	ELECTRO MAGNETIC THEORY	18A2204301	C221	2.47	1.6	1.59		_		a		9					2,14
29	CONTROL SYSTEMS	18A2204302	C222	2.09	1.44	1.65	1.67	1.19	- 2		_		1.54			2.37	
30	ANALOG AND PULSE	18A2204401	C223	2.09	2.28	2,26		1.51					2.07			2.27	2.26
31	ANALOG COMMUNICATIONS	18A2204402	C224	2.19	1.81	1.56		-	-	1.54					1.55	2.34	1.53
32	OOPS THROUGH JAVA	18A2205602	C225	1.75	1,35	1,36	1.97										
33	PROFESSIONAL ETHICS AND HUMAN VALUES	18A2200801	C226			-	0.0.1		1.82	0.76	1.8	0.78			1.87	1.65	1.34
34	ANALOG COMMUNICATIONS LAB	18A2204491	C227	2.54	2.85	2.86	1,905							1.91	4.07		2.54
35	ANALOG AND PULSE CIRCUITS LAB	18A2204492	C228	2.74	2.91	2.9	2.89	1.29			-			1.94	_	2.9	2.91
36	DIGITAL ELECTRONICS AND LOGIC DESIGN LAB	18A2204493	C229	2.83	2.82	1.89	1.9			0.95	1.89	1.9		1.9	0.94	2,36	2.35
37	LINEAR AND DIGITAL INTEGRATED CIRCUITS	18A3104401	C310	2.55	2.54	2.54	1.69		•					1.7		1.69	2.12
38	DIGITAL COMMUNICATIONS	18A3104402	C311	1.77	2.21	1.78	2.22			Α.				-		2.00	2.21
39	ANTENNAS AND WAVE PROPAGATION	18A3104403	C312	2.56	2.13	2.55	1.7			a.				1.7		1.98	1.29
40	COMPUTER ORGANISATION AND ARCHITECTURE	18A3104512	C313	2.38		1.79	2.38		_					1.7		1.77	2.63
41	ELECTRONIC MEASUREMENTS AND INSTRUMENTATION	18A3104513	C314	2.61	1.74	1.74	2.61		19				i.e			1.44	
	PYTHON PROGRAMMING	18A3112602	C315	2.57	1.7	2.56	2.14									1.71	1.28

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

43	PR AND PATENTS	18A3104802	C316	1.83	1.83	-	-	-		-	2.73	1.83	-	-	-	1.85	0.93
44	LINEAR AND DIGITAL INTEGRATED CIRCUIT LABORATORY	18A3104491	C317	2.56	2.75	_	1.83	_		-	-	-	-	-	-	2.13	2.75
45	DIGITAL COMMUNICATION LABORATORY	18A3104492	C318	1.96	2.45	1.96	1.97				_	-		-	-		2.46
46	VHDL PROGRAMMING	18A3104493	C319	2.49	2.8	1.87	1.89	-	_		-	-		-	1.25	1.87	1.4
47	VLSI DESIGN	18A3204401	C321	1.76	1.76	1.09	1.49	0.83	-	-	1.62	-	-	-	-	2.43	-
48	PROCESSING	18A3204402	C322	1.98	1.75	1.17	1.23	1.94		-		-	-	1.56	1.55	-	1.58
49	MICROPROCESSORS AND MICROCONTROLLERS	18A3204403	C323	1.72	1.75	1.72		-	1	-			_	_		1.71	1.3
50	CELLULAR & MOBILE COMMUNICATIONS	18A3204511	C324	2.4	1.05	1.8	2.26		-	-	-		-	-		1.83	
51	DIGITAL SYSTEM DESIGN	18A3204512	C325	2.4	1.05	1.8	2.4	-		-	-	_	_	-	-	2.69	2.24
52	MACHINE LEARNING	18A3212606	C326	1.7	1.68	1.67	1.69		-	-	-		-	-	-	-	1.41
53	MICROPROCESSORS AND MICROCONTROLLERS LABORATORY	18A3204491	C327	2.68	2.43	2.93	-		1	-	-	-	-		-	1.47	1.48
54	PROCESSING LABORATORY	18A3204492	C328		1.88	1.41	_	1.88	-			-	-	-	1.88	100	2.04
55	VLSI LABORATORY	18A3204493	C329	2.11	1.3	1.62	1.95	1.96	-	-	-	1.93		-	-	2.43	-
56	MICROWAVE ENGINEERING	18A4104401	C410	1.49	1.18	1.19	1.18		-	-				-		1.09	
57	OPTICAL COMMUNICATION	18A4105401	C411	1.98	2.29	2.32	2.32						2.32	0.78		1.92	1.89
58	DIGITAL IMAGE PROCESSING	18A4104403	C412	2.27	2.45	2.28	2.19		-	-	2.59	-	-		2.42	2.2	2.55
59	SATELLITE COMMUNICATIONS & RADAR ENGINEERING	18A4104511	C413	2.56	1.71	1.72	1.72		1.72	1.67	_	1.72	-	1.72	1.71	1.85	1.71
60	DESIGN SYSTEM	18A4104513	C414	2.29	2.27	2.75	2.71	-		-	2.76	1.80	2.70	-	1.80	1.84	1.82
61	DATA COMMUNICATIONS	18A4104521	C415	2.32	2.08	2.32	2.33	_	_	_	2.79	_	2.78	-	1.86		1.85
62	OPERATING SYSTEMS	18A4104522	C416	1.7	1.9	-	2.11	-	-		-		2.53	-	1.68	1.69	-
63	INDIAN CONSTITUTION	18A4100803	C417	1	2.72	-	-	-	-		2.32	1.93	2.62	-	0.91	1.42	1.81
64	MICROWAVE ENGINEERING & OC	18A4104491	C418	2.77		1.96	1.96		-	-	_	_			_	1.96	
65	MINI PROJECT	18A4104791	_	+		2.79	2.79	1.86	0.93	-	1.86	-	2.79	1.86	2.79	2.79	2.79
66	WIRELESS	18A4204511	C421	+		-	-		-	-	0.93	1.	0.93	-	-	1.83	1.85

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

	COMMUNICATIONS AND NETWORKS																
67	NETWORKS	18A4204521	C422	2.49	2,47	2.45	2,48	<u> </u>	<u> </u>								
68	NTERNET OF THINGS AND APPLICATIONS	18A4204522	C423	2.27	1.52	2.25	2.25				-	Ė	1.66	Ė	1.62	2.5	1.23
69	MAIN PROJECT AND SEMINAR	18A4204791	C424	2.28	2.43	2.73	2.73	1.82	1.82	1.5	1.82	1.5	2.25	1.5	2.73	2.73	2.73
	Tota		EI B	129. 7	117.2	100.5	83.8	29.7	11.7	22.3	32.6	25.0	40.2	26.6	57.0	83.1	79.6
	Mapped S			60	60	52	42	18	6	12	16	14	20	15	30	42	42
	Total Sub	ojects		69	69	69	69	69	69	69	69	69	69	69	69	69	69
	% Contrib	ution	7. 1	87.1	87.1	75.3	61.0	26.0	87.1	17.1	23.1	20.2	29.1	22.1	43.0	61.2	61.2
	AVG			2.16	1.95	1.93	2	1.66	1.97	1.86	2.04	1.79	2.01	1.78	1.9	1.98	1.9

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Department of Electronics and Communication Engineering

COURSE OUTCOMES - ATTAINMENT LEVELS

2018-22 BATCH

		TANK WATER OF THE PARTY OF	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P	SHIP TV		A STATE OF THE PARTY OF THE PAR	Cos		
A.Y.	Subject	Subject Code	Index	1	2	3	4	5	6
	PROFESSIONAL ENGLISH-I	18A1100101	C111	2.7	2.79	2.88	2.7	2.62	2.5
	ENGINEERING MATHEMATICS-I	18A1100201	C113	2.7	2.66	2.66	2.28	2.68	2.6
	APPLIED CHEMISTRY	18A1100205	C118	2.81	2.76	2.74	2.82	2.81	2.8
SI .	FUNDAMENTALS OF ELECTRICAL ENGINEERING	18A1103401	C1114	2.75	2.61	2.62	2.77	2.66	2.6
2018-19	ENGINEERING GRAPHICS	18A1103301	C1113	2.77	2.76	2.77	2.76	-	
	ENGLISH COMMUNICATION SKILLS LAB-I	18A1100191	C112	2.99	2.98	2.96	2.98	2.96	2.9
	APPLIED CHEMISTRY LAB	18A1100294	C119	2.98	2.96	2.95	2.96	2.94	2.5
	AUTOMATION TOOLS & PROFESSIONAL WORKSHOP	18A1100391	C1118	2.92	2.91	2.89	2.9		
		2018-22 BATCH	SEMESTER 2	H.					74
	PROFESSIONAL ENGLISH-II	18A1200101	C121	2.78	2.8	2.67	2.82	2.59	2
	ENGINEERING MATHEMATICS-II	18A1200201	C123	2.69	2.66	2.68	2.68	2.66	2.6
	APPLIED PHYSICS	18A1200203	C125	2.76	2.77	2.76	2.83	2.82	2.8
	PROGRAMMING AND PROBLEM SOLVING WITH C	18A1205301	C1216	2.22	2.18	2.17	2.29	2.25	2.2
61-8102	ELECTRONIC DEVICES AND CIRCUITS	18A1204401	C1215	2.4	2.32	2,26	2.35	2.33	2.
22	ENVIRONMENTAL STUDIES	18A1200801	C1210	2.87	2.81	2.86	2.91	2.92	2.9
	ENGLISH COMMUNICATION SKILLS LAB-II	18A1200191	C122	2.99	2.98	2.96	2.98	2.96	2.9
	APPLIED PHYSICS LAB	18A1200292	C126	2.98	2.96	2.95	2.96	2.95	2.9
	PROGRAMMING AND PROBLEM SOLVING WITH CLAB	18A1205302	C1217	2.9	2.88	2.87	2.88	2.87	2.8
		2018-22 BATCH S	EMESTER 3						

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

WY S	TRANSFORM TECHNIQUES								
	DIGITAL ELECTRONICS AND LOGIC DESIGN	18A2104201	C212	2.87	2.89	2.9	2.81	2.75	2.87
	NETWORK ANALYSIS AND TRANSMISSION LINES	18A2102302	C213	2.33	2.38	2.33	2.36	2.37	2.32
	SIGNALS AND SYSTEMS	18A2104401	C214	2.24	2.24	2.11	2.23	2.16	2.19
	DATA STRUCTURES	18A2105601	C215	2.55	2.51	2.52	2.53	2.49	2.56
	MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS	18A2100101	C216	2.38	2.43	2.48	2.44	2,44	2.35
	NETWORK ANALYSIS LAB	18A2102392	C217	2.82	2.83	2.85	2.84	2.83	2.88
	BASIC SIMULATION LAB	18A2104392	C218	2.72	2.7	2.72	2.7	2.71	2.71
	ELECTRONIC DEVICES AND CIRCUITS LAB	18A2104491	C219	2.57	2.56	2.57	2.58	2.57	2.58
1		2018-22 BATCH	SEMESTER 4			200	HIE		
	PROBABILITY THEORY AND STOCHASTIC PROCESS	18A2200202	C220	2.07	2.09	2.02	2.1	2.09	2.04
	ELECTRO MAGNETIC THEORY	18A2204301	C221	2.47	2.43	2.43	2.36	2.37	2.34
	CONTROL SYSTEMS	18A2204302	C222	2.5	2.34	2.46	2.27	2.31	2.13
	ANALOG AND PULSE CIRCUITS	18A2204401	C223	2.27	2.28	2.24	2.27	2.27	2.22
	ANALOG COMMUNICATIONS	18A2204402	C224	2.32	2.34	2.35	2.3	2.3	2.26
2019-20	OOPS THROUGH JAVA	18A2205602	C225	2.16	2.14	2.11	1.99	1.98	1.99
201	PROFESSIONAL ETHICS AND HUMAN VALUES	18A2200801	C226	2.33	2.32	2.27	2.26	2.26	2.21
	ANALOG COMMUNICATIONS LAB	18A2204491	C227	2.86	2.85	2.85	2.85	2.85	2,8
	ANALOG AND PULSE CIRCUITS LAB	18A2204492	C228	2.91	2.9	2.88	2.92	2.9	2.9
	DIGITAL ELECTRONICS AND LOGIC DESIGN LAB	18A2204493	C229	2.82	2.82	2.84	2.84	2.82	2.8
		2018-22 BATCH	SEMESTER 5	373	V.S	RES.		4.00	E la
	LINEAR AND DIGITAL INTEGRATED CIRCUITS	18A3104401	C310	2.57	2.58	2.54	2,52	2.53	2.54
	DIGITAL COMMUNICATIONS	18A3104402	C311	2.65	2.64	2.64	2.66	2.7	2.64
2020-21	ANTENNAS AND WAVE PROPAGATION	18A3104403	C312	2.6	2.56	2.53	2.57	2.54	2.52
	COMPUTER ORGANIZATION AND ARCHITECTURE	18A3104512	C313	2.67	2.68	2.61	2.72	2.71	2.65

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

	ELECTRONIC MEASUREMENTS								1
	AND INSTRUMENTATION	18A3104513	C314	2.58	2.6	2.58	2.65	2.6	2.57
	PYTHON PROGRAMMING	18A3112602	C315	2.58	2.55	2.54	2.56	2.56	2.55
	IPR AND PATENTS	18A3104802	C316	2.71	2.7	2.7	2.76	2.76	2.74
	LINEAR AND DIGITAL INTEGRATED								
	CIRCUIT LABORATORY	18A3104491	C317	2.75	2.74	2.74	2.74	2.75	2.75
	DIGITAL COMMUNICATION		10000						
	LABORATORY	18A3104492	C318	2.93	2.94	2.95	2.95	2.94	2.93
	VHDL PROGRAMMING LAB	18A3104493	C319	2.81	2.8	2.79	2.82	2.81	2.81
		2018-22 BATCH	SEMESTER	6	150 3				
	VLSI DESIGN	18A3204401	C321	2.47	2.46	2.41	2.43	2.4	2.4
	DIGITAL SIGNAL PROCESSING	18A3204402	C322	2.43	2.45	2.34	2.31	2.33	2.3
	MICROPROCESSORS AND	Carrie on 111							
	MICROCONTROLLERS	18A3204403	C323	2.62	2.58	2.6	2.55	2.49	2.4
	CELLULAR & MOBILE								
	COMMUNICATIONS	18A3204511	C324	2.74	2.72	2.66	2.72	2.68	2.6
17	DIGITAL SYSTEM DESIGN	18A3204512	C325	2.75	2.72	2.71	2.65	2.64	2.6
2020-21	MACHINE LEARNING	18A3212606	C326	2.57	2.53	2.5	2.54	2.52	2.5
	MICROPROCESSORS AND								
	MICROCONTROLLERS								
	LABORATORY	18A3204491	C327	2.93	2.93	2.91	2.95	2.91	2.94
	DIGITAL SIGNAL PROCESSING								
	LABORATORY	18A3204492	C328	2.84	2.82	2.82	2.82	2.81	2.8
	VLSI LABORATORY	18A3204493	C329	2.94	2.9	2.92	2.92	2.91	2.8
		2018-22 BATCH	SEMESTER	7					
1.2	MICROWAVE ENGINEERING	18A4104401	C410	1.79	1.77	1.7	1.81	1.84	1.7
	OPTICAL COMMUNICATION	18A4105401	C411	2.32	2.28	2.26	2.25	2.26	2.20
	DIGITAL IMAGE PROCESSING	18A4104403	C412	2.5	2.48	2.42	2.64	2.62	2.59
	SATELLITE COMMUNICATIONS &	156/11/6) I SERV						
22	RADAR ENGINEERING	18A4104511	C413	2.57	2.57	2.57	2.58	2.53	2.5
7027-	EMBEDDED SYSTEM DESIGN	18A4104513	C414	2.75	2.77	2.75	2.7	2.73	2.7
	DATA COMMUNICATIONS	18A4104521	C415	2.77	2.78	2.78	2.75	2.75	2.74
	OPERATING SYSTEMS	18A4104522	C416	2.55	2.5	2.52	2.52	2.52	2.5
	INDIAN CONSTITUTION	18A4100803	C417	2.71	2.71	2.7	2.89	2.89	2.88
	MICROWAVE ENGINEERING & OC	18A4104491	C418	2.95	2.95	2.93	2.93	2.94	2.93

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Department of Electronics and Communication Engineering

	LAB		THE PARTY						
	MINI PROJECT	18A4104791	C419	2.79	2.79	2.79	2.79	2.79	2.79
		2018-22 BATCH	SEMESTER &						
	WIRELESS COMMUNICATIONS AND NETWORKS	18A4204511	C421	2.78	2.76	2.74	2.78	2.8	2.77
2021-22	COMPUTER NETWORKS	18A4204521	Q#22	2.5	2,48	2.45	2.47	2.49	2.42
20	INTERNET OF THINGS AND APPLICATIONS	18A4204522	C423	2.28	2.26	2.22	2.27	2.24	2.23
	MAIN PROJECT AND SEMINAR	18A4204791	C424	2.72	2.72	2.72	2.72	2.72	2.72

POs attainment levels for Batch 2018 - 2022 (LYG)

Batch 2018 - 2022 (LYG)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Direct Attainment	2.15	1.94	1.93	2	1.64	1.97	1.89	2.04	1.79	2.01	1.78	1.9
PE Survey	2.4	2.6	2.6	2.5	2.6	2.6	2.7	2.6	2.7	2.6	2.7	2.6
Alumni survey	2.6	2.5	2.5	2.6	2.5	2.6	2.4	2.7	2.6	2.6	2.7	2.7
Final Po Attainment	2.22	2.06	2.06	2.11	1.82	2.1	2.02	2.16	1.96	2.14	1.96	2.05

PSOs attainment levels for Batch 2018 - 2022 (LYG)

Batch 2018 - 2022 (LYG)	PSO 1	PSO 2
DIRECT ATTAINMENT	1.98	1.9
PE Survey	2.6	2.5
Alumni survey	2.6	2.6
Final Attainment	2.11	2.04

Header Curre of HOD NRI Institute of Technology POTHAVARAPPADU (VIII) Agiripalli (MdI), Krishna Dist.

اح

0.75		,	⊣		1.238	П	1.57
0.76	. 8:0	0.72	٠.	1.73	1.502	1	1.44
1.13	,1	,	1.17	ı		2	1.55
. '	Si .	,	1	1	1	,	0.79
0.75	b		1.67		1	0.7917	0.78
0.745	1	,	1	,	0.58	0.7967	,
ı	t	1	3	1	1,69	t.	*
0.76	Ē	1	,1	ŧ		í	
0.76		1	1	£.	1.695	Ħ	1.58
g	3	i	Ę	1.18	0.56	1	0.78
1	1	ļ	1	ŧ	0.56	1	0.78
g	2.35	1.82	J.	1,77	0.75	1	1,18
19	2.08	1.93	ē	1.51	1.12	1	1,45
7	2.33	2.18	1	1.73	1.685	1	1.97
C121	C122	C123	C124	C125	C126	C127	C128
18A120019 1	18A120020 1	18A120020 3	18A120029	18A120039	18A120240	18A120530 1	18A120539 2
ENGLISH COMMUN ICATION SKILLS LAB-II	ENGINEE RING MATHEM ATICS-II	APPLIED PHYSICS	APPLIED PHYSICS LAB	BASIC ENGINEE RING AND IT WORKSH OP	CTRIC CUIT ALYSI	PROGRA MMING AND PROBLEM SOLVING WITH C	PROGRA MMING AND PROBLEM SOLVING WITH C LAB
10.	11.	12.	13.	14.	15.	16.	17.

2	1.32	1.49	1.05	1.43	1.39	1.2	2.23
2.5	1.35	1.46	1.05	1.64	1.39		2.23
ı		. 2		1	, ,	1.21	1
		,		ı	1		. ,
	,		ż			,	
0.79	-	-	-		ı	1	
1	1	1	-	ı		1.96	,
	,			1	,	1.92	,
1	,		-	1	1	,	2.22
,	1.06	1.49	ı		1.38	1.97	2.23
ю	1.05	1.45		2.15	1.4	ı	2.23
1.5	1.44	1.45	1.32	1.46	1.4	1	2.23
æ	1.27	1.45	1.47	1.94	2.19		2.23
ю	1.49	1.43	1.18	1.85	1.39	,	2.23
18A210020 2	18A210240	18A210240 2	18A210249 1	18A210330	18A210339 1	18A210430 1	18A210439 1
COMPLX VARIABL E AND TRANSFO RM TECH	ELECTRIC AL CIRCUITS ANALYSI S-II	ELECTRIC AL MACHINE S-I	ELECTRIC AL CIRCUITS LAB	THERMA L AND HYDRO PRIME MOVERS	A 0 8	BASIC ELECTRO NIC DEVICES AND	BASIC ELECTRO NIC DEVICES AND CIRCUITS LAB
18.	19.	20.	21.	22.	23.	24.	25.

2.22	1.38		2.5	7	2.67	1.15		1	1.33	2	m
2.23	1.6	2.67	2.5	2	5.6		m	1.98	1.68	2	
<	,	,	1	,		1.03	1	1.49		ŧ	2
ı	ı		,	1	1	1.03	1	1		1	1
1	,	1	ı	1		1	ı	ı		1	2
1	1	-	,	1	t	1.03	m	1	1		. (
у.	1	1	1	1	-	1.03	l .	1	1	1	
ŧ	1	-	1	ŧ	ļĒ	1.1	ı	ŧ	F	2	1
2.24	K	1	ā	ı	1	1.03	ı	1	ı	2	1
2.23	ı	2	2.33	7	ř		F	1.24	1.39	1	2.33
2.25	f I	2	ŧ	2	8	1	P	2.06	2.08	2	2.67
2.23	1.38	2.75	2,33	2	2.33	E)	1	ı	1.34	2	2
2.23	1.38	2.67	2.2	2	2	,	en	2.08	1.73	2	2.25
2,23	1.65	m	2.4	2	2.33	Ē	m	2.06	1.91	1	2.83
MANAGE RIAL ECONOMI 18A220010 CS AND 1 FINANCIA	18A220080	18A220240 1	18A220240 2	18A220240 3	18A220240 4	18A220249 1	18A220249 2	18A220560 1	18A310080	18A310240 1	18A310240 2
MANAGE RIAL ECONOMI CS AND FINANCIA I	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner,	O II		ELECTRIE LCALMA CHINES-II		ELECTRIC AL MACHINE S-1 LAB	S	DATA STRUCTU RES	INDIAN CONSTIT UTION	ELECTRIC AL MEASURE MENTS	-SI
26.	27.	28.	29.	30.	31.	32.	33.	34.	35.	36.	37.

2	1.39	1.49	2.23	m	2	1.52	1.44		2	
7	1.34	1:61	2.23	m	2	1.53	1.55	0.77	2	mi I
•			1		3	5	ı	-	ı	
ı	1	ť	,	ı	ı	ı	ı	-	ı	1
,	1	-	,	ı	-	-	,		1	
	1	1.25	,	က	1	1.52	,	-	-	ო
	·	-		-	-	-		-	-	
1	1	-		1	-	1.55	1	-	-	-
1		-	,	1	-	1	1	ı	1	-
	1.35	0.99	2.3		1	1	'	1.52	ı	
2.17	1.41	1.49	2.25		1	1.49	,	72.0	1.5	
2	1.31	1.24	2.25	1	3	1.53	1.34	0.77	1.5	1
2.33	1.36	1.49	2.12	ю	2.5	1.51	1.17	1.52	2	ю
2.67	1.33	1.74	2.24	ന	2.5	1.55	1.52	2.28	1.75	ю
18A310240 3	18A310249 1	18A310249 2	18A310249 3	18A310430	18A310560 2	18A320060 1	18A320230 1	18A320239	18A320240 1	18A320240 2
POWER ELECTRO NICS	ELECTRIC AL MACHINE S-II LAB	POWER ELECTRO NICS LAB	ELECTRIC AL MEASURE MENTS LAB	SWITCHI NG THEORY AND LOGIC DESIGN	OOPS THROUG H JAVA	MANAGE MENT SCIENCE	MICROPR OCESSOR S AND MICRO CONTROL LERS	MPMC LAB	POWER ELECTRO NIC CONTROL LERS AND DR	INSTRUM ENTATIO N
38.	39.	40.	41.	42.	43.	44.	45.	46.	47.	48.

- 1	,	1.69	1.33			1	1.8	8	2.21	
2.5	0.75	1.41	1.3	1.54	1.67	1.82	2.25	т	1.88	
2.5	E.	1	-	1		'	,	,		=
1	-C	1	ı	ı	,		r		,	
¥	•	,				1	,	1	_v 1	
2.67	1		1	,		,	1	ю	1.25	0
F	1	ı	t	ā	,	,	1	1	67	
1	,	ŧ	ř	L		ŀ	ÿ	ı	1	
	,	ı	Ĥ	,	74	ı	t	1	,	
0	1.49	ı	1.3	1.63	2.34	1.84	é	,	ř	
ı	0.75	2.13	1.37	1.49	6	1.79	ē.	î	,	
2.5	0.75	1.89	1.93	1.53	2.16	1.83	2.12	3	r)	
2.5	1.37	2.56	1.32	1.5	2.05	1.83	2.2	3	1.81	31
2.33	2.24	1.69	1.47	1.43	1.73	1.83	2.7	3	1.76	=
18A320240 3	18A320240 4	18A320249	18A320279	18A410080 2	18A410240 1	18A410240 2	18A410240 3	18A410249	18A410249 2	= =
POWER SYSTEM ANALYSI S	UTILIZAT ION OF ELECTRIC AL ENERGY	ELECTRIC AL SIMULATI ON LAB	_		H	VER TEM RATI AND	SI	POWER SYSTEMS LAB	ELECTRIC AL ENGINEE 1 RING WORKSH OP	
49.	50.	51.	52.	53.	54.	55.	56.	57.	58.	

1.81	1.75	1.07	2	1.65	2.77	1.776	2	86.94	46	99	69.69	1.91
1:81	2.02-	1.07	2	1.65	2.77	1.783	2	102.47	.52	99	78.78	1.97
1	,	,	,		2.77	1		25.677	14	99	21.21	1.81
1.82	1.68	,	,		2.77	1		14.138	∞	99	12.12	1.87
	1.68	,	,		2.77	ı	,	12.2833	7	. 99	10.61	1.82
	,	,	-	ı	,		ı	27.088	15	99	22.72	1.84
	,		ı		77.7	ı	-	13.9267	9	99	60.6	2.24
,		1.09			,	1	-	15.015	8	99	12.12	1.89
1.82	ı	1.12	-		2.77	ı		29.185	15	99	22.72	1.97
	,	1.05	2	,	2.77		2	49.935	27	99	40.91	1.84
1.84	1	-	2	1.24	2.77	1	2	63.867	34	99	51.51	1.89
•	1.76	1	2	1.51	2.77	2.11	2	89.034	47	99	71.21	1.89
1.8	-	1.05	2	1.65	2.77	1.755	2	108.3417	56	99	84.84	1.95
1.81	1.84	1.08	2	1.65	2.77	2.32	2	115.742	55	99	83.33	2.11
18A410251 1	18A410252	18A410279 1	18A410279 2	18A410460 9	18A420251 1	SPECIAL ELECTRIC 18A420252 AL 2 MACHINES	18A420279 1	tal	Mapped Subjects	ubjects	% Contribution	MAGE
ELECTRIC AL DISTRIBU TION SYSTEMS	HVDC TRANSMI SSION	TERM PAPER	TECHNIC AL SEMINAR	LINEAR INTEGRA TED CIRCUITS AND	FLEXIBLE AC TRANSMIS SION SYSTEMS	SPECIAL ELECTRIC AL MACHINES	PROJECT	Total	Mapped	Total Subjects	% Conti	AVERAGE
59.	.09	61.	62.	63.	64.	65.	.99			TRUE TO THE		

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

NRI Institute of Technology, Agiripalli

Course Structure for B.Tech [CSE]

CRYPTOGRAPHY AND NETWORK SECURITY:

Course Outcomes:

Upon	successful completion of the course, the student will be able to:
CO1	Understand the principles of cryptography and security, with enciphering Techniques and analyze a variety of threats and attacks.
CO2	Distinguish the black ciphers and stream ciphers and apply them on a various symmetric cryptographic techniques.
CO3	Understand the principle and mathematical models used in public-key cryptosystems by applying then on different (various) types of algorithms.
CO4	Analyze the message authentication functions with its types and digital certifications for secure communication.
CO5	Understand the user authentications principles and security approach at both the web and email.
CO6	Understand the concept of Email, IP, web Security with its services and dealing with the firewalls and Viruses

NATURAL LANGUAGE PROCESSING:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- CO2 Understand and carry out proper experimental methodology for training and evaluating

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

	empirical NLP systems
CO3	Able to manipulate probabilities, construct statistical models over strings and trees, and
	estimate parameters using supervised and unsupervised training methods.
CO4	Able to design, implement, and analyze NLP algorithms
CO5	Able to design different language modeling Techniques.

AUGMENTED REALITY & VIRTUAL REALITY:

Upon	successful completion of the course, the student will be able to:
CO1	Understand Basics of Augmented Reality and Interactions. Fundamentals of Augmented , Mixed Reality ϵ its features
CO2	Understand Basics of Virtual Reality and Interactions. Fundamental Concepts and Components of Virt Reality
CO3	Describe various input and output devices required for VR experience
CO4	Classify human factors that affect VR experience
CO5	Analyze the performance of various virtual reality applications.
CO6	Express the object position and orientation in virtual space.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

BLOCKCHAIN TECHNOLOGY:

Course Outcome:

Upon successful completion of the course, the student will be able to:

CO1	Learn about research advances related to one of the most popular technological areas today.
CO2	Demonstrate the block-chain services to develop a New Paradigm of Organizational activities
CO3	Learn the limitations of the block-chain mechanism to develop an efficient organizational structure
CO4	Applying Bit-Coin protocols and how to develop the digital currency in the websites

INTELLIGENT SYSTEMS:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1	Explore various Artificial Intelligence problem solving techniques.
CO2	Identify and describe the different AI approaches such as Knowledge representation, Search strategilearning techniques to solve uncertain imprecise, stochastic and nondeterministic nature in AI problems
J3	Apply the AI techniques to solve various AI problems.
CO4	Analyze and compare the relative challenges pertaining to design of Intelligent Systems.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

REAL TIME SYSTEMS:

Course Outcomes:

CO1	Understand concepts of Real time Systems and commands
CO2	Be able to explain real-time concepts such as preemptive multitasking, task priorities, priority inversions, mutual exclusion, context switching, and synchronization, interrupt, latency and response time, and semaphores.
CO3	Discuss how tasks can communicate using semaphores, mailboxes, and queues.
CO4	Be able to explain how the real-time operating system implements time management.

DATA SCIENCE:

Upon	successful completion of the course, the student will be able to:	
CO1	Able to learn fundamentals of Data Science.	
CO2	Understanding different Data collection and Pre-Processing methods.	
CO3	Understanding the use of various Descriptive Statistics.	
CO4	Analyzing various Data analytics techniques.	
CO5	Use of Regression Techniques.	
CO6	Evaluation of Various Models.	

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212
URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

HIGH PERFORMANCE COMPUTING:

Course Outcomes:

Upon succe	ssful completion of the course, the student will be able to:
CO1	Analyze the functionality of Modern Processor.
CO2	Comprehend and implement various optimization techniques for serial code.
CO3	Design the concept of parallel computing and Programming.
CO4	To study about memory parallel programming using open MP and MPI

MACHINE LEARNING:

Upon	Upon successful completion of the course, the student will be able to:	
CO1	Understanding the machine learning basics and how data is preprocessed	
C 72	How linear models help in prediction	
CO3	Distance based models complexity	
CO4	Probabilistic models understanding	
CO5	Nonlinear models and ensembles improve efficiency	
CO6	How neural network provide nonlinearity	

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada
Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

AI APPLICATION DEVELOPMENT LAB:

Course Outcome:

Upon suc	cessful completion of the course, the student will be able to:
CO1	Describe various machine learning algorithms for AI applications
CO2	Describe the development lifecycle of AI applications
CO3	Describe the principles of AI for IoT applications
CO4	Collect data from Internet and perform data preprocessing
CO5	Identify suitable machine learning models for AI applications
CO6	Develop software programs to effectively train machine learning models for AI applications

PREDICTIVE ANALYTICS:

Upon	successful completion of the course, the student will be able to:
CO1	Able to Implement Linear and Multiple Regressions.
CO2	Able to Estimating Probabilities using a logistic function and the prediction of Categorical placement.
CO3	Able to build Various Time-series models.
CO4	Able to implement the applications single and multiple decision trees.
CO5	Able to build multiple Linear regression models across the range of predictor values.
CO6	Able to know outcome variable's values.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in. Mobile: +91.8333882444

THE FULL STACK WEB DEVELOPMENT – LAB:

Course Outcome:

Upon successful completion of the course, the student will be able to:

CO1

CO2 Apply a thorough understanding of Mongo Db principles and specific practices

CO3 Select the most appropriate way to improve results for a specific circumstance or need

CO4 Judge and craft appropriate adaptations to existing practices or processes depending upon analysis of typi problems

CO5 Evaluate likely successes and formulate plans to manage likely risks or problems

CO6 Create high quality applications

DEEP LEARNING:

Upon s	successful completion of the course, the student will be able to:
CO1	Understand the basic concepts of neural network, its applications and various learning models
CO2	Acquire the knowledge on Recurrent, Recursive Nets and Auto-encoder models
CO3	Analyze different Network Architectures, learning tasks, Convolutional networks
CO4	Use an efficient algorithm for Deep Models
CO5	Apply optimization strategies for large scale applications

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

SYSTEM MODELLING AND SIMULATION:

Course Outcome:

Upon	successful completion of the course, the student will be able to:
CO1	Explain the basic system concept and definitions of system
CO2	Discuss techniques to model and to simulate various systems
CO3	Analyze a system and to make use of the information to improve the performance
CO4	Illustrate the operation of a dynamic system and make improvement according to the simulation results.
CO5	Describe the behavior of a dynamic system and create an analogous model for a dynamic system
CO6	Explain the system concept and apply functional modeling method to model the activities of a static system

CYBER FORENSICS:

Upon	successful completion of the course, the student will be able to:
CO1	Students will understand the usage of computers in forensic
CO2	How to use various forensic tools for a wide variety of investigations
CO3	Understanding of the cyber security needs of an organization.
CO4	It gives an opportunity to students to continue their zeal in research in computer forensics

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015-Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

III - I Courses

ADVANCED DATA STRUCTURES:

Course Outcome:

Upon s	successful completion of the course, the student will be able to:
CO1	Able to understand the importance, operations and application of Hashing
CO ₂	Able to understand implementation of skip lists
CO3	Able to get a good understanding about different balanced trees.
CO4	Able to understand the implementation of heaps and binomial queues.
CO5	Have an idea on applications of algorithms in a variety of areas, like string matching,
	indexing etc.
CO6	Able to understand the importance and applications of tries

COMPUTER NETWORKS:

Course Outcomes:

Upon	successful completion of the course, the student will be able to:
CO1	Able to understand OSI and TCP/IP models.
CO2	Able to design applications using internet protocols.
CO3	Understand routing and congestion control algorithms.
CO4	Understand how the internet works.

FORMAL LANGUAGES AND AUTOMATA THEORY:

Upon	successful completion of the course, the student will be able to:
CO1	Able to use basic concepts of formal languages of finite automata techniques
CO ₂	Student able to design Finite Automata's for different Regular Expressions and Languages
CO3	Construct context free grammar for various languages
CO4	Solve various problems of applying normal form techniques, push down automata and
	Turing Machines
CO5	Participate in GATE, PGECET and other competitive examinations

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO,9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

SCRIPTING LANGUAGES:

Type Of Course: Professional Elective – 1.1

Course Outcome:

Upon	successful completion of the course, the student will be able to:			
CO1	Ability to master the theory behind scripting and its relationship to classic programming.			
CO2	Ability to apply your knowledge of the weaknesses of scripting languages to select implementation.			
CO3	Able to gain some fluency programming in Perl and related languages.			
CO4	Identify PHP encryption functions and Mcrypt Package.			
CO ₅	Understand PHP Authentication and Methodologies			
CO6	To design and implement one's own scripting language.			

COMPUTER GRAPHICS AND MULTIMEDIA ANIMATION

Type of Course : Professional Elective – 1.2

Upon	successful completion of the course, the student will be able to:
CO1	Design and apply two-dimensional primitives and filling methods
CO2	Design and apply two-dimensional and three-dimensional transformations
CO3	Apply visible surface detection methods for identifying back-faces.
CO4	Understood Different types of Multimedia fundamentals.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

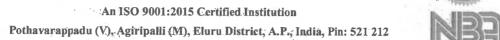
Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in. email; principal@nriit.edu.in. Mobile: +91 8333882444

DATA WAREHOUSING AND DATA MINING

Type of Course: Professional Elective – 1.3

Course Outcome:

Upon s	uccessful completion of the course, the student will be able to:
CO1	Understand the basic concepts of warehousing and data preprocessing techniques
CO2	Derive various interesting patterns and associations in datasets.
CO3	Design and develop classifier models to predict future trends.
CO4	Apply unsupervised learning techniques for a given application.


PRINCIPLES OF PROGRAMMING LANGUAGES

Type of Course: Professional Elective – 1.4

Upon	successful completion of the course, the student will be able to:
CO1	Analyze the basic concepts of programming language, the general problems and methods
	related to syntax & semantics.
CO2	Interpret the structured data objects, subprograms and programmer defined data types.
CO3	Outline the sequence control and data control.
CO4	Apply the concepts of storage management using programming languages.
CO5	Implementing the Subprogram call and return.
CO6	Classify various programming languages like procedural, non-procedural, structured and
	object oriented programming language.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

COMPUTER NETWORKS LAB:

Course Outcome:

Upon	successful completion of the course, the student will be able to:
CO1	Should be able to Calculate Data link layer farming methods like bit stuffing and byte stuffing.
CO2	Should be able to Analyze Cyclic redundancy check on different polynomials.
CO3	Should be able to understand Socket Programming Implementation by using TCP and UDP Protocols.

ADVANCED DATA STRUCTURES LAB:

Course Outcomes:

Upon	successful completion of the course, the student will be able to:
CO1	Implement Hashing
CO2	Students able to implement programs on skip lists
CO3	Implement different balanced trees.
CO4	Implement heaps and binomial queues.
CO5	Implement various string matching algorithms
CO6	Implement different search trees

BASICS OF CIVIL AND MECHANICAL ENGINEERING

Upon	successful completion of the course, the student will be able to:
CO1	Understand the concepts of force and friction, direction and its application & able to
	demonstrate the basic surveying skills
CO2	Identify different building materials and their importance in building construction.
CO3	Differentiate brick masonry, stone masonry and types of flooring & roofing.
CO4	Familiarize with the Engineering materials, their types, properties and applications.
CO5	Familiarize with the basic manufacturing processes used in manufacturing of products.
CO6	Analyze coplanar concurrent systems and Familiarize with fundamental principles of thermodynamics.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212
URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

COMPETITIVE CODING:

Course Outcome:

Upon successful completion of the course, the student will be able to:	
CO1	Understand and design solutions for problems based on various printing patterns/shapes
CO2	Understand the basic principles of various number based problems and design solutions
CO3	Apply appropriate algorithm design technique to solving array based application problems
CO4	Identify suitable method to solve problems based on functions and recursion
CO5	Understand and solve problems based on pointers
CO6	Analyze and design solutions based on linked lists, stacks and queues.

SEMINAR:

Course Outcome:

Upon	Upon successful completion of the course, the student will be able to:	
CO1	To enable the students experience and reflect upon their own thinking as it is expressed in communication with others.	
CO2	To Examine various newspapers, magazines, articles and books, journals, the web, and other instances of contemporary expression so as to discern genuine thinking from the spurious.	
CO3	To learn to work on oral skills like conversational practices, extempore and role play	
CO4	To learn the oral presentation techniques(planning preparation practice and presenting)	
CO5	To improve presentation skills and develop confidence level in students	
CO6	To inculcate the scientific analysis and research on various research topics and get good critical thinking and understanding.	

INDIAN CONSTITUTION

Upon successful completion of the course, the student will be able to:	
CO1	Understand the meaning, history, features and characteristics of Indian Constitution
CO2	Gain knowledge on fundamental rights duties and Principles and importance of State Policy
CO3	Understand the powers of Union, the Statesand Indian President.
CO4	Know about amendments of the constitution and Emergency Provisions

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in. email: principal@nriit.edu.in. Mobile: +91 8333882444

III - II Courses

OPERATING SYSTEMS

Course Outcome:

Upon	Upon successful completion of the course, the student will be able to:	
CO1	Describe the important computer system resources and the structure and functioning of operating system, their process management policies and scheduling of processes by CPU.	
CO2	Evaluate the requirement for process synchronization and coordination handled by operating system. Describe and analyze the memory management and its allocation policies.	
CO3	Understand demand paging, thrashing and principles of deadlocks.	
CO4	Understand File system Interface, File System implementation, Mass-storage structure and disk scheduling algorithms.	

DESIGN AND ANALYSIS OF ALGORITHMS

Upon	Upon successful completion of the course, the student will be able to:	
CO1	Analyze worst-case running times of algorithms using asymptotic analysis and components	
CO2	Describe the divide and conquer method explains when an algorithmic design situation demands it.	
CO3	Describe the greedy method explains when an algorithmic design situation demands it.	
CO4	Describe the dynamic-programming paradigm explains when an algorithmic design demands it.	
CO5	Describe the back tracking method explains when an algorithmic design demands it.	
CO6	Describe the branch and bound paradigm and deterministic methods e-plain when an algorithmic design demands it.	

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

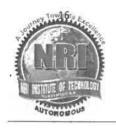
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

COMPILER DESIGN:

Course Outcome:

Upon	Upon successful completion of the course, the student will be able to:	
CO1	Describe the major concept and areas of language translation in compilers, the functionality	
	and complexity levels of various translators, linkers, loaders.	
CO2	Describe practical experience in phases of compiler.	
CO3	Compare and differentiate various parsing and grammar transformation techniques	
CO4	Construct intermediate code and performs type checking.	
CO5	Schedule symbol table and its organization.	
CO6	Illustrate Code generation, obtains machine independent code optimization and instruction	
	scheduling.	


ARTIFICIAL INTELLIGENCE:

Course Outcome:

Upon Con	Upon Completion of the course, the students will be able to	
CO1	Possess the ability to formulate an efficient problem space for a problem expressed in English	
CO2	Possess the ability to select a search algorithm for a problem and characterize its time and space complexities.	
CO3	Possess the skill for representing knowledge using the appropriate technique.	
:04	Possess the ability to apply AI techniques to solve problems of Game Playing, Expert Systems, Machine Learning and Natural Language Processing	
CO5	Apply the knowledge to develop the solutions for real life problems	
CO6	Develop new algorithms to contribute to the research arena	

OPERATING SYSTEMS & UNIX PROGRAMMING LAB

Upon successful completion of the course, the student will be able to:	
CO1	Students able to implement CPU scheduling algorithms ,File Organization techniques and
	paging techniques
CO2	Students able to write shell scripts in Linux platform.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nr.iit.edu.in, email: principal@nriif.edu.in, Mobile: +91 8333882444

R-PROGRAMMING LAB

Course Outcome:

Upon	successful completion of the course, the student will be able to:
CO1	List motivation for learning a programming language.
CO ₂	Access online resources for R and import new function packages into the R workspace.
CO3	Import, review, manipulate and summarize data-sets in R
CO4	Explore data-sets to create testable hypotheses and identify appropriate statistical tests
CO5	Perform appropriate statistical tests using R Create and edit visualizations
CO6	Ability to analyze different Data Analytics Applications.

APTITUDE AND REASONING 2

Course Outcome:

Upon :	successful completion of the course, the student will be able to:
CO1	Solve the Arithmetic and Reasoning Problems as fast as possible and as simple as possible.
CO2	Exhibits good analytical skills and aptitude skills.
CO3	Perform well in all competitive exams like RRB, SSC, GROUPS, and BANKING
CO4	Clear the aptitude section of exams for higher education like CAT, GMAT, and GRE etc.

HACKATHON:

Upon successful completion of the course, the student will be able to:	
CO1	Familiar with various problems and their solutions.
CO2	Design innovative solutions for daunting problems
CO3	Crowd source solutions for real time problems
CO4	Improve their analytic and problem solving skills

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

BIOLOGY FOR ENGINEERS:

Course Outcome:

Upon	successful completion of the course, the student will be able to:
CO1	Describe the fundamental Principles and methods of engineering
CO2	Identify the functions of different types in bio-molecules
CO3	Describe mechanisms underlying the working of molecular biological processes including enzyme catalysis, metabolic pathways, gene expression.
CO4	Use Excel, MATLAB and other computational tools to quantitatively analyze biological processes.

ENTERPRISING AND STARTUP SKILLS

Upon	successful completion of the course, the student will be able to:
CO1	To evaluate the role and importance of entrepreneurship for economic development
CO2	To acquire necessary knowledge and skills required for organising and carrying out entrepreneur activities through training.
CO3	To analyse and apply contemporary project management tools and methodologies
CO4	To learn policies and their support to small and micro enterprises.
CO5	To consider the legal and financial conditions for starting a business venture, evaluate the effectiveness of different entrepreneurial strategies and challenges
CO6	To understand about supportive role of government, financial institutions and educational institutions offering ED Programmes

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

ADVANCED DATA BASE MANAGEMENT SYSTEMS

Course Outcome:

Upon	Upon successful completion of the course, the student will be able to:	
CO1	Describe basic database concepts, Data Models, Schemas, Instances, and Components in the DBMS architecture.	
CO2	Implement practical solutions to GIS database problems using OO/OR database, spatial database, data warehousing and data mining approaches	
CO3	Evaluate simple strategies for executing a distributed query to select the strategy that minimizes the amount of data transfer	
CO4	Demonstrate the issues involved in data integration for distributed query processing	
CO5	Develop practical skills in the use of these models and approaches to be able to select and apply the appropriate methods for a particular case	
CO6	Analysedinternal structures, query evaluation and optimization.	

UML & DESIGN PATTERNS

Upon	successful completion of the course, the student will be able to:
CO1	Represent the data dependencies of a simple program using UML
CO2	Represent user and programmatic interactions using UML
CO3	Identify the purpose and methods of use of common object-oriented design patterns
CO4	Select and apply these patterns in their own designs for simple programs

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

DISTRIBUTED SYSTEMS

Course Outcome:

Upon s	Upon successful completion of the course, the student will be able to:	
CO1	Describe important characteristics of distributed systems and the salient architectural	
	features of such systems	
CO2	Gaining practical experience of inter-process communication and remote invocation in a	
	distributed environment	
CO3	Describe the features and techniques used in distributed systems for implementing parallel	
	processing and distributed file systems.	
CO4	Describe techniques for implementing mutual exclusion, transaction processing and recovery	
	concepts in distributed environment.	

ADHOC AND SENSOR NETWORKS

Course Outcome:

Upon	successful completion of the course, the student will be able to:
CO1	Understand basic concepts of WIRELESS networks and challenges of adhoc and sensor networks
CO2	Classify the design issues and different categories of MAC protocols
CO3	Explain the various adhoc routing protocols and transport layer mechanisms
CO4	Discuss the sensor characteristics and wsn layer protocols and security issues

COMPUTER VISION:

Upon	successful completion of the course, the student will be able to:
CO1	Describes the fundamental of image formation and depth estimation of the techniques.
CO ₂	Describes the feature extraction of the filters.
CO3	Describe the classification of the segmentation techniques and analyze the clusters methods
CO4	Analyze the clusters methods of image patterns
CO ₅	Illustrate motion analysis of spatio temp techniques.
CO6	Illustrate shape from texture color motion and edges.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

DATA ANALYTICS

Course Outcome:

Upon	successful completion of the course, the student will be able to:
CO1	Conduct data analytics using appropriate descriptive and quantitative analysis on real-world problems.
CO2 CO3	Use data analytics skills like variance, ANOVA, regression techniques.
	Understand the application of nearest neighbor classifiers and the effect of validation techniques on different datasets.
CO4	Apply unsupervised learning techniques for a given applications.

SOFTWARE TESTING METHODOLOGIES

Course Outcome:

Upon	successful completion of the course, the student will be able to:
CO1	Able To Understand Basic Testing Concepts, Testing Techniques And Strategies
CO2	Have Basic Understanding And Knowledge Of Contemporary Issues Like Component And
	Interface Testing.
CO3	Able To Support In Generating Test Cases And Test Suites
CO4	Have Basic Understanding And Knowledge About Graphs And Matrix Relations, Apply
	Testing Methods And Tools

CLOUD COMPUTING AND APPLICATION DEVELOPMENT

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521-212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

Upon successful completion of the course, the student will be able to:		
CO1	Able to understand distributed systems models and cloud platforms, virtualization levels and types.	
CO2	To know the design principles, architectures, and enabling technologies of cloud platform, and Assessment of MapReduce, BigTable, Twister, Dryad, DryadLINQ, Hadoop, Sawzall, and Pig Latin	
CO3	Use public cloud like IBM Bluemix, Amazon AWS, Google cloud platform or Microsoft Azure for developing an application	
CO4	Work with real cloud services	

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

DISCRETE MATHEMATICAL STRUCTURES

Course Outcome:

Upon successful completion of the course, the student will be able to:

CO1: Apply the concept of Mathematical Logic in software development process.

CO2: Apply the recurrence relation for analyzing recursive algorithms.

CO3: Student will able to understand the concepts of group theory.

CO4: Apply the concept of group theory in robotics, computer vision & computer graphics.

CO5: Student will able to understand the concepts of graph theory and Trees.

CO6: Use the concepts of graph theory to provide solutions for routing applications in computer networks.

DATA STRUCTURES:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: Ability to illustrate the concepts of algorithm apply the learning concepts to design data structure for the given problem definition.

CO2: Ability to design applications using stacks and queues and implements various types of queues

CO3: Analyze and implement operations on linked list and demonstrate their applications

CO4: Ability to analyze and implement operations on trees

CO5: Ability to demonstrate various operations on binary search trees and its applications

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO6: Ability to evaluate the properties and operations on graphs and implement the graph applications

DATA BASE MANAGEMENT SYSTEM:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: Ability to define, understand the database management system structure

CO2: Ability to apply SQL as well as relational algebra to find solutions to a broad range of queries.

CO3: Ability to design ER diagrams or database for given scenario

CO4: Ability to create applications using various normal forms, functional dependencies, validating and identifying anomalies.

CO5: Ability to design application using locking methods and recovery management.

CO6: Ability to conduct experiments of database using modern tools.

DIGITAL LOGIC DESIGN:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1:Understand the numeric information in different forms and interpret different logic gates.

CO2:Minimize the given Switching functions in SoP and PoS forms using K-Map and Tabular Method.

CO3 : Analyze and Design various combinational circuits like Encoders, Decoders, Multiplexers, Demultiplexers, and Arithmetic Circuits.

CO4: Design combinational logic circuits using different types of Programmable Logic Designs.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

CO5: Design and Implement various sequential circuits like flip flops, registers.

CO6:Design the state diagrams with the knowledge of Mealy and Moore conversions, state machines using various flip flops.

INTERNET OF THINGS LAB:

Course Outcome:

Upon successful completion of the course, the student will be able to:

CO1:Interpret the impact and challenges posed by IoT networks leading to new architectural models.

CO2:Explain the basics of microcontrollers, architecture of Arduino and develop simple applications using Arduino.

CO3:Outline the architecture of Raspberry Pi and develop simple applications using Raspberry, select a platform for a particular embedded computing application

CO4:Interpret different protocols and compare them and select which protocol can be used for a specific application

CO5: Select IoT APIs for an application

CO6: Design and develop a solution for a given application using APIs and test for errors in the application

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

DATA STRUCTURES LAB:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1:Implement different searching and sorting techniques. Compare different searching and ting techniques.

CO2:Design linear data structures stacks, queues and linked lists.

CO3: Design nonlinear data structures trees and Graphs, and implement their operations

CO4:Be capable to identity the appropriate data structure for given problem

CO5: Have practical knowledge on the applications of data structure

DATA BASE MANAGEMENT SYSTEM LAB:

Course Outcome:

Upon successful completion of the course, the student will be able to:

CO1: Queries for Creating, Dropping, and Altering Tables, Views, and Constraints

CO2: Queries to Retrieve and Change Data: Select, Insert, Delete, and Update

CO3: Queries using Built-In Functions: String Functions, Numeric Functions, Date Functions and Conversion Functions.

CO4: Queries using Group By, Order By, and Having Clauses

CO5: Queries on Joins and Correlated Sub-Queries

CO6: Queries on Controlling Data: Commit, Rollback, and Save point

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

PYTHON PROGRAMMING LAB:

Course Outcome:

Upon successful completion of the course, the student will be able to:

CO1: Students able to experience with an interpreted Language and to build software for real needs. CO2: Students able to use basic Decision structures, Boolean logic, variable types, assignments and operators.

CO3:Students able to describe and use of Python lists, dictionaries, tuples and sets.

CO4: To implement methods and functions to improve readability of programs.

CO5: Students able to describe and apply object-oriented programming methodology,top-down concepts in algorithm design.

CO6:Students should be able to design, code ,test and debug python language programs.

PROFESSIONAL COMMUNICATION SKILLS:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: Develop effective familiarity with soft skills along with right attitude to eliminate conflict and strife in their presentation skills.

CO2:Develop awareness on setting suitable goals and planning accordingly by using the techniques of time management to climb the ladder of success.

CO3: Enhance the learners' analytical and logical skills besides lateral thinking and kindle the true professional spirit.

NEI INSTITUTE DE TECHNOLOGY

NRI INSTITUTE OF TECHNOLOGY(AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO4: Interpret any situation positively by managing stress at all scenarios.

CO5: Become a responsible citizen by imbibing social etiquette and ethics.

CO6: Draft appropriate written documents using the acquired knowledge on writing.

VISUAL COMMUNICATION:

Course Outcome:

Upon successful completion of the course, the student will be able to:

CO1: The students will acquire the fundamental and foundation knowledge on image and creating meaning through visuals. They will acquire skills to present ideas and design messages.

CO2: They will be familiarised with communication and presentation of ideas visually.

CO3: The students will study various theories and concepts in understanding the visuals. They will learn new ways of understanding and presentation for different purposes.

74: The students will learn the key aspects of visual aspects in art, camera, and filming as well as trade secrets in communication media business to gain an upto-date understanding of the field. CO5: After studying the course, the students will acquire production planning skills and application of technology for projects based on communication.

SANSKRIT:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: Reading, Writing, understanding and conversational skills are developed.

CO2: Unity in diversity of our country is well understood.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

CO3: The origin and development of Indian Languages is well understood

CO4: Proper usage of Language is achieved.

CO5: Sanskrit words that are familiar to us which we are using in our languages are identified.

CO6: The great Indian culture roots are well observed.

PSYCHOLOGY:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: The student will be able to understand the inter relationship of knowledge and our fund of knowledge

CO2: The students develops the discrimination between true and false knowledge

CO3: The students develops moral sense of Indian society.

CO4: The students extends his mental horizons in understanding different stands of moral order

CO5: The students intuitively grasps the ways of understanding the world and our environment

CO6: The students gains an insight into the very nature of Science and Technology

ENGINEERING PHILOSOPHY:

Course Outcomes:

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

CO1: The course in **Philosophy** is expected to bridge the gap between theory and practice by making the courses interactive.

CO2: The course of philosophy, which includes ethics and values, different ways of knowing, self and society, theory and practice, self and transcendence. These would enable the student in gaining knowledge about one's meaning and purpose of life, identifying one's goals and purpose and working out one's program of action in life

CO3: The course can provide a new understanding, based on which one can move to overcome the current problems, both at the individual level as well as at the societal level.

PROFESSIONAL ETHICS AND HUMAN VALUES:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1:Grooms themselves as ethical, responsible and societal beings.

CO2: Discuss ethics in society and apply the ethical issues related to engineering.

CO3: Exhibit the understanding of ethical theories in professional environment.

CO4: Recognize their role as social experimenters (engineers) and comprehend codes of ethics.

CO5:Identify the risks likely to come across in the professional world, analyzing them and find solutions.

CO6: Realize the responsibilities and rights of engineers in the society.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

II YEAR-II SEMESTER

PROBABILITY AND STATISTICS:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: Student will be able to Find the measures of central tendency and relation between them.(L1)

CO2: Student will be able to Evaluate the correlation coefficient, rank coefficient and regression.(L5)

CO3: Students will be able to Understand probabilities of events and expectations of random variables for elementary problems.(L2)

CO4: Students will be able to Solve problems related to binomial and passion distribution.(L3)

CO5: Student will be able to the Normal distribution.(L4) Compare situations in which it is appropriate to consider the relevance of Normal Distribution (L4).

CO6 Student will be able to Construct hypothesis and carryout appropriate tests to checks its acceptability.(L3)

WEB TECHNOLOGIES AND ADVANCED JAVA PROGRAMMING:

Course Outcomes:

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

CO1: Student able to Implement and design web based applications using features of HTML

CO2: Implement web based applications using features of XML.

CO3: Student will Apply the concepts of server side technologies for dynamic web applications.

CO4: Ability to design the web based applications using effective data base access with rich client reaction.

CO5: Ability to Develop reusable component for Graphical User Interface applications

SOFTWARE ENGINEERING:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: Understand the basic concepts of Software engineering, applications, agile development and compare different software process models.

12: Analyze the principles of requirement engineering

CO3: Create architectural design for a given project.

CO4: Apply different testing techniques

COMPUTER ORGANIZATION:

Course Outcomes:

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada
Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001;2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO1: Able to understand the basic components and the design of CPU, ALU and Control unit

CO2: Students can calculate the effective address of an operand by addressing modes

CO3: Ability to understand memory hierarchy and its impact on computer cost/performance...

CO4: Ability to understand the advantage of instruction level parallelism and pipelining for high performance Processor design.

MICROPROCESSOR AND ITS APPLICATIONS:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: To Describe the basics of 8086 microprocessors architectures and its Functionalities

CO2: To Design and develop 8086 Microprocessor based systems for real time applications using low level language like ALP

CO3: To Analyze 8051 microcontrollers architectures and its functionalities

CO4: To Describe the importance of Timers/Counters and Serial ports of 8051 microcontroller

CO5: To Describe the basics of ARM and ARM7 architecture and its functionalities

CO6: To Interface external peripherals and I/O devices and program the 8051 microcontroller.

WEB TECHNOLOGIES AND ADVANCED JAVA PROGRAMMING LAB:

Course Outcomes:

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

CO1: Create a website statically or dynamically.

CO2: Get knowledge on displaying and decorating the contents in a webpage.

CO3: Learn the concepts of store and transport the data among webpages.

CO4: Generate static or dynamic content according to the client's request.

CO5: Create objects with which the client can communicate with server.

CO6: Provide User Authentication by using cookies and back end operations using JDBC

DATA STRUCTURES:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: Ability to illustrate the concepts of algorithm apply the learning concepts to design data structure for the given problem definition.

CO2: Ability to design applications using stacks and queues and implements various types of queues

CO3: Analyze and implement operations on linked list and demonstrate their applications.

CO4: Ability to analyze and implement operations on trees

CO5: Ability to demonstrate various operations on binary search trees and its applications

CO6: Ability to evaluate the properties and operations on graphs and implement the graph

Applications

OBJECT ORIENTED PROGRAMMING USING C++

Course Outcomes:

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001;2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO1: Ability to understand and analyze the basic concepts of Object Oriented Programming and C++.

CO2: Ability to understand, analyze and design applications using the concepts of arrays, dynamic memory allocation and overloading.

CO3: Ability to understand, analyze and develop programs using the concepts of Inheritance, Polymorphism and Templates.

CO4: Ability to understand, analyze and apply exception handling in programming and understand the concepts of Standard Template Library

IAVA PROGRAMMING:

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1: Able to solve real world problems using OOP techniques.

CO2: Able to understand the use of abstract classes and Packages in java.

CO3: Able to develop and understand exception handling and Interfaces in java

CO4: Able to understand multithreaded applications with synchronization and **design** GUI based applications and **develop** applets for web applications

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

II CSE - I SEMESTER

18A2100202- DISCRETE MATHEMATICAL STRUCTURES

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High) PO 2 3 4 5 6 7 8 9 10 11 12 3 3 CO1 3 3 3 2 CO2 2 2 CO3 2 CO4 3 2 2 2 2 2 CO5 3 3 3 C06

18A2105401- DATA STRUCTURES

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	Z	3	4	5	6	7	8	9	10	11	12
CO1	3	. 3	2	2	-	-	-	-	-	-	-	3
CO2	3	2	3	2	-	-	-	_	-	-	-	3
CO3	3	2	3	2	-	-	-	-	-	-	-	3
CO4	3	2	3	2	-	-		-	-	-	12	3
CO5	3	2	3	2	-		-	-	-	-	-	3
C06	3	$\bar{2}$	3	$\overline{2}$	-	-	_	-	-	-	_	3

18A2105402- DATA BASE MANAGEMNET SYSTEMS

	PO 1	PO 2	PO 3	P0 4	PO 5	PO	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	_	-		-	-	_	_	-	-	_	-	
CO2	3	-	-	-	-	-	-	-	-	-	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	-
CO4	-	-	3	-	-	-	-		1 -	3	-	-

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO5	-	-	⊕ 0	3		-	-		-	-		_
C06	-	-		_	3	-	-	-	-	3	-	-

18A2105403- DIGITAL LOGIC DESIGN

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	-	-	-	-	_	-	-	-	-
CO2	3	2	-	1 -	-	-	-	-	-	-	-	-
CO3	3	2	1	-	-	-	-	1-	-	2	-	3
CO4	2	-	-	2	-	-	-	-	-	_	-	-
CO5	3	3	2	-	-	-	-	-	-	2	-	3
CO6	2	2	3	2	3	-	-	-	-	-	-	1-

18A2105493-INTERNET OF THINGS LAB

	PO 1	PO 2	PO 3	PO 4	P0 5	P0 6	PO 7	P0 8	PO 9	PO 10	P0 11	PO 12
CO1	2	-	2	-	-	2		-	-	en	2	
CO2	3	2	-	-	-	2	-	-	2	_	-	-
CO3	3	-	2	2	-	2	_	-	_	_	-	2
CO4	2	-	3	_	-	2	_		_	_	_	-
CO5	3	$\bar{2}$	2	_	2	2	-		-	_	-	2
C06		2	$\bar{3}$	-	2	2	_		-	-	-	2

18A2105491- DATA STRUCTURES LAB

PO	PO	PO	DO	PO	DΩ	DΩ	DΩ	DO	DO	DO	DO
10	IU	IU	ro	IU	IU	IU	ro	IU	FU	FU	PU
4	2	3	1			-7	0	1.0	4.0	4.4	4.0
1	4	3	4	5	О	/	Ø	9	10	11	IZ

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: ±91 8333882444

CO1	3	3	2	2	-	-	-	-	-	-	-	2
CO2	3	2	3	2	-	-	-	-		1 -	-	2
CO3	3	2	3	2	-	-	-	-	-	-	-	2
C04	3	2	3	2	-	-	-	-	-	-	-	2
CO5	3	2	3	2	-	-	-	-	-	-	-	2

18A2105492- DATABASE MANAGEMENT SYSTEMSLAB

	PO 1	PO 2	PO 3	PO 4	P0 5	P0 6	PO 7	PO 8	PO 9	PO 10	P0 11	PO 12
CO1	3	1	-	-	-	-	-	-	-	-	-	-
CO2	2	3	3	-	1	-	-	-	=	-	-	-
CO3	1	2	2	-	2	-	-	-	2		-	-
CO4	1	2	3	-	3	-	-	-	-	(4)		1
CO5	1	2	1	-	2	-	-	-	-	1 -	-	-
C06	1	1	3	-	2	-	-	-	-	-	-	-

18A2105494- PYTHON PROGRAMMING LAB

	PO 1	PO 2	PO 3	P0 4	P0 5	P0 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	-	-	-	3	-	-	-	3	-	3	-
CO2	-	3	2	-	-	-	-	-	-	1	-	-
CO3	-	-	-	2	3	i _	-	-	3	-	-	-
CO4	-	-	-	3	3	-	-	-	3	-	-	-
CO5	-	-	-	3	1 -	-		-	-	-	3	100

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada
Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal a nriit.edu.in, Mobile: + 91 8333882444

C06 -

18A2100602- Visual Communications

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	. 4	5	6	7	8	9	10	11	12
CO1	3	-	2	-	3	3	2	2	1	1	1	1
CO2	3	-	2	-	3	3	2	2	1	1	1	1
CO3		-	2	-	-	-	-	-	-	1	1	1
CO4	3	-	1	3	3	-	-	Ī	1	1	ī	1
CO5	2	-	1	-	3	3	2	2	1	1	1	1

18A2100604- Psychology

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	1	2	-	-	-	2	-	3	-	-	-	2
CO2	i	2	-	2	-	2	-	2	-		-	2
CO3	1	-	-	-	-	3	-	3	-	-	-	-
CO4	. 1	-	-	-	-	3	-	3	-	-	-	_
CO5	1	-	=	- ·	-	2	-	-	-	-	-	2
C06	3	3	3	3	3	3	3	-	-	3	3	3

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

FEM

URL: www.nriit:edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

18A2100802- PROFESSIONAL ETHICS AND HUMAN VALUES

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	P0	PO
	1 1	. 4	3	4	Э	0		Ö	1 9	10	11	14
CO1	-	-	-	-	! -	1	1	2	,	-	-	1
CO2	-	-	-	-	-	1	$ \bar{1} $	2	-	-	-	1
CO3	i -	-	-	-	-	1	1	2		-	Ī -	1
CO4	-	-	-	-	-	1	1	2	-	-	-	1
CO5	-	-	-	-	-	1	1	2	-	-	-	Ī
C06	-	-	-	-	-	1	1	2	-	-	-	1

IIYEAR - IISEM

18A2200201-PROBABILITY AND STATISTICS

| PO |
|----|----|----|----|----|----|----|----|----|----|----|----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91.8333882444

CO1 CO2	3	3	2	2		 	-				-
		3	2	2		 		<u> </u>			L_
CO3	3	3	2	2		 			-	-	-
CO4	3	3	2	2		 				-	
CO5	3	3	2	2	-	 	-				
LU 6	3	3	2	2		 					

18A2205401- WEB TECHNOLOGIES AND ADVANCED JAVA PROGRAMMING

	PO	PO	PO	PO 4	PO	PO	PO	PO	PO	PO	PO	PO 12
	1	4	õ	4	3	6	/	8	9	10	11	12
CO1	-	-	3	-	-	-	-	-	-	-	-	2
CO2	-	-	3	_	-	-	-	_	-	-	-	2
CO3	3	-	2	-	-	-	-	-	-	-	-	2
CO4	-	3	3	2	-	-	-	-	. .	-	-	2
CO5	-	3	-	3	2	-	-	-	_	_	-	3

18A2205402- SOFTWARE ENGINEERING

	PO 1	PO 2	PO 3	PO 4	P0 5	PO 6	PO 7	PO 8	PO 9	P0 10	PO 11	PO 12
CO1	3	3	3	3	3			2	2	2	3	2
C02	3	3	3	3	3	1-		2	2	$\bar{2}$	3	2
C03	3	3	3	3	3			$\bar{2}$	2	2	3	2
C04	3	3	3	3	3	1		2	2	2	3	2

18A2205403- COMPUTER ORGANIZATION

	PO 1	PO 2	P0 3	P0 4	PO 5	P0 6	PO 7	PO 8	P0 9	PO 10	PO 11	PO 12
CO1	3	3									***	
CO2	3	3		3							##	
CO3	3	3									-	
CO4	3	3		T -					Cho Da dar			

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

	PO 1	PO 2	PO 3	PO 4	P0 5	PO 6	PO 7	P0 8	PO 9	P0 10	P0 11	PO 12	
C01	3	3	-	-	-	-	-	-	-	-	-	-	
C02	3	3	2	-	3	-	-	-	-	_	2	_	
C03	3	2	3	2	2	_	-	-	-	-	2	_	
C04	2	2	2	-	-	-	-	_	-	-	-	-	
C05	3	2	2	2	3	-	-	-	-	-	2	-	
C06	2	2	2	3	2	-	-	-	_	-	-	-	

18A2205491- WEB TECHNOLOGIES AND ADVANCED JAVA PROGRAMMING LAB

	PO 1	P0 2	P0 3	PO 4	PO 5	P0 6	P0 7	P0 8	P0 9	PO 10	PO	PO 12
CO1	3	3		1-								
CO2	3	3		3			; =					3
CO3	3	3										
CO4	3	3					-					3
CO5	3	3		m te								3
C06	3	3					-					

18A2205601- DATA STRUCTURES

	PO 1	PO 2	PO 3	PO 4	P0 5	P0 6	PO 7	PO 8	P0 9	PO 10	PO 11	PO 12
CO1	3	3	2	2	-	-	_	-		_	-	3
CO2	3	2	3	2	-	-	-	-	-	_	-	3
CO3	3	2	3	2	-	-	-	-	_	-	-	3
CO4	3	2	3	2	-	_	-	1 -	-	-	_	3
C05	3	2	3	2	-	-	-	_	-	-	-	3
C06	3	2	3	. 2	-	-	-		_	_	_	3

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: #91 8333882444

OBJECT ORIENTED PROGRAMMING USING C++

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	; -	-	-		7 4 .2	-	(#)	200	3
CO2	3	3	3	-	-	-	-	(4)	-	9400	-	3
CO3	3	3	3	-	-	-	-		-	-	-	3
CO4	3	2	-	-	-	-	-	-	-	-	-	2

JAVA PROGRAMMING

	P0 1	P0 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	-	-	-	-	-	-	-	-	3
CO2	3	3	3	-	-	_	-	-	-	-	-	3
CO3	3	3	3	2	_	-	-	-	2	-	-	3
CO4	3	3	3	2	_	-	-	_	2	-	-	3

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in; email: principal@nriit.edu.in, Mobile: +91 8333882444

III CSE - I SEMESTER

18A3105401:Advanced Data Structures

	ibution ım, 3 —]		irse Ou	tcomes	toward	s achie	vement	of Pro	gram C	utcome	s (1 –	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	2	2	-	2	-	-	-	-	-	-	-
CO2	-	-	-	2	-	-	-	-		21	-	-
CO3	-	2	3	2	2	-	-	-		-	-	(+)
CO4	2	3	2	2	2	-	-	-	-	-		2
CO5	2	2	-	3	3	-	-		*	-	-	-
CO6	-	2	3	3	-	-	-	-	-	-	-	2

18A3105402:COMPUTER NETWORKS

	ibution ım, 3 –]		rse Out	comes t	owards	the acl	nieveme	ent of P	rogram	Outcom	ies (1 –]	Low, 2
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2	-		-	_	(*)	16-	-
CO2	3	3	3	2	3	2	-	-	-	-	-	ne.
CO3	3	3	3	2	2	2	2	-	-	-	-	
CO4	3	2	2	2	2	-	2	2	-	-	-	-

18A3105403:Formal Languages and Automata Theory

Contri	bution	of Cou	rse Ou	tcomes	towards	achie	vement	of Prog	ram O	utcome	s (1 –]	Low, 2-
Mediu	m, 3 – I	High)									`	ĺ
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

. URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO1	3	3	-	_	-	2	2	2	-	-	-	2
CO2	2	2	3	2	2	2	2	-	-	-	2	2
CO3	2	3	3	2	2	2	-	-	-	-	2	2
CO4	3	2	2	2	3	-	2	2	-	-	2	_
CO5	3	3	3	-	-	-	-	-	-	-	-	2

18A3105511- Scripting Languages

Type of Course: Professional Elective - 1.1

	ibution ım, 3 — 1		rse Ou	tcomes	toward	s achie	vement	of Pro	gram O	utcome	s (1 –)	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	-	-	-	-	-	-	-	-	_	2
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	-	2	_	-	-	16	-	-	-	-	2
CO4	-	-	3	-	3	-	-	-	-	-	-	2
CO5	3	-	3	j -	2	-	-	-	-	-	-	2

18A3105512:COMPUTER GRAPHICS AND MULTIMEDIA ANIMATION

Type of Course: Professional Elective - 1.2

Contri Mediu			rse Ou	tcomes	toward	s achie	vement	of Pro	gram O	utcome	s (1 – 1	Low, 2-
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	2	-	2	3	2	-	-	-	-	-	-

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91.8333882444

·CO2	2	2	-	2	3	:=:	-	-	-	-	-	-
CO3	-	2	÷	2	-	-	-	-	-	-	10.	
CO4	2	2	-	2	-	-	-	-	-	=:	:==:	2

18A3105513:Data Warehousing and Data Mining Type of Course :Professional Elective – 1.3

	ibution ı m, 3 –]		irse Ou	tcomes	toward	s achie	vement	of Pro	gram O	utcome	s (1 –)	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	-	-	_	3	-	-	-	-	-	-	-	2
CO2	2	2	-	3	-	-	-	-	_	-	_	-
CO3	2	2	_	3	2	-	-	-	-	-	_	2
CO4	3	2	~=	3	-	-	-	-	-	-	_	2

18A3105514: Principles of Programming Languages

Type of Course: Professional Elective - 1.4

	ibution ım, 3 – 1		rse Ou	tcomes	toward	s achie	vement	of Pro	gram O	utcome	s (1 –)	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	-	2	_	_	_	_	2	-	-	2	2
CO2	3	2	-	-	-	-	_		-	-	-	-
CO3	3	2	2	2		-	-	-	-	_	-	-

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO4	3	2	-		2	-	-	-	-	-	-	1
CO5	3	-	2	-	-	-	-	-	-	(+)	-	-
CO6	3	2	2		-	Ye	-	ž.		2	$\overline{2}$	2

18A3105492:Computer Networks Lab

	ibution ım, 3 – 1		rse Ou	tcomes	toward	s achie	vement	of Pro	gram O	utcome	s (1 –)	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	2	-	2	-	-	-	-	-	-	-	-
CO2	-	2	2	-	_	-	-	_	-	-	2	2
CO3	3	-	-	2	2	-	_	-	-	-	2	2

18A3105491-Advanced Data Structures Lab

	ibution ım, 3 —		irse Ou	tcomes	toward	s achie	vement	of Pro	gram C	utcome	s (1 –)	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	2	2	-	2	-	-	-	-	_	-	-
CO2	2	2	2	2	2	-	-		-	-	2=	
CO3	2	2	3	2	2	_		-	-	-	-	-
CO4	2	3	2.	. 2	2	-	-	-	-	-		2
CO5	2	2	_	3	3	-	-	-	-	-	-	-
CO6	-	2	3	3	-	-	-	-	_	-	_	2

18A3101301:Basics of Civil and Mechanical Engineering

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

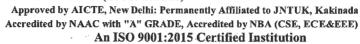
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: # 91 8333882444

	ibution ım, 3 – 1		ırse Ou	tcomes (toward	s achie	vement	of Pro	gram O	utcome	s (1 –	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	-	_	-	-	-	-	2	-	-	-	12-5
CO2	2	-	-	-	-	-		2	-	-	12	-
CO3	2	-	-	_ 、	-	-	-	2	-	-	-	-
CO4	3	1	1	= 1	¥	_	_	-	-	-	-	3
CO5	3	2	1	-	-	-	-	-	-	-	_	_
CO6	3	2	1	_	_	_	_	-		_		-

18A3105791:COMPETITIVE CODING


	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	-	3	-	-	_	-	-	-	3
CO2	3	3	-	-	3	91	-	-	-	-	-	3
CO3	3	3	-	-	-		-	-	-	-	-	3
CO4	3	3	-	-	3		-	-	-	-	-	3
CO5	3	3	223	-	3	21	:2:	-	-	-	-2	3
CO6	3	3	:-:	-		-	-	-	_	-	;=:	3

18A3105792:SEMINAR

Contrib	oution o	f course	outcon	nes towa	rds achi	evemen	t of prog	gram out	comes (1	- low,	2- med	ium, 3 –
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	-	_	-	_	_	-	-	-	3

TECHNOLOGY (AUTONOMOUS)

. Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521

521 NBA

URL: www.nriit.edu.in, email: principal a nriit.edu.in, Mobile: ± 91.8333882444

CO2	3	3	-		122	-,.	-	-	-	-	. . .	3
CO3	: 3	3	3-5	378	:=:		-		-	_	_	3
CO4	3	3): ₄₅	:4:	-	·-		20	-	-	3
CO5	3	3	-		-	-	-	-	-	-	-	3
CO6	3	3	-	<u></u>	19	5)	-	-	· .	-	-	3

18A3100801:INDIAN CONSTITUTION

Type of Course: Audit Course

	ibution ım, 3 –]		rse Ou	tcomes	toward	s achie	vement	of Pro	gram O	utcome	s (1 –	Low,
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	-	-	-	-	: •:	-	-	-	-	2
CO2	3	3	2	_	-	-	12	2	-	-	-	-
CO3	3	-	2		-	_	_	-	-	-	-	2
CO4	-	-	3	-	-	-	-	2	-	-	-	2

III CSE - II SEMESTER

18A3205401:OPERATING SYSTEMS

TECHNOLOGY(AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in. Mobile: +91.8333882444

Contr Mediu	ibution ım, 3 – 1	of Cou High)	irse Ou	tcomes	toward	s achie	vement	of Pro	gram O	utcome	s (1 –	Low,
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	2	2	2	_	_	_	-	_	-	5	
CO2	2	3	2	2	_	-	-	_	-	-	-	_
CO3	2	2	2	2	-	-	-	-	-	-	_	-
CO4	2	3	3	2	-	-		_		_		1

18A3205402:Design and Analysis of Algorithms

Contri 3 – Hig		of Cours	e Outco	mes tov	vards ac	hievem	ent of P	rogram	Outcom	es (1 – L	.ow, 2- N	/ledium,
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-
CO4	3	3	3	2	-	-	-	-	-	-	-	-
CO5	3	3	3	2	-	-	_	-	-	-	_	
CO6	3	3	3	2	-	-	-	74	-	-	_	120

18A3205403:COMPILER DESIGN

	ibution ım, 3 –		rse Ou	tcomes	toward	s achie	vement	of Pro	gram O	utcome	s (1 – 1	Low, 2-
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	-	-		-	-	-	-	-	-
CO2	3	3	2	-	2	-	-	3.75	-	-	_	_
CO3	-	-	3	3	-	120		120	-	-		-

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 . 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in. Mobile: + 91 8333882444

CO4	-	-	3	2	-	-	-	-	-	-	-	-7
CO5	-	-	3	3	2	-	1=1	20	18	-		-
CO6	-	-	-	-		-	373	- 1	3	-	-	3

18A3205404:ARTIFICIAL INTELLIGENCE

Contr		of Cou	_			he stude s achiev				utcome	s (1 –	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO ·	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	-	2	_	2	-	_	-	-	2	-	-
CO2	3	2	-	2	-	-	-	_	2	_	2	-
CO3	3	-	2	-	_	-	-	2	-	_	_	_
CO4	3	2	_	2	-	-	_		-	-	-	-
CO5	3	(-)	2	-	2	-	-	2	2	2	-	_
CO6	3	-	-	2	2	-	-	-	-	2	2	2

18A3205491:Operating Systems & Unix programming Lab

	ibution ım, 3 —]		rse Ou	tcomes	toward	s achie	vement	of Pro	gram C	utcome	s (1 –)	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3	2	3	3	=		-	-	_	-
CO2	3	3	3	2	3	3	i i	-	-	-	-	j -

18A3205492:R-PROGRAMMING LAB

TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

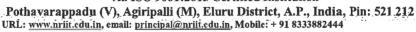
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

	ibution ım, 3 –		rse Ou	tcomes	toward	ls achie	evemen	t of Pro	gram (Outcom	es (1 -	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3	3	2		-	-	2	-	-	2
CO2	3	3	3	3	3	-	-	2	2	-	-	2
CO3	3	3	3	3	3	-	-	2	2	-	-	2
CO4	3	3	3	3	2	-	-	-	2	140	-	2
CO5	3	3	3	3	3	-			2	-	-	2

18A3205991: Aptitude and Reasoning 2


	ibution ım, 3 – 1		irse Ou	tcomes	toward	s achie	vement	of Pro	gram C	utcome	s (1 –)	Low, 2
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	-	3	-	2	-	-	-	-	2	-	3
CO2	2	-		-	-	-	-	2	-	-	2	2
CO3	3	-	2	-	-	- I	-	-	-	-	_	2
CO4	3	_	2	2	-	-	_	-	-	-	-	3

18A3205791-HACKATHON

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	-	-	:#0	-	-	-	-	-	3
CO2	3	3		-	-	1.7:	-	-	-	-	-	3
CO3	3	3	-	-	_	· ·	-	-	-	_		3

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Course Code- Cryptography and Network Security

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	O3
CO1	3	2	-	-	-	2	-	-	-	-	-	8	3	-	2
CO2	3	3		2	-	2	-	-	-	-	~:	-	3	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-		3	2	-
CO4	3	3	-	2	-	-	-	-	-	-	-	-	3	2	2
CO5	3	2	-	2	-	-	-	-	-	-	-	-	3	2	2
CO6	3	2	-	2	-	-	-	-	-		-	-	3	2	2
Avera ge	3	2.5		2		2							3	2	2

Course Code-NATURAL LANGUAGE PROCESSING

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO 1	PO 2	PO 3	PO 4		PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1		P S O 3
CÓ1	2	2	3	-	2	-	-	-	-	-	-	-	3	3	$\bar{2}$
CO2	2	3	3	-	2	-	-	-	-		-	-	2	-	3
CO3	-	2	2	2	3	æ:	-	-	:=	-	-	-	2	-	2

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

MBB

CO4	2	3	3	3	.3	-	-	-	:::::::::::::::::::::::::::::::::::::::	•	-	-	2	2	2
CO5	-	2	2	3	3	-	-	-	_` =	-		-	2	2	2.
Avera ge	2	2.4	2.6	2.6	2.6	:e:							2.2	2.	22

Course Code:Nano Technology

Con	tributio	n of Cou	rse Outc	omes to	wards ac	hieveme	nt of Pr	ogram (Outcom	es (1 – L	ow, 2-	
Med	lium, 3 -	– High)										
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	2						1			
CO2	3	2	1							1		
CO3	3	2	1									1
CO4	3	1	2								1	
CO5	3	1	2							1		
CO6	3	2	1									1
Aver age	3	1.5	1.5						1	1	1	1

Course Code- Augmented Reality & Virtual Reality

Contri	bution (of Cour	se Outc	omes to	wards	achieve	ment of	Progra	m Outc	omes (1	- Low,	, 2- Med	ium, 3	– Hiş	gh)
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	P
	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	S
	-	_		1	-		'								3
CO1	3	3	3	-	3	-	-	· -	-	-	-	-	2	-	-
CO2	3	3	3	-	3	-	-	-	-	-	-	-	-	2	-

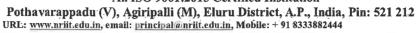
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada
Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

NBA

CO3	3	3	3	-	170	-	-	-		*	-	-	-	2	-
CO4	3	3	3		-	-	-	-	-	-	-	-	-	-	3
CO5	3	3	3	-	3	-	-	-	-	-	-	3	_	-	3
CO6	3	3	3	:=:	-	-	-	-	-	-	-	-	3	-	-
Avera ge	3	3	3		3							3	2.5	2	3

Course Code- BLOCKCHAIN TECHNOLOGY


Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	P S O 3
CO1	3	3	2	2	-	-	-		-	-	-	3	3	3	2
CO2	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3
CO3	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3
CO4	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3
Avera	3	2.25	2.75	2					ŧ			ã	3	2. 25	2. 7 5

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Course Code- INTELLIGENT SYSTEMS

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	P
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	S O 3
CO1	-	2	-	-	2	2	-	-	3	-	-	2	2	-	2
CO2	2	-	-	-	-	· -	-	3	-	3	-	-	2	-	-
CO3	-	3	3	-	-	3	-	-	-	-	-	-	3	-	3
CO4	-	* -	-	3	-	-	3	-	-	-	3	-	-	3	-
Avera ge	2	2.5	3	3	2	2.5	3	3	3	3	3	2	2.3	3	2.

Course Code-Real Time Systems

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO3
CO1	2	2	2		2								2	2	2
CO2	3	2	2		2									2	
CO3	3	2	3										2	2	2
CO4	2	2	2		2								2	2	2
Ave rge	2.5	2	2.2		2								2	2	2

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

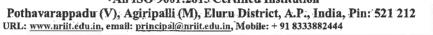
COURSE CODE- DATA SCIENCE

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

•	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO.		PSO
	1	2	3	4	5	6	7	8	9	10	11	12	, I	O2	3
CO1	3	2	2	2	2	2							2	2	3
CO2	2	2	3	2	2						T		2	2	2
CO3	2	2	3	2	2								3	3	2
CO4	3	3	2	3	3	3							2	3	2
CO5	3	3	2	3	3	3							2	3	2
CO6	2	2	2	3	3	3							2	3	3
Avera ge	2.5	2.3	2.3	2.5	2.5	2.75							2.16	2.6	2.3

COURSE CODE- HIGH PERFORMANCE COMPUTING

Contribution of Course Outcomes towards achievement of Program Outcomes


(1 - Low, 2- Medium, 3 - High)

	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2			2				2					2		
CO2														2	40-40
CO3	2					2				2		-	2		
CO4		2			3			2							2
Average	2	2		2	3	2		2	:	2			2	2	2

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

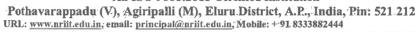
Course Code-MACHINE LEARNING

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2		2	3	3			<u> </u>					2	2	
CO2			2	2	2				:					2	3
CO3			2	3	2									2	2
CO4	2		3	2	2									3	
CO5	2		2	2	2								2		
CO6	2		2		2									2	2
Average	2		2.16	2.4	2.16								2	2.2	2.3

AI APPLICATION DEVELOPMENT LAB

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)


mgn)												
7	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3	3	2	-	-	-	2	-	-	2
CO2	3	3	3	3	3	-	-	2	2	_	-	2
CO3	3	3	3	3	3	_	-	2	2	_	-	2
CO4	3	3	3	3	2	-	-	-	2	-	-	2
CO5	3	3	3	3	3	_	-	_	2	-	-	2
CO6	. 3	$\bar{3}$	3	: 3	2	-	-	-	2	-	_	2
Average	3	3	3	3	2.5			2	2			2

NRI INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Course Code- Predictive Analytics

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2	3
CO1	3	2	2	2	2	2					2		2	2	3
CO2	2	2	3	2	2						2		2	2	2
03	2	2	3	2	2		-				2		3	3	2
O4	3	3	2	3	3	3					2		2	3	2
O5	3	3	2	3	3	3		-			ż		2	3	2
06	2	2	2	3	3	3					2		2	3	3
vera e	2.5	2.3	2.3	2.5	2.5	2.75					2		2.16	2.6	2.3

Course Code- The Full Stack Web Development - LAB

Contri	ibution	of Cour	rse Out	comes to	owards	achieve	ment of	Progra	m Outc	omes (1	- Low,	2- Med	ium, 3	– Hi	gh)
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	P
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	S O 3
CO1	3	2	2		2			2					3	2	2
CO2	3	2	2				2					2	3	2	2
CO3	2	2	2								#		2	2	2
CO4	2	2	3						2				2	2	3

NRI INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

CO5	2	2	2	 	-				2	 	2	2	2
CO6	2.	2	2	 		:	·	_27	_ <u>-</u> _	 see the	2	2	2
Avera ge	2.3	2	2.16	2		2	2	2	2	2.	2.3	2	2. 16

IV YEAR II SEMESTER

Course Code-DEEP LEARNING

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 -High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS O1	PS O	P S
******	1	2	3	4	5	6	7	8	9	10	11	12		2	0
CO1	3	2	3	3	2	2							3	2	2
CO2	2	3	3	2	2	2							2	2	2
CO3	3	3	2	2	2	3							2	2	3
CO4	3	3	3	2	3	3				1			3	2	3
CO5	3	3	2	3	2	3							3	2	2
Avera ge	2.8	2.8	2.6	2.4	2.2	2.6							2.6	2	2.

NRI INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

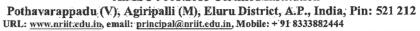
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

Course Code-SYSTEM MODELLING AND SIMULATION

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High) PO PS PS P 02 S 01 1 2 3 4 5 6 7 8 9 10 11 12 O 3 $\overline{2}$ COI 3 2 3 3 2 2 CO₂ 2 2 2 3 2 CO3 3 2 2 CO₄ 3 2 2 2 CO5 3 3 2 2 3 CO₆ 2 2 3 2 2 3 3 2 2. Avera 2.6 2 2 2.6 2 2 2 6 ge

Course Code-Social Networking and Semantics


Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	S O 3
CO1										_					
COI	3	3	2	2	-	-	-	-	-	-	-	3	3	3	· 2
CO2	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3
CO3	3	2	3	2	-	-	-	-	-	-	1 -	3	3	2	3
ČO4	3	2	3	2	-	-	-	-	-	_	-	3	3	2	3
Avera	3	2.25	2.75	2								3	3	2.	2.

NRI INSTITUTE OF TECHNOLOGY (AUTONOMOUS)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

25

ge

Course Code- CYBER FORENSICS

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	P S O
CO1	3	-	2	2	-	_	-	-	-	-	-	3	3	3	2
CO2	3	2	3	2	-	-	-	-	-	-	-	-	3	2	3
CO3	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3
CO4	3	-	3	2	-	-	-	-	-	-	-	_	3	$\ddot{2}$	3
Avera ge	3	2	2.75	2								3	3	2. 25	2. 7 5

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AiCTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

	Subject Name	PYTHON PROGRAMMING LAB	. C218
--	--------------	------------------------	--------

Course Code	Course Outcome
C218.1	Students able to experience with an interpreted Language and to build software for real needs architectural models
C218.2	Students able to use basic Decision structures, Boolean logic, variable types, assignments and operators. simple applications using Arduino.
C218.3	Students able to describe and use of Python lists, dictionaries, tuples and sets.
C218.4	To implement methods and functions to improve readability of programs methodology,top-down concepts in algorithm design.
C218.5	Students able to describe and apply object-oriented programming methodology,top-down concepts in algorithm design.
C218.6	Students should be able to design, code ,test and debug python language programs

	725					CO-	PO & P.	SO Rel	evance	Matrix					
Cours e Code	P O 1	PO2	PO 3	PO4	PO5	PO6	PO7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C218.1	3	3	2	2	2	2	-	-	-	-	2	2	3	3	2
C218.2	-	3	2	2	2	2	-	-	-	-	2	-	3	3	-
C218.3	3	2	-	2	2	-	-	-	-	-	2	2	3	3	2
C218.4	-	3	3	3	2	-	-	-	2	-	2	2	3	3	2
C218.5	3	*	2	2	2	-	-	-	-	-	-	2	3	3	-
C218.6	3	3	2	2	2	-	-	-	-	-	2	2	3	3	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriif.edu.in

Subject Name	Database Management systems	C213

Course Code	Course Outcome
C213.1	Ability to define, understand the database management system structure
C213.2	Ability to apply SQL as well as relational algebra to find solutions to a broad range of queries
C213.3	Ability to design ER diagrams or database for given scenario
C213.4	Ability to create applications using various normal forms, functional dependencies, validating and identifying anomalies.
C213.5	Ability to design application using locking methods and recovery management.
C213.6	Ability to conduct experiments of database using modern tools.

Cour				57		CO	-PO &	PSO R	elevan	ce Mat	rix			188	
se Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C213	3	3	-	-	-	-		-	-	-	-	-	3.00	2.00	3.00
C213	3	3	3	-	-	-		š	•	-	-	8	3.00	2.00	2.00
C213	-	-	3	-	20	-	-	×	20	(H)	~	ě	3.00	2.00	2.00
C213	2	2	3	-	-		-	-	4)	4	100	-	3.00	2.00	3.00
C213	2	2	2	-	-	-	9	-	-	-	-28	-	3.00	2.00	3.00
C213	-		3	-			-	w,	*		(#());	-	3.00	2.00	2.00

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name	DIGITAL LOGIC DESIGN	C214

Course Code	Course Outcome
C214.1	Understand the numeric information in different forms and interpret different logic gates.
C214.2	Minimize the given Switching functions in SoP and PoS forms using K-Map and Tabular Method
C214.3	Analyze and Design various combinational circuits like Encoders, Decoders, Multiplexers, Demultiplexers, and Arithmetic Circuits.
C214.4	Design combinational logic circuits using different types of Programmable Logic Designs. dependencies, validating and identifying anomalies
C214.5	Design and Implement various sequential circuits like flip flops, registers.
C214.6	Design the state dia

Co					(CO-P	0 & PS	O Rel	evance	Matrix	C				
e Co de	PO1	PO2	PO 3	PO 4	PO 5	P O 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO1 2	PSO 1	PS O2	PSO 3
C2 14. 1	3	3	-	-	-	-	-	-	-	-	-	-	-	2	-
C2 14. 2	3	3	3	-	-	-	-	-	-	3	-	2	2	-	-
C2 14. 3	-	-	3	-	-	-	-	-	-	-	-	2	2	-	-
C2 14. 4	2	2	3	-	-	-	-	-	-	3	-	-	-	2	-
C2 14. 5	2	-	2	-	-	-	-	-	-	3	-	2	2	2	-
C2 14. 6	-	-	3	- v	-	-	-	-	-	-	-	-	-	-	-

NRI

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name	Discrete Mathematical Structures	C211

Course Code	Course Outcome
C211.1	Apply the concept of Mathematical Logic in software development process.
C211.2	Apply the recurrence relation for analyzing recursive algorithms.
C211.3	Student will able to understand the concepts of group theory.
C211.4	Apply the concept of group theory in robotics, computer vision & computer graphics.
C211.5	Student will able to understand the concepts of graph theory and Trees.
C211.6	Use the concepts of graph theory to provide solutions for routing applications in computer networks

Cours e Code		CO-PO & PSO Relevance Matrix														
	P O 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C211.	3	3	-	-	in	-	-	-	ē	,	-	-	-	-	-	
C211.	3	3	3	-	-	-	-	-	ê	4	•	-	2.00	-	-	
C211.	-	-	3	-	-	-	-	, •	*	-	-	-	()-	×	-	
C211.	2	2	3	100	7	55:	-	1.7	~	-	್	5	19-	2.00	*2	
C211.	2	×	2	-	-	(2)	-	-	2	-	-	ų.	92	-	2.00	
C211.	-	=-	3	-	-	296	-	1.00	×	-	-5	ŧ	100	-	40	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Dolhi & Permanently affillated to JNTUK, Kakinada

Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name DATA STRUCTURES C212

Course Code	Course Outcome
C212.1	Ability to illustrate the concepts of algorithm apply the learning concepts to design data structure for the given problem definition.
C212.2	Ability to design applications using stacks and queues and implements various types of queues
C212.3	Analyze and implement operations on linked list and demonstrate their applications
C212.4	Ability to analyze and implement operations on trees
C212.5	Ability to demonstrate various operations on binary search trees and its applications
C212.6	Ability to evaluate the properties and operations on graphs and implement the graph applications

Course Code	T.Y	CO-PO & PSO Relevance Matrix														
	P O 1	P O2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C212.1	3	3	-	2	-	-	-	-	-	-	-	3	3	2	2	
C212.2	3	3	3	2	-	-	-	-	-	-	-	3	3	2	2	
C212.3	-	-	3	2	-	-	-	-	-	-	-	3	3	2	2	
C212.4	2	2	3	2	-	-	-	-	-	-	-	3	3	2	2	
C212.5	2	-	2	2	-	-	-	-	-	-	-	3	3	2	2	
C212.6	-	-	3	2	-	-	-	-	-	-	-	3	3	2	2	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)
Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

	Professional ethics	
Subject Name	and Human Values	C2110

Course Code	Course Outcome
C2110.1	Grooms themselves as ethical, responsible and societal beings fund of knowledge
C2110.2	Discuss ethics in society and apply the ethical issues related to engineering
C2110.3	Exhibit the understanding of ethical theories in professional environment
C2110.4	Recognize their role as social experimenters (engineers) and comprehend codes of ethics
C2110.5	Identify the risks likely to come across in the professional world, analyzing them and find solutions environment
C2110.6	Realize the responsibilities and rights of engineers in the society. computer networks

Course Code		CO-PO & PSO Relevance Matrix														
	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C2110.1		-	-	-	-	3	3	-	-	95 7	-	-	-		К-	
C2110.2	-		-	-:	-	3	3	3	-	30)	ec:	-	2.00	e e	-	
C2110.3	-	-	u:	-0	-	-	-	3	ä	-	-	-	· ·	-	-	
C2110.4	-		-	pp 1	-	2	2	3	20	- 21	47	-	-	2.00	-	
C2110.5	3	7.	-		-	2	-	2	4.	÷.	-	-	<u> (%)</u>	-	2.00	
C2110.6	-	-0.5	-	-	-	-:	-	3	-	.57	-	-	-9	-	eg:	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanentiy affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	DATA BASE MANAGEMNET SYSTMS LAB	C217
--------------	---------------------------------	------

Course Code	Course Outcome
C217.1	Queries for Creating, Dropping, and Altering Tables, Views, and Constraints architectural models
C217.2	Queries to Retrieve and Change Data: Select, Insert, Delete, and Update simple applications using Arduino.
C217.3	Queries using Built-In Functions: String Functions, Numeric Functions, Date Functions and Conversion Functions
C217.4	Queries using Group By, Order By, and Having Clauses
C217.5	Queries on Joins and Correlated Sub-Queries
C217.6	Queries on Controlling Data: Commit, Rollback, and Save point

Course	CO-I	CO-PO & PSO Relevance Matrix														
Code	PO 1	PO 2	PO 3	PO4	PO5	P06	PO7	PO 8	PO 9	PO1 0	PO1	PO12	PSO 1	PSO 2	PSO 3	
C217.1	3	3	2	2	2	2	-	-	-	-	2	2	-	-	2	
C217.2	-	3	2	2	2	2	-	-	-	-	2	-	-	2		
C217.3	3	2	-	2	2	-	-	-	-	-	2	2	3	-	2	
C217.4	-	3	3	3	2	-	-	-	-	-	2	2	-	-	-	
C217.5	3	-	2	2	2	-	-	-	-	-	-	2	3	-	-	
C217.6	3	3	2	2	2	-	-	-	-	-	2	2	-	3	-	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name	DATA STRUCTURES LAB	C216

Course Code	Course Outcome	
C216.1	Implement different searching and sorting techniques. Compare different searching and sorting techniques.	
C216.2	Design linear data structures stacks, queues and linked lists	
C216.3	Design nonlinear data structures trees and Graphs, and implement their operations	
C216.4	Be capable to identity the appropriate data structure for given problem	
C216.5	Have practical knowledge on the applications of data structures	

Course Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C211.1	3	3	-	i e	•	2	-	9.	-		-	em.	-	-	
C211.2	3	3	3	×	*	*	*	-	-	-	40		C	-	-
C211.3	-i));	ar I	3	pi	1	2	¥	2	•	=	- 50	-	-	-	-
C211.4	2	2	3.		in.	*1	ž.		-	a	1.*		-		(
C211.5	2	a).	2	-		*	-	w:	460	-		101	a)	-	
C211.6	ė	e)	3	- 5	•	n	ž.	-	7)	Ŧ		8	•	5.	-0

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name	INTERNET OF THINGS LAB	C215
--------------	------------------------	------

Course Code	Course Outcome	
C215.1	Interpret the impact and challenges posed by IoT networks leading to new architectural models	
C215.2	Explain the basics of microcontrollers, architecture of Arduino and develop simple applications using Arduino.	
C215.3	Outline the architecture of Raspberry Pi and develop simple applications using Raspberry, select a platform for a particular embedded computing application	
C215.4	Interpret different protocols and compare them and select which protocol can be used for a specific application	
C215.5	Select IoT APIs for an application	

		CO-PO & PSO Relevance Matrix														
Course Code	P O 1	P O 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3	
C215.1	3	3	2	2	2	2	-	-	-	-	2	2	2	2	2	
C215.2	-	3	2	2	2	2	-	-	-	-	2	-	2	2	2.00	
C215.3	3	2	-	2	2	-	-	-	-	-	2	2	2	2	2	
C215.4		3	3	3	2	-	-	-	-	-	2	2	2	2		
C215.5	3	-	2	2	2	-	-	-	-	-	-	2	2	2		
C215.6	3	3	2	2	2	-	-	-	-	-	2	2	2	2		

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name	Psychology	C211
Subject Name	1 Sychology	C211

Course Code	Course Outcome
C211.1	The student will be able to understand the inter relationship of knowledge and our fund of knowledge
C211.2	The students develops the discrimination between true and false knowledge
C211.3	The students develops moral sense of Indian society
C211.4	The students extends his mental horizons in understanding different stands of moral order
C211.5	The students intuitively grasps the ways of understanding the world and our environment
C211.6	The students gains an insight into the very nature of Science and Technology computer networks

	CC	CO-PO & PSO Relevance Matrix														
Course Code	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C211.1	3	3	-	2	-	ü	2	J.	-	G	21	-	7.20	2	-	
C211.2	3	3	3	-	-			7/2	- 5	0.	.50	-		-		
C211.3	-	-	3	~	-	-	-	-	-	×	- 53	-	5.5	-	-	
C211.4	2	2	3	-	134	-	*	*	-	-	340	-	-		×	
C211.5	2	- 5	2	-	84	-	2	-	-	2	4.5	2		10		
C211.6	20	2	3	-	~	93	, u		-	-	201	¥	-	2	el.	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	COMPUTER ORGANIZATION	224

Course Code	Course Outcome
C224.1	Students can understand the architecture of modern computer. They can analyze the Performance of a computer using performance equation
C224.2	Students can calculate the effective address of an operand by addressing modes
C224.3	Understanding of different instruction types.
C224.4	Evaluate I/O system also demonstrate the connection and interfacing of I/O devices with the system
C224.5	Summarize basic concepts on memory and differences between those memories
C224.6	Understanding of how a computer performs arithmetic operation of positive and negative numbers.

		CO-PO & PSO Relevance Matrix														
Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	
C223.1	3	-	2	_	_	-	_	_	_	_	_	_	3	-	3	
C224.2	2	3	3	3	-	-	-	_	-	-	-	-	3	3	-	
C224.3	3	-	3	3	_	_	-	_	_	_	-	_	3	3	3	
C224.4	2	-	2		-	-	-	-	-	-	-	-	2	-	3	
C224.5	3	_	3	_	-	-	-	_	_	-	-	-	3	-	3	
C224.6	2	_	3	_	_	_	_	_	_	_	_	_	3	_	-	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866-2469666, Email: principal@nriit.edu.in

Subject Name

PROBABILITY AND STATISTICS 221

Course Code	Course Outcome
C221.1	Student will be able to Find the measures of central tendency and relation between them.(L1)
C221.2	Student will be able to Evaluate the correlation coefficient, rank coefficient and regression.(L5)
C221.3	Students will be able to Understand probabilities of events and expectations of random variables for elementary problems.(L2)
C221.4	Students will be able to Solve problems related to binomial and passion distribution.(L3)
C221.5	Student will be able to Compare situations in which it is appropriate to consider the relevance of the Normal distribution.(L4)
C221.6	Student will be able to Construct hypothesis and carryout appropriate tests to checks its acceptability

		CO-PO & PSO Relevance Matrix														
Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	
C221.1	3	3	-	2	-	-	-	-	-	· **	- 37		181	-03	-	
C221.2	3	3	3	2	-		-	-	- 20	1961	ari i	-	2.00	34(×	
C221.3	-	=-	3	3	1112	*	-	26	162	-	a)	2	-	(4)	×	
C221.4	2	2	3	2	-		-		-	7.	30	*	-	2.00		
C221.5	2	27	2	2	5	1.00	ū.	-	167	160	(4)	×	-	-85	2.00	
C221.6		-	3	2	¥	(8)		2	31	-	-	50	-	-	-	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

6		
Subject Name	Software Engineering	C223

Course Code	Course Outcome
C223.1	Ability to outline the basic software engineering methods and practices and their appropriate application and Summarize software process models such as the waterfall and evolutionary model
C223.2	Ability to identify the software requirements of a given project and then design and develop an SRS document
C223.3	Ability to Make use of the developed SRS document and then build appropriate software design methodologies elementary problems.(L2)
C223.4	Ability to classify the different levels of software testing like black box and white box testing methodologies and apply testing methods to various real time projects
C223.5	Ability to apply the estimation, size and effort of a given real time projects using different estimation models, and conduct various experiments.
C223.6	Ability to test and validate quality of the software for various application

Course	CO-	CO-PO & PSO Relevance Matrix														
Code	PO 1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO9	PO1	PO1	PO12	PSO 1	PSO 2	PSO 3	
C223.1	3	3	-	2	-	-	-	2	-	2	2	2	2	2	-	
C223.2	3	3	3	2	-	-	-	-	2	2	-	-	-	-	2	
C223.3	-	-	3	3	-	-	-	2	-	-	2	2	2	2	2	
C223.4	2	2	3	2	-	-	-	2	2	2	-	-	-	-	-	
C223.5	2	-	2	2	-	-	-	-	-	2	2	-	-	-	2	
C223.6	-	-	3	2	-	-	-	2	2	-	-	2	2	2	-	

(NR)

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

	Web Technologies	
	and Advanced	
Subject Name	Java Programming	€222

Course Code	Course Outcome
C222.1	Create a website statically or dynamically.
€222.2	Get knowledge on displaying and decorating the contents in a web page
€222.3	Learn the concepts of store and transport the data among web pages elementary problems.(L2)
C222.4	Generate static or dynamic content according to the client's request.
C222.5	Create objects with which the client can communicate with server.
C222.6	Provide User Authentication by using cookies and back end operations using JDBC

		CO-PO & PSO Relevance Matrix														
Course	P 0 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C222.	3	3	-	2	-	-	~	-	-	-	: 4:3	2	3.00	2.00	-	
C222.	3	3	3	2	-			*	-	191	-	u.	3	2.00	2.00	
C222.	-	-	3	3	-	ŕ	•	(A)	-		-	2	3.00	2.00	2.00	
C222.	2	2	3	2	-5/	-	-		-	-	-	3	3.00	2	-	
C222.	2.	-	2	2	(4)	0	4	3.5	-		"	.5	3.00	2.00	2	
C222.	-2	-	3	2	1.00	-	-	(*)	×	(e)		2	3.00	2.00	2.00	

AUTONOMOUS

Accredited: NAAC with "A". NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	MICROPROCESSOR AND ITS APAPI CLATIONS	COOL
Subject Name	MICROPROCESSOR AND ITS APAPLCIATIONS	C225

Course Code	Course Outcome
C225.1	To Describe the basics of 8086 microprocessors architectures and its Functionalities
C225.2	To Design and develop 8086 Microprocessor based systems for real time applications using low level language like ALP
C225.3	Student have Illustrate how the different peripherals (8255, 8253 etc.) are interfaced with Microprocessor.
C225.4	Student have Distinguish and analyze the properties of Microprocessors & Micro controllers
C225.5	Student have Analyze the data transfer information through serial & parallel ports.
C225.6	Student have Train their practical knowledge through laboratory experiments

		CO-PO & PSO Relevance Matrix														
Course Code	P 0 1	P 0 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C223.1	2	2	2	-	_	-	_	_	-	-	_	-	2	-	3	
C225.2	2	2.	2	_	_	_	-	_		-		_	2	3	-	
C225.3	-	2	2	-	_	-	_	-	_	_	_	_	2	3	3	
C225.4	_	_	2	-	_	-	-	-	_	2	-	_	2	_	3	
C225.5	-	-	-	-	-	-	_	_	-	2	2	-	2	-	3	
C225.6	2	2	2	_	_	_	-	_	_	_	_	_	2	_	_	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

	WEB TECHNOLOGIES AND ADVANCED JAVA	
Subject Name	PROGRAMMING LAB	C226.

Course Code Course Outcome								
C226.1	Create a website statically or dynamically							
C226.2	Get knowledge on displaying and decorating the contents in a webpage							
C226.3	Learn the concepts of store and transport the data among webpages.							
C226.4	Generate static or dynamic content according to the client's request.							
C226.5	Create objects with which the client can communicate with server.							
C226.6	Provide User Authentication by using cookies and back end operations using JDBC							

		CO-PO & PSO Relevance Matrix														
Code	PO 1	P 0 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C226.1	3	3	2	2	2	2	-	2		3	2	2	-	-	2	
C226.2	17	3	2	2	2	2	-1	-	-	-	2	-11.	-	2.	-	
C226.3	3	2	-	2	2	e-	-		-	*	2	2	3	-	2	
C226.4	100	3	3	3	2	-	-	-	-	=	2	2	-	-	-	
C226.5	3	-	2	2	2	-	à5	ж	-	-	2	2	3	-	6	
C226.6	3	3	2	2	2	¥	(F)	31	-	-	2	2	3	3	-	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in; Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	MINI PROJECT	C228

Course Code	Course Outcome
C228.1	Independently carry out literature survey in identified domain, and consolidate it to
C228.1	formulate a problem statement
C220.2	Apply identified knowledge to solve a complex engineering problem and design a
C228.2	solution, implement and test the proposed solution
	Use synthesis/modeling to simulate and solve a problem or apply appropriate method of
C228.3	analysis to draw valid conclusions and present, demonstrate, execute final version of
	project
C220 4	Incorporate the social, environmental and ethical issues effectively into solution of an
C228.4	engineering problem
C228.5	Contribute effectively as a team member or leader to manage the project timeline
C228.6	Write pertinent project reports and make effective project Presentations

Course		CO-PO & PSO Relevance Matrix														
Code	P 01	PO 2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
C228.1	3	2	0	0	0	0	0	0	0	0	0	0	3	3	3	
C228.2	0	3	3	0	0	0	0	0	0	0	0	0	3	0	0	
C228.3	0	2	3	2	3	0	0	0	0	0	0	0	0	3	0	
C228.4	0	0	0	0	0	3	3	3	0	0	3	0	3	0	3	
C228.5	0	0	0	0	0	0	0	0	3	0	3	0	3	3	3	
C228.6	0	0	0	0	0	0	0	0	0	3	0	2	0	0	0	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	ADVANCED DATA STRUCTURES	C311
,		COLL

Course Code	Course Outcome
C311.1	Able to understand the importance, operations and application of Hashing
C311.2	Able to understand implementation of skip lists
C311.3	Able to get a good understanding about different balanced trees.
C311.4	Able to understand the implementation of heaps and binomial queues.
C311.5	Have an idea on applications of algorithms in a variety of areas, like string matching, indexing etc.
C311.6	Able to understand the importance and applications of tries

		CO-PO & PSO Relevance Matrix														
Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C311.1	3	3	-	-	-	-	-	-	-	-	-	-	3	2	2	
C311.2	3	3	3	2	-	-	-	-	-	-	-	-	3	2	2	
C311.3		-	3	3	2	-	-	-	-	-	-	-	3	2	2	
C311.4	2	2	3	-	-	-	-	-	-	-	-	2	3	2	2	
C311.5	2	-	2	2	2	-	-	-	-	-	-	2	3	2	2	
C311.6		-	3	-	-	-	-	-	-	-	-	2	3	2	2	

AUTONOMOUS

Accredited | NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name	COMPUTER NETWORKS	C312
Subject Halle		0312

Course Code	Course Outcome
C312.1	Will be able to understand OSI and TCP/IP models, various topologies and LAN, MAN, WAN
CSIZII	Technologies and example networks
C312.2	Will be able to identify characteristics of Transmission Media and Classify various Multiplexing
C312.2	and Switching Techniques
0212.2	Will be able to calculate block coding techniques for EDC and ECC along with various data link
C312.3	control protocols.
C312.4	Will be able to locate the different channel allocation problems, and design various CSMA and
	controlled Access Protocols and Routing protocols.
C312.5	Will be able to identify various MAC sub layer protocols in wired and wireless LANs.
C312.6	Will be able to analyze various application layer protocols for WWW and wireless web.

C		CO-PO & PSO Relevance Matrix														
Code	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C312.1	3	3	-	*	-	- 2	- 1	-	-	-	-	-	-	3	-	
C312.2	2	3	-	-	-	-	-	-	-	-	-	-	3	-	-	
C312.3	3	2	3	2	74	-	-	-	-	·	2	-	-	3	3	
C312.4	2	2	2	-	-	-	-	-	-)je:	3.00	-	3	3		
C312.5	3	- i-	2	9	*	-	•	-	*	-	2	-	3	3	-	
C312.6	-	*	3	-	(e)	-	: - :	-	5.43	-	3:	3	-	3.00	-1	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Dolhi & Permanently affillated to JNTUK, Kakinada
Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriil.edu.in

Subject Name	DATA WAREHOUSING AND DATA MINING	C314

Course Code	Course Outcome
C314.1	Students will understand purpose and use of mining, various mining techniques and issues in mining.
C314.2	Students will understand pre-process and they will apply preprocessing before actual mining begins
C314.3	Students able to distinguish between database and data warehouse & OLTP and OLAP queries, able to work with multi-dimensional databases.
C314.4	Students learn about classification and various classification techniques like decision tree building, Bayes theorem, Naive Bayesian Classification, Bayesian Belief Networks
C314.5	Students learn about Association analysis and basic concepts and algorithms
C314.6	Students will be able to learn Cluster Analysis: Basic Concepts and Algorithms

Cours		CO-PO & PSO Relevance Matrix														
e Code	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C314.	3	3	2	3	3		1		14		, 1. 5		3	3		
C314.	3	3	3	2	3								2	3	-	
C314.	3		3	3	3		177						2	3		
C314.	3	3		3	3		12			-2			3	3		
C314.	3	3	3	3	3	-							3	3	3	
C314.	3	3		3	3							M.	2	3		

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name FORMAL LANG & AUTOMATA THEORY C313

Course Code	Course Outcome
C313.1	Students will be able to define the mathematical principles behind theoretical computer science
C313.2	Students will be able to differentiate and give examples for the different types of automata like finite automata, push down automata, linear bounded automata and turing machine.
C313.3	Students will be able to correlate the different types of automata to real world applications.
C313.4	Students will be able to choose and design appropriate automata for the different requirements outlined by theoretical computer science.
C313.5	Students will be able to identify the different computational problems and their associated complexity.
C313.6	Summarize computability, decidability and complexity through problem solving

Cour						CO-F	0 & F	SO Re	levanc	e Matr	ix			Gal.	
se Code	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1	PSO 1	PSO 2	PSO 3
C313.	3	3	2.0		_	_	e e	_		l =	_	3.00	_	3	•
C313.	2.00	3	2	3	2.0	_	_	_	:#5	_	-	2.00	2	3	3
C313.		2	3		3.0	_	e)			<u> </u>	5	3.00	3	2	3
C313.	2.00	2	2	μ,	-0	er er		1 4		-4)_	- 4	2	2	3	
C313, 5	2	3	3		-	-		-	-11		·	-	2	3	345
C313.	3	2	-	-	1/20	G	27	-	-	27	2	12	-	2	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanentiy affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

	Introduction to
Subject Name	ROBOTICS

Course Code	Course Outcome					
C315.1	Identify various robot configurations.					
C315.2	Understand the basic components of robots.					
C315.3	Evaluate D-H notations for simple robot manipulator.					
C315.4	Perform trajectory planning for a manipulator by avoiding obstacles					
C315.5	Select appropriate actuators and sensors for a robot.					
C315.6 Illustrate the industrial applications of robots.						

0	Jh.,			34		CC	PO &	PSO	Releva	nce Ma	trix		6-4		100
Cours e Code	P O 1	PO 2	PO 3	PO 4	PO 5	P O 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C315.	3	3	2.00	-	-	_	-	-	-	_	-	3.00	_	3	_
C315.	2.0	3	2	3	2.00	_	-	-	-	_	_	2.00	2	3	3
C315.	-	2	3	-	3.00		_	-	-	-	-	3.00	3	2	3
C315.	2.0	2	2	_	_		-	-	_	2.00	2.00	_	2	3	_
C315.	2	3	3	-	-	_	-	-	-	-	-	-	2	3	-
C315.	3	2		_	-	_	-	_	-		-		-	2	_

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name	- Computer Networks LAB	C319
		0317

Course Code	Course Outcome
C319.1	Should be able to Calculate Data link layer farming methods like bit stuffing and byte stuffing.
C319.2	Should be able to Analyze Cyclic redundancy check on different polynomials
C319.3	Should be able to understand Socket Programming Implementation by using TCP and UDP Protocols.

3		CO-PO & PSO Relevance Matrix														
Course Code	P 0	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C319.1	3	3	-	-	2	2	-	-	-	-	2	2	-	*	2	
C319.2		3	-	-	2	2	-	-	(an)	2	2	-	-	2	~	
C319.3	3	2	-	-	2	-	Ti.	Q.T.	(8)	15:	2	2.	3	-	2	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriil.edu.in

Subject Name	COMPETATIVE CODING LAB	C319

Course Code	Course Outcome
C319.1	Understand and design solutions for problems based on various printing patterns/shapes
C319.2	Understand the basic principles of various number based problems and design solutions
C319.3	Apply appropriate algorithm design technique to solving array based application problems
C319.4	Identify suitable method to solve problems based on functions and recursion
C319.5	Understand and solve problems based on pointers
C319.6	Analyze and design solutions based on linked lists, stacks and queues.

						C	0-PO	& PSO	Releva	nce M	atrix				
Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1	PSO 1	PSO 2	PSO 3
C319.1	3	3	-	-	2	2	-	-	-	-	2	2	-	-	2
C319.2	-	3	-	-	2	2	-	-	-	-	2	-	-	2	-
C319.3	3	2	-	-	2	-	-	-	-	-	2	2	3	-	2
C319.4	-	3	-	-	2	-	-	-	-	-	2	2	-	-	-
C319.5	3	-	-	-	2	-	-	-	-	-	- ,	2	3	-	-
C319.6	3	3	-	-	2	-	-	-	-	-	2	2	-	3	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name	Advanced Data Structures Lab	C317
V		

Course Code	Course Outcome					
C317.1	Implement Hashing					
C317.2	Students able to implement programs on skip lists					
C317.3	C317.3 Implement different balanced trees.					
C317.4	Implement heaps and binomial queues.					
C317.5	Implement various string matching algorithms					
C317.6	Implement different search trees					

Course	CO-PO & PSO Relevance Matrix														
Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C317.1	3	3	•	5	2	2	it i	-	3	12	2	2	-	7	2
C317.2		3	*	4	2	2	91	-	ā		2	=		2	-
C317.3	3	2	·*	4	2	*	(4)		-		2	2	3	-	2
C317.4	×	3	(#)	-	2		•		-	-	2	2	-	·	
C317.5	3	-	-	-	2	2	•		2	-	100	2	3		·
C317.6	3	3			2	ŝ	3	-	*		2	2	-	3	3

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK. Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name			
Subject Name Semmar	C311	seminar	Subject Name

Course Code	Course Outcome
C3111.1	Independently carry out literature survey in identified domain, and consolidate it to formulate a problem statement
C3111.2	Apply identified knowledge to solve a complex engineering problem and design a solution, implement and test the proposed solution
C3111.3	Use synthesis/modeling to simulate and solve a problem or apply appropriate method of analysis to draw valid conclusions and present, demonstrate, execute final version of project
C3111.4	Incorporate the social, environmental and ethical issues effectively into solution of an engineering problem
C3111.5	Contribute effectively as a team member or leader to manage the project timeline
C3111.6	Write pertinent project reports and make effective project Presentations

	BH					CO-	PO & F	SO Re	levance	Matri	x				
Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C3111.	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0
C3111.	0	3	3	0	0	0	0	0	0	0	0	0	3	0	0
C3111.	0	2	3.	2	3	0	0	0	0	0	0	0	0	3	0
C3111.	0	0	0	0	0	3	3	3	0	0	3	0	0	0	3
C3111.	0	0	0	0	0	0	0	0	3	0	3	0	0	0	0
C3111.	0	0	0	0	0	0	0	0	0	3	0	2	0	0	0

AUTONOMOUS

Accredited | NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

	DESIGN&ANALYSIS
Subject Name	OF ALGORITHM

Course Code	Course Outcome
C322.1	Students evaluate worst-case running times of algorithms using asymptotic analysis and components.
C322.2	Students evaluates the divide and conquer method explains when an algorithmic design situation demands it.
C322.3	Students evaluates the greedy method explains when an algorithmic design situation demands it.
C322.4	Student evaluates the dynamic-programming paradigm explains when an algorithmic design demands it.
C322.5	Student evaluates the back tracking method explains when an algorithmic design demands it. organizational and industries.
C322.6	Student evaluates the branch and bound paradigm and deterministic methods e-plain when an algorithmic design demands it.

		CO-PO & PSO Relevance Matrix														
Course Code	P 01	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C322.1	3	3	3	3	-		27	12	K	-		4	2	2	-	
C322.2	3	3	3	3			-	-	-		-	-	2	2	2	
C322.3	3	3	3	3	-	-	-	-	-	-		-		2	2	
C322.4	3	3	3.	3	-	-	-	-	-			10	2	3	3	
C322.5	3	3	3	3	-	-	-	-	-	-0	45	E)	2,	2	2	
C322.6	3	3	3	3	-	-	1.0	-	12=	-	171		3	2	2	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212
URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	COMPILER DESIGN	C323

Course Code	Course Outcome
C323.1	Describes the major concept and areas of language translation in compilers, the functionality and complexity levels of various translators, linkers, loaders
C323.2	Describes practical experience in phases of compiler
C323.3	Compare and differentiate various parsing and grammar transformation techniques
C323.4	Construct intermediate code and performs type checking
C323.5	Schedule symbol table and its organization.
C323.6	Illustrate Code generation, obtains machine independent code optimization and instruction scheduling.

Course Code	CO- PO & PSO Relev ance Matri														
	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO1 2	PS O1	PS O2	PSO 3
C323.1	3	3	-	-	-	-	-	-	-	-	-	-	2	2	3
C323.2	3	3	3	2	-	-	-	-	-	-	-	-	2	2	2
C323.3	-	-	3	3	-	-	-	-	-	-	-	-	3	2	2
C323.4	2	2	3	-	-	-	-	-	-	-	-	-	2	2	2
C323.5	-	-	2	2	-	-	-	-	-	-	-	-	2	3	2
C323.6	-	-	3	-	-	-	-	-	-	-	-	-	2	2	2

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

	ARTIFICIAL	
Subject Name	INTELLIGENCE	C326

Course Code	Course Outcome
C326.1	Possess the ability to formulate an efficient problem space for a problem expressed in English.
C326.2	Possess the ability to select a search algorithm for a problem and characterize its time and space complexities.
C326.3	Possess the skill for representing knowledge using the appropriate technique
C326.4	Possess the ability to apply AI techniques to solve problems of Game Playing, Expert Systems, Machine Learning and Natural Language Processing
C326.5	Apply the knowledge to develop the solutions for real life problems
C326.6	Develop new algorithms to contribute to the research arena

Co			115			CC	O-PO & I	SO Rele	vance Ma	trix	1	Jul 2			
e Co de	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO3
C3 26. 1	3	3	-	-	-	-	-	W	-	2.00	v	327	2	2	3
C3 26. 2	3	3	3	2	20	'n	-	2.00	2.00	14	2.00	(3)	2	2	2
C3 26. 3			3	3	-	-		Ē	8	9,	ŝ	Œ	3	2	2
C3 26. 4	2	2	3	-	5	-	-	2.00	-			٠	2,	2	2
C3 26. 5		œ.	2	2	-	-	-	-	2.00	2.00	2.00		2	3	2
C3 26.	±27.	120	3	5.	-	-	-	-	8	2.00	-	2.00	2	2	2

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanentiy affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212
URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

Operating Systems & Unix programming Lab

C327

Course Code	Course Outcome
C327.1	To Design various CPU Scheduling algorithms
C327.2	To implement system calls
C327.3	To Compare and contrast various memory management schemes
C327.4	To implement deadlock algorithms
C327.5	To Design and Implement a page replacement algorithms
C327.6	To Design and implement file allocation strategies

Cour						CO-P	O & PSO	Relevan	ce Mat	rix:			- 11/17		
co de	PO1	PO2	PO 3	PO4	PO5	P06	P07	PO8	PO 9	PO1 0	PO1	PO12	PSO1	PS 02	PSO 3
C3 27 .1	3	3	2	2	2	2	-	-	-	-	2	2	-	-	2
C3 27 .2	-	3	2	2	2	2	-	-	-	-	2	-	-	2	
C3 27 .3	3	2	-	2	2		-	-	-	-	2	2	3	-	2
C3 27 .4		3	3	3	2	•	-	-	-	-	2	2	-	-	-
C3 27 .5	3	-	2	2	2	(0)	-	-	-	-	S#3	2	3	-	
C3 27 .6	3	3	2	2	2	~	F	-	-	-	2	2	-	3	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

OPERATING SYSTEMS

C321

Course	Course Outcome
C321.1	To Understand the structure and functions of OS.
C321.2	To Design various Scheduling algorithms.
C321.2	to manage markets & break-even point.
C321.3	To Apply the principles of concurrency and Design deadlock,
C321.3	prevention and avoidance algorithms.
C321.4	To Compare and contrast various memory management schemes.
C321.5	To Design and Implement a prototype file systems.
C321.5	organizational and industries.
C321.6	To Perform administrative tasks on Linux Servers and to
C321.0	understand the basics of Android Operating System Internals.

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

R PROGRAMMING LAB

C328

Course Code	Course Outcome
C328.1	List motivation for learning a programming language.
C328.2	Access online resources for R and import new function packages into the R workspace
C328.3	Import, review, manipulate and summarize data-sets in R
C328.4	Explore data-sets to create testable hypotheses and identify appropriate statistical tests
C328.5	Perform appropriate statistical tests using R Create and edit visualizations
C328.6	Ability to analyze different Data Analytics Applications.

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nnit.edu.in

Subject Name

SOFTWARE TESTING METHODLOGIES

Course Code	Course Outcome
C325.1	Able To Understand Basic Testing Concepts And Models In Testing
C325.2	Able To Explore Basic Testing Techniques And Strategies
C325.3	Have Basic Understanding And Knowledge Of Contemporary Issues Like Component And Interface Testing
C325.4	Able To Support In Generating Test Cases And Test Suites.
C325.5	Have Basic Understanding And Knowledge About Graphs And Matrix Relations
C325.6	Apply Testing Methods And Tools To Resolve The Problems In Real Time Environment.

							CO-PO	& PSO	Relevan	nce Matrix							
Course Code	P 0 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C325.1			-	18.0	-	-	-	-	ie.	-	*	-	3	3	3.00		
C325.2	-	-	-	W/	3	w?	-	-	-	-		-	-	3	3.00		
C325.3		-	=	37		21	-	2	3	3	•	ű.	-	3	3.00		
C325.4	٠	-	-	et c	3	-		-	3	3		5	-	-	3		
C325.5	3	- E	ž	-	-	*2	•	3.00	-	-	750	-	3	vex.	3.00		
C325.6	-	12	2	25	3	41	¥	¥	3	3		ŷ.	721	un.	-3		

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu. Apirianili Mandalan Marianili Mandalan Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	Data Science	C414

Course Code	Course Outcome	
C414.1	Understanding the machine learning basics and how data is preprocessed	
C414.2	How linear models help in prediction	
C414.3	Able to understand Distance based models complexity estimate parameters using supervised and unsupervised training methods.	
C414.4	Able to designProbabilistic models	
C414.5	Able to design Nonlinear models and ensembles improve efficiency organizational and industries.	
C414.6	Able to design, implement, and analyze various neural networks algorithms opportunities.	

						CO-	PO & 1	PSO R	elevan	e Matı	rix				
Course Code	P 0 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C414.1	3	3	-	-	2	-	-	3	-	-	-	2	3	-	-
C414.2	3	2	3	2	3	-	-	3	-	-	-	3	3	3	-
C414.3	3	3	3	3	3	-	-	3	-	-	-	2	3	3	-
C414.4	2	3	-	-	3	-	-	3	-	-	-	3	3	3	-
C414.5	3	3	-	-	3	-	-	3	-	-	-	3	3	2	-
C414.6	3	2	-	-	3	-	-	3	-	-	-	3	2	2	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name MEF	A C411
------------------	--------

Course Code	Course Outcome
C411.1	Use the theory of managerial economics, demand, production analysis and forecasting theories.
C411.2	Analyse of production markets and pricing strategies. Functions and cost-price functions to manage markets & break-even point.
C411.3	Develop ability to identify, formulate and solve engineering problem by applying the knowledge of managerial economics.
C411.4	Theorize about characteristics features and types of industrial organization, concept of changing business environment in post-liberalization scenario.
C411.5	Enhance their capabilities in the interpretation of b/s that are followed in industries, organizational and industries.
C411.6	Apply financial analysis, capital budgeting techniques in evaluating various investment opportunities.

Course						C	O-PO &	PSO Re	levance	Matrix					
Code	PO 1	PO2	PO3	P04	PO5	P06	P07	PO8	P09	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO3
C411.1	2	-10	7.53	-		-	3	3	_	2	e	3	-	(+	2
C411.2	3	20	0E		-	-	3	-		3	-01	3	-	3	2
C411.3	_]	(4)	-		-		-	3	-	-	140	2		3	9
C411.4	3	- 20					3			3	_	3		3	
C411.5	_ [3	-		_	-	-	3	-		-	-	-	3	3
C411.6	,											3		2	2

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

OPERATION RESEARCH

Course Code	Course Outcome
C414.1	Formulate and solve the problems using LPP using different methods
C414.2	Find the appropriate times to replace items individually and as a group
C414.3	Formulate and solve Transportation, Assignment , sequencing problems
C414.4	Formulate and solve the problems having saddle and without saddle points
C414.5	Solve the queuing problems using different methods
C414.6	Solve different problems related to inventory maintenance, apply Dynamic programmingmethods

Course	-					CO	-PO &	PSO Re	levanc	e Matriz	K			100	
Code	PO1	PO2	РОЗ	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PS02	PSOS
C414.1	3	3	-	-	2	-	-	3	-	-	-	2	3	-	-
C414.2	3	2	-	-	3	-	-	3	-	-	-	3	3	3	-
C414.3	3	3	-	-	3	-	-	3	-	-	-	2	3	3	-
C414.4	2	3	-	-	3	-	-	3	-	-		3	3	3	-
C414.5	3	3	-	-	3	-	-	3	-	-	-	3	3	2	ž
C414.6	3	2	-	-	3	-	-	3	-	-	-	3	2	2	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

PREDECTIVE ANALYTICS LAB

Course Code	Course Outcome
C417.1	Able to Implement Linear and Multiple Regressions.
C417.2	Able to Estimating Probabilities using a logistic function and the prediction of Categorical placement.
C417.3	Able to build Various Time-series models
C417.4	Able to implement the applications single and multiple decision trees.
C417.5	Able to build multiple Linear regression models across the range of predictor values.
C417.6	Able to know outcome variable's values.

							CO-PO	& PSO E	Relevan	ce Matri	ж				
Code	P 0 1	PO2	PO 3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	P801	PS02	PSOS
C417.1	3	3	2	2	2	2	N.,	100	-	21	2	2	-	-	2
C417.2	3	3	2	2	2	2	N.	(J)	-	UE/.	2	2	-	2	
C417.3	3	2	2	2	2	-	•	1	-	:e-:	2	2	3	"	2
C417.4	3	3	3	3	2	-	-		-	×3	2	2	-	-	
C417.5	3	3	2	2	2	-	24	w	-	-	2	2	3	-	
C417.6	3	3	2	2	2	-	in.	20	-	-	-2	2	Si	3	3

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanentiy affiliated to JNTUK, Kakinada Pothavarappadu, Agiripaili Mandalam, Krishna Dt., Andhra Pradesh - 521212
URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

RESEARCH METHODOLOGY

Course Code	Course Outcome
C419.1	Have basic awareness of social research, research process and testing of hypothesis
C419:2	Have adequate knowledge on research designs and measurement scaling techniques as well as quantitative data analysis, to manage markets & break-even point.
C419.3	Apply various methodologies including sampling questioning, empirical techniques in their research work reports
C419.4	Construct the data for hypothesis testing and statistical quality control charts changing business environment in post-liberalization scenario.
C419.5	Construct the data using various multi-variate techniques and ANOVA for complex experimental design
C419.6	Construct the data using various bi-variate techniques and ANOVA for complex experimental design

	194	Marie .				CO	PO &	PSO R	levan	ce Matı	rix				-10-71
Course Code	P O 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	P80
C419.1	1	-	_]	-	-	3	3	-	2	-	-	-	-	2
C419.2	1	_]		_	_	_	3	_	_	3	-	3	_	3	2
C419.3	_			-	_		_	3		_	_	1	3	3	_
C419.4	3	-	-	-	-	-	3	-	-	3	-	3	-	3	-
C419.5	-	3	-	-	-	-	-	3	-	-	_	-	-	3	3
C419.6	2		_	_	-	-		-	-	_	-	3	-	3	3

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AiCTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

MINOR PROJECT

Course Code	Course Outcome
C419.1	Independently carry out literature survey in identified domain, and consolidate it to formulate a problem statement
C419.2	Apply identified knowledge to solve a complex engineering problem and design a solution, implement and test the proposed solution
C419.3	Use synthesis/modeling to simulate and solve a problem or apply appropriate method of analysis to draw valid conclusions and present, demonstrate, execute final version of project
C419.4	Incorporate the social, environmental and ethical issues effectively into solution of an engineering problem
C419.5	Contribute effectively as a team member or leader to manage the project timeline
C419.6	Write pertinent project reports and make effective project Presentations

Course	49	-		W.		С	о-ро &	PSO Rel	evance	Matrix					
Code	P 0 1	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO1 0	PO1	PO1 2	PSO 1	PSO 2	P80 3
C419.1	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0
C419.2	0	3	3	0	0	0	0	0	0	0	0	0	3	0	0
C419.3	0	2	3	2	3	0	0	0	0	0	0	0	0	3	0
C419.4	0	0	0	0	0	3	3	3	0	0	3	0	0	0	3
C419.5	0	0	0	0	0	0	0	0	3	0	3	0	0	0	0
C419.6	0	0	0	0	0	0	0	0	0	- 3	0	2	0	0	0

AUTONOMOUS

Accredited a NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

AI APPLICATION DEVELOPMENT LAB

Course Code	Course Outcome
C416.1	Describe various machine learning algorithms for AI applications
C416.2	Describe the development lifecycle of Al applications
C416.3	Describe the principles of AI for IoT applications
C416.4	Collect data from Internet and perform data preprocessing
C416.5	Identify suitable machine learning models for AI applications
C416.6	Develop software programs to effectively train machine learning models for AI applications features.

Co					CC)-PO 8	PSO	Rele	vance	Mat	rix				
e Co de	P O 1	P 0 2	P 0 3	PO 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	P 0 1	P 0 1	P 0 12	8 0 1	8 0 2	8 0 3
C4 16. 1	3	3	2	2	2		-	-	2	*	·	2	3.0 0	3. 0	
C4 16. 2	3	3	2	2	2	-	-	2	2	-		2	3.0 0	3. 0	-
C4 16. 3	3	2	2	2	2	-	-	2	2	-	*	2	3.0 0	3. 0	-
C4 16. 4	3	3	3	3	2	-	•	-	2	-	-	2	3.0 0	3. 0	-
C4 16. 5	3	3	2	2	2	8	-	-	2	-	-	2	3.0 0	3. 0	-
C4 16. 6	3	3	2	2	2	-	()	-	2	9	-	2	3.0 0	3. 0	-
Av era ge	3.0	2. 83	2. 1 7	2.1 7	2.0			2. 0 0	2. 0 0			2.0	3	3	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

Block Chain Technology

Course Code	Course Outcome
C419.1	Have basic awareness of social research, research process and testing of hypothesis
C419.2	Have adequate knowledge on research designs and measurement scaling techniques as well as quantitative data analysis. to manage markets & break-even point.
C419.3	Apply various methodologies including sampling questioning, empirical techniques in their research work reports
C419.4	Construct the data for hypothesis testing and statistical quality control charts changing business environment in post-liberalization scenario.
C419.5	Construct the data using various multi-variate techniques and ANOVA for complex experimental design
C419.6	Construct the data using various bi-variate techniques and ANOVA for complex experimental design

Course						CC	D-PO &	PSO Re	levance	Matrix					1
Code	PO 1	P02	РО3	PO4	PO5	P06	P07	PO8	PO9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	P803
C419.1	1/		-	-	- 21		3	3		2		-	-	-	2
C419.2	1	98	5	a	-8	ě	3	-		3	-	3	-<	3	2
C419.3	>=:	(6)			1.51		-	3	-6	-		1	3	3	(4.)
C419.4	3	164	-	-	ē		3	-	0	3	- 2	3	30	3	74
C419.5	J. J.	3	-		_		٠	3	41		×	-	3.5	3	3
C419.6	2		-				843		340		- 8	3		3	3

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

CRYPTOGRAPHY AND NETWORK SECURITY

Course Code	Course Outcome
C412.1	Understand the principles of cryptography and security, with enciphering Techniques and analyze a variety of threats and attacks.
C412.2	Distinguish the block ciphers and stream ciphers and apply them on a various symmetric cryptographic techniques.
C412.3	Analyze the principle and mathematical models used in public-key cryptosystems by applying them on differen (various) types of algorithms.
C412.4	Theorize about characteristics features and types of industrial organization, concept of Analyze and design the message authentication functions and digital certifications for secure communication.
C412.5	Analyze the user authentications principles and security approach at both the web and email.
C412.6	Understand the concepts of IP Security with its services and dealing with the prevention and detection of intrusions.

							CO-PO	& PSO	Relevan	ce Matr	ix				
Course Code	PO 1	P 0 2	РОЗ	P04	PO5	P06	PO7	POS	P09	PO10	PO11	PO12	P801	PSO2	PSOS
C412.1	3	3	-	-	-	2	-	3	-	-		2	3		PSU
C412.2	9	3	3	3	-	3	-	3	-		-	3	3	3	3
C412.3	93	3	3	3	-	3	-	3			-	2	3	3	3
C412.4	3	3		-		3	-	3	-		-	3	3	3	3
C412.5	3	3	-	-	(F)	3	-	3	-	-		3	3	2	2
C412.6	3	2	-	-	-	3	-	3		-		3	2	2	2

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph : 0866 2469666, Email: principal@nriit.edu.in

Social Networking and Semantics C421 Subject Name

Course Code	Course Outcome
C421.1	Ability to understand and knowledge representation for the semantic web.
C421.2	Learn the various semantic web applications.
C421.3	Ability to create ontology.
C421.4	Ability to build a blogs and social networks
C421.5	Ability to build real world blogs used in social netwroks

						(00-PO 8	PSO R	elevanc	e Matriz	CO-PO & PSO Relevance Matrix														
Code	PO 1	PO2	PO3	P04	PO5	P06	P07	PO8	P09	PO10	PO11	P012	P801	PSO2	PSO3										
C421.1	3	3	3	2	-	-	-	-	-	-7	-	2	3	3	2										
C421.2	3	2	3	2	-	-	-	-	-	-1	-	2	3	2	3										
C421.3	3	2	2	-	-	21	-		-01		-	2	3	2	3										
C421.4	3	3	3	- 1	-	-	-	-	-	-	-	2	3	2	3										

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Course codes Course Codes Allotted For All The Courses Of NRIA18 Regulation For 2018 And 2019 Admitted Batch

S. NO	Course Code	IT Program Code
1	C111	Profesșional English-1
2	C112	Engineering Mathematics-1
3	C113	Applied Physics
4	C114	Programming and Problem Solving with C
5	C115	Engineering Graphics
6	C116	English Communication Skills Lab-1
7	C117	Applied Physics lab
8	C118	Programming and Problem Solving with C Lab
9	C119	Environmental Studies
10	C121	Professional English-II
11	C122	Engineering Mathematics-II
12	C123	Applied Chemistry
13	C124	OOPS through Java
14	C125	Fundamentals of Electrical Engineering
15	C126	English Communication Skills Lab-II
16	C127	Applied Chemistry lab
17	C128	Automation Tools andProfessional Workshop
18	C129	OOPS through Java Lab

(NRI)

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

19	C211 .	Discrete Mathematical Structures
. 20	C212	Data Structures
21	C213	Data Base Management Systems
22	C214	Digital Logic Design
23	C215	Internet of Things Lab
24	C216	Data Structures Lab
25	C217	Data Base Management System Lab
26	C218	Python programming Lab
27	C219	Humanities elective-1
28	C2110	Professional ethics and Human Values
29	C221	Probability and Statistics
30	C222	Web Technologies and Advanced Java Programming
31	C223	Software Engineering
32	C224	Computer Organization
33	C225	Open Elective-1
34	C226	Web Technologies and Advanced Java Programming Lab
35	C227	Aptitude and Reasoning
36	C228	Mini project
37	C311	Advanced Data Structures
38	C312	Computer Networks
39	C313	Formal Languages and Automata Theory
40	C314	Professional Elective-1
41	C315	Open Elective-II
42	C316	Computer Networks lab
43	C317	Advanced Data Structures Lab
44	C318	Basics of Civil and Mechanical Engineering / Swayam/NPTEL **
45	C319	Competitive Coding

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)
Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

46	C3110	Seminar
47	C3111	Indian Constitution
48	C321	Operating Systems
49	C322	Design and Analysis of Algorithms
50	C323	Compiler Design
51	C324	Professional Elective -2(stm)
52	C325	Professional Elective -3(ds)
53	C326	Artificial Intelligence
54	C327	Operating Systems & Unix programming Lab
55	C328	R Programming lab
56	C329	Aptitude and Reasoning – 2
57	C3210	Hackathon
58	C3211	NSS / YOGA / Social service/ sports /gamesBiology for Engineers/Enterprising and Startup/
59	C411	Managerial Economics and Financial Accounting
60	C412	Cryptography and Network Security
61	C413	Professional Elective -4(bct)
62	C414	Professional Elective -5ds)
63	C415	Open Elective -3(or)
64	C416	AI application development Lab
65	C417	Predictive Analytics using R
66	C418	Agile Software Development & Devops
67	C419	Minor project ##
68	C4110	Research Methodology
69	C421	Professional Elective-6 Social Networking and Semantics
70	C422	Open Elective-4 Image procesing
71	C423	Major Project (Internal/Industry Internship) dissertation***

Head, IT Department
Head, IT Department
NR! Institute of Technology
POTHAVARAPPADU (V)
Adiripalli (M), Krishna Dist

	700000		00070	00	000	60,	200		
93	2.7827586	93	2.6379	88	3.00	100	CO 100	Ů	
89	2.6793103	88	2.5345	84	2.97	66	900		
П	2.6793103	68	2.5345	84	2.97	66	505)	
П	2.6961887	06	2.5345	84	2.97	66	C04	Solving	
98	2.615977	87	2.5345	84	2.84	92	CO3	Problem	C114
87	2.6348793	88	2.5345	84	2.85	92	C02	Programmi ng and	
98	2.6803993	88	2.5345	84	2.94	86	C01		
	2.5151991	84	2.4815	83	2.97	66	900		
	2.5688624	98	2.5361	82	2.98	66	505		
	2.5974192	87	2.5593	82	2.98	66	000	Physics	
	2.4369638	81	2.4462	82	2.87	96	CO3	Applied	C113
П	2.4635769	82	2.442	81	2.84	92	C02		
	2.4026518	80	2.3908	80	2.67	88	100	:=	
П	2.4671809	82	2.2241	74	2.94	86	900		
	2.4979463	83	2.2241	74	2.96	66	C05		
П	1.9700544	99	2.2241	74	1.96	65	C04	Mathematic s-1	
	2.2150544	74	2.2241	74	2.45	82	C03	6	C112
77	2.2421568	75	2.2241	74	2.38	79	C02	Engineerin	
83	2.4926832	83	2.2241	74	2.95	98	100		
98	2.4925399	83	2.9483	86	2.00	29	900		
96	2.8659129	96	2.9483	98	2.83	94	CO5		
94	2.764757	92	2.9483	86	2.59	86	CO4	English-1	
97	2.8762241	96	2.9483	86	2.81	94	CO3	Professiona	11
96	2.8556978	95	2.9483	86	2.76	92	C02		
87	2.5143477	84	2.9483	98	1.43	48	CO1		
%	(Tevel				J.C.				
Attainm	Direct	Oirect (%)		SEE (%)		CIE (%)		Code	Code
		No.	SEE				00	IT Program	Course
2.6115 2.8846 2.801 2.8927 2.8927 2.8927 2.2806 2.24027 2.4027 2.4027 2.5019 2.5152 2.5152 2.5188 2.5188 2.5188 2.5188 2.5188 2.5188 2.5666 2.5676 2.5676 2.5676 2.5676 2.5676 2.5676 2.5676 2.5676 2.5676	tajum minim	### Attainm ### Attainm ### Attainm ### ### ### ### ### ### ### ### ###	Direct (Level %) CO Ove Attainm (Level %) (Level %) % 2.5143477 87 2.8762241 97 2.8762241 97 2.764757 94 2.764757 94 2.764757 94 2.4926832 83 2.2421568 77 2.24978463 86 2.4979463 85 2.4979463 87 2.4026518 80 2.4035769 86 2.5974192 87 2.5688624 86 2.5688624 86 2.5688639 87 2.615977 86 2.615977 86 2.615977 86 2.6793103 86 2.6793103 89 2.77827586 93	Direct (%) Direct (%) CO Ove Attainm 84 2.5143477 87 95 2.8556978 96 96 2.8762241 97 96 2.8762241 97 96 2.8762241 97 96 2.8659129 96 83 2.4926832 83 75 2.2421568 77 74 2.2150544 75 66 1.9700544 77 66 1.9700544 77 66 1.9700544 77 83 2.497363 81 80 2.407363 81 81 2.4035769 86 84 2.5688624 86 88 2.5688624 86 89 2.6803993 86 88 2.6348793 87 88 2.615977 86 90 2.6961887 85 89 2.6793103 89 89 2.67931	CLev el) Direct (%) Direct (%) CLevel (Level) Attainm (Level) 2.9483 84 2.5143477 87 2.9483 96 2.8556978 96 2.9483 96 2.8762241 97 2.9483 96 2.8762241 97 2.9483 96 2.8762241 97 2.9483 96 2.8659129 96 2.9483 96 2.8659129 96 2.9483 96 2.8659129 96 2.241 83 2.4926832 83 2.2241 83 2.4926832 83 2.2241 83 2.4926832 83 2.2241 84 2.2150544 75 2.2241 86 1.9700544 77 2.2241 82 2.4671809 88 2.2241 82 2.46735769 86 2.4462 81 2.4635769 86 2.5345 88 2.688624 86	SEE (%) CLev el) Direct (%) Direct (%) CLevel Attainm 98 2.9483 84 2.5143477 87 98 2.9483 95 2.8556978 96 98 2.9483 96 2.8556978 96 98 2.9483 96 2.8556978 96 98 2.9483 96 2.8556978 96 98 2.9483 96 2.8659129 96 98 2.9483 96 2.764757 94 98 2.9483 96 2.8659129 96 74 2.2241 83 2.4926832 83 74 2.2241 75 2.2456832 86 74 2.2241 74 2.2241 77 74 2.2241 82 2.4076518 80 80 2.3908 80 2.4076518 87 81 2.2442 82 2.4673693 86 82 2.5593	CIE SEE (%) Direct (%) Direct (%) Direct (%) CO Over Attainm (Le vel) SEE (%) (Lev el) Direct (%) Direct (%) CO Over Attainm 2.76 98 2.9483 95 2.8556978 96 2.81 98 2.9483 96 2.8762241 97 2.59 98 2.9483 96 2.8762543 96 2.59 98 2.9483 96 2.8762543 96 2.59 98 2.9483 96 2.864757 94 2.00 98 2.9483 96 2.8659129 96 2.00 98 2.9483 96 2.864757 94 2.00 98 2.9483 83 2.4925399 86 2.23 74 2.2241 74 2.215054 77 2.95 74 2.2241 74 2.215054 77 2.96 74 2.2241 74 2.215054 77	CLE (%) CLE (%) CLE (%) CLE (%) CLE (%) CLE vel) Direct (%) Direct (%) CLO Over Attainment 48 1.43 98 2.9483 96 2.8552678 96 94 2.81 98 2.9483 96 2.8752671 97 94 2.81 98 2.9483 96 2.8752671 97 94 2.83 98 2.9483 96 2.8652129 96 94 2.83 98 2.9483 96 2.765241 97 94 2.83 98 2.9483 96 2.765239 86 65 7 2.00 98 2.9483 83 2.495683 87 98 2.95 74 2.2241 75 2.24559 77 199 2.96 74 2.2241 75 2.245168 77 99 2.94 74 2.2241 83 2.405683 81 98 2.94 <th>CD CIE (%) CIE (%) CLE (%) CLE</th>	CD CIE (%) CIE (%) CLE

74 Jun 1														1.5			٠.										٠,	٠, ٠					
Andreas and	1.95	1.95	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.4	2.4	2.4	2.4	2.4	2.4	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8			
1 2 = 1	65	65	70	70	70	70	70	70	.02	70.	0.7	70	80	- 08	80	80	80	80	09	09	. 09	09	09	-09	09	.09	09	09	09	60			
	2.8262	2.7745	2.9503	2.9503	2.8572	2.9503	3	3	2.9069	3	2.8966	2.8966	2.9917	2.9917	2.8986	2.9917	2.8883	2.8883	2.8645	2.8997	2.7557	2.8848	2.8785	2.8922	2.5943	2.9335	2.9176	2.8999	2.9465	2.5688			
	94	92	86	98	92	98	100	100	97	100	97	97	100	100	97	100	96	96	92	97	92	96	96	96	98	98	97	26	98	86			
	2.7827586	2.7827586	2.937931	2.937931	2.937931	2.937931	33	3	3	3	3	3	2.9896552	2.9896552	2.9896552	2.9896552	2.9896552	2.9896552	2.9082733	2.9263596	2.8498348	2.933536	2.925717	2.929844	2.492931	2.916931	2.896978	2.874931	2.933085	2.46098			
	93	93	98	98	98	98	100	100	100	100	100	100	100	100	100	100	100	100	97	88	95	98	98	98	83	97	97	96	98	82			
	2.6379	2.6379	3	3	3	3	3	3	3	3	3	3	3	3	е	3	3	n	2.8966	2.8966	2.8966	2.897	2.897	2.897	2.897	2.897	2.897	2.897	2.897	2.897			
	88	පිසි	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	97	97	26	97	26	97	16	97	26	26	16	26			
	3.00	3.00	2.84	2.84	2.84	2.84	3	3	3	3	3	3	2.974	2.974	2.974	2.974	2.974	2.974	2.94	2.98	2.78	2.99	2.99	က	1.71	2.97	2.92	2.9	3	2			
	100	100	35	35	(C)	35	100	100	100	100	100	100	66	66	66	66	66	66	86	66	93	100	100	100	57	88	26	97	100	29			
	C03	C04	C01	C02	CO3	CO4	CO1	C02	CO3	CO4	CO5	900	C01	C02	603	CO4	500	900	C01	C02	CO3	CO4	502	900	C01	C02	CO3	C04	500	900			
	g Graphics		Fnolich	Communic	ation Skills	Lab-1			Applied	Physics lab				Programmi	ng and	Solving	with C Lab				Environme	Studies			Professiona	English-II							
	711)				CIIB				,	CII)					9	21138						6113						C121					
)			,	٥				1	`					(∞					(מ					Ş	01					

	000	8	1.8	1.8	8.	00	1.8	00:	1.8	00	80	00	oc	00	00.	8.1	1.8	8.1	1.8	1.8	8.1	1.8	1.8	2.4	2.4	2.4	4.2	2.4	4.2	2.1
²	09	09	09	09	09	09	09	09	09	09	09		İ	H		09		H	09	09	09	09	09	80	80	80	90	80	L	70
	2.3313		2.3647	2.4371		L	L	2,66	2.6076	2.6979	2.7057	2.2953	L		1.9923			2.882	2.8602	2.8715 (2.9064		2.8844 6		2.8986 8	2.8145	2.9131 8	2.8483 8	2.8897	2.9421 7
	78 2	77 2	79 2	81 2	64		88 2.		87 2.	90 2.	Г	Γ	69 2.	65 1.			70 2.	96 2		96 2.			96 2.	96 2.4	97 2.8	94 2.8	97 2.9	95 2.8	96 2.8	98 2.9
	2.306371	2.246898	2.361053	2.361053	1.718885	2.290058	2.702852	2.691344	2.664677	2.687063	2.709677	2.209677	2.029247	2.036285	1.950872	2.066089	2.014205	2.939964	2.937739	2.964406	2.966279	2.964406	2.967966	2.965517	2.963793	2.962069	2.968966	2.965517	2.965517	2.927586
	77 2	75 2.	79 2.	79 2.	57 1.	76 2.	90 2.	90 2.	89 2.	90 2.	90 2.	74 2.	68 2.	68 2.		69 2.	П	П	٦	99 2.9						99 2.9			99 2.8	
	1.947	1.947	1.947	1.947	1.947	1.947	2.565	2.565	2.565	2.565	2.565	2.565	1.603	1.603	1.603	1.603	1.603	2.948	2.948	2.948	2.948	2.948	2.948	က	က	က	က	3	3	3
	65	65	65	65	65	65	85	85	85	85	85	85	53	53	53	53	53	86	86	86	88	88	86	100	100	100	100	100	100	100
6.1	2.93	2.76	2.98	2.98	1.46	2.98	2.93	2.96	2.91	2.88	3	2	2.75	2.75	2.71	2.75	2.84	2.9	2.94	e	2	2	3	2.91	2.91	2.91	2.91	2.91	2.91	2.82
	98	92	66	66	49	66	86	66	97	96	100	67	92	92	06	92	95	97	86	100	100	100	100	97	97	97	97	26	97	94
	C01	C02	CO3	C04	cos	900	CO 1	C02	SO3	C04	505	900	COI	C02	CO3	C04	505	100	202	500	400	6 6	900	5 8	703	C03	C04	5	900	- [3]
	Engineerin	Mathematic	II-S				Applied Chemistry	`	1				through	Java				rundament als of	Electrical	Engineerin	ח		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Communic	ation Skills	Lab-II				Applied
			C122						C123						C124					C125						C126				
			11						12						13					14						15				_

													. : :																	
2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.4	2.4	2.4	2.4	2.4	2.4	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
70	70	20	70	70	20	70	70	70	-08	80	80	80	80	80	09	09	09	09	09	09	09	09	09	09	9	9	09	09	09	09
2.9421	2.849	2.9421	2.8386	2.8386	3	3	2.9069	3	2.8897	2.8986	2.8145	2.9131	2.8483	2.8897	2.26	2.29	2.29	2.36	2.25	2.24	1.931	1.789	1.948	2.022	1.807	1.675	2.146	2.234	2.206	2.242
98	95	98	92	92	100	100	97	100	96	97	94	97	92	96	75	9/	92	79	75	75	64	09	65	29	09	99	72	74	74	75
2.927586	2.927586	2.927586	2.927586	2.927586	8	3	3	3	2.965517	2.963793	2.962069	2.968966	2.965517	2.965517	2.209	2.213	2.256	2.255	2.132	2.132	1.734	1.568	1.790	1.825	1.579	1.426	2.061	2.148	2.148	2.111
88	98	86	86	86	100	100	100	100	88	99	66	66	66	66	74	74	75	75	7.1	71	58	52	90	61	53	48	69	72	72	20
3	60	3	3	3	m	3	က	3	3	က	က	8	8	က	1.83	1.83	1.83	1.83	1.83	1.83	1.078	1.078	1.078	1.078	1.078	1.078	1.594	1.594	1.594	1.594
100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	6.09	6.09	609	60.9	60.3	6.09	35.9	35.9	35.9	35.9	35.9	35.9	53,1	53.1	53.1	53.1
2.82	2.82	2.82	2.82	2.82	6	က	6	m	2.91	2.91	2.91	2.91	2.91	2.91	2.21	1.81	2.26	2.25	2.13	2.13	1.73	1.57	1.79	1.82	1.58	1.43	2.88	2.98	2.98	2.91
984	94	94	94	94	100	100	100	100	26	26	26	26	97	26	74	60	75	75	71	71	58	52	60	61	53	48	96	66	66	97
C02	503	CO4	502	900	COI	202	CO3	CO4	001	C02	503	CO4	COS	900	001	C02	CO3	C04	\$000 C05	900	CO1	C02	503	C04	COS	900	C01	C02	CO3	CO4
Chemistry	lab	1			Automation	Tools and	Professiona Workshop	100000000000000000000000000000000000000	COOPS	through	Java Lab	1	-		Discrete	Mathematic	Structures				Data	Structures					Data Base	Manageme	nt Systems	
-		C127					C128					C129						C211						C212						C213
-		16					17					18						19						20						17

000	000	α -	ο α	2 0	- x	, c	200	8.1	1.8	1.8	1.8	00.	000	2.4	2.4	2.4	2.4	4.2	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
09	09	9	9	9	9	09	09	09	09	09	09	09	09	08	80	88	08	.08	80	.08	80	80	80	80	80	980	80	80	80
2.135	2.109	2.1385	2.1471	2 1025	2.1484	2.0593	2.0372	2.88	2.9175	2.8425	2.8894	2.8519	2.8613	2.8424	2.88	2.8046	2.8519	2.8144	2.8875	2.925	2.85	2.8969	2.8594	2.8688	2.67	2.7075	2.6325	2.6794	2.6419
71	20	71	72	70	72	69	89	96	97	95	96	95	92	95	96	93	95	94	96	86	92	97	95	96	89	06	88	89	88
1.989	1.968	1.993394	2.015881	1.983537	1.982341	1.894382	1.878499	2.94375	2.94375	2.94375	2.94375	2.94375	2.94375	2.896693	2.896875	2.896329	2.896875	2.896875	2.953125	2.953125	2.953125	2.953125	2.953125	2.953125	2.68125	2.68125	2.68125	2.68125	2.68125
99	99	99	29	99	99	63	63	98	86	98	86	98	98	97	97	97	97	97	86	86	86	98	86	86	68	89	89	89	89
1.594	1.594	1.5	1.5	1.5	1.5	1.5	1.5	က	က	က	3	3	3	က	က	3	က	3	ო	e	က	3	8	6	3	က	က	က	3
53.1	53.1	50.0	50.0	50.0	50.0	50.0	50.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2.94	2.88	2.84	2.83	2.76	2.82	2.81	2.77	2.86	2.86	2.86	2.86	2.86	2.86	2.74	2.74	2.74	2.74	2.74	2.88	2.88	2.88	2.88	2.88	2.88	2.2	2.2	2.2	2.2	2.2
886	96	92	94	92	94	94	92	92	95	95	95	95	92	91	91	91	91	91	96	98	96	96	96	96	73	2	73	73	73
60	903	CO 100	C02	C03	C04	502	900	[03]	702	50	2 5	6	ŝ	103	202	503	500	503	5 5	700	3	2 2	5 8	9 5	5 8	707	5 5	2 8	63
			:	Logic	Design					Internet of	rilligs Lab			-!-	Data	Structures	9			Data Base	Manageme T	Lab				Python	programmi	ng Lab	
				C214						C215						C216					C217						C218		
				22						23			1		7			1			25			1			26		-

2.4	1.8	1.8	1.8	1.8	1.8	1.8	00.	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
80	09	09	09	09	09	09	09	09	09	09	09	09	60	09	09	90.	60	60	09	60	90	90	09	09	.09	90	09	9	09	09
2.6513	2.3944	2.0591	2.3367	2.4393	2.4539	2.3728	2.4646	2.5082	2.4308	2.5057	2.4833	2.3483	1.9856	1.9578	1.9935	1.9806	1.7503	1.82	1.9203	1.9875	2.1038	2.0311	2.16	2.0635	2.3365	2.3539	2.2524	2.2768	2.2581	2.2581
88	80	69	78	81	82	79	82	84	81	84	83	78	99	65	99	99	58	61	64	99	70	68	72	69	78	78	75	92	75	75
2.68125	2.371935	1.929291	2.311522	2.357682	2.387725	2.298045	2.459683	2.490699	2.42911	2.440699	2.42442	2.267444	1.860938	1.802708	1.882438	1.784375	1.508162	1.606985	1.779276	1.839792	2.020313	1.847426	2.020313	1.911458	2.31125	2.32125	2.241316	2.201471	2.201471	2.201471
89	79	64	77	79	80	77	82	83	81	81	81	9/	62	09	63	59	20	54	59	61	29	62	29	64	77	77	75	73	73	73
3	2.091	2.091	2.091	2.091	2.091	2.091	2.156	2.156	2.156	2.156	2.156	2.156	1.266	1.266	1.286	1.266	1.266	1.266	1.406	1.406	1.406	1.406	1.406	1.406	1.875	1.875	1.875	1.875	1.875	1.875
100.0	69.7	69.7	2.69	69.7	69.7	69.7	71.9	71.9	71.9	71.9	71.9	71.9	42.2	42.2	42.2	42.2	42.2	42.2	46.9	46.9	46.9	46.9	46.9	46.9	62.5	62.5	62.5	62.5	62.5	62.5
2.2	2.86	1.89	2.53	2.58	2.91	2.82	2.98	2.99	2.99	2.89	2.91	m	2.77	2.89	2.85	2.86	2.2	2.48	2.37	2.78	2.94	2.88	2.94	2.92	2.97	2.99	2.89	2.98	2.98	2.98
73	က္	63	84	000	97	76	000	100	100	96	97	100	65	90	5 00	500	73	000	62	93	86	96	86	97	66	100	90	800	66	66
900	CO1	C02	CO3	CO4	CO5	900	000	C02	C03	200	CO5	900	100	203	CO3	202	CO5	900	100	202	CO3	C04	505	900	100	CO2	CO3	CO4	CO5	900
			Humanities	elective	1(PSYC)	1		1	Professiona –	Human	Vaiues				Probability	and	Statistics			web	Technologi	Advanced	Java	rogrammi -	39				Software	Engineerin
				C219						C2110						C221						CZZZ						C223		
:=	1			27						28			1			59						30						31		

W. *	-	_		_	_	_	_	_		_	_	_	_	_	_																			
	0	0.1	0. ×	2 0	α α	- \ -	0 0	000		1.8	1.8	1.8	2.4	2.4	2.4	2.4	40	40	2.4	2.4	2.4	2.4	2.4	2.4	2.1	2.1	2.1	2.1		2.1			:	ò
	, OS	8	80	09	09	9	09	09	09	09	09	09	80	80	08	80	80	08	8	80	80	80	80	.08	20	70	02	707	-02	02		E1		
	2 130g	2 1832	2.0526	2.1408	1.9289	1.9708	1.741	1.6723	1.7261	1.7621	1.6686	1.6512	2.925	2.9625	2.8875	2.9344	2.8969	2.9063	2.8575	2.895	2.82	2.8669	2.8294	2.8388	2.9156	2.9156	2.9063	2.9156	2.9156	2.9156				
	71	73	89	71	64	99	58	56	58	59	56	55	98	66	96			97			94						97			97	1.			
	2.089342	2.131375	2.038375	2.043194	1.836912	1.8775	1.602003	1.492781	1.630332	1.569783	1.511548	1.478018	ဗ	3	3	က	3	ဗ	2.915625	2.915625	2.915625	2.915625	2.915625	2.915625	က	က	င	က	က	က				
	70	71	89	68	61	63	53	20	54	52	20	49	100	100	100	100	100	100	97	97	97	97	97	97	9	198	9	100	100	100				
	1.641	1.641	1.641	1.641	1.641	1.641	1.078	1.078	1.078	1.078	1.078	1.078	m	က	က	3	3	က	2.906	2.906	2.906	2.906	2.906	2.906	8	m	e	m	က	က				
	54.7	54.7	54.7	54.7	54.7	54.7	35.9	35.9	35.9	35.9	35.9	35.9	100.0	100.0	100.0	100.0	100.0	100.0	6.96	6.96	6.96	96.9	96.9	96.9	0.001	0.001	100.0	100.0	100.0	100.0				
0	2.84	2.87	2.72	2.85	2.35	2.46	2.25	2.17	2.60	2.69	2.52	2.43	2	8	6	6	က	e	2.93	2.93	2.93	2.93	2.93	2.93	2 0	2 0	7)	20	m (e e				
	92	96	91	95	78	85	75	2/2	\&\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	80	84	- S	200	001	001	201	100	100	86	80 8	88 8	0000	000	90	3 5	3 8	200	201	200	001				
	CO1	C02	\perp		60 8	900	103	707	3 3	3 8	3 8	3 5	5 5	703	3 3	400	60	3 3	3 8	700	3 3	5 5	300	3 5	5 8	700	3 8	5 8	3 8	3				
		10000	Organizatio	_				Open	Elective-	1(MPA)			qəm.	Technologi	Advanced	Java	Programmi	ng Lab				Aptitude	and	6			1		Mini	project				
A			C224						C225						C226						C227						C228							
			32						33						34						35						36			_				

																						. 1	_	_		_	_	_	_				
.1.8	1,0	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8			1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	8:			1.00				
09	09	09	90	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	90	09	09	09	09	90				
2.2414	2.2689	2.1689	2.2612	2.2111	2.2017	2.534	2.5455	2.4987	2.5711	2.531	2.531	2.1089	2.1051	1:9:404	2.1315	1.9928	1.982	2.2831	2.3001	2.1636	2.2844	2.2126	2.1744	1.9559	1.9981	1.8683	1.9687	1.8839	1.8674				
75	16	72	75	74	73	84	82	83	98	84	84	70	70	65	71	99	99	76	77	72	92	74	72	65	29	62	99	63	62				
2.180613	2.191582	2.101758	2.135091	2.084214	2.084214	2.569796	2.584164	2.537421	2.545896	2.519184	2.519184	2.003278	1.975114	1.827905	1.949571	1.799546	1.797781	1.83871	1.83871	1.83871	1.83871	1.83871	1.83871	1.81203	1.841429	1.737698	1.746032	1.663445	1.654622				
73	73	70	71	69	69	86	86	85	85	84	84	29	99	61	65	09	09	61	61	61	61	61	61	09	61	58	58	55	55				
1.857	1.857	1.857	1.857	1.857	1.857	2.438	2.438	2.438	2.438	2.438	2.438	7:5	1.5	1.5	1.5	1.5	1.5	1.839	1.839	1.839	1.839	1.839	1.839	1.619	1.619	1.619	1.619	1.619	1.619				
61.9	61.9	61.9	61.9	61.9	619	813	81.3	81.3	81.3	81.3	81.3	50.0	50.0	50.0	50.0	50.0	50.0	61.3	61.3	61.3	61.3	61.3	61.3	54.0	54.0	54.0	54.0	54.0	54.0				
2.69	2.72	2.62	2 69	2.54	2.54	2.76	281	2.75	2.76	2.64	2.64	2.85	2.76	2.61	2.86	2.54	2.53	2.75	2.78	2.57	2.73	2.65	2.45	2	2.2	2.98	2	1.48	1.45				
06	101	87	5 6	200	20 20	80	26	99	00	8 60	88	55	92	780	95	8 80 EG	84	65	03	88	8 6	- &	000	67	73	66	19	49	48				
001	COS	203	200	500	3 3	3 5	5 5	7000	3 2	500	900	CO	CO2	CO3	200 700 700	500	200	5000	200	202	200	505	200	5	COS	CO3	C04	\$000	900				
				Advanced	Data	Structures			Computer				T Canada	Languages	and	Automata				Professiona	Elective	1(dmdw)				Open	Elective-	11(1K)					
			C311						C312						C313						C314						C315						
			37						38						39						40						41						

Γ	Т				Т	T	T	Т	1	Т		T		T.		_	_	ा	_	T	1				T		_	_
C	7.7	2.4	2.4	2.4	2.4	4	4	0.4	20	- x	ox -	ο α	0	σ	× ×	40	i 6	2.4	2.4	2.4	40		, c		Þ.	0	0	0
Č	8 8	8	80	.08	80	80	80	80	S : &	09	9	09	6	9	09	80	8 8	80	90	80	£ 6	3		-				
2 925	2,020	2.9625	2.8875	2.925	2.9625	2.8875	2.9344	2.8969	2.9063	2.4098	2.3769	2.2752	2.4004	2.371	2.3555	2.925	2.9625	2.8875	2.9344	2.8969	2.9063							
86	3 8	66	96	86	66	96	86	97	97	80	79	92	80	79	79	86	66	96	86	97	97	0	0	0		0	0	0
60	, ,	2	3	e	3	3	က	8	3	2.414543	2.37341	2.25806	2.332539	2.319195	2.299784	8	က	8	3	က	က							
100	100	3 5	3 5	3	100	100	100	100	100	80	79	75	78	77	77	100	100	100	100	100	100	0	0	0	c	>	0	0
3	C.	,	, ,	2	e	က	က	3	က	2.19	2.19	2.19	2.19	2.19	2.19	3	3	3	3	က	3							
100.0	100 0	100	200.0	0.00	100.0	100.0	100.0	100.0	100.0	73.0	73.0	73.0	73.0	73.0	73.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	0.0	0.0	0	0.0	0.0	0:0
က	8	6		0	es	က	က	က	က	2.77	2.65	2.45	2.47	2.57	2.52	က	က	က	က	က	က							
100	100	100	100	200	100	100	100	100	100	92	88	82	82	86	84	100	100	100	100	100	100	0	0	0	0	,	0	0
CO1	C02	CO3	100	200	700	3	20 2	3	900	100	202	C03	200	505	900	[03	C02	603	504	3	903	001	C02	CO3	C04	305	3	900
Computer	Networks	lab			Advanced	Structure	Lab			Basics of	Civil and	Engineerin	/6	Swayam/N PTE! **				Competitiv	 Bulbon a					: ::				
	C316					C317						C318	. 1					C319						03110				
	45					43						44						45						46	2			

_			_	_	_			- 1		_	_	_	T	. 1	. 1		_			\neg			
1.8	1.8	1.8	1.8	1.8	1.8	-00	1.8	1.8	1.8	1.8	1.8	1.8.	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8			5 × 11
09	09	09	09	09	09	09	60	09	90	09	09	09	60	09	09	09	09	09	09	09			
2.6767	2.6304	2.5569	2.6822	2.6693	2.6538	2.657	2.6371	2.635	2.671	2.6023	2:6522	2.4945	2.4422	2.3943	2.4727	2.4379	2.4342	2.4301	2.4229	2.4008			,
68	88	85	68	88	88	68	88	88	89	87	88	83	81	80	82	81	81	81	81	80			
2.74819	2.690374	2.610242	2.684721	2.692095	2.672683	2.700208	2.651898	2.68443	2.647304	2,573186	2.647304	2.497024	2.408264	2.383558	2.39944	2.367676	2.374734	2.41651	2,384094	2.391685			
92	06	87	68	06	89	86	88	88	80 80	98	88	83	80	79	80	79	62	81	62	80			
2.719	2.719	2.719	2.719	2.719	2.719	2.578	2.578	2.578	2.578	2.578	2.578	2.344	2.344	2.344	2.344	2.344	2.344	2.203	2.203	2.203			
90.6	90.6	9.06	9.06	90.6	90.6	85.9	85.9	85.9	85.9	85.9	85.9	78.1	78.1	78.1	78.1	78.1	78.1	73.4	73.4	73.4			
2.77	2.65	2.45	2.47	2.57	2.52	2.88	2.81	2.84	2.77	2.56	2.77	2.73	2.46	2.39	2.44	2.35	2.37	2.75	2.75	2.72			
92	888	82	82	86	84	96	94	95	92	85	92	2	82	80	18	78	79	92	92	91			
C01	C02	C03	CO4	500	900	100	CO2	CO3	CO4	500	900	C01	C02	C03	C04	500	900	100	C02	CO3			
		Indian	Constitutio		1			1	Systems					Design and	Analysis of Algorithms					Compiler	l nesign		
			C3111 O						C321						C322					C323			
			47						48						49					20	_		

1944 1		-) i	0 0	0.1	ν.	x c	×:	∞ c	x) c	0 0	χ	ν .	xo c	0.1	∞ .	χ.	∞ o	0 0	0 0	0.1.0	0.1.0	0.1.0	1 0	40	24	40	• 1	4	2.4	4	1			
		08	00 00	3 6	3 8	200	00 00	00 8	00 00	00 60	00	00 00	3 8	00	3 8	00	+	09	200	+	+	+	+	L					L]			
		2 4604	2 422	24	2 5734	2 5744	2 557	7.007	2.5872	2.3062	2,0007	2 7071	2 8084	2 7446	2 700	2.1.23 2.7068	2.7.000	2.3434	2 3557	2 3680	2.3251	2 3157	2.91	2.9475	2.8725	2.9194	2.8819	2.8913	2.8425	2.88	2.805				
(83	84	80	88	88	2 2	8 8	88	88	6	6	8 8	91	9	06	T				T	T	T			97	96			96	94				
		2.384094	2.347864	2.331982	2.595595	2.573128	2.586823	2 548018	2.548018	2.539194	2.753098	2.739382	2.759444	2.739382	2 724051	2.715228	2 308111	2.269676	2.335208	2.269676	2.226716	2.226716	2.98125	2.98125	2.98125	2.98125	2.98125	2.98125	2.896875	2.896875	2.896875				
		79	78	78	87	98	98	85	85	85	92	91	92	91	91	T	T	9/	78	92			66	66	66					97					
		2.203	2.203	2.203	1.689	1.689	1.689	1.689	1.689	1.689	2.719	2.719	2.719	2.719	2.719	2.719	2.016	2.016	2.016	2.016	2.016	2.016	3	3	က	က	က	3	က	8	3				
		73.4	73.4	73.4	56.3	56.3	56.3	56.3	56.3	56.3	9.06	9.06	9.06	9.06	9.06	9.06	67.2	67.2	67.2		67.2		П	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0				
		2.75	2.62	2.57	2.56	2.56	2.54	2.34	2.34	2:32	2.78	2.78	2.83	2.78	2.67	2.65	2.78	2.78	2.82	2.78	2.67	2.67	2.95	2.95	2.95	2.95	2.95	2.95	2.74	2.74	2.74				
		92	87	86	82	85	85	78	78	77	93	93	94	93	89	88	93	93	94	93	88	83	86	86	86	86	86	86	6	5	91				
		C04	COS	903	CO1	C02	C03	C04	502	900	[03	C02	CO3	CO4	C05	900	C01	C02	003	202	505	900	103	703	3 3	5 5	3 8	8 5	3 8	700	50				
	-					Drofornions	l Elective -	2(stm)				Drofessions	Elective -	3(ds)				i ci	Intelligenc	a			:	Systems &	Unix	programmi 4-1 20	L			~	Dransmmi L				
							C324						C325						C326						C327			Ī			ון מנצט				
	_						51						52						23						54						ŗ.				

_	_	_	_									_	_	_		\neg		_		\neg	\neg		Ī	П	-1				
2.4	2.4	2.4	2.4	2.4	2.4	2.4	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1:8	1.8	1.8	1.89	1,8	1.8	1.8	1:8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
08	8	 8.	80	80	08	80	09	09	09	09	09	09	09	09	09	09	99	60	09	09	09	09	09	09	90	09	09	9	09
2.8519	2.8144	2.8238	2.8538	2.8725	2.7881	2.8538	2.8707	2.888	2.8627	2.9255	2.9145	2.9052	2.3038	2.3226	2.2945	2:2942	2.3195	2.2367	2.4499	2.4492	2.394	2.4846	2.4372	2.4349	2.702	2.7197	2.7024	2.7353	2.7586
95	94	94	95	96	93	95	96	96	95	98	97	97	77	77	9/	92	77	75	82	82	80	83	81	81	06	91	06	91	92
2.896875	2.896875	2.896875	2.934375	2.934375	2.934375	2.934375	2.967339	2.965524	2.968972	2.965524	2.963496	2.963496	2.258709	2.258709	2.258709	2.176343	2.219693	2.127893	2.441329	2.416937	2.38316	2.414321	2.36678	2.375603	2.756391	2.755071	2.768571	2.727731	2.768571
97	97	97	86	86	86	88	66	66	66	66	66	66	75	75	75	73	74	71	83	81	79	80	79	79	92	92	65	5	92
8	3	6	8	6	0 %	0 00	2 95	2 95	2 95	2 95	2.95	2.95	1.81	1.81	181	80.	500	1.81	2 238	2.238	2 238	2.238	2.238	2.238	2.619	2,619	2619	2 619	2.619
100.0	100.0	100.0	100.0	1000	100.0	400.00	0.00.	08.3	0.00	0883	98.3	98.3	60.3	603	603	60.3	603	60.3	74.6	74.6	74.6	74.6	74.6	74.6	87.3	87.3	87.3	6. 7g	87.3
2.74	2.74	274	2 84	700	40.7	40.7	200	2000	2 00	2 00	2 99	2 99	2 03	203	203	2 94	204	2.86	27.5	255	2 50	2.54	261	2.53	2 99	207	2.1	0000	2.99
91	91	04	- 40	7 6	CS CS	C C	25	001	201	100	100	100	800	000	000	90	07	20 G	200	28	3	0 00 00 00 00 00 00 00 00 00 00 00 00 0	200	o o	8 5	3	93	100	100
CO4	505	500	3 5	103	700	500	400	5 8	700	3	\$ 2	300	5 50	100	700	600	100	600	200	100	700	3 3	5 5	300	3 5	100	700	500	500
- minimistoria	ng lab				Hackathon			Biology for Fnaineers/	Enterprisin	g and	NSS /	YOGA /	Social		Managerial	and	Financial	Accounting			Cryptograp	hy and	Security				o doing of ord	Elective -	4(bct)
7 0200					C329					C3211						C411						C412						C413	
2			+		57	5				28						29						09						61	

100	1 24	Г	_			T	_	Т-	_		_	1		1	_	_																		
			1.8	1.8	1.8	1.8	1.8	00	0	000	~	0	0	0.7	0.1	0	4.7	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	. C	1.10	7.7	7.7	4.2	
		6			9	90	09	09	09	09	09	09	9		8	3 8	og.	80	80	80,	.08	90	80	.08	80	.08	.08	08	8	8 8	8 8	08	80	
		7007 0	7.7.787	2.5215	2.5441	2.5062	2.4887	2.296	2.4158	2.1951	2.215	2.2221	2.2001	2 1019	1 2	2 0024	2.302.1	2.9396	2.8646	2.9115	2.874	2.8834	2.925	2.9625	2.8875	2.9344	2.8969	2.9063	2.925	2.9625	2.8875	2.9344	2.8969	
(04		84	82	84	83	77	81	73	74	74	73	02	71	07	5 8	000	55	97	96	96	86	66	96	98	97	97	86	66	96	86	97	
		2 742857	2 544770	2.31178	2.53619	2.49269	2.447283	2.21819	2.379656	2.204808	2.182808	2.215152	2.164152	2.076649	2.0837083	2.9714286	20211796	2.3714200	2.9714286	2.9714286	2.9714286	2.9714286	m	м	٣	٣	٣	m	т	m	3	3	ю	
		91		5 8	60	83	82	74	79	73	73	74	72	69	69	66	66	8 8	000	88	88	66	200	200	2	9	100	100	100	100	100	100	100	
		2.619	2 23R	2 238	2.430	2.238	2.238	2.238	2.238	1.79	1.79	1.79	1.79	1.79	1.7903	Е	m	. "	, ,	7 (7	m	n (2	m	m	m	ю	m	3	е	3	В	
		87.3	74.6	74.6	27.6	0.4.0	0.4.0	74.0	74.6	29.7	29.7	29.7	29.7	59.7	59.7	100.0	100.0	100.0	1000	100.0	200.0	0.00	100.0	200	0.00.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
		2.99	2.98	2.98	80 6	2.30	2.30	2.43	2.17	70.7	2.8	7.86	2.77	2.71	2.73	2.93	2.93	2.93	2 93	2 83	200	2.33	n (*	,	y (2 6	n	m	m	Е	8	m	m	
		100	66	66	66	88	200	20 8	28 8	4 6	S C	S S	35	06	91	88	98	98	86	86	86	100	100	100	100	2 5	100	001	001	100	90	100	100	
		900	C01	C02	C03	C04	CO5	COR	5	5 5	202	3 5	3 8	6	903		C02	CO3	C04	500	900	[5]	C02	600	C04	202	300	3 5	100	703	3 3	\$ 8	3	
					Professiona	/ Elective -	(spr				Open	Elective -	3(or)				ΙĄ	application	developme	nt Lab				Predictive	Analytics —	A gallen		1			ls lab		J	
						C414						C415						C416	2						(41)			1			C418			
					5	70						63						64	5					L	00			\dagger			99		-	

																			_	_	_	_	_						_
2.4	7.7	2.4	2.4	2.4	2.4	2.4	1.8	1.8	1.8	1.8	1.8	1.8	r. oʻ	1.8	1.8	1.8	1.8	1.8	000	o C	0 5	0.1	χ.	2.1	.2.1	2.1	2.1	2.1	2.1
80	80	80	. 08	80	80	80	-09	09	.09	.09	.09	9	. 09	09	09	09	09	09	60	3	òò	09	09	20	70	70	70	70	70
2.9063	2.8912	2.8912	2.8818	2.8912	2.8912	2.8912	2.882	2.9008	2.8726	2.9383	2.9263	2.9098	2.8961	2.9074	2.8849	2.9522	2.726	2.7533	27456	2007 1	7.7823	2.3634	2.354	2.9156	2.9156	2.9063	2.9156	2.9156	2.9156
97	96	96	96	96	96	96	96	97	96	86	86	97	97	97	96	86	91	92	20	5 6	93	13	78	97	97	97	97	97	97
2	2.9694915	2.9694915	2.9694915	2.9694915	2.9694915	2.9694915	3.0	3.0	3.0	3.0	3.0	3.0	2.9990132	2.9896875	2.9967188	2.9988971	2 7864177	2 7070968	2.7970900	2.7850968	2.7864177	2.274552	2.274552	3	8	8	es	e co	co
100	66	66	66	66		T	T	66	66	66	66	66	100	100	100	100	03	200	200	83	93	9/	76	100	100	100	100	100	100
3	3	m	м	8	m		6	6	3	m	~	, m	2	6	~	0 0	7 5222 5	2.0007	7.0007	2.6667	2.6667	2.6667	2.6667	8	3	ď	0 0	2 "	0 0
100.0	100.0	100.0	100.0	1000	100.0	1000	100.0	100.0	100.0	1000	100.0	1000	100.0	1000	1000	100	0.00	00.00	88.8	88.9	88.9	88.9	88.9	100.0	1000	1000	0.00	400.0	100.0
м	2.92	2 92	2 92	202	20.7	2 02	20.2	2.95	205	200	50.7	200 0	20.4	2 07	000	66.33	2	2.99	2.99	2.89	2,99	2.99	2.99	a	o (*	5 0	2 0	0 0	0 0
100	20	07	97	07	37	97	300	000	000	000	000	/s	300	200	600	100	100	100	100	96	100	400	100	200	5 5	00 5	001	100	100
900	100	500	200	3 3	400	600	300	50 50	700	600	400	600	200	100	700	53	200	C01	C02	C03	CO4	500	900	300	200	700	3	C04	5
_				Minor	project ##				Docoarch	Methodolog	*		- Constant	Flective-6	Social	Networking	and			Open	Elective-	4(IP)			Major	Project (7	unternal/1	Internship)	dissertatio
_	+			C419						C4110					C421						C422						5773		
=	1			67	i					89					69	3					70						7.4	1	

Head, if Department
NRI Institute of Technology
POTHAVARAPPADU (V)
Agiripalli (M), Krishna Dist

Reflection in Programme Outcomes (eg. B.Tech Programme)

Following are the Programme Outcome (PO) statements for all B.Tech Programmes.

Highlighted POs has direct relates to the local, national, regional and global developmental needs

- PO 01: Having an ability to apply mathematics and science in engineering applications.
- PO_02: Having a clear understanding of the subject related concepts and of contemporary issues and apply them to identify, formulate and analyse complex engineering problems.
- PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment
- PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information
- PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice
- PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems
- PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development
- PO 08: Having a clear understanding of professional and ethical responsibility
- PO 09: Having cross cultural competency exhibited by working as a member or in teams
- PO_10: Having a good working knowledge of communicating in English communication with engineering community and society
- PO_11: Having a good cognitive load management skills related to project management and finance
 - PO 12: Having interest and recognise the need for independent and lifelong learning

20A2100201-VECTOR CALCULUS, FOURIER TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Interpret the physical meaning of different operators such as gradient, cur land divergence
- CO2 Estimate the work done against a field, circulation and flux using vector calculus
- CO3 Apply the Laplace transform for solving differential equations
- CO4 Find or compute the Fourier series of periodic signals
- Know and be able to apply integral expressions for the forwards and inverse Fouriertransform to arrange of non-periodic wave forms
- CO6 Identify solution methods for partial differential equations that model physical processes

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	PO 7	PO 8	P0 9	PO 10	P0 11	PO12
CO1	3	3	2	2	-		-		-	-	-	-
CO2	3	3	2	2	-	-	-	-	-1	-	2	_
CO3	3	3	2	2	-	ij.	ą.	-8	-	-	-	-
C04	3	3	2	2		2	-	22	22		-	-
C05	3	3	2	2	~	-	-	-	-		-	-
C06	3	3	2	2	-	-	-44	-	-	-	-	-

20A2101401-STRENGTH OF MATERIALS - I

Cour	se Out	comes:	L									
Upon	succes	sful co	mpletio	on of the	e cours	e, the s	tudent	will be	able to	:		
C01	Unde	rstand	the bas	sic mate	erials b	ehaviou	ır unde	r the i	nfluenc	e of di	fferent ex	ternal loading
CO2	Draw	the dia	grams i	ndicatin	g the v	ariation	of the	key per	formano	e featui	es like be	ending moment
CO3	Know	ledge o	f bendir	ng conce	pts and	calcula	tion of	section	modulu	S		
C04	Deter	mine th	e stress	es deve	loped ir	the be	ams and	deflect	ions du	e to var	ious loadi	ng conditions
CO5	Asses	s stress	es acros	ss section	n of the	e thin cy	linders	to arriv	e at op	timum s	ections to	withstand the
C06	Asses:	s stresso al press	es acros sure usi	ss sectio ng Lame	n of the e's equa	thick c						withstand the
Conti Medi	ributio: um, 3 -	n of Co High)	urse O	utcom	es tow	ards a	chieve	ment o	f Prog	ram Ou	itcomes	(1 - Low, 2-
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	_1	2	3	4	5	6	7	8	9	10	11	12
C01	3	300	-	-	-	-	(40)	-	-	-	-	
CO2	3	2	-	-	-	-	_	-	-	-		_
CO3	3	1	-	-	-	-	-		-	-	-	_
CO4	1	3	-	-	-	-	-	-		-	-	_
CO5	3	3	-	1	-		-	-	_	-	-	_
C06	3	3	-	1	-	-	-	-	-	-	-	-

20A2101402-FLUID MECHANICS

Cour	se Outc	omes:										
Upon	success	ful cor	npletio	n of th	e cours	e, the	student	will b	e able t	0:		
CO1	Expla	in the v	arious	prope	rties of	fluids	and th	eir infl	uence c	n fluid	motion	
CO2	Analy	ze a va	riety o	f probl	ems in	fluid s	tatics a	nd dyn	amics.			
CO3	Calcul	ate the	e forces	that a	ct on s	ubmer	ged pla	nes an	d curve	es.		
CO4	Analy	ze vari	ous typ	oes of f	luid flo	ws.	•					
CO5	and l	aminai		throug								s to turbulent nt pressures,
C06	Measi	are the	quant	ities of	fluid fl	owing	in pipe	s, tank	s and c	hannel	S.	
	ributio edium,			utcon	nes tov	vards	achiev	ement	of Pro	gram (s (1 – Low,
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	:3	4	5	6	7	8	9	10	_11	12
CO1	3	-	-	-	-	2	-	1	-	2	-2	-
CO2	3	-	200	-	-	-	<i>2</i>	-	40	-		w
CO3	3	-	-	-	- 20	:¥3	2.	-	-0.0		*	3.0
CO4	3	2	-	3		*	*	2	78		-	(a)
CO5	2	2		3	-	-	-	2	-	8.	-	-
C06	2	2	180	2	-	-	9		-	-	-	-

20A2101403-SURVEYING AND GEOMETRICS

	se Outc											
Upon	success									D:		
CO1					late ang				5			
CO2					ds and							
CO3									ırement	errors	and corre	ctive measure
CO4	Interp	ret surv	ey data	and co	mpute a	areas ar	nd volur	nes,				
CO5					Juipmen							
CO6	Relate	the kno	wledge	to the r	modern	equipm	ent and	metho	dologies			
Conti	ributio	n of Co	urse 0	utcon	nes tov	vards a	achiev	ement	of Pro	gram ()utcome	s (1 – Low,
	ributio: edium,			utcon	nes tov	var ds a	achiev	ement	of Pro			
)utcon PO	PO	vards a	echieve PO	PO	PO	PO	PO	PO
	edium,	3 - Hig	gh)									
	edium,	3 – Hig PO	pO	PO	PO	PO	PO	PO	PO	PO	PO	PO
2- M€	PO 1	3 - Hig PO 2	pO	PO	PO 5	PO 6	PO	PO	PO	PO	PO	PO
2- Me	PO 1 3	3 - Hig PO 2 3	pO	PO 4	PO 5	PO 6	PO 7	PO 8	PO	PO 10	PO 11	PO 12
2- Me	PO 1 3 2	3 - Hig PO 2 3	PO 3	PO 4 .	PO 5 1 1	PO 6	PO 7 .	PO 8	PO 9	PO 10	PO 11 .	PO 12
CO1 CO2 CO3	PO 1 3 2 2 2	3 - Hig PO 2 3 3	PO 3	PO 4 .	PO 5 1 1 -	PO 6	PO 7 .	PO 8	PO 9 -	PO 10	PO 11	PO 12

20A2101404-HIGHWAY ENGINEERING

Cour	se Outo	comes:										
Upon	succes	sful co	mpletio	n of th	e cour	se, the	studen	t will b	e able t	to:		9 × 1
C01	Planl	nighwa	y netw	ork for	a give	n area.						
C02	Deter	mine I	lighwa	y align	ment					_		
CO3	Desig	n highv	way ge	ometri	cs.							
C04	Desig	n Inter	section	s and j	prepar	e traffi	c mana	gemen	t plans			
C05	Judge	suitab	ility of	pavem	ent ma	terials						
C06	Desig	n flexil	ole and	rigid p	aveme	nts						
Conti	ributio	n of Co	urse C	utcon	nes tov	vards a	achiev	ement	of Pro	gram (Outcome	es (1 – Low,
2- Me	edium,	3 – Hig	rh)							_		•
			511									
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
			and and	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
C01		PO	PO		1			1				
	PO 1	PO	PO		1			1				
CO2	PO 1 2	PO	PO		1			1				
CO2 CO3	PO 1 2 2 2	PO 2	PO 3 -		5 -	6 -		1				
CO1 CO2 CO3 CO4 CO5	PO 1 2 2 2 2	PO 2 - 3	PO 3 - - 3		5 -	2		1				

20A2101491-CONCRETE TECHNOLOGY LAB

Cours	se Outc	omes:										
Upon	success	ful con	npletio	of the	course	e, the st	udent	will be	able to			
CO1	Deter	mine th	ne prop	erties (of the c	onstitu	ent ma	terials	of conc	rete.		
Contr	includ	ling str n of Co	ength a	ınd dur	ability.							d concrete (1 - Low,
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3	-	3	-	2	_	2	-	_	_	-
CO2	3	3	-	3	_	2	-	2	-	-	_	-

20A2101492-HIGHWAY ENGINEERING LAB

				UALIU	T. 1. 7. 7. 11	ITCHILARY	AI DIVU	HARRIET	III LAL	,		
Cours	se Outo	omes:										
Upon	succes	sful co	mpletic	n of th	e cour	se, the	studen	t will b	e able t	:0:		
CO1	Test a	aggrega	ates an	d judge	the su	itabilit	y of ma	aterials	for the	e road	construc	tion
CO2	Test t	he give	en bitu	men sa	mples	and jud	dge the	ir suita	bility f	or the	road con	struction
CO3		_			-		_		Concr			
CO4			î :						racteri			
CO5					ons an			-				
	ibutio dium,			Outcon	nes tov	vards :	achiev	ement	of Pro	gram (Outcome	es (1 – Low,
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	-	3	-	2	-	2	-	_	-	-
CO2	3	3	-	3	-	2	-	2	-	-	-	_
CO3	3	3	-	3	3-	2	-	2	**	-	-	-
CO4	3	3	-	3	70	2	-	2	-	-	=	-
CO5	3	3	-	3	₹:	2	-	2	-	-	-	

20A2101493- SURVEYING FIELD WORK-I (LAB)

Cours	e Outc	omes:										
Upon	success	ful com	pletion	of the	course	e, the st	tudent	will be	able to	12		
CO1	Conduct survey and collect field data.											
CO2	Prepare field notes from survey data											
CO3	Inter	oret su	rvey da	ta and	compi	ite area	as and	volume	es.			
				utcom	es tow	ards a	chieve	ment (of Prog	ram 0	utcomes	s (1 - Low,
	ibution dium, 3 PO	PO	h) PO	PO	PO	PO	chieve PO	PO	PO	PO	PO	PO
	dium, 3	- Higl	h)									
2- M e	dium, 3	PO	h) PO	PO	PO	PO		PO	PO	PO	PO	PO
	dium, 3 PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO	PO	PO	PO	PO 12

20A2100801-CONSTITUTION OF INDIA

Cour	se Out	comes	:										
Upon	succes	sful co	mpleti	on of th	ie cour	se, the	studen	t will b	e able 1	o:			
CO1											ze the	Histo	ry, features
		lian co											
.CO2	Explain the structure of Indian government & Differentiate between the state and central												
CO3	Analyze the role Governor and Chief Minister & explain the role of state Secretariat												
CO4	Comp	are an	d cont	rast dis	trict ac	dminist	tration	role ar	nd impo	rtance)		
CO5									of Mu				ration to extraorabilities many
C06												of sta	te election
		nission							Ü				
		n of Co	ourse (Outcon	nes tov	wards a	achiev	ement	of Pro	gram (Outcoi	nes (1 – Low,
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	-	PO
	1	2	3	4	5	6	7	8	9	10	11		12
CO1	3	2	-	-	_	_	_	-	_	-	-	2	
CO2	3	3	2	-	_	-	-	2	-	-	_	_	
CO3	3	-	2	-	-	-	-	-	_	_	-	2	
CO4	-	-	3	-	-	-	-	2	-	-	-	2	
CO5	3	3	2	-	-	-	-	2	_	-	-	-	
C06	3	-	2	-	-	-	-	-	-	-	-	2	

20A2200201-PROBABILITY AND STATISTICS

Course Outcomes:

Upon	successful completion of the course, the student will be able to:
CO1	Classify the concepts of data science and its importance
CO2	Interpret the association of characteristics and through the correlation and Regression tools
CO3	Make us of the concepts of probability and their applications
CO4	Apply discrete and Continuous probability distributions
CO5	Design the components of a classical hypothesis test
CO6	Infer the statistical inferential methods based on small and large sampling tests

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)											
	PO 1	PO 2	PO 3	P0 4	PO 5	PO 6	PO 7	P0 8	P0 9	PO 10	PO 11	P0 12
CO1	3	3	2	2								
CO2	3	3	2	2								
CO3	3	3	2	2								
CO4	3	3	2	2							-	
CO5	3	3	2	2							-	
CO6	3	3	2	2								

20A2201401-STRENGTH OF MATERIALS - II

		-	401141	10 I 10	I DII	CDITO.		1-1111		10 11		
Cour	se Outo	omes:				191 54				2.2		
Upon	succes	sful co	mpletio	n of th	e cour	se, the	studen	t will b	e able t	0:		
CO1	Unde	rstand	the ba	sic cor	cepts	of Prin	cipal s	tresses		ped in	amembe	er when it is
CO2												
CO3	Assess stresses in different engineering applications like shafts, springs											
CO4											and struts	3
CO5												ent engineering
C06			concept unsym				ending	in bean	ns Loca	tion of	neutral ax	xis Deflection of
	ributio um, 3 -			Outcon	nes tov	vards a	achiev	ement	of Pro	gram (Outcome	s (1 – Low, 2-
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	3	3	1	-		-	-	-	-	-	-
CO2	2	2	-0	1	-	-	-				-	*:
CO3	2	3	-	1	-	***	*	er:	-0		-	ec.
CO4	2	3		-	4	w.:	-		70	1.00	-	
CO5	2	3	(*)	1	-		2	-	- 2	-		
C06	2	3	-	1	-	-		-	12	-	-	- Te

20A2201301-HYDRAULICS AND HYDRAULIC MACHINERY

Cour	se Out	comoc	· .			ر کامیانست ر						*
		_							e able			
										10:		
CO1				on-unif								
CO2 CO3											el testing	
						oi vario	ous nya	raunc n	nachine	ries		
CO4	Desig	n differ	ent type	es of tur	bines	•						
CO5	Desig	n of cen	trifugal	and m	ulti stag	ge pump	os					
C06	Design	n of rec	iprocati	ing pum	ıp							
	um, 3 -			PO	PO	PO	PO	PO	PO	PO	PO	s (1 – Low, 2- PO
	10			10								0.00
001	- 1	. 2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	-	-	-		-	-	-	-	-
CO2	3	-	-	1	-	-	2	2	-	-	-	-
CO3	3	-	2.	1	_	-	2	2	-	-	-	-
C04	2	:=c	-	3	-	-	1	2	-	2	-	-
CO5	2		:-	3	-	-	1	2	-	2	-	-
C06	2		-	3	-	-	1	2	_	-	_	-

20A2201402-ENVIRONMENTAL ENGINEERING

Cour	se Outo	comes:										
Upon	succes	sful cor	npletic	n of th	e cour	se, the	studen	t will b	e able t	:0:		
C01		a sourc										
C02												
CO3		n a wate										
C04	Desig	n the w	ater d	istribu	tion ne	twork	- [
C05	Design	n a sewe	er by es	timatin	g DWF	and Str	om wat	er flow	and plu	mbings	system for	buildings
C06		n a Sewa		_					<u>-</u>		<u> </u>	
Cont	ributio	n of Co	urca (lutcon	age tox	warde :	achiov	omont	of Dro	aram (Jutcomo	c (1 - Low 2
	ributio ium, 3 - PO	High) PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
Medi	um, 3 - PO 1	- High)			,			· · · · · · · · · · · · · · · · · · ·			r	
Medi	um, 3 -	High) PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
Medi CO1	um, 3 - PO 1	High) PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
Medi CO1 CO2	um, 3 - PO 1 2	PO 2	PO	PO	PO	PO	PO	PO	PO	PO	PO 11 -	PO 12
Medi CO1 CO2 CO3	ro PO 1 2 2	- High) PO 2 -	PO	PO	PO	PO	PO	PO	PO	PO	PO 11 -	PO 12
	num, 3 - PO 1 2 2	High) PO 2 -	PO	PO	PO	PO	PO	PO	PO	PO	PO 11 -	PO 12

20A2201403-ENGINEERING GELOGOY Integrated (Theory & Lab)

Cours	se Outc	omes:										
Upon	success		-				· . · /	will be	able to	8 30		
CO1	Identi	fy.and	classify	the ge	ologica	ıl mine	rals					
CO2	Measu	ire the	rock st	rength:	s of var	ious ro	cks					
CO3	Classi	fy and i	measur	e the e	arthqu	ake pro	ne are	as to p	ractice	the haz	zard zona	ation
CO4	Classi	fy, mon	itor an	d meas	ure the	e Lands	lides a	nd sub	sidence	<u>,</u>		
CO5	Prepa	res, an	alyses a	and inte	erpret 1	the Eng	ineerii	ng Geol	ogic ma	aps		
C06			he proje ering p								. Site sele	ection for
	ibution dium, 3			utcom		ards a						(1 - Low,
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
604	1	2	3	4	5	6	7	8	9	10	11	12
01	3	-	*	•	-	-	-	-	7.	*	-	-
002	3	2	-	-	-	•	-	-	55		-	~
03	3	1		**	-	-	-	-	-	-	-	-
C O4	1	3			-	- 51	5	-	-	-	-	2)
CO5	3	3	-	1	n/		2	-	-		-	-
C06	3	3	-	1	-	-	-	-	-		*	
	se Outo			C 41		47	1. 4	91.1.	.1.1. 4.			
Upon CO1	success		n pietio i gascopi						adie to	•		
CO2						-	-	C3.				
			gascop					1 0		6	a and a bro	
CO3								-		_	ography	•
CO4			ccurrer									(4 1
	ributio edium,	3 – Hig	h)									s (1 – Low,
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
001	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3		1	1	-	-	20	40	lä.	-	2
CO2	2	1	(#1)	1	1		-	*		*		
CO3	2	3	***	2	1	,e.,	-	2	-	- C	-	2

20A2201491-ENVIRONMENTAL ENGINEERING LAB

~								L ENG				
	se Out							2				4,
Upon	succes	sful co	mpleti	on of t	he cour	se, the	studen	t will b	e able	to:		
CO1	Dete	mine	some i	nporta	nt char	acteris	stics of	water	and wa	stewat	er in the	laboratory
CO2	of the conclusion and decide whether the water is potable or not,											
CO3	Decid	le whe	ther th	e wate	r body experin	is pollu	uted or	not wi	th refe	rence t	o the sta	te
CO4												
	DCCCI	mme.	strengi	in of th	ie sewaj	ge in te	erms of	· BOD a	nd COI)		
	ributio	n of Co	ourse (or th	e sewa	ge in te wards	erms of	BOD a	nd COI)	Outcom	oo (1 - Lov
Conti	ributio edium,	n of Co	ourse (Outcor	nes tov	ge in te wards	erms of achiev	BOD a	of Pro) gram	Outcom	es (1 – Low
Conti	ributio	n of Co	ourse (Outcor PO	nes tov	yards	achiev	ement	of Pro	gram		
Contr 2- Me	ributio dium,	n of Co 3 – Hi	ourse (gh)	Outcor	nes tov	wards	achiev	ement	of Pro	gram PO	PO	PO
Contr 2- Me	ributio dium,	n of Co 3 – Hi PO	ourse (gh)PO	PO	nes tov	wards	achiev	ement	of Pro	gram		PO 12
Cont 2- Me CO1	ributio edium, PO 1	n of Co 3 – Hi PO 2	ourse (gh)PO	PO	nes tov	PO 6	achiev	PO 8 2	PO 9 3	gram PO	PO	PO 12 3
Conti	ributio edium, PO 1 3	n of Co 3 – Hig PO 2 3	ourse (gh)PO	PO	nes tov	PO 6 3	achiev	PO 8	of Pro PO 9	gram PO	PO	PO 12

20A2201492-STRENGTH OF MATERIALS LAB

Course	on Oute						HUFN					
	se Outc											
Upon	success	ful con	pletion	n of the	cours	e, the s	tudent	will be	able to	D:		
CO1	Conduct tension test on steel											
CO2	Conduct compression tests on spring, wood, brick and concrete											
CO3	Cond	uct flex	ural ar	id tors	on tes	t to det	ermine	e elasti	c const	ants		
CO4				s of m						41100		
Contr	ibution	of Cor	irse Oi	itcom	os tow	arde a	chiorro	mont.	6 D			
Contr 2- Me	ibution dium. 3	of Cou	ırse Oı	utcom	es tow	ards a	chieve	ment	of Prog	gram O	utcomes	s (1 – Low,
Contr 2- Me	ibution dium, 3 PO	of Cou B - High PO	ırse O h) PO	utcom PO	es tow	ards a		,	,			
2- Me	aium, s	- High	n)				PO 7	PO 8	PO 9	PO	PO 11	PO
2- Me	aium, s	PO PO	n)	PO	PO	PO	PO	PO	PO	PO	PO	
2- Me	PO 1	PO PO	PO 3	PO	PO	PO	PO	PO 8	PO	PO	PO	PO 12 2
CO1 CO2 CO3	PO 1	PO PO	PO 3 2	PO	PO	PO	PO	PO 8 2	PO	PO	PO	PO 12

20A2201493-FLUID MECHANICS & HYDRAULIC MACHINES LAB

Course Outcomes:

Upon successful completion of the course, the student will be able to:

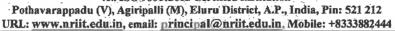
1. Utilize the knowledge in the design of water supply pipe networks and measure the rate of flow in pipes and channels.

2. Design to turbines and able to identify suitable pumps and turbines for different working

Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low,

2- Medium, 3 - High)

Z- Me	ulum,	2 - Hi	511)									70.0
	PO	PO	PO	PO	PO	PO.	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	- 1	ne:	-	3	-	2	3	-	2	3
CO2	3	3	-		-	3		2	3	-	-	3


BIL

Head of The Department
CIVIL ENGINEERING
NRI Institute of Technology
POTHAVARAPPAD

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

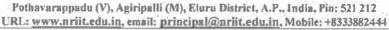
Course	N	am	e:
--------	---	----	----

VECTOR CALCULUS, FOURIER TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

REGULATION: NRIA20 YEAR-SEM: II-I

The student will be able to:

s.no.	COURSE OUTCOME
1.	Write an analytic function if either real part or imaginary part is known and by using cauchy-riemann equations or apply milne-thompson method
2.	Evaluate the integral of complex function over the region bounded by the closed curves by apply either cauchy-goursat theorem or cauchy's integral formula or cauchy's residue theorem
3.	Write the infinite series expansion of complex function by apply taylor's/maclaurin's/laurent's series
4.	Write a fourier series expansion of a periodic function by using euler's formulae
5.	Understand the concept of fourier transform and its properties
6.	Solve the difference equations using z-transforms and inverse z-transforms



HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

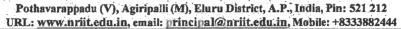
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	ELECTRONIC DE	EVICES AND CIRCUITS	3
	BBB011(01(10 B1		
		Even Wester	
REGULATION:	NRIA20	YEAR-SEM:	H-I

The student will be able to:

S.NO.	COURSE OUTCOME
1.	Understand the basic concepts of semiconductor physics
2,	Understand the formation of p-n junction and how it can be used as diode in different modes of operation
3.	Know the construction ,working principles of rectifiers
4,	Understands the working principles of rectifiers with and without filters
5.	Understand the construction, principle of operation of BJT and their V-I characteristics.
6.	Understand the construction, principle of operation of FET and their V-I characteristics.

DATE AND APPLY PLOT


Dr. N. SAMBASIVA HARTMENT B.Tech, M.Tech, Ph.D, MISTE

Controller of Examinations & Professor of EEE
NRI INSTITUTE OF TECHNOLOGY (KN)

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

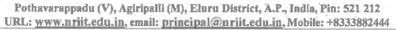
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:										
ELECTRICAL CIRCUIT ANALYSIS-II										
REGULATION: NRIA20 YEAR-SEM: II-I										
REGULATION.	MINIAZU	I EAR-SENT.	11-1							

The student will be able to:

1300

S.NO.	COURSE OUTCOME		
1.	Understand the basic concepts of three phase electrical circuits		
2.	Measure the power in balanced three phase circuits.		
3.	Understand the basic concepts of three phase electrical circuits		
4.	Measure the power in Unbalanced three phase circuits.		
5.	Determine the transient response of R-L, R-C, R-L-C Series circuits with ac and dc excitation		
6.	Calculate the parameters for a given two port network		


HEAD OF THE DEPART

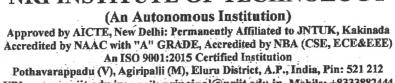
HEAD OF THE DEPARTMENT Or. N. SAMBASIVA RAO

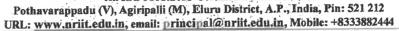
(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	DC MACHINES	AND TRANSFORMERS	
REGULATION:	NRIA20	YEAR-SEM:	II-I


The student will be able to:


e to lite

S.NO.	COURSE OUTCOME			
1.	Analyze the basic operation of DC generators, their armature reaction.			
2.	Analyze the conditions required for analyzing the performance of dogenerators			
3.	Analyze the operation of dc motors & the necessity of starters.			
4.	Determine the performance of testing of dc motors.			
5.	Determine the voltage regulation and efficiency of single phase transformer from test results			
6.	Determine the operation of a poly phase transformers and their parallel operation.			

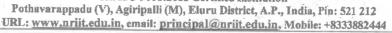
HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAQ

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	ELECTRO N	MAGNETIC FIELDS	
	NIDT 4 CO	AND AD CUM.	II-I
REGULATION:	NRIA20	YEAR-SEM:	11-1

The student will be able to:

s.no.	COURSE OUTCOME		
1.	Able to Compute electric fields and potentials using Gauss law or solve Laplace's or Poisson's equations for various electric charge distributions.		
2.	Able to Calculate the capacitance and energy stored in dielectrics		
3.	Able to Calculate the magnetic field intensity due to current carrying conductor and understanding the application of Ampere's law, Maxwell's second and third law.		
4.	Able to Estimate self and mutual inductances and the energy stored in the magnetic field.		
5.	Able to Understand the concepts of displacement current		
6.	Able to Poynting theorem and Poynting vector		


The said

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	itara dina dina minimata di alba sa di minimata nan nannanging apagaman amaka mala bahar	an ann aith ann a-d-aige agus an d-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a	meternia distributabili dala anno con ma ^k o moronoy as ya annegaga mpo annata yaka dala dalah anno dalah mapaga ya
D	C MACHINES AN	D TRANSFORMERS	S LAB
		ord has	
REGULATION:	NRIA20	YEAR-SEM:	II-I

The student will be able to:

S.NO.	COURSE OUTCOME			
1.	Evaluate the magnetization characteristics of a self excited DC generator			
2.	Determine the characteristics of DC generators at load condition.			
3.	Summarize the efficiency of DC shunt machine both as generator and motor			
4.	Experiment with the performance of DC motors at load condition by brake test			
5.	Determine the voltage regulation and efficiency of single phase transformer from test results			
6.	Determine the operation of a poly phase transformers and their parallel operation.			

HEAD OF THE DEPARTMENT

Dr. N. SAMBASIVA RAQ

(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada
Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An 18O 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	ELECTRONIC DEV	TICES AND CIRCUITS LA	В
REGULATION:	NRIA20	YEAR-SEM:	П-П

The student will be able to:

S.NO.	COURSE OUTCOME		
1.	Determine the characteristics of PN junction diode, zever diode		
2.	Experiment with rectifiers with and without C filters		
3.	Determine the characteristics of BJT, FET, UJT and SCR		
4.	Explain transistor biasing and CRO operation		
5.	Examine the characteristics of various amplifiers such as BJT -CE, Emitter Follower CC, FET-CS		
6,	Utilize several equipment such as Ammeters, Voltmeters, Active & Passi Electronic Components, Regulated Power supplies, CRO's, Function Generators, Digital Multimeters, Résistance Boxes/Rheostats, Decade Capacitance		

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	ELECTRIC	AL CIRCUITS LAB	
REGULATION:	NRIA20	YEAR-SEM:	1-11

The student will be able to:

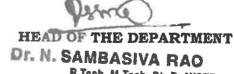
s.no.	COURSE OUTCOME			
1,	Solve different electrical networks by using Thevenin's, Norton's and superposition theorems			
2.	Solve different electrical networks by using maximum power transfer, compensation, reciprocity and millman's theorems			
3.	Solve different electrical networks by using series and parallel resonance			
4.	Determine the self, mutual inductances and coefficient of coupling			
5.	Analyze the networks by using Z, Y,ABCD,H parameters			
б.	Measure the 3 phase power by two wattmeter method for unbalanced loads			

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

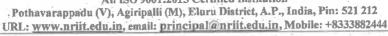
An ISO 9001:2015 Certified Institution
Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212
URL: www.nriit.edu.in, email; principal@nriit.edu.in, Mobile: +8333882444



DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

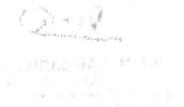
Course Name:	44.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
DESIGN OF ELECTOOLS	FRICAL CIRCUITS	S USING ENGINEERI	ING SOFTWARE
REGULATION:	NRIA20	YEAR-SEM:	II-I

The student will be able to:


s.no.	COURSE OUTCOME
1.	Learn the fundamentals of MATLAB Tools
2.	Generate Various Waveform Signals And Sequences
3.	Verify And Simulate Various Electrical Circuits Using Mesh And Nodal Analysis
4.	Verify And Simulate Various Theorems
5.	Verify And Simulate RLC Series And Parallel Resonance
6.	Determine Self And Mutual Inductance Of A Magnetic Circuit, Parameters Of A Given Coil.

(An Autonomous Institution)

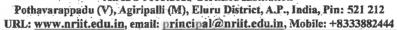
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution



DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Ì	Course Name:			
I		PROFESSIONAL ETHIC	S AND HUMAN VAL	UES
	REGULATION:	NRIA20	YEAR-SEM:	II-II

The student will be able to:


s.no.	COURSE OUTCOME		
1.,	Grooms themselves as ethical, responsible and societal beings.		
2.	Discuss ethics in society and apply the ethical issues related to engineering		
3.	Exhibit the understanding of ethical theories in professional environment.		
4.	Recognize their role as social experimenters (engineers) and comprehend codes of ethics.		
5.	Identify the risks likely to come across in the professional world, analyzing them and find solutions.		
6. Realize the responsibilities and rights of engineers in the society			

HEAD OF THE DEPARTMENT Of. N. SAMBASIVA RAO

(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	PYTHON I	PROGRAMMING	
			22
REGULATION:	NRIA20	YEAR-SEM:	II-II
		1	

The student will be able to:

s.no.	COURSE OUTCOME		
1.	Learn About Python Programming Language Syntax, Semantics, And The Runtime Environment		
2.	Familiarized With Universal Computer Programming Concepts Like Data Types, Containers		
3.	Familiarized With General Computer Programming Concepts Like Conditional Execution		
4.	Familiarized With General Computer Programming Concepts Like Loops & Functions		
5.	Familiarized With General Coding Techniques		
6.	Familiarized With Object-Oriented Programming		

Or. N. SAMBASIVA RAO

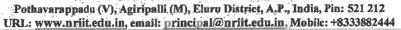
(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			3-10-10-10-10-10-10-10-10-10-10-10-10-10-
1	Digital	Electronics	
REGULATION:	NRIA20	YEAR-SEM:	XX-XX

The student will be able to:


S.NO.	COURSE OUTCOME		
1,	Solve A Typical Number Base Conversion		
2,	Analyze New Error Coding Techniques		
3,	Theorems And Functions Of Boolean Algebra And Behavior Of Logic Gates		
4.	Optimize Logic Gates For Digital Circuits Using Various Techniques		
5.	Understand Concepts Of Combinational Circuits		
6.	Develop Advanced Sequential Circuits		

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001;2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	POWE	R SYSTEMS-I	
REGULATION:	NRIA20	YEAR-SEM:	П-П
		1	

The student will be able to:

. 1,5-.7

s.no.	COURSE OUTCOME		
1.	Identify the different components of thermal power plants and principle of operation.		
2.	dentify the different components of nuclear Power plants and their principle of operation.		
3.	Identify the different components of hydel power plants and their classification and principle of operation		
4.	Identify the components of gas power station and their principle of operation		
5.	Identify different components of substation and their classification.		
6.	Calculate the different tariffs applicable to consumers.		

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

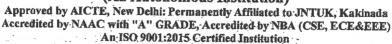
(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
IND	UCTION AND SY	NCHRONOUS MACHI	NES
DECHI ATION	BIEN A MA	THE A DOUBLE	
REGULATION:	NRIA20	YEAR-SEM:	H-H

The student will be able to:


s.no.	COURSE OUTCOME		
1.	Understand the constructional details and principle of operation of induction machines		
2.	Understand the starting methods of induction machines		
3.	Understand the operation of constructional features and principle of operation of single phase induction motors.		
4.	Understand the constructional details and principle of operation of synchronous generators.		
5.	Analyze the construction and principle of operation of synchronous motor.		
6,	Analyze the performance of the synchronous motor and its operation		

the facilities of the leafest of

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
MANA	GERIAL ECONO	MICS & FINANCIAL AN	NALYSIS
REGULATION:	NRIA20	YEAR-SEM:	II-II

The student will be able to:

S.NO.	COURSE OUTCOME		
1.	Use the theory of managerial economics, demand, production analysis and forecasting theories.		
2.	Analyse of production markets and pricing strategies. Functions and cost- price functions to manage markets & break-even point.		
3,	Develop ability to identify, formulate and solve engineering problem by applying the knowledge of managerial economics.		
4,	Theorize about characteristics features and types of industrial organization concept of changing business environment in post-liberalization scenario		
Enhance their capabilities in the interpretation of b/s that are fol industries, organizational and industries.			
6.	Apply financial analysis, capital budgeting techniques in evaluating various investment opportunities.		

1207

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

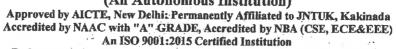
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

	Course Name:			And the state of t
PYTHON PROGRAMMING LAB				
The second secon	REGULATION:	NRIA20	YEAR-SEM:	п-п

The student will be able to:


S.NO.	COURSE OUTCOME		
1.	Acquire Programming Skills In Core Python		
2.	Acquire Object Oriented Skills In Python		
3. Develop The Skill Of Designing Graphical User Interfaces In Py			
4.	Develop The Ability To Write Database Applications In Python		
5.	5. Familiarized With General Coding Techniques		
6.	Familiarized With Object-Oriented Programming		

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO B.Tech, M.Tech, Ph.D, MISTE

Controller of Examinations & Professor of EEE
NRI INSTITUTE OF TECHNOLOGY (KN)

(An Autonomous Institution)

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

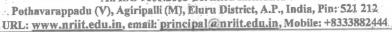
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
INDU	CTION AND SYN	CHRONOUS MACHIN	ES LAB
REGULATION:	NRIA20	YEAR-SEM:	11-11

The student will be able to:

s.no.	COURSE OUTCOME		
1.	Solve the performance parameters of a three phase induction motor		
2.	Categorize the different performance characteristics of a three-phase induction motor		
3.	Measure the performance parameters of three-phase alternator		
4.	Analyze V and Inverted V curves of a three-phase synchronous motor		
5. Contrast the performance parameters of single-phase induction			
6.	Power factor improvement of single phase induction motor		

4-7


HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	City in 1975, S. S. SANCE STOPE, S. SANCE STOP STOP STOP STOP STOP STOP STOP STOP		
	DIGITAL ELE	CTRONICS LAB	
REGULATION:	NRIA20	YEAR-SEM:	II-II

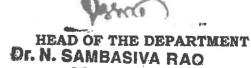
The student will be able to:

s.NO.	COURSE OUTCOME		
1.	Know The Concept Of Boolean Laws For Simplifying The Digital Circuits.		
2. Understand The Concepts Of Flipflops.			
3.	Understand The Concepts Of Counters		
4.	Analyze And Design Various Circuits		
5.	Understand Concepts Of Combinational Circuits		
6.	Develop Advanced Sequential Circuits		

HEAD OF THE DEPARTMENT OF N. SAMBASIVA RAQ

(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada
Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444


DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
IOT AF	PPLICATIONS OF	ELECTRICAL ENGINE	EERING
REGULATION:	NRIA20	YEAR-SEM:	11-11

The student will be able to:

s.no.	COURSE OUTCOME		
1.	Understand Fundamentals Of Various Technologies Of Internet Of Things		
2.	now Various Communication Technologies Used In The Internet Of Things.		
3.	Know The Connectivity Of Devices Using Web And Internet In The Iot Environment		
4.	Understand The Implementation Of Iot By Studying Case Studies Like Smart Home, Smart City, Etc		
5.	Experiment With Raspberry Pi/Arduino		
6.	LED And 7 Segment Display		

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:		nementalistist (light) (1900 men peter from administrativa verbrandt dass ditte en it (2000), desse dessette debutet (abb (1)	ataus the could not a gray for the forester extending or to total disease or graying some real real resources on the contract of the country				
POWER SYSTEMS-II							
REGULATION:	NRIA20	YEAR-SEM:	III-I				

The student will be able to:

S.NO.	COURSE OUTCOME		
1,	Derive transmission line parameters for analyzing the behavior under different operating conditions.		
2.	Understand the surge propagation, reflection and refraction in transmission lines and design the level of insulation coordination at various high voltages.		
3.	Analyze the performance of short & medium transmission lines.		
4.	Analyze the performance of long transmission lines.		
5.	Utilize the knowledge on surge behavior of transmission line for protection o power equipment		
6.	Formulate physical and geometrical parameters of transmission line useful for its safe and efficient performance.		

HEAR OF THE DEPARTMENT Dr. N. SAMBASIVA RAO B.Tech, M.Tech, Ph.D, MISTE

Controller of Examinations & Professor of EEE
NRI INSTITUTE OF TECHNOLOGY (KN)

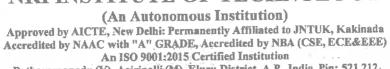
(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING


Course Name:			
	POWER	ELECTRONICS	
REGULATION:	NDIAGO	NEAD ONE	
AEGOLATION:	NRIA20	YEAR-SEM:	III-I

The student will be able to:

s.no.	COURSE OUTCOME			
1.	Demonstrate basic theory of operation of SCR, characteristics of power MOSFET & power IGBT and to design protection & Firing circuits.			
2.	Explore and interpret 1- Φ Half Wave, Full wave converters, with the effect of source inductance and input harmonics.			
3.	Analyze various 3-Φ uncontrolled & controlled rectifier circuits and Understand their Applications			
4.	Analyze & design various BUCK,BOOST & BUCK – BOOST converters in different modes with ripple calculation & operation of different modes with ripple calculation & operation of fly back converter			
5.	Analyze steady –state performance of 1-Φ & 3-Φ inverters & applications of PWM techniques ,operation of VSI & CSI			
6.	Analyze the operation of 1-Φ & 3-Φ AC – AC Regulators, Static V-I characteristics of TRAIC & operation of Tap changing Transformer with Anti-parallel connection of Thyristors			

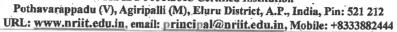
HEAD OF THE DEPARTMENT Or. N. SAMBASIVA RAO

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	LINEAR CO	NTROL SYSTEMS	
REGULATION:	NRIA20	YEAR-SEM:	111-1

The student will be able to:

s.no.	COURSE OUTCOME			
1.	Derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs.			
2.	Determine time response specifications of second order systems and absolute and relative stability of LTI systems using Routh's stability criterion and root locus method.			
3.	Analyze the stability of LTI systems using frequency response methods.			
4.	Design Lag, Lead, Lag-Lead compensators to improve system performance using Bode diagrams.			
5.	Represent physical systems as state models and determine the response.			
6.	Understand the concepts of controllability and observability.			


DEPARTMENT VA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	APTITUDE	AND REASONING	
REGULATION:	NRIA20	YEAR-SEM:	III-I

The student will be able to:

s.no.	COURSE OUTCOME
1.	Solve the Arithmetic and Reasoning Problems as fast as possible and as simple as possible
2.	Exhibits good analytical skills
3.	Exhibits good aptitude skills
4.	Perform well in all competitive exams like RRB, SSC, GROUPS, and BANKING etc
5.	Clear the aptitude section of exams for higher education like CAT, GMAT, and GRE etc
6.	Perform well in academics

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	a target and the state of the s	Service District parameter ()	gag ga yana manifutanya ayay ingay inna al-adali aya yada halidi (Majahana birin hamman iliyi gagi gagi inna amana a maari dan 11 a 'a
	UTILIZATION OF	ELECTRICAL ENER	GY
REGULATION:	NRIA20	YEAR-SEM:	III-I

The student will be able to:

LNO.	COURSE OUTCOME			
1.	Identify various illumination methods produced by different illuminating sources.			
2.	Identify a suitable motor for electric drives and industrial applications			
3.	Identify most appropriate heating and welding techniques for suitable applications.			
4.	Distinguish various traction system			
5.	Determine the tractive effort and specific energy consumption.			
6.	Validate the necessity and usage of different energy storage schemes for different applications and comparisons.			

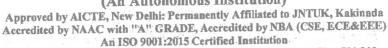
(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada
Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:				
	CONTRO	L SYSTEMS LAB		
REGULATION:	NRIA20	YEAR-SEM;	ПІ-І	

The student will be able to:


S.NO.	COURSE OUTCOME		
1.	To understand the performance of basic control system components such as magnetic amplifiers		
2.	To understand time and frequency responses of control system with controllers and compensators.		
3.	To understand time and frequency responses of control system without controllers and compensators.		
4.	To obtain Transfer Function		
5.	To Obtain magnetic characteristics		
6.	To verify truth tables		

(An Autonomous Institution)

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212
URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:		The state of the s	
	POWER EL	ECTRONICS LAB	
REGULATION:	NRIA20	YEAR-SEM:	111-1

The student will be able to:

s.No.	COURSE OUTCOME		
1.	Study the characteristics of various power electronic devices and analyze gate drive circuits of IGBT.		
2.	Analyze the performance of single-phase and three-phase full-wave bridge converters with both resistive and inductive loads.		
3.	Understand the operation of single phase AC voltage regulator.		
4.	Understand the working of Buck converter, Boost converter, single-phase square wave inverter and PWM inverter.		
5.	Understand the operation of various rectifiers and inverters.		
6,	Understand the operation of resistive and inductive loads.		

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

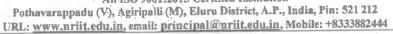
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:				
IOT AP	PLICATIONS OF	ELECTRICAL ENGIN	EERING	
REGULATION:	NRIA20	YEAR-SEM:	III-I	

The student will be able to:

S.NO.	COURSE OUTCOME
1.	To understand fundamentals of various technologies of Internet of Things.
2.	To know various communication technologies used in the Internet of Things.
3.	To know the connectivity of devices using web.
4.	To know the connectivity of devices internet in the IoT environment.
5.	To understand the implementation of IoT by studying case studies like Smart Home, Smart city, etc.
6.	To interface LEDs

L'aglil of


HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
MI	CROPROCESSORS AND	MICROCONTROL	LLERS
			The same and the s
REGULATION:	NRIA20	YEAR-SEM:	III-II

The student will be able to:

s.no.	COURSE OUTCOME
1.	Know the concepts of the Microprocessor capability in general and explore the evaluation of microprocessors.
2.	Analyse the instruction sets - addressing modes - minimum and maximum modes operations of 8086 Microprocessors
3.	Analyse the Microcontroller and interfacing capability
4.	Describe the architecture and interfacing of 8051 controller
5.	Know the concepts of PIC micro controller
6.	Know the concepts of PIC micro controller programming.

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

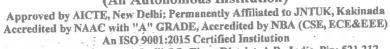
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	POWER SYSTEM ANALYSIS	Course Index:	C221
REGULATION:	NRIA20	YEAR-SEM:	III-II

The student will be able to:


s.no.	COURSE OUTCOME
1.	Explain the working principle and constructional features of different types of electromagnetic protective relays
2.	Compare different types of static relays with a view to application in the system.
3.	Relate the acquired in depth knowledge of faults that is observed in high power generator and transformers and protective schemes used for all protections
4.	Improve the ability to understand various types of protective schemes used for feeders and bus bar protection
5.	Illustrate the principles of arc interruption for application to high voltage circuit breakers of air, oil, vacuum, SF6gas type
6.	Explain different types of over voltages appearing in the system, including existing protective schemes

And the second second

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
ELECTRIC	CAL MEASUREM	ENTS AND INSTRUM	ENTATION
REGULATION:	NRIA20	YEAR-SEM:	III-II

The student will be able to:

s.no.	COURSE OUTCOME
1.	Know the construction and working of various types of analog instruments
2.	Describe the construction and working of wattmeter and power factor meters
3,	Know the construction and working various bridges for the measurement resistance - inductance and capacitance
4.	Know the operational concepts of various transducers
5.	Know the construction of digital meters
6.	Know the operation of digital meters

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

REGULATION:	NRIA20	YEAR-SEM:	ТП-П	
	POWER S	YSTEM ANALYSIS		İ
Course Name:				٦

The student will be able to:

S.NO.	COURSE OUTCOME
1.	Draw impedance diagram for a power system network and calculate per unit quantities.
2.	Apply the load flow solution to a power system using different methods.
3.	Form Zbus for a power system networks and analyse the effect of symmetrical faults.
4.	Find the sequence components for power system Components
5.	Analyse the effects of unsymmetrical faults.
6.	Analyse the stability concepts of a power system.

May to the second

HEAD ENT Dr. N. SAMBAS Ph.D. MISTE

Controller of Examinations & Professor of EEE
NRI INSTITUTE OF TECHNOLOGY (KN)

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			and the contract of the contra
	SWITCH GEAR	AND PROTECTION	V
REGULATION:	NRIA20	YEAR-SEM:	Ш-П

The student will be able to:

s.no.	COURSE OUTCOME
1.	Illustrate the principles of arc interruption for application to high voltage circuit breakers of air - oil - vacuum - SF6 gas type.
2.	Analyse the working principle and operation of different types of electromagnetic protective relays.
3.	Acquire knowledge of protective schemes for generator and transformers for different fault conditions.
4.	Classify various types of protective schemes used for feeders
5.	Classify various types of protective schemes used for bus bar protection and Types of static relays.
6.	Analyse the operation of different types of over voltages protective schemes required for insulation co-ordination and types of neutral grounding.

the subject of the subject of

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:			
	INDUSTRIA	AL ELECTRONICS	
DECIL ATION			
REGULATION:	NRIA20	YEAR-SEM:	111-11

The student will be able to:

S.NO.	COURSE OUTCOME
1.	Understand the concept of DC amplifiers.
2.	Analyze and design different voltage regulators for real time applications
3.	Describe the basis of SCR and Thyristor
4.	Determine the performance of DIAC
5.	Determine the performance of TRIAC
6.	Develop real time application using electronics

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name: ELECTRICA	L MEASUREMEN	ITS AND INSTRUMEN	TATION LAB
REGULATION:	NRIA20	YEAR-SEM:	111-11

The student will be able to:

s.No.	COURSE OUTCOME
1.	Understand Students How Different Types Of Meters Work And Their Construction.
2.	Understand How To Measure Resistance, Inductance And Capacitance By AC & DC Bridges.
3.	Understand The Testing Of CT And PT.
4.	Understand And The Characteristics Of Thermo Couples, LVDT, Capacitive Transducer, Piezoelectric Transducer.
5.	Understand The Measurement Of Strain And Choke Coil Parameters.
6.	Study The Procedure For Standardization And Calibration Of Various Methods.

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

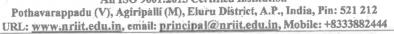
Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name: MICROP	ROCESSORS ANI	O MICRO CONTROLLE	CRS LAB
REGULATION:	NRIA20	YEAR-SEM:	Ш-Ш

The student will be able to:

s.no.	COURSE OUTCOME
1.	Study Programming Based On 8086 Microprocessor
2.	Study Programming Based On 8051 Microcontroller.
3.	Study 8086 Microprocessor Based ALP Using Arithmetic, Logical And Shift Operations.
4.	Study To Interface 8086 With I/O Devices.
5.	Study To Interface 8086 With Other Devices.
6.	Study Parallel And Serial Communication Using 8051& PIC 18 Micro Controllers.


HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	AND AND A STATE OF THE STATE OF		
	POWER SYSTEMS	AND SIMULATION	LAB
REGULATION:	NRIA20	YEAR-SEM:	пт-п

The student will be able to:

s.no.	COURSE OUTCOME
1.	Study and Calculate the sequence impedance of three phase alternator
2.	Study and Calculate the sequence impedance of three phase transformer
3,	Calculation of ABCD Parameters
4.	Determine Y Bus and Z Bus
5.	Determine Economic Load Dispatch with and without losses
6.	Calculate the Load Frequency Control

Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

(An Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution
Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212

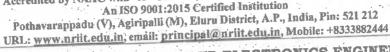
URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +8333882444

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:	7		
1	MACHINE LEARN	IING WITH PYTHON LA	AB
REGULATION:			

The student will be able to:

S.NO.	COURSE OUTCOME	
1.	Implement procedures for the machine learning algorithms	
2.	Develop Python programs for various Learning algorithms	
3.	Design Python programs for various Learning algorithms	
4.	Apply appropriate data sets to the Machine Learning algorithms	
5.	Develop Machine Learning algorithms to solve real world problems	
6.	To study Bayesian Networks	


Colombus .

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(An Autonomous Institution)

(All Autonomous Institution)
Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)
An ISO 9001:2015 Certified Institution

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Course Name:		ga tamili dan men san mak liki jegandi dala kirip tami dan man dan mangiri, dan yang saman didalah, separatan	The second secon
Course Name.	RESEARCH	METHODOLOGY	and hope of a little of
REGULATION:	NRIA20	YEAR-SEM:	пі-п

The student will be able to:

s.no.	COURSE OUTCOME
1.	Understand objectives of a research problem
2.	Understand characteristics of a research problem
3.	Analyze research related information and to follow research ethics.
4.	Understand the types of intellectual property rights.
5.	Learn about the scope of IPR.
6.	Understand the new developments in IPR.

HEAD OF THE DEPARTMENT Dr. N. SAMBASIVA RAO

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

CRITERION 3

COURSE OUTCOMES 2020-21 Admitted Batch

Course Name: Professional Communication (20A1100101) Year of Study: 2020-21

At the end of	the course completion student will be able to:
C111.1	Build the grammatical structures accurately in their real-time situations in either spoken or written form
C111.2	Extend their ability to use vocabulary from various texts along with GRE and technical vocabulary in written and spoken communication
C111.3	Comprehend, analyze and evaluate texts critically. Demonstrate effective writing skills in specific forms of written communication (paragraphs, summaries, email and letters.)
C111.4	Apply the strategies of reading various texts and graphs, and describe in prose.
C111.5	Relate human values and professional ethics in their academic, professional and social lives.
C111.6	Summarize the main events of the literary texts, from different socio-cultural contexts, and interpret them critically

Course Name: Engineering Mathematics-I (20A1100201) Year of Study: 2020-21

At the end of t	he course completion student will be able to:
C112.1	Develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6) solve system of linear algebraic equations using Gauss elimination, Gauss Seidel and write Eigen values and eigenvectors of a matrix (L3) Gain knowledge and skills on Matrix algebra techniques. solve system of linear algebraic equations
C112.2	Write diagonal form and different factorizations of a matrix (L3), to find inverse of a matrix and integral powers of a matrix by Cayley - Hamilton Theorem Identify the nature of a Quadratic form such as positive definite, positive semi definite etc., and use this information to facilitate the calculation of matrix characteristics (L2)
C112.3	Evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
C112.4	Apply Newton's forward & backward interpolation and Lagrange's formulae for unequal intervals (L3)
C112.5	Apply numerical integral techniques to different Engineering problems (L3)
C112.6	Apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

Course Name: Engineering Physics (20A1100202) Year of Study: 2020-21

At the end of t	he course completion student will be able to:
C113.1	Apply the interaction of light with matter through interference, diffraction, polarization.
C113.2	Get the knowledge on laser and fibre optic communication systems in various engineering applications
C113.3	Interpret the knowledge of dielectric and magnetic materials with characteristic utility in appliances
C113.4	Apply the principles of acoustics to explain the nature and characterization of acoustic design and to provide a safe and healthy environment.
C113.5	Apply the knowledge of non-destructive testing using ultrasonics in various engineering applications.
C113.6	Study the Structure-property relationship exhibited by solid crystal materials for their utility.

Course Name: Engineering Drawing (20A1101401) Year of Study: 2020-21

At the end of	the course completion student will be able to:
C114.1	Understand the simple geometric constructions like polygons, engineering curves and scales.
C114.2	Understand the orthographic projections of points and lines
C114.3	Understand the orthographic projections of straight lines- inclined to one plane and inclined to both the planes.
C114.4	Understand the orthographic projections of planes and Planes inclined to both the planes.
C114.5	Understand and draw the projections of the various types of solids in different positions inclined to one of the planes
C114.6	Understand the transformation of Orthographic views into isometric views and vice versa.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Programming and Problem Solving with C (20A1105301)

Year of Study: 2020-21

At the end of	the course completion student will be able to:
C115.1	Understand the programming terminology and implement various c-tokens & input-output statements to solve simple problems
C115.2	Able to compare and differentiate various looping & branching constructs and apply the best looping structure for a given problem
C115.3	Identify the necessity of modularity in programming and design various function types
C115.4	Understand pointers and implement the programs to directly access memory locations
C115.5	Interpret and implement the need of arrays and structure/union to store homogeneous and heterogeneous groups of data
C115.6	Contrast the need of using files in programming and implement file operations

Course Name: Engineering Physics Lab (20A1100291) Year of Study: 2020-21

At the end of	the course completion student will be able to:
C116.1	Understand principle, concept, working of an instrument and can compare results with theoretical calculations.
C116.2	Analyze the physical principle involved in the various instruments; also relate the principle to new application
C116.3	Understand design of an instrument with targeted accuracy for physical measurements.
C116.4	Develop skills to impart practical knowledge in real time solution
C116.5	Conduct various experiments in the areas of optics, mechanics and thermal physics
C116.6	Think innovatively and also improve the creative skills that are essential for engineering.

Course Name: Programming and Problem Solving with C Lab (20A1105391)

Year of Study: 2020-21

At the end of	the course completion student will be able to:
C117.1	Understand basic Structure of the C-PROGRAMMING, declaration and usage of variables.
C117.2	Exercise conditional and iterative statements to inscribe C programs
C117.3	Exercise user defined functions to solve real time problems.
C117.4	Inscribe C programs using Pointers to access arrays, strings and functions
C117.5	Inscribe C programs using pointers and allocate memory using dynamic memory management functions.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

C117.6 Exercise user defined data types including structures, unions and files to solve problems

Course Name: Engineering Mathematics-II (20A1200201) Year of Study: 2020-21

At the end of	the course completion student will be able to:
C121.1	Find the General/Particular solutions of first order and first degree ordinary differential equations by apply different methods (L3), know the applications of Newton's law of cooling, natural growth and decay problems and find orthogonal trajectories of the given family of curves. (L3)
C121.2	Identify the essential characteristics of linear differential equations with constant coefficients. (L2) solve the linear differential equations with constant coefficients by appropriate method (L3)
C121.3	Find convergence (or) divergence of a series (L3)
C121.4	Utilize mean value theorems to real life problems(L3)
C121.5	Find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function varies. (L4)acquire the Knowledge maxima and minima of functions of several variable (L1) Utilize Jacobian of a coordinate transformation to deal with the problems in change of variables (L3)
C121.6	Find length of the arc, volume of solid of revolution and surface area of solid of revolution(L3)

Course Name: Engineering Chemistry (20A1200204) Year of Study: 2020-21

At the end of	the course completion student will be able to:
C122.1	Analyze the different types of composite plastic materials and interpret the mechanism of conduction in conducting polymers.
C122.2	Predict potential complications from combining various chemicals and metals in engineering.
C122.3	Discuss fundamental aspects of electrochemistry and materials science relevant to corrosion phenomena
C122.4	Acquire the knowledge on Nano chemistry, Refractories, Lubricants and cement.
C122.5	Gain the knowledge on various petroleum products and alternate fuels
C122.6	Examine the water quality and select appropriate purification technique for intended use.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

Course Name: Engineering Mechanics (20A1203301) Year of Study: 2020-21

At the end of	f the course completion student will be able to:
C123.1	Compute the resultant of forces and moments using free body diagrams and able to apply the concepts of friction.
C123.2	Analyze plane truss by method of joints and method of sections.
C123.3	Identify the Centroid and Centre of Gravity and estimate the area and mass moment of inertia of the composite figures and bodies.
C123.4	Understand the fundamental concepts of Rectilinear and curvilinear motion of a particle.
C123.5	Understand the fundamental concepts of kinematics and kinetics of rigid body.
C123.6	Able to apply the work energy and Impulse momentum principle to analyze the simple practical problems.

Course Name: Basic Electrical and Electronics Engineering (20A1202301)

Year of Study: 2020-21

At the end of	the course completion student will be able to:
C124.1	Analyze various electrical networks.
C124.2	Understand operation of DC generators,3-point starter
C124.3	Understand operation of DC machine testing by Swinburne's Test and Brake test.
C124.4	Analyze performance of single-phase transformer and acquire proper knowledge and working of 3-phase alternator and 3-phase induction motors.
C124.5	Analyze operation of half wave, full wave, bridge rectifiers and OP-AMPs.
C124.6	Understanding operations of CE amplifier and basic concept of feedback amplifier.

Course Name: Computer Aided Engineering Drawing (20A1203401)

Year of Study: 2020-21

At the end of	the course completion student will be able to:
C125.1	Understand the projections of solids which are essential in 3D modeling and animation.
C125.2	Understand the sections of solids and development of surfaces for designing and manufacturing of the objects.
C125.3	Understand the hidden details of machine components with the help of sections and interpenetrations of solids.
C125.4	Understand the various commands in AutoCAD and to draw the geometric entities and to create 2D and 3D wire frame models.
C125.5	Understand the modeling commands for generating 2D and 3D objects using computer aided drafting tools.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

C125.6 Understand the concept of computer aided solid modeling
--

Course Name: Environmental Sciences (20A1200801) Year of Study: 2020-21

t the end of	the course completion student will be able to:
C126.1	Illustrate the importance of sustainability in the progress of a nation.
C126.2	Infer the existence of ecosystems in maintaining ecological balance.
C126.3	Recall the importance of biodiversity and its conservation.
C126.4	Summarize the role of natural resources for the sustenance of life on earth and recognize the need to conserve them.
C126.5	Identify the environmental pollutants and the abatement devices to be used
C126.6	Interpret environmental related acts and social issues

Course Name: Communicative English Lab (20A1200191) Year of Study: 2020-21

At the end of	the course completion student will be able to:
C127.1	Demonstrate better understanding of the nuances of spoken English to put into use in various situation and events.
C127.2	Apply the rules of phonetics-pronunciation, accent and intonation—in their everyday communication
C127.3	Relate their understanding of the importance of spoken skills and the need for life- long learning in day-to-day communication.
C127.4	Construct strategies like critical and analytical skills to participate effectively in group discussions and debates.
C127.5	Demonstrate their ideas accurately and effectively in presentations
C127.6	Build responses to the questions by listening to short audio texts and identify the context and specific pieces of information.

Course Name: Engineering Chemistry Lab (20A1200293) Year of Study: 2020-21

At the end of	the course completion student will be able to:
C128.1	Apply polymers and plastic technologies to solve the problems of the society
C128.2	Utilize knowledge of cells and sensors in many instruments like batteries and fuel cells.
C128.3	Understand electrochemical cells corrosion along with the methods of controlling to budding engineers.
C128.4	Understand water and its hardness, boiler troubles and problems associated with the

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

	environment and its sustainability.	
C128.5	Understand fuels and energy, their advantages & disadvantages.	
C128.6	Design and analysis of complex problems of the society.	

Course Name: Workshop Practice Lab (20A1203391) Year of Study: 2020-21

At the end of t	he course completion student will be able to:
C129.1	Acquire skills in basic engineering trades like Carpentry, Fitting, Tin smithy, House wiring, Black smithy etc.,
C129.2	Apply the knowledge of basic engineering trades in their day – to – day activities.
C129.3	Fabricate small components using the knowledge of basic engineering trades.
C129.4	Select appropriate tools and consumables for getting an object of required shape and size.
C129.5	Configure the components and peripherals of PC.
C129.6	Assemble and disassemble the PC components.

Course Name: Basic Electrical and Electronics Engineering Lab (20A1202391)

Year of Study: 2020-21

At the end of	the course completion student will be able to:
C1210.1	Compute the efficiency of DC shunt machine without actual loading of the machine.
C1210.2	Estimate the efficiency and regulation at different load conditions and power factors for single phase transformer with OC and SC tests.
C1210.3	Analyze the performance characteristics and to determine efficiency of DC shunt motor &3- Phase induction motor.
C1210.4	Pre-determine the regulation of an alternator by synchronous impedance method.
C1210.5	Control the speed of dc shunt motor using Armature voltage and Field flux control methods.
C1210.6	Draw the characteristics of PN junction diode & transistor, Determine the ripple factor of half wave & full wave rectifiers.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Vector Calculus, Transform Techniques Partial Differential Equations (20A2100201) Year of Study: 2021 -22

At the end of	the course completion student will be able to:
C211.1	Interpret the physical meaning of different operators such as gradient, cur land divergence (L5)
C211.2	Estimate the work done against a field, circulation and flux using vector calculus (L5)
C211.3	Apply the Laplace transform for solving differential equations (L3)
C211.4	Find or compute the Fourier series of periodic signals (L3)
C211.5	Know and be able to apply integral expressions for the forwards and inverse Fourier transform to arrange of non-periodic wave forms (L3)
C211.6	Identify solution methods for partial differential equations that model physical processes (L3)

Course Name: Mechanics of Solids (20A2103401) Year of Study: 2021 -22

At the end of	the course completion student will be able to:
C212.1	Understand the fundamental concepts of stress, strain and principal stresses.
C212.2	Analyze beams and draw shear force and bending moment diagrams for beams.
C212.3	Estimate bending stresses in structural members subjected to flexural loadings.
C212.4	Estimate shear stresses in various beam sections.
C212.5	Determine the deflections and slopes produced in beams under loading conditions and Estimate the stresses and strains in circular torsion members
C212.6	Estimate hoop and longitudinal stresses in thin and thick cylinders and Design slender, long columns subjected to axial loads

Course Name: Fluid Mechanics & Hydraulic Machines (20A2103402)

Year of Study: 2021 -22

C 213.1	Explain procedures of measurement of fluid pressure and manometry
C213.2	Apply The mechanics of fluids in static and dynamic conditions.
C213.3	Apply Boundary layer theory and flow separation
C213.4	Perform Dimensional Analysis.
C213.5	Analyse the impact of jet on the vanes
C213.6	Evaluate performance of hydraulic machines

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Production Technology (20A2103403) Year of Study: 2021 -22

At the end of the course completion student will be able to:	
C214.1	Understand the casting methods and procedures.
C214.2	Differentiate various casting methods and their applications.
C214.3	Understand the welding types and procedures.
C214.4	Differentiate various joining processes with applications
C214.5	Understand Various Plastic operations.
C214.6	Understand various bulk metal forming and sheet metal processes.

Course Name: Kinematics of Machines (20A2103404) Year of Study: 2021 -22

At the end of	the course completion student will be able to:
C215.1	Understand Kinematic joint and mechanism and study the relative motion of parts in a machine.
C215.2	Understand various mechanisms for straight line motion and their applications.
C215.3	Determine the velocity and acceleration diagrams for simple mechanisms.
C215.4	Determine the instantaneous centre of rotation diagrams for simple mechanisms.
C215.5	Apply working principles of cams and also design the profile of cams. Understand various power transmission mechanisms, methodologies and working principles
C215.6	Understand the nomenclature of gear and determine the number of teeth without interference. Understand the mechanism of gear trains.

Course Name: Thermodynamics (20A2103301) Year of Study: 2021 -22

At the end of	At the end of the course completion student will be able to:	
C216.1	Understand the basic concepts of thermodynamics.	
C216.2	Understand the first law of thermodynamics and apply to simple systems.	
C216.3	Understand the second law of thermodynamics and apply to various thermodynamic systems.	
C216.4	Understand Maxwells relations, thermodynamic functions and concept of entropy and apply to various thermodynamic systems.	
C216.5	Understand the concept of vapour power cycles – estimation of performance of vapour power cycles.	

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

C216.6	Understand the properties of gas mixtures and gas power cycles	- estimation
1 W 2 400	of efficiency and work done.	91-,11-,-

Course Name: Fluid Mechanics & Hydraulic Machines Lab (20A2103491)

Year of Study: 2021 -22

t the end of the course completion student will be able to:	
Find coefficient of discharge for venture meter	
Demonstrate the concepts of discharge through orifice meter and mouthpiece.	
Explain the concepts of loses in the pipe flow	
Explain the concepts of jet on vanes.	
Demonstrate the concept of Bernoulli's theorem.	
Analyze the performance of deferent turbines of and pumps.	

Course Name: Production Technology Lab (20A2103492) Year of Study: 2021 -22

At the end	At the end of the course completion student will be able to:	
C218.1	Design the pattern and mold in sand castings.	
C218.2	Perform different welding and other joining techniques.	
C218.3	Perform blanking, piercing and extrusion operations	
C218.4	Perform bending and related operations	
C218.5	Understand the basic powder compaction and sintering process.	
C218.6	Understand and operate Injection moulding and blow moulding operations.	

Course Name: Drafting & Modeling Lab (20A2103991) Year of Study: 2021 -22

At the end o	f the course completion student will be able to:
C219.1	Understand the projections of solids which are essential in 3D modeling and animation.
C219.2	Understanding the study of DXE and IGES files.
C219.3	Understand the hidden details of machine components with the help of sections and interpenetrations of solids.
C219.4	Understand the various commands in AutoCAD and to draw the geometric entities and to create 2D and 3D wire frame models.
C219.5	Understand the modeling commands for generating 2D and 3D objects using computer aided drafting tools.
C219.6	Understand the concept of computer aided solid modeling

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Material Science & Metallurgy (20A2203301) Year of Study: 2021 -22

At the end of	at the end of the course completion student will be able to:	
C221.1	Classify, construct and analyze equilibrium diagrams.	
C221.2	Analyze and distinguish various ferrous, non-ferrous metals and alloys.	
C221.3	Identify the influence of mechanical working on materials.	
C221.4	Identify the influence of heat treatment principles on materials.	
C221.5	Define applications of powder metallurgy.	
C221.6	Suggest the composites and ceramics for various engineering applications based on their suitability.	

Course Name: Complex Variables & Statistical Methods (20A2200202)

Year of Study: 2021 -22

At the end of the course completion student will be able to:	
C222.1	Classify the concepts of data science and its importance
C222.2	Interpret the association of characteristics and through the correlation and Regression tools
C222.3	Make us of the concepts of probability and their applications
C222.4	Apply discrete and Continuous probability distributions
C222.5	Design the components of a classical hypothesis test
C222.6	Infer the statistical inferential methods based on small and large sampling tests

Course Name: Dynamics of Machinery (20A2203401) Year of Study: 2021 -22

At the end of the course completion student will be able to:	
C223.1	Compute the frictional losses and transmission in clutches, brakes and dynamometers.
C223.2	Analyze dynamic force analysis of slider crank mechanism. Design a Flywheel.
C223.3	Analyze stabilization of automobiles, airplanes and ships.
C223.4	Analyze the forces in governors.
C223.5	Compute balancing forces in systems with reciprocating and rotary masses.
C223.6	Estimate the effects of natural and forced vibrations.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Thermal Engineering-I (20A2203402) Year of Study: 2021 -22

C224.1	Comprehend the air standard, fuel air and actual cycles.
C224.2	Understand the working of various internal combustion engine components and their working Principles.
C224.3	Analyze the combustion phenomenon of SI engines
C224.4	Analyze the combustion phenomenon of CI engines
C224.5	Compute the two stroke and four stroke engine performance characteristics.
C224.6	Describe the components, functioning and performance of gas turbines. Apply the principles of gas turbines and jet propulsion systems.

Course Name: Industrial Engineering & Management (20A2200102)

Year of Study: 2021 -22

At the end of the course completion student will be able to:	
C225.1	Acquire fundamental knowledge of Industrial management.
C225.2	Understand the concept of system approach and different types of production layouts, process layouts and acquire the domain knowledge of maintenance
C225.3	Understand different types of production, work study, method study, work measurement techniques.
C225.4	Identify the role of statistics in engineering problem solving process, use of graphical techniques in data analysis
C225.5	Solve Engineering Problems using Statistical quality Control Methods.
C225.6	Understand and use of effective project management to solve Engineering problems.

Course Name: Mechanics of Solids & Metallurgy Lab (20A2203391)

Year of Study: 2021 -22

C226.1	Perform the UTM test of a material.
C226.2	Perform various test to know the mechanical properties of a material
C226.3	Perform hardness test and heat treatment of steels.
C226.4	Prepare the specimens as per standards.
C226.5	Observe micro structure of different materials.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

C226.6

Analyse the properties of materials based on micro structure.

Course Name: Machine Drawing Practice (20A2203491)

Year of Study: 2021 -22

At the end of	At the end of the course completion student will be able to:	
C227.1	Demonstrate the conventional representations of materials and machine components	
C227.2	Understand and draw riveted, welded and key joints	
C227.3	Understand the hidden details of machine components with the help of sections and interpenetrations of solids.	
C227.4	Understand and draw machine parts.	
C227.5	Understand and draw assembly drawing.	
C227.6	Understand and draw manufacturing drawing with dimensional and geometric tolerances	

Course Name: Theory of Machines Lab (20A2203492) Year of Study: 2021 -22

At the end of t	At the end of the course completion student will be able to:	
C228.1	Analyze the forces and motion of complex systems of linkages, gears and cams.	
C228.2	Apply the principles of gyroscope and governors.	
C228.3	Apply the principles of balancing of masses to various links, mechanisms and engines.	
C228.4	Demonstrate the dynamics of flywheel and their motion.	
C228.5	Analyze the motion and the dynamical forces acting on mechanical systems composed of linkages, gears and cams.	
C228.6	Perform balancing, vibration and critical speeds with respect to Machine dynamics	

Course Name: Python Programming Lab (20A2203991) Year of Study: 2021 -22

At the end of	at the end of the course completion student will be able to:	
C229.1	Solve the different methods for linear, non-linear and differential equations	
C229.2	Learn the PYTHON Programming language	
C229.3	Familiar with the strings and matrices in PYTHON	
C229.4	Write the Program scripts and functions in PYTHON to solve the	

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

methods

Course Name: Essence of Indian Traditional Knowledge (20A2200801)

Year of Study: 2021 -22

At the end of	the course completion student will be able to:
C2210.1	Understand the concept of Traditional knowledge and its importance
C2210.2	Know the need and importance of protecting traditional knowledge
C2210.3	Know the various enactments related to the protection of traditional knowledge
C2210.4	Understand the concepts of Intellectual property to protect the traditional knowledge
C2210.5	Understand the Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture
C2210.6	Know the importance of TK and biotechnology, TK in agriculture

Course Name: Thermal Engineering-II (20A3103401) Year of Study: 2022-23

At the end of the course completion student will be able to:	
C311.1	Describe the components and functioning of a Rankine cycle.
	Analyze the need of various boiler draught systems for a vapor power cycle
C311.2	Apply thermodynamic analysis to study the behavior of steam nozzles
C311.2	Evaluate the performance of impulse turbines
C311.3	Evaluate the performance of reaction turbines
C311.4	Understand different types of condensers and analyze its performance analysis.
C311.5	Evaluate the performance of reciprocating and rotary compressors.
C311.6	Evaluate the performance of centrifugal and axial flow compressors.

Course Name: Design of Machine Members-I (20A3103402) Year of Study: 2022-23

At the end o	At the end of the course completion student will be able to:	
C312.1	Estimate safety factors of machine members subjected to static and dynamic loads.	
C312.2	Identify the loads that the machine members subjected to and calculate static and dynamic stresses to ensure safe design	
C312.3	Design of Riveted and Welded joints under eccentric loading.	
C312.4	Design standard machine elements such as keys, cotters and knuckle joints.	
C312.5	Design standard machine elements such as shafts and couplings.	

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

C312.6 Design and Analyze mechanical springs

Course Name: Machining, Machine Tools & Metallurgy (20A3103403)

Year of Study: 2022-23

At the end of	At the end of the course completion student will be able to:	
C313.1	Understand the fundamentals of Machining.	
C313.2	Understand the functions and applications of Lathe, Shaper, Slotter and Planner.	
C313.3	Understand and Compare the functions and applications of Drilling and Boring.	
C313.4	Understand the functions and applications of Milling	
C313.5	Analyze the concepts of finishing processes and the system of limits and fits.	
C313.6	Understand the concepts of surface roughness and optical measuring instruments.	

Course Name: Surveying & Geomatics (20A3101601) Year of Study: 2022-23

At the end of the course completion student will be able to:	
C314.1	Understand the basics of surveying and identifying the needs of surveying
C314.2	Apply the knowledge, techniques and survey tools in engineering practices
C314.3	Calculate angles, distances and levels
C314.4	Translate the knowledge gained for implementation infrastructure facilities.
C314.5	Correlate knowledge to frontiers like hydrography, electronic distances measurement, global positioning system, photogrammetry and remote sensing
C314.6	Identify data collection methods and prepare field notes.

Course Name: Finite Element Methods (20A3103511) Year of Study: 2022-23

At the end of	At the end of the course completion student will be able to:	
C315.1	Understand the concept of theory of elasticity and solution to the problems using this method.	
C315.2	Use of FEM to solve trusses.	
C315.3	Use of FEM to solve beam problems.	
C315.4	Apply FEM to solve two-dimensional problems	
C315.5	Apply FEM to solve axis symmetric problems	
C315.6	Use of FEM for solving problems on dynamic analysis.	

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Machine Tools Lab (20A3103491) Year of Study: 2022-23

At the end o	t the end of the course completion student will be able to:	
C316.1	Demonstrate about general purpose machine tools in the machine shop.	
C316.2	Explain various operations on lathe machine.	
C316.3	Distinguish between different operations on drilling machine.	
C316.4	Experiment with basic operations on shaping machine.	
C316.5	Utilize slotting machine to make keyways.	
C316.6	Experiment with the basic operations on milling machine.	

Course Name: Thermal Engineering Lab (18A3103492) Year of Study: 2022-23

At the end of	At the end of the course completion student will be able to:	
C317.1	Find the efficiency and performance of an I.C. engine system for a given set of conditions.	
C317.2	Calculate the various energy losses and heat balance of Internal Combustion Engines.	
C317.3	Evaluate the performance parameters of refrigeration system and Solar flat plate.	
C317.4	Analyze the Volumetric efficiency of air compressor	
C317.5	Develop skills in data acquisition systems	
C317.6	Study the various parameters of boilers	

Course Name: Advanced Communication Skills Lab (20A3103991)

Year of Study: 2022-23

At the end of	of the course completion student will be able to:	
C318.1	Recall vocabulary and use it contextually	
C318.2	Interpret listen and speak effectively	
C318.3	Develop proficiency in academic reading and writing	
C318.4	Develop the possibilities of job prospects	

Course Name: Heat Transfer (20A3203401) Year of Study: 2022-23

At the end	of the course completion student will be able to:
C321.1	Explain the basic heat transfer principles.
C321.2	Analyze steady and unsteady state heat transfer concepts.
C321.3	Understand the concepts of natural and forced convective heat transfer

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

	for both internal and external flow
C321.4	Estimate the heat transfer coefficient and rate of heat transfer
C321.5	Apply the concepts of heat transfer in Boiling, Condensation and heat exchangers.
C321.6	Evaluate the radiation heat exchange between the surfaces.

Course Name: Design of Machine Members-II (20A3203402) Year of Study: 2022-23

C322.1	Estimate the bearing life and selection of suitable bearing.
C322.2	Analyze and design of various engine parts.
C322.3	Design of curved beams.
C322.4	Analyze and design of power screws.
C322.5	Design of Pulleys and Gear drives.
C322.6	Apply the concepts in designing various machine tool elements

Course Name: CAD/CAM (20A3203403) Year of Study: 2022-23

At the end o	f the course completion student will be able to:
C323.1	Describe basic structure of CAD workstation, Memory types, input/output device sand display devices and computer graphics
C323.2	Understand how to write the part programs for different models by using part programming
C323.3	Explain features of Group Technology (GT), Computer Aided Process Planning (CAPP).
C323.4	Explain features of Flexible Manufacturing System (FMS)
C323.5	Illustrate Computer Aided Quality Control (CAQC) concepts.
C323.6	Illustrate Computer Integrated Manufacturing (CIM) concepts.

Course Name: Environmental Engineering (20A3201605) Year of Study: 2022-23

At the end o	of the course completion student will be able to:
C324.1	Understand about quality of water and purification process
C324.2	Select appropriate technique for treatment of waste water.
C324.3	Assess the impact of air pollution
C324.4	Understand consequences of solid waste and its management.
C324.5	Design domestic plumbing systems.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

C324.6 Selection of suitable treatment flow for raw water treatments.

Course Name: Fundamentals of Utilization of Electrical Energy (18A3202605)

Year of Study: 2022-23

At the end of	the course completion student will be able to:
C325.1	Identify various illumination methods produced by different illuminating sources.
C325.2	Identify most appropriate heating techniques for suitable applications.
C325.3	Identify most appropriate welding techniques for suitable applications.
C325.4	Distinguish various traction system and determine the tractive effort and specific energy consumption.
C325.5	Validate the necessity and usage of different energy storage schemes for different applications and comparisons.
C325.6	Explain the Thermal ,magnetic, Chemical Energy storage systems.

Course Name: Automobile Engineering (20A3203511) Year of Study: 2022-23

At the end o	f the course completion student will be able to:
€326.1	Understand the basic systems and components of an automobile
C326.2	Summarize the operation of transmission systems.
C326.3	Summarize the operation of steering systems
C326.4	Explain the operation of suspension systems.
C326.5	Explain the operation of braking systems.
C326.6	Outline the engine specification and safety systems. Understand the concepts of automobile electronic systems.

Course Name: Heat Transfer Lab (20A3203491) Year of Study: 2022-23

At the end o	f the course completion student will be able to:
C327.1	Find Heat Transfer rate in different geometries
C327.2	Estimate performance parameters of a Pin Fin
C327.3	Demonstrate the concepts of Natural and Forced Convection
C327.4	Determine effectiveness in parallel flow and counter flow heat exchanger
C327.5	Determine emissivity of the given surface
C327.6	Demonstrate the concepts of Drop-wise and Film-wise Condensation

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: CAE & CAM Lab (20A3203492) Year of Study: 2022-23

At the end o	of the course completion student will be able to:
C328.1	Experiment with trusses and beams to determine stress, deflection, natural frequencies, harmonic analysis, HT analysis and buckling analysis.
C328.2	Create part programmes using FANUC controller.
C328.3	Apply the finite element analysis for components design.
C328.4	Apply G-codes for automated tool path using CAM software.
C328.5	Analyze about rapid prototyping machine and to print simple parts.
C328.6	Experiment with virtual 3D printing simulation using V labs.

Course Name: Measurements & Metrology Lab (20A3203493) Year of Study: 2022-23

At the end of	f the course completion student will be able to:
C329.1	Explain the calibration of pressure gauge and temperature measuring instruments
C329.2	Demonstrate the calibration of displacement and speed measuring instruments
C329.3	Explain the calibration of vibration measuring instruments
C329.4	Explain the working of various instruments like vernier callipers, bevel protractor, micrometres and dial indicators
C329.5	Familiarize the working of tool maker's microscope and surface roughness measuring instruments.
C329.6	Demonstrate the Machine tool alignment test on the lathe, drilling and milling machines

Course Name: Mini Project (20A3203791) Year of Study: 2022-23

At the end o	f the course completion student will be able to:	
C3210.1	Realize product design and fabrication.	
C3210.2	Learn entire manufacturing chain by step wise.	
C3210.3	Understand the design and manufacturing integration.	
C3210.4	Prepare report of design and manufacturing of products.	
C3210.5	Improve digital presentation.	
C3210.6	Improve practical and presentation skills.	

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Unconventional Machining Processes (20A4103513)

Year of Study: 2023-24

At the end o	At the end of the course completion student will be able to:		
C411.1	Describe unconventional machining methods and working principles of Abrasive Jet Machining.		
C411.2	Describe the working Principle of Ultrasonic Machining.		
C411.3	Demonstrate electro-chemical machining principles.		
C411.4	Demonstrate electro-chemical grinding, honing and deburring process.		
C411.5	Explain principle, working, applications and various characteristics of electric discharge machining process.		
C411.6	C411.6 Explain the applications, characteristics and process of EBM, LBM and PAM.		

Course Name: Power Plant Engineering (20A4103522) Year of Study: 2023-24

Ä. 4. 41 1	0.11
At the end o	f the course completion student will be able to:
C412.1	Identify the different components of the steam power plant for power production.
C412.2	Illustrate the component used in the diesel and gas power plant for power production
C412.3	Understand how the power is produced by hydro-electric and nuclear power plants
C412.4	Understand different types of reactors.
C412.5	Interpret the power production by combined power plants and operating principles of different instruments used in power plants.
C412.6	Analyze power plant economics and implementation of pollution standards and control of pollution caused by the power plants.

Course Name: Additive Manufacturing (20A4103534) Year of Study: 2023-24

At the end o	f the course completion student will be able to:
C413.1	Understand the principles of prototyping, classification of RP processes and liquid-based RP systems.
C413.2	Understand and apply different types of solid-based RP systems.
C413.3	Apply powder-based RP systems
C413.4	Understand the working principle of 3-D Printing.
C413.5	Analyze and apply various rapid tooling techniques.
C413.6	Understand different RP data types and applications of Rapid Prototyping.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Non Destructive Evaluation (20A4103535) Year of Study: 2023-24

At the end of	of the course completion student will be able to:
C414.1	Understand the concepts of various NDE techniques and the requirements of radiography techniques and safety aspects.
C414.2	Interpret the principles and procedure of ultrasonic testing
C414.3	Understand the principles and procedure of Liquid penetration testing
C414.4	Understand the principles and procedure of eddy current testing
C414.5	Illustrate the principles and procedure of Magnetic particle testing.
C414.6	Interpret the principles and procedure of infrared testing and thermal testing

Course Name: Air Pollution & Control (20A4101610) Year of Study: 2023-24

At the end o	of the course completion student will be able to:
C415.1	Classify the air pollutants.
C415.2	Understand the impacts of air pollutants individually and globally.
C415.3	Identify what type of atmospheric conditions useful to disperse the air pollutants.
C415.4	Select the suitable particulate control equipment depend on particle size and efficiency.
C415.5	Apply suitable process to remove gaseous pollutants.
C415.6	Know cause for industrial and automobile pollution and minimizing methods

Course Name: Green Energy Resources (20A4102610) Year of Study: 2023-24

At the end o	of the course completion student will be able to:
C416.1	Understand the principles and working of solar, wind, biomass, geo thermal, ocean energies
C416.2	Understand the principles and working and green energy systems and appreciate their significance in view of their importance in the current scenario and their potential future applications.
C416.3	Understand the principle of OTEC motion of waves
C416.4	Estimate the power associated with OTEC.
C416.5	Study the various chemical energy sources like fuel cells along with hydrogen energy

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

C416.6 Understand the concept of Wind energy and its applications

Course Name: Term Paper (20A4103792) Year of Study: 2023-24

At the end o	At the end of the course completion student will be able to:	
C417.1	Identify real world problem	
C417.2	Research on topic by Literature survey	
C417.3	Produce a well structured document.	
C417.4	Develop presentation skills.	
C417.5	Communicate with peers	
C417.6	Contribute effectively as a team member or leader	

Course Name: Universal Human Values (20A4100101) Year of Study: 2023-24

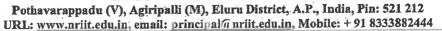
C418.1	Students are expected to become more aware of themselves, and their surroundings (family, society, nature)
C418.2	They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
C418.3	They would have better critical ability.
C418.4	They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
C418.5	It is hoped that they would be able to apply what they have learnt to their own self indifferent day-to-day settings in real life, at least a beginning would be made in this direction.

(Approved by AICTE, New Delhi :: Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Course Name: Major Project (20A4203791) Year of Study: 2023-24

At the end	of the course completion student will be able to:
C421.1	Carry out literature survey in identified domain, and consolidate it to formulate a problem statement
C421.2	Apply identified knowledge to solve a complex engineering problem.
C421.3	Use synthesis/modeling to simulate and solve a problem or apply appropriate method of analysis to draw valid conclusions and present, demonstrate, execute final version of project
C421.4	Incorporate the social, environmental and ethical issues effectively into solution of an engineering problem
C421.5	Contribute effectively as a team member or leader to manage the project timeline
C421.6	Write pertinent project reports and make effective project Presentations

HEAD OF THE DEPARTMENT


Head, Mechanical Department RT Institute of Technology POTHAVARAPPADU (Vill) Agiripalii (Mdl), Krishna Dist

(AUTONOMOUS)

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Department of Electronics and Communication Engineering

Course Structure for B.Tech

R20 (20, 21& 22 Batches)

II-I Courses

MATHEMATICS-III:

Course Outcomes:

Upon successful completion of this course, students will be able to:	
CO1	Interpret the physical meaning of different operators such as gradient, curland, divergence
CO2	Estimate the work done against a field, circulation and fluxusing vector calculus
CO3	Apply Cauchy-Riemann equations to complex functions inorder to determine whether a give continuous function is analytic
CO4	Find the differentiation and integration of complex functions used in engineering problems and make use of the Cauchy residue theorem to evaluate certain integrals
CO5	Write the infinite series expansion of complex function by apply Taylor's, Maclaurin's/Laurant's series
CO6	Identify solution methods for partial differential equations that model physical process

ELECTRONIC DEVICE AND CIRCUITS:

Course Outcomes:

CO1	Demonstrate the operation, V-I characteristics, parameters of P-N diode in different modes
CO2	Understand the operations, V-I characteristics and applications of Zener diode and special diodes in different modes and evaluate the performance of various rectifiers and filters with relevant expressions
CO3	Describe the construction, principle of operation of Transistors with their V-I characteristics in different configurations.
CO4	Describe the construction, principle of operation of Field Effect Transistors with their V-l characteristics in different configurations.
CO5	Chose the biasing and stabilization techniques for BJT and JFET with necessary expressions
C06	Describe the construction, principle of operation of MOS Field Effect Transistors with their V-l characteristics in different configurations.

SWITCHING THEORY & LOGIC DESIGN:

Course Outcomes:

Upon successful completion of this course, students will be able to:

CO1	Classify different number systems and apply to generate various codes.
CO2	Use the concept of Boolean algebra in minimization of switching functions
CO3	Design different types of combinational logic circuits.
C04	Design combinational logic circuits using different types of Programmable Logic.
C05	Apply knowledge of flip-flops in the design of Registers and counters.
CO6	Construct the state diagrams with the knowledge of Mealy and Moore conversions, state machines using various flip flops.

SIGNAL AND SYSTEM:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:	
CO1	Understand the basic concepts of signals and systems and differentiate various classifications of signals and systems.	
CO ₂	Analyze the frequency domain representation of signals using Fourier concepts.	
CO3	Classify the systems based on their properties and determine the response of LTIsystems	
€04	Analyze Linear systems in time and frequency domain and understand the properties of convolution.	
CO5	Perform sampling and reconstruction of signals with the help of Nyquist criterion and understand the properties of co relation	
CO6	Transform continuous time signals into complex frequency domain by applying Laplace Transforms and discrete time signals by applying Z - Transforms.	

RANDOM VARIABLES AND STOCHASTIC PROCESS:

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:
CO1	Identifying the basic concepts of probability and Probability functions.
CO2	Understand the concepts of expectation and moment generating functions.
CO3	Implementing the joint density function and distribution functions to the multiple random variables.
CO4	understanding the operations joint moments and joint characteristic functions on multiple random variables.
C O 5	Understand the concept of random processes, and characterize the random processes in the time domain.
CO6	Apply the theory of stochastic processes to analyze linear systems with random inputs

ELECTRONIC DEVICE AND CIRCUITS LAB:

Upon su	eccessful completion of this course, students will be able to:
CO1	Analyze the characteristics of the diodes in forward and reverse bias
CO2	To interpret the Diode application as rectifier and to analyze Half wave and full waverectifier with filter action.
CO3	Analyze and understand the characteristics of BJT and FET in CE and CS configuration respectively.
CO4	Study and analyze the characteristics of UJT and SCR
CO5	Understand how to measure the parameters of the signal by using CRO

Apply knowledge to calculate the Q-point of the Transistor and to construct amplifiers using BJT and FET

SWITCHING THEORY & LOGIC DESIGN LAB:

Course Outcomes:

CO6

Upon s	accessful completion of this course, students will be able to:
CO1	Analyze the truth tables of different Logic Gates
CO2	Design Various combinational Circuits with minimal SOP functions
CO3	Apply knowledge to Verify the truth tables of Decoders and Demultiplexers
CO4	Design a 4-bit ring counter and Johnson's counter using D Flip-Flops/JK Flip Flop
CO5	Understand the operation of 4-bit Universal Shift Register for different Modes of operation
CO6	Apply knowledge Construct 7 Segment Display Circuit Using Decoder and 7 Segment LED

BASIC SIMULATION LAB:

Course Outcomes:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Understand mathematical description and representation of different continuous and discrete time signals and sequences.	
CO2	Perform operations on signals, computation of Energy and power of on signals & sequences and extracting Even, odd, Real and Imaginary parts of signals and sequences,	
CO3	Understand the convolution, auto and cross correlation operators for continuous and discrete time system.	
CO4	Develop input output relationship for linear shift invariant system and to compute step. Sinusoidal and impulse responses	
CO5	Understand and resolve the signals in frequency domain using Fourier transforms. develop the ability to analyze the systems in s- domain by waveform synthesis using Laplace transforms.	
CO6	Verify sampling theorem and identification of poles and zeroes for a given transferfunction.	

ELECTRONIC CIRCUIT DESIGN:

Upon s	Jpon successful completion of this course, students will be able to:	
CO1	Analyze the electronic circuit rules and its parameter calculations.	
CO ₂	Develop the simulation process in the design of Electronic Circuits.	
CO3	Interpret the PCB design and various processes involved	
CO4	Explore in-depth core knowledge in the and fabrication of Printed Circuit Boards	
C05	Apply assembling and testing of the PCB based electronic circuits	
C06	Design single side PCB for power supplies of various devices.	

II-II Courses

ANALOG COMMUNICATIONS:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Understand and analyze the modulation and demodulation outputs of AM and DSB SC circuits.
CO2	Analyze the outputs of FM modulation and demodulation circuits.
CO3	Verify the characteristics of diode detector and AGC circuits.
CO4	Verify the outputs of Pulse modulation and demodulation circuits such as PAN PWM and PPM.
CO5	Demonstrate the verification of sampling theorem and radio receiver characteristics.
CO6	Explain the characteristics of radio receiver and pre-emphasis and de-emphasi circuits.

ANALOG COMMUNICATION LAB:

Course Outcomes:

Upon successful completion of this course, students will be able to:	
CO1	Understand and analyze the modulation and demodulation outputs of AM, DSB-SC.
CO2	Analyze the outputs of FM modulation and demodulation circuits.
CO3	Verify the characteristics of diode detector, PLL and AGC circuits.
CO4	Verify the outputs of Pulse modulation and demodulation circuits such as PAM, PWM and PPM
CO5	Demonstrate the verification of sampling theorem.
CO6	Explain the characteristics of radio receiver and pre-emphasis and de- emphasis circuits.

ANALOG AND PULSE CIRCUITS:

Upon sı	accessful completion of this course, students will be able to:
CO1	Design and analysis of small signal high frequency transistor amplifier using BJTand FET
CO2	Design and analysis of multistage amplifiers using BJT and FET and Differential amplifier using BJT
CO3	Derive the expressions for frequency of oscillation and condition for oscillation of RC and LC oscillators and their amplitude and frequency stability concept
CO4	Know the classification of the power amplifiers and their analysis with performancecomparison
CO5	Derive the expressions for RC circuits for various inputs
CO6	Design and analysis of different types of multivibrators

ANALOG AND PULSE CIRCUIT LAB:

Course Outcomes:

CO1	Construct the RC phase shift oscillator using transistors for different frequencies.
CO2	Design Colpitt's oscillator using transistors for different frequencies.
CO3	Estimate frequency response of two stage RC coupled amplifier.
CO4	Understand the characteristics of power amplifiers and multivibrators.
CO5	Draw the characteristics of series and shunt feedback amplifiers.
CO6	Understand the characteristics of linear and non linear wave shaping circuits.

EMWTL:

Course Outcomes:

Upon si	accessful completion of this course, students will be able to:
CO1	Interpret and apply the static electrostatic fields with respect to coordinate systems.
CO2	Analyze and demonstrate the static magnetic fields in real time applications.
CO3	Formulate the Maxwell's Equations in different forms with time considerations.
CO4	Formulate the theory of electromagnetic waves in free space with practical applications.
CO5	Evaluate and Relate wave propagation characteristics in different conducting and non conducting media.
CO6	Demonstrate the reflection and Refraction of EM waves at normal and obliqueincidences.

MANAGERIAL ECONOMICS & FINANCIAL ANALYSIS:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Use the theory of managerial economics, demand, production analysis & forecastingtheories
CO2	Analyze of production markets & pricing strategies & cost price functions to managemarkets & break-even-point
CO3	Develop an ability to identify, formulate & solve engineering problems by applying the knowledge of managerial economics
CO4	Theorize the features and types of Industrial organization
CO5	Enhance their capabilities in the interpretation of balance sheet that are followed in industries organizations & institutes
CO6	Apply financial analysis, capital budgeting techniques in evaluating various investment

PYTHON PROGRAMMING:

Upon s	uccessful completion of this course, students will be able to:
CO1	Upon successful completion of this course, students will be able to
CO2	Understand Python syntax and semantics and be fluent in the use of Python flow control and Functions
CO3	Develop, run and manipulate Python programs using Core data structures like Lists, Dictionaries and use of Strings Handling methods
CO4	Develop, run and manipulate Python programs using File Operations and searching pattern using regular expressions
CO5	Interpret the concepts of object-oriented programming using Python
CO6	Understand the numbers, math's function, strings, list, tuples, and dictionaries in pythons

VHDL PROGRAMMING LAB:

Upon s	accessful completion of this course, students will be able to:
CO1	Distinguish logic gates for design of digital circuits
CO2	Design different types of Combinational logic circuits
CO3	Design different types of sequential logic circuits
CO4	Analyze the operation of flip-flops
CO5	Apply knowledge of flip-flops in designing of Registers and Counters
CO6	Analyze the operation of RAM and ALU

III-I Courses

LINEAR AND DIGITAL INTEGRATED CIRCUITS:

Course Outcomes:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Analyze different types of differential amplifiers and to discuss AC, DC characteristics of op amp.	
CO2	Build various linear and non-linear applications using op-amp operating with negative and positive feedback in closed loop configuration.	
CO3	Experiment with various active filters.	
CO4	Explain the fundamental frequency of monostable and astable multivibrators using IC555 timer.	
CO5	Conclude the applications of PLL and A/D and D/A converters.	
CO6	Identify the importance and applications of different types of digital ICs.	

ANTENNAS AND WAVE PROPAGATION:

Course Outcomes:

	Understand the basic antenna radiation parameters and radiation mechanism of single wire & two
CO1	wire antennas with current distribution analysis.
CO2	Quantify the radiation fields and power radiated by dipole antennas also analyze their radiation characteristics using mathematical approach.
CO3	Illustrate the different types of arrays and their radiation patterns with both mathematical and geometrical analysis.
CO4	Understand the geometry and working principle of operation of non-resonant radiators and microstrip antennas with qualitative analysis.
CO5	Illustrate techniques for antenna parameter measurements and analyze various types of Microwave Antennas.
CO6	Identify and distinguish the characteristics of different modes of radio wave propagation in the atmosphere with both qualitative and quantitative treatment.

DIGITAL COMMUNICATION:

Upon s	Jpon successful completion of this course, students will be able to:	
CO1	Apply the knowledge of statistical theory of communication and understand the basics of digital communication systems	
CO2	Analyze the performance of digital modulation techniques for generation, detection and digital representation of the signal	
CO3	Explore the probability of error for various digital modulation techniques with the help of random variables and filters	
CO4	Integrate and apply the basics of information theory to the communication and compute entropy information rate of the source	
CO5	Understand and analyze the source coding techniques and channel capacity.	
CO6	Compute and analyze different error control coding schemes for reliable transmission of digital	

COMPUTER ORAGANISATION AND ARCHITECTURE:

Course Outcomes:

o pon	uccessful completion of this course, students will be able to:
CO1	Understand the basics, evolution and architecture of the computer.
CO2	Analyze the machine instructions and how to write programs and calculate the effective address of an operand by addressing modes.
CO3	Demonstrate the relationship between the software and the hardware and to understand concepts of control unit and all arithmetic operations.
CO4	Analyze the concept of I/O organization and design how to interface i/o devices.
CO5	Demonstrate the memory organization and understand the concept of cache mapping techniques.
CO6	Understand the principles of operation of multiprocessor systems.

BIO-MEDICAL ENGINEERING:

Course Outcomes:

Upon :	successful completion of this course, students will be able to:
CO1	Demonstrate Man – Instrumentation system and different problems encountered in measuring the living system and able to analyze different types of bioelectric potentials with resting and action potential.
CO2	Explain the working of various Electrodes and Transducers using Transduction principles for obtaining Bio electric potentials.
CO3	Demonstrate the anatomy of physiological systems and the measurements of various tests for Cardiovascular system, ECG, heart sound, Blood Pressure, blood flow and cardiac output and experiment with Plethysmography.
CO4	Illustrate the anatomy of physiological systems and the measurements of various tests using instrumentation for mechanism of breathing with Respiratory Therapy Equipment.
CO5	Recognize the importance of patient monitoring system and explain the design, Principle & working of various Therapeutic and Prosthetic devices.
CO6	Describe the basic principle and applications of various medical imaging systems and importance of Bio Telemetry for patient care and patient safety in medical equipment's and also able to identify the methods to prevent shock hazards from electrical equipment and express the working of different types of recorders and monitors.

DATA STRUCTURES:

Upon s	uccessful completion of this course, students will be able to:
CO1	Ability to illustrate the concepts of algorithm apply the learning concepts to design data
CO2	Analyze and implement operations on linked list and demonstrate their applications
CO3	Ability to design applications using stacks and queues and implements various types of queues
CO4	Ability to analyze and implement operations on trees
CO5	Ability to demonstrate various operations on binary search trees and its applications

CO6

Ability to evaluate the properties and operations on graphs and implement the graph

INTELLECTUAL PROPERTY:

Course Outcomes:

Upon successful completion of this course, students will be able to:	
CO1	Classify intellectual property rights, cyber-crimes and understand the importance of ipr
CO2	Categorize subject matters of copyrights, understand the registration process of copyrights and effect of infringement
CO3	Analyze patent requirements and its registration formalities and effect of infringement
CO4	Analyze functions of Trademark and its registration formalities and effect of infringement under Trademark Act
CO5	Understand the importance of trade secrets and how to maintain trade secrets
CO6	Pave the way for the students to catch up Intellectual Property as an career option

LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB:

į

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:
CO1	Understand the basics of Op-Amp (IC 741), timer (IC 555) and PLL (IC 565).
CO2	Design, analyze various applications of Op-amp 741 IC.
CO3	Designs multivibrator circuits using IC555 and determine the frequency of oscillation and time delay.
CO4	Understand the characteristics of PLL.
CO5	Design various combinational circuits using various digital Integrated Circuits.
CO6	Design various sequential circuits using various digital Integrated Circuits.

DIGITAL COMMUNICATIONS LAB:

Upon s	uccessful completion of this course, students will be able to:
CO1	Understand the Time-Division Multiplexing systems, and verify the output of pulse code modulation and demodulation.
CO2	Analyze the output of differential pulse code modulation and demodulation and verify the delta modulation.
CO3	Analyze the outputs of different digital modulation techniques-FSK, PSK.
CO4	Interpret the outputs of DPSK modulation and demodulation.
CO5	Analyze the outputs of source encoder and decoder, linear block codes, convolution codes and binary cyclic codes.
CO6	Perform and analyze the output of companding circuit.

INTERNET OF THINGS LAB:

Course Outcomes:

Upon a	successful completion of this course, students will be able to:
CO1	Understand the concept of Internet of Things
CO2	Implement interfacing of various sensors with Arduino/Raspberry Pi.
CO3	Demonstrate the ability to transmit data wirelessly between different devices.
CO4	Design the mobile applications for controlling the devices.
CO5	Show an ability to upload/download sensor data on cloud and server,
CO6	Realize the revolution of Internet in Mobile Devices, Cloud & Senso Networks

INTERNSHIP:

Upon s	accessful completion of this course, students will be able to:
CO1	Acquire on job the skills, knowledge, and attitude, which are requisite to constitute a professiona identity.
CO ₂	Engage in applied professional-level work under supervision of a professional in the field.
CO3	Exhibit evidence of increased content knowledge gained through practical experience.
CO4	To deal with industry-professionals and ethical issues in the work environment.
CO5	Explain how the internship placement site fits into their broader career field.
CO6	Evaluate the internship experience in terms of their personal, educational and career needs.

III-II Courses

MICROPROCESSOR AND MICROCONTROLLERS:

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:
CO1	Understand the architecture of 8086 microprocessor and their operation.
CO ₂	Demonstrate programming skills in assembly language for 8086 microprocessors.
CO3	Analyze various interfacing techniques and apply them for the design of processor based systems.
CO4	Interface external peripherals and I/O devices and program the 8086 microprocessor.
CO5	Understand the architecture of 8051 microcontroller and their operation and programming skills for 8051.
CO6	Understand the concepts of ARM Processor.

DIGITAL SIGNAL PROCESSING:

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:
CO1	Understand the representation of different Discrete time signals and apply the difference equations concept in the analysis of discrete time systems
CO2	Interpret and explore the concepts of Discrete Fourier Transforms and Fast Fourier Transforms for various Discrete Time Signals and Sequences.
CO ₃	Use FFT algorithm for solving DFT of sequence
CO4	Design the Digital IIR Filters from the analog filters using frequency transformations and FIR filters using windowing techniques.
CO5	Construct the basic structures of Digital FIR and IIR systems.
CO6	Apply the signal processing concepts on programmable Digital Signal Processors.

VLSI DESIGN:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Demonstrate a clear understanding of CMOS fabrication flow and technology scaling.	
CO ₂	Apply the design Rules and draw layout of a given logic circuit.	
CO3	Understand the scaling factors determining the characteristics and performance of MOS circuit in silicon.	
CO4	Understand the switch logic and gate logic.	
CO5	Apply the concepts in testing which can help them design a better yield in IC design.	
CO6	Analyze the FPGA architecture, design flow and CPLD architecture.	

OPTICAL COMMUNICATIONS:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Understand the overview of optical fiber communication and classify the types of optical fibers, analyze cylindrical fibers using mathematical equations.
CO2	Design the optical fibers using various materials and to illustrate various attenuation losses.
CO3	Illustrate various dispersion models Apply splicing techniques on fibers and choose low loss connectors to minimize joint losses.
CO4	Analyze different types of optical sources and photo detectors, External quantum efficiency, and analyze signal transmission, receiver operation and error sources of optical fiber.
CO5	Evaluate the power coupled in to optical fibres and Measurement of Attenuation and Dispersion. Eye pattern.
CO6	Design optical system with budget analysis and to classify principles and types of WDM.

EMBEDDED SYSTEMS:

Course Outcomes:

Upon si	accessful completion of this course, students will be able to:
CO1	Understand the basic concepts of embedded system.
CO2	Analyze the different hardware components used to design the embedded system.
CO3	Design various approaches for embedded firmware.
CO4	Design RTOS for an embedded system design.
CO5	Understand the fundamental issues in hardware software co design.
CO6	Understand the IDE and various tools used in implementing the embedded system.

RADAR SYSTEMS:

Upon successful completion of this course, students will be able to:		
CO1	Acquire the knowledge of Radar system to apply and to design required parameters for a RADAR system and to derive the RADAR Equation.	
CO2	Analyze the working principle of CW and Frequency Modulated Radar and their applications.	
CO3	Understand the principle of MTI and pulse Doppler Radar and analyze MTI Radar parameter and their limitations.	
CO4	Acquire the knowledge of phase array antennas used for transmission and reception in RADAR.	
CO5	Analyze different types of tracking RADARs and to study different types of Radar receivers and displays.	
CO6	Explore the detection of Radar signals in the presence of noise and analyze the performance of matched filter receiver and its characteristics.	

INDUSTRIAL ROBOTICS:

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:
CO1	Explain the basic concepts and components of industrial robotics and automation
CO ₂	Judge the knowledge about robot actuators and feedback components.
CO ₃	Analyze the motion of robot and manipulator kinematics.
CO4	Analyze the general considerations of path description and generation.
CO5	Analyze the motion of robot joints, straight line and skew.
CO6	Utilize knowledge about the image processing, machine vision and robotic applications.

PROFESSIONAL ETHICS AND HUMAN VALUES:

Course Outcomes:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Understand moral values, work ethics, respect others and develop civic virtue.	
CO2	Understand ethical responsibilities of the engineer's different professional roles.	
CO3	determining the facts	
CO4	Create awareness about safety, risk & risk benefit analysis and knowledge on intellectual property rights.	
CO5	Develop knowledge about global issues creating awareness on computer and environmental ethics.	
CO6	Analyze ethical problems in research and give a picture on weapons development.	

VLSI LAB:

Upon s	Upon successful completion of this course, students will be able to:	
CO1	Design, implement, and simulate Basic logic gates using S. Edit of Tanner EDA toll and Microwind using at back end	
CO2	Simulate and synthesize Universal gates using Tanner EDA tool and Micro wind. Simulate circuits within a Tanner EDA tool and compare to design specifications.	
CO ₃	Design, implement, and simulate circuits using Tanner EDA and Micro wind tool.	
CO4	Design Digital logic Counters using Tanner EDA Tools and Implement Using Micro wind Tool.	
CO5	Design RAM Cell using Tanner EDA Tools and Implement Using Micro wind Tool.	
CO6	Understand various design rules to obtain the CMOS logic circuits.	

DIGITAL SIGNAL PROCESSING LAB:

Course Outcomes:

CO1	Make use of a software tool to generate various discrete time signals and perform different operations on them.
CO2	Examine Linear and Circular Convolution of discrete time signals.
CO3	Evaluate the Discrete Fourier Transform of a signal and its inverse.
CO4	Analyze the Frequency response of IIR Filters using Butterworth and Chebysher Approximations.
CO5	Analyze the Frequency Response of FIR filters using windowing techniques.
CO6	Illustrate the Decimation and Interpolation processes on a given Sequence.

MICROPROCESSOR AND MICROCONTROLLER LAB:

Course Outcomes:

o hou s	uccessful completion of this course, students will be able to:
CO1	Develop the assembly language Programmes for 8086 Microprocessor
CO2	Use the cross compiler such as MASM to verify and simulate the 8086 codes
CO3	Develop the assembly language Programmes for 8051 Microcontroller.
CO4	Use Keil to verify and simulate the 8051 Programming
CO5	Use various interfacing circuits for Real world and practical Applications.
CO6	Analyze the performance of various interface techniques for the computing circuits.

SENSOR & INSTRUMENTATIONS LAB:

CO1	Understanding the concept of measurement system
CO2	Identifying concepts in common methods for converting a physical parameter into an electrical quantity.
CO3	Applying concepts in advances in transducers for various engineering applications.
CO4	Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc.
CO5	Applying knowledge on advanced sensor which related to detect the enhanced parameters using sensors.
CO6	Set up testing strategies to evaluate performance characteristics of different types of sensors an transducers and develop professional skills in acquiring and applying the knowledge outside the classroom through design of a real-life instrumentation system

IV-I Courses

DATA COMMUNICATION AND COMPUTER NETWORKS:

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:
CO1	Demonstrate different network models for networking links OSI, TCP/IP and get knowledge about various communication techniques, methods and protocol standards.
CO ₂	Analyze data link layer services, compare and classify medium access control protocols
CO3	Demonstrate network service models, virtual circuits and routing mechanism
CO4	Analyze the internet protocol addressing in internet using IPV4 & IPV6 format
CO5	Determine the relationship between transport and network layer, understand connection and and connection less services in transport layer.
CO6	Determine application layer services and client server protocols

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION:

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:
CO1	Understand the fundamental concepts of instrumentation and characteristics of measuring systems. Describe different types of meters and understanding the operation of meters.
CO2	Analyze Different types of signal generators and signal analyzers and their working principles.
CO3	Interpret the basic principle of Oscilloscope, measurement of parameters using CRO and understand different types of CRO probes.
CO4	Understand the working of different types of special purpose oscilloscopes.
CO5	Explore the different types of A.C. and DC Bridges, Q meters, Counters and their operations
CO6	Demonstrate the different types of transducers and their principles and operations.

DIGITAL IMAGE PROCESSING:

Upon s	uccessful completion of this course, students will be able to:
CO1	Understand the fundamentals of image processing
CO2	Study transforms and introduce different intensity transformation functions and filtering techniques in spatial domain to enhance quality of image
CO3	Introduce different filtering techniques in frequency domain filters
CO4	Study different noise models and apply filters to estimate degradation and restore images
CO5	Explain the concept of color image processing To discuss various compression techniques.
CO6	Apply morphological and segmentation techniques for processing images

SATELLITE COMMUNICATION:

Course Outcomes:

CO1	Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication
CO2	Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods
CO3	Ability to develop AOCS, commands, monitoring power systems and developments of antennas
CO4	Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA
CO5	Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications
CO6	Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS

MACHINE LEARNING:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Explain the fundamental usage of the concept Machine Learning system.
CO2	Able to form clusters based on Distance models and demonstrate on various regression Technique.
CO3	Analyze the Ensemble Learning Methods.
CO4	Explain Linear and Non-Linear Support Vector Machine (SVM) Classification.
CO5	Illustrate the Clustering Techniques and Dimensionality Reduction Models in Machine Learning.
CO6	Discuss the Artificial Neural Networks Neural Network training and Fundamentals concepts of Activation functions.

DATABASE MANAGEMENT SYSTEM:

Upon s	accessful completion of this course, students will be able to:
CO1	Understand the database management system structure
CO2	Apply as relational algebra to find solutions to a broad range of queries.
CO3	Create applications using various normal forms, functional dependencies
CO4	Ability to validating and identifying anomalies
CO5	Explain the principle of transaction management design.
CO 6	Understands and applies indexing mechanisms in databases

ENGINEERING PROJECT MANAGEMENT:

Course Outcomes:

Upon s	uccessful completion of this course, students will be able to:
CO1	Attain knowledge on planning and scheduling of various projects
CO ₂	learn and apply the knowledge of Networks in project planning
CO3	Analysis by PERT
CO4	Analysis by CPM
CO5	Optimization of the cost
CO6	Evaluation of the project by using various methodologies.

UNIVERSAL HUMAN VALUES - II: UNDERSTANDING HARMONY:

Course Outcomes:

Upon !	successful completion of this course, students will be able to:
CO1	Describe more aware of themselves, and their surroundings (family, society, nature)
CO ₂	Illustrate more responsibility in life, and in handling problems with sustainable solutions
CO3	Handle problems with sustainable solutions, while keeping human relationships and human nature in mind.
CO4	Exhibit critical ability and become sensitive to their commitment towards their understanding of human values, human relationship and human society.
CO5	Exhibit sensitivity to their commitment towards what they have understood (human values human relationship and human society)
CO6	Apply what they have learnt to their own self in different day-to-day settings in real life.

EMPLOYABILITY SKILLS:

CO1	cuccessful completion of this course, students will be able to: Compare and differentiate between formal and informal communication.
CO2	Take part in and manage interpersonal communication.
CO3	Solve the Arithmetic and Reasoning Problems as fast as possible and as simple as possible.
CO4	Exhibits good analytical skills and aptitude skills.
CO5	Perform well in all competitive exams like RRB, SSC, GROUPS, and BANKING and clear the aptitude section of exams for higher education like CAT, GMAT, and GRE etc
CO6	Make use of the techniques of effective communication in letter and report preparation.

MICROWAVE & RF COMMUNICATION LAB:

Course Outcomes:

Upon s	accessful completion of this course, students will be able to:
CO1	Demonstrate the characteristics of Reflex Klystron.
CO2	Measure vthe negative Resistance characteristics of the Gunn diode.
CO3	Calculate the attenuation, frequency, and wavelength of given microwave component using Microwave Bench Setup.
CO4	Analyze the characteristics of the multihole Directional Coupler.
CO5	Perform the characteristics of various optical sources and measure different losses occur in optical fiber link.
CO6	Determine the spectral components of given frequency band using Spectrum Analyzer

INTERNSHIP:

Upon s	accessful completion of this course, students will be able to:
CO1	Acquire on job the skills, knowledge, and attitude, which are requisite to constitute a professional identity.
CO2	Engage in applied professional-level work under supervision of a professional in the field.
CO3	Exhibit evidence of increased content knowledge gained through practical experience.
CO4	To deal with industry-professionals and ethical issues in the work environment.
CO5	Explain how the internship placement site fits into their broader career field.
C06	Evaluate the internship experience in terms of their personal, educational and career needs.

IV-II Courses

MAJOR PROJECT:

Course Outcomes:

Upon s	successful completion of this course, students will be able to:
CO1	Demonstrate skill and knowledge of current information and technological tools and technique
CO2	Design and construct a hardware and software system, component, or process to meet desired needs.
CO ₃	Identify, analyze, and solve problems creatively through sustained critical investigation.
CO4	Discussion and critical thinking about topics of current intellectual importance
CO5	Ability to understand advanced technology and research in engineering.
CO6	Develop presentation and technical writing skills.

COMMUNITY SERVICE PROJECT:

Course Outcomes:

~~	successful completion of this course, students will be able to:
CO ₁	To learn the application of knowledge in real world problems
CO ₂	Assess and improve upon their own cultural competency skills.
CO3	Demonstrate ethical conduct and professional accountability while working in a team for the
CO4	Demonstrate understanding of therapeutic models of helping.
CO5	Understand the stages of helping, including exploration, insight, and action.
CO6	Develop applied helping skills to facilitate change in individuals, families, and groups.

Headignet wepsithed NRI Institute of Technology POTHAVARAPPADU (Vill) Agiripalli (Mdl), Krishna Dist.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

20A2100201: Vector Calculus, Transform Techniques and Partial Differential Equations

Course	Outcomes:
Upon su	ccessful completion of the course, the student will be able to:
CO1	Interpret the physical meaning of different operators such as gradient, cur land divergence (L5)
CO2	Estimate the work done against a field, circulation and flux using vector calculus (L5)
CO3	Apply the Laplace transform for solving differential equations (L3)
CO4	Find or compute the Fourier series of periodic signals (L3)
CO5	Knowandbe able to apply integral expressions for the forwards and inverse Fourier transform to arrange of non-periodic wave forms (L3)
CO6	Identify solution methods for partial differential equations that model physical processes (L3)

20A2105401-Python Programming

Course Outcomes:		
successful completion of the course, the student will be able to:		
Experience with an interpreted Language and to build software for real needs		
Use basic Decision structures, Boolean logic, variable types, assignments and operators.		
Describe and use of Python lists, dictionaries, tuples and sets.		
Implement methods and functions to improve readability of programs		
Describe and apply object-oriented programming methodology, top-down concepts in algorithm design.		

20A2105402-DATA BASE MANAGEMENT SYSTEMS

Course Outcomes:	
Upon s	uccessful completion of the course, the student will be able to:
CO1	Ability to define, understand the database management system structure
CO2	Ability to apply as relational algebra to find solutions to a broad range of queries.
CO3	Ability to create applications using various normal forms, functional dependencies, validating and identifying anomalies

NRI INSTITUTE OF TECHNOLOGY (AUTONOMOUS) Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO4	Will be able to explain the principle of transaction management design.
CO5	Understands and applies indexing mechanisms in databases

20A2105403- Computer Organization and Architecture

Course	Outcomes:
Upon s	uccessful completion of the course, the student will be able to:
CO1	Understand the numeric information in different forms and interpret different logic gates.
CO2	Analyze and Design various combinational circuits like Encoders, Decoders, Multiplexers, Demultiplexers, and Arithmetic Circuits.
CO3	Able to understand the basic components and the design of CPU, ALU and Control unit
CO4	Students can calculate the effective address of an operand by addressing modes
CO5	Ability to understand memory hierarchy and its impact on computer cost/performance
CO6	Ability to understand the advantage of instruction level parallelism.

20A2105404-INTERNET OF THINGS

Upon successful completion of the course, the student will be able to: CO1 Understand Device-processor communication models & protocols. CO2 Understand the application areas of IOT. CO3 Visualize the effect of internet on Mobile Devices, Cloud & Sensor Networks. CO4 Acquire programming experience with Raspberry Pi kit to interface various devices. CO5 Implement Programming models for IoT Cloud Environment.

20A2105491-Python Programming Lab

Course	Outcomes:
Upon s	accessful completion of the course, the student will be able to:
CO1	Experience with an interpreted Language and to build software for real needs

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE)

An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripálli (M), Eluru District, A.P., India, Pin: 521 212

URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO2	Use basic Decision structures, Boolean logic, variable types, assignments and operators.
	ાં મુખ્યાના માટે કે માનું પ્રાપ્ત માનું માટે કે મુખ્યત્વે માટે કે મુખ્ય માનું માટે માટે માટે માટે માટે માટે મા
CO3	Describe and use of Python lists, dictionaries, tuples and sets.
CO4	Implement methods and functions to improve readability of programs
CO5	Describe and apply object-oriented programming methodology, top-down concepts in algorithm design.
CO6	Design, code ,test and debug python language programs

20A2105492-DATABASEMANAGEMENTSYSTEMS LAB

Course Outcomes:	
Upon s	uccessful completion of the course, the student will be able to:
CO1	Queries for Creating, Dropping, and Altering Tables, Views, and Constraints
CO2	Queries to Retrieve and Change Data:Select, Insert,Delete,andUpdate
CO3	Queries using Built-In Functions: String Functions, Numeric Functions, Date Functions and Conversion Functions.
CO4	Queries using GroupBy,OrderBy,andHavingClauses
CO5	Queries on Joins and CorrelatedSub-Queries
CO6	Queries on Controlling Data:Commit,Rollback,andSavepoint

20A2105493- INTERNET OF THINGS LAB

Course Outcomes: Upon successful completion of the course, the student will be able to:	
Understand building blocks of Internet of Things and characteristics.	
Understand enabling technologies Embedded Devices and communication protocols for Hands on activities.	
Write programs using Python for processing Internet of Things	

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: <u>www.nriit.edu.in</u>, email: <u>principal@nriit.edu.in</u>, Mobile: + 91 8333882444

Course Outcomes:

Upon s	uccessful completion of the course, the student will be able to:
CO1	Analyze a web page and identify its elements and attributes
CO2	Demonstrate the important HTML tags for designing static pages and separate design from content using Cascading Style sheet
CO3	Implement MVC and responsive design to scale well across PC, tablet and Mobile Phone
CO4	Create web pages using HTML and Cascading Style Sheets.

20A2105901: APTITUDE AND REASONING

COURSE OUTCOMES:

Upon successful completion of this course, students will be able to

- 1. Solve the Arithmetic and Reasoning Problems as fast as possible and as simple as possible.
- 2. Exhibits good analytical skills and aptitude skills.
- 3. Perform well in all competitive exams like RRB, SSC, GROUPS, and BANKING etc...
- 4. Clear the aptitude section of exams for higher education like CAT, GMAT, and GRE etc...

20A2200201-PROBABILITY AND STATISTICS

Course Outo	omes:
Upon succes	sful completion of the course, the student will be able to:
CO1	Classify the concepts of data science and its importance
CO2	Interpret the association of characteristics and through the correlation and Regression tools
CO3	Make us of the concepts of probability and their applications
CO4	Apply discrete and Continuous probability distributions
CO5	Design the components of a classical hypothesis test
CO6	Infer the statistical inferential methods based on small and large sampling tests

20A2205401 Web Technologies

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Upon successful completion of the course, the student will be able to:	
CO1	Student able to Implement and design webbased applications using features of HTML
CO2	Implement webbased applications using features of XML
CO3	Student will Apply the concepts of server side technologies for dynamic web applications
CO4	Ability to design the webbased applications using effective database access with rich client interaction
CO5	Abilityto Develop reusable component for Graphical User Interface applications

20A2205402- SOFTWARE ENGINEEEING

Upon s	successful completion of the course, the student will be able to:	
CO1	Understand the basic concepts of Software engineering and applications	
CO2	Compare different software engineering process models	
CO3	Analyze the principles of requirement Engineering	
CO4	Create design models for software Engineering projects	
CO5	Apply different testing techniques	

20A2205403 OPERATING SYSTEMS

CourseOut	comes:
Upon succe	essful completion of the course, the student will be able to:
CO1	Understand the important computer system resources and the structure and functioning of operating system.
CO2	Understand process management policies and scheduling of processes by CPU.
CO3	Evaluate the requirement for process synchronization and coordination handled by operating system. Describe and analyze the memory management and its allocation policies.
CO4	Understand demand paging, thrashing and principles of deadlocks.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO5 --

Understand File system Interface, File System implementation, Mass-storage structure and Disk scheduling algorithms.

Formal Languages and Automata Theory

CourseOutco	omes:
Upon succes	sful completion of the course, the student will be able to:
CO1	Able to use basic concepts of formal languages of finite automata techniques
CO2	Student able to design Finite Automata's for different Regular Expressions and Languages
CO3	Construct context free grammar for various languages
CO4	Solve various problems of applying normal form techniques, push down automata and Turing Machines
CO5	Participate in GATE, PGECET and other competitive examinations

20A2205491- WEB TECHNOLOGIES LAB

Course	Outcomes:
Upon s	uccessful completion of the course, the student will be able to:
CO1	Createawebsitestaticallyordynamically
CO2	Getknowledgeon displayingand decoratingthecontentsin awebpage.
CO3	Learn the concepts of store and transport the data among we bpages.
CO4	Createobjectswithwhichtheclientcancommunicatewithserver.
CO5	Generatestaticordynamiccontentaccordingtotheclient's request
CO6	ProvideUser Authentication byusingcookiesand back end operations usingJDBC and PHP

20A2205492- SOFTWARE ENGINEERING LAB

Course Outcomes:

Upon successful completion of the course, the student will be able to:

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

CO1	Ability to translate end-user requirements into system and software requirements
CO2	Analyze the principles of requirement Engineering
CO3	Ability to generate a high-level design of the system from the software requirements
CO4	Create design models for software Engineering projects
CO5	Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

20A2205493: Operating Systems &Unix programming Lab

Course Outcor	nes:	1
Upon successf	ul completion of the course, the student will be able to:	į
CO1	Students able to implement CPU scheduling algorithms ,File Organization techniques and	- 1004
	paging techniques	
CO2	Students able to write shell scripts in Linux platform.	

Course Code- APPLICATIONS OF PYTHON- NumPy, Pandas

Course	Course Outcomes:	
Upon s	uccessful completion of the course, the student will be able to:	
CO1	Understand the workings of various numerical techniques, different descriptive measures of Statistics, correla and regression to solve the engineering problems	
CO2	Understand how to apply some linear algebra operations to n-dimensional arrays	
CO3	Use NumPy perform common data wrangling and computational tasks in Python	
CO4	Use Pandas to create and manipulate data structures like Series and DataFrames, work with arrays, queries, dataframes	
CO5	Query DataFrame structures for cleaning and processing and manipulating files	
CO6	Understand best practices for creating basic charts	

20A2200802: Professional Ethics & Human Values

Course Outcomes

Students will be able to:

CO1 Identify and analyze an ethical issue in the subject matter under investigation or in a relevant field

CO2 Identify the multiple ethical interests at stake in a real-world situation or practice

Articulate what makes a particular course of action ethically defensible

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

Assess their own ethical values and the social context of problems

- CO3 Identify ethical concerns in research and intellectual contexts, including academic integrity, use and citation of sources, the objective presentation of data, and the treatment of human subjects
- CO4 Demonstrate knowledge of ethical values in non-classroom activities, such as service learning, internships, and field work
- CO5 Integrate, synthesize, and apply knowledge of ethical dilemmas and resolutions in academic settings, including focused and interdisciplinary research.

Artificial Intelligence

Upon successful completion of the course, the student will be able to:

CO1	Possess the ability to formulate an efficient problem space for a problem expressed in English.
CO2	Possess the ability to select a search algorithm for a problem and characterize its time and space complexities.
CO3	Possess the skill for representing knowledge using the appropriate technique
CO4	Possess the ability to apply AI techniques to solve problems of Game Playing, Expert Systems, Machine Learning and Natural Language Processing
CO5	CO5 Apply the knowledge to develop the solutions for real life problems CO6 Develop new algorithms to contributo to the research arena

Computer Networks

Design and Analysis of Algorithms

Upon Completion of the course, the students will be able to	
CO1: Analyze worst-case running times of algorithms using asymptotic analysis and components	77

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India; Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: +91 8333882444

CO2: Describe the divide and conquer method explains when an algorithmic design situation demands it.

CO3: Describe the greedy method explains when an algorithmic design situation demands it.

CO4: Describe the dynamic-programming paradigm explains when an algorithmic design demands it.

CO5: Describe the back tracking method explains when an algorithmic design demands it.

CO6: Describe the branch and bound paradigm and deterministic methods e-plain when an algorithmic design demands it.

Cloud Computing

Course Out	comes:
Upon succe	ssful completion of the course, the student will be able to:
CO1	Understanding the key dimensions of the challenge of Cloud Computing
CO2	Assessment of the economics, financial, and technological implications for selecting cloud computing for own organization
CO3	Assessing the financial, technological, and organizational capacity of employer's for actively initiating and installing cloud-based applications
CO4	Assessment of own organizations' needs for capacity building and training in cloud computing-related IT areas
CO5	Describe the features of Resource Management systems

Software Testing Methodologies and Tools

Cour	se Outcomes
Upon successful completion of the course, the student will be able to:	
CO1	Understand the basic testing procedures.
CO2	Able to support in generating test cases and test suites.
CO3	Able to test the applications manually by applying different testing methods and automation tools
CO4	Apply tools to resolve the problems in Real time environment.

Data Warehousing and Data Mining

Course Outcomes	
Upon successful completion of the course, the student will be able to:	

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521.212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91.8333882444

			ALC: NO SECURE OF THE PERSON NAMED IN COLUMN 1	
CO1	Understand the basic concepts of warehousing and data preprocessing techniques			0.1
CO2	Derive various interesting patterns and associations in datasets.	- 1	.1	
CO3	Design and develop classifier models to predict future trends.			
CO4	Apply unsupervised learning techniques for a given application.			

Advanced Data Structures

Cours	e Outcomes
Upon	successful completion of the course, the student will be able to:
CO1	Abletounderstand theimportance, operations and applicationofHashing
CO2	Ableto understand implementationof skip lists
CO3	Abletogeta goodunderstandingaboutdifferentbalancedtrees.
CO4	Abletounderstandthe implementationofheapsand binomialqueues.
CO5	Haveanideaonapplicationsofalgorithmsinavarietyofareas,likestringmatching, indexingetc.
CO6	Abletounderstand theimportanceandapplications of tries

Computer Networks Lab

Course	Outcomes:
Upon s	uccessful completion of the course, the student will be able to:
CO1	Should be able to Calculate Data link layer farming methods like bit stuffing and byte stuffing.
CO2	Should be able to Analyze Cyclic redundancy check on different polynomials.
CO3	Should be able to understand Socket Programming Implementation by using TCP and UDP Protocols.

Artificial Intelligence Lab

CourseOutcomes:

UponCompletionofthecourse, the students will be able to

CO1: Elicit, analyze and specify software requirements.

CO2: Simulate given problem scenario and analyze its performance.

CO3: Develop programming solutions for given problem scenario.

DEVOPS LAB

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Upon	successful completion of the course, the student will be able to: Understand the traditional software development.
Learn	the rise of agile methodologies. Define and design purpose of DevOps.
CO1	Realize the importance of agile software development practices in determining the requirements for a software system
CO2	Analyze and execute iterative software development processes to manage software development activities.
CO3	Apply a systematic understanding of Agile principles and defined practices for a specific circumstance or need.
CO4	Examine the impact of DevOps in the successful completion of software development by improving team collaboration and software quality.
CO5	Perform software process improvement by applying DevOps capabilities at enterprise level.

Employability Skills-I

Cour	se Outcomes	
Upon	Upon successful completion of the course, the student will be able to:	
CO1	Establish effective communication with employers, supervisors, and co-workers	
CO2	Identify to explore their values and career choices through individual skill assessments	
CO3	Adapts positive attitude and appropriate body language	
CO4	Interpret the core competencies to succeed in professional and personal life	

Machine Learning

Cour	se Outcomes	
Upon	Upon successful completion of the course, the student will be able to:	
CO1	Understanding the machine learning basics and how data is preprocessed	
CO2	How linear models help in prediction	
CO3	Distance based models complexity	
CO4	Probabilistic models understanding	
CO5	Nonlinear models and ensembles improve efficiency	

Compiler Design

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Course Outcomes:

Upon's	uccessful completion of the course, the student will be able to:
CO1	To use the knowledge of patterns, tokens & regular expressions for solving a problem.
CO2	To apply the knowledge of lex tool &yacc tool to develop a scanner & parser.
CO3	To write the new code optimization techniques to improve the performance of a program in terms of speed & space.
CO4	To employ the knowledge of modern compiler & its features.
CO5	To participate in GATE, PGECET and other competitive examinations

Cryptography and Network Security

CourseOutcomes:

UponCompletionofthecourse, thestudentswillbeableto

- CO1. Understand the principles of cryptography and security, with enciphering Techniques and analyze a variety threats and attacks.
- CO2. Distinguish the black ciphers and stream ciphers and apply them on a various symmetric cryptographic technique.
- CO3. Understand the principle and mathematical models used in public-key cryptosystems by applying them on different (various) types of algorithms.
- CO4. Analyze the message authentication functions with its types and digital certifications for secure communicat
- CO5. Understand the user authentications principles and security approach at both the web and email.
- CO6. Understand the concept of IP Security with its services and dealing with the prevention and detection of intrusions.

Advanced Database Management Systems

COURSE O	UTCOMES: Upon successful completion of the course, the student will be able to:
CO1	Describe basic database concepts, Data Models, Schemas, Instances, and Components in the DBMS architecture.
CO2	Implement practical solutions to GIS database problems using OO/OR database, spatial database, data warehousing and data mining approaches
CO3	Evaluate simple strategies for executing a distributed query to select the strategy that minimizes the amount of data transfer
CO4	Demonstrate the issues involved in data integration for distributed query processing
CO5	Develop practical skills in the use of these models and approaches to be able to select and apply the appropriate methods for a particular case
CO6	Analysedinternal structures, query evaluation and optimization.

Network Programming

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

Course Outcomes	The refer to the second of the
Upon successful com	pletion of the course, the student will be able to:
CO1	Explain the client-server paradigm and socket structures.
CO2	Describe the basic concepts of TCP sockets and TCP echo client-server programs.
CO3	Discuss the UDP sockets and UDP echo client-server programs.
CO4	Explain Socket options and ability to understand IPC.
CO5	Apply the applications of sockets and demonstrate skill to design simple applications like FTP, TEI etc.

Big Data Analytics

Cour	Course Outcomes	
Upon successful completion of the course, the student will be able to:		
CO1	Understand the key issues in big data management and its associated applications in intelligent business and scientific computing	
CO2	Acquire fundamental enabling techniques and scalable algorithms like Hadoop, Map Reduce and NO SQL in big data analytics	
CO3	Students Interpret business models and scientific computing paradigms, and apply software tools for big data analytics	
CO4	Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications	

OBJECT ORIENTED ANALYSIS AND DESIGN

Course	Course Outcomes:	
Upon successful completion of the course, the student will be able to:		
CO1	Analyse, design, document the requirements through use case driven approach	
CO2	Identify, analyse, and model structural concepts of the system	
CO3	Develop, explore the conceptual model into various scenarios and applications.	
CO4	Apply the concepts of architectural design for deploying the code for software.	
CO5	Identify, analyse, and model Architectural concepts of the system	

Machine Learning Lab

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Course Outcomes:

Upon successful completion of the course, the student will be ab
--

CO1	Should be able to do data cleaning and data preprocessing
CO2	Should be able to apply imbalanced data sets accuracy

CO3 Should be able to apply machine learning techniques to large data sets

R Programming Lab

Upon s	successful completion of the course, the student will be able to:
CO1	Perform basic 'R' operations.
CO2	Understand the Sorting and Searching techniques.
CO3	Perform Statistical functions on datasets.
CO4	Apply Classification and Regression techniques.
CO5	Perform Clustering.

Complier Design Lab

Course	Outcomes:
Upon s	accessful completion of the course, the student will be able to:
CO1	To use the knowledge of patterns, tokens & regular expressions for solving a problem.
CO2	To apply the knowledge of lex tool &yacc tool to develop a scanner & parser.
CO3	To write the new code optimization techniques to improve the performance of a program in terms of speed & space.
CO4	To employ the knowledge of modern compiler & its features.
CO5	To participate in GATE, PGECET and other competitive examinations

Course Outcomes

Upon successful completion of the course, the student will be able to:

- 1. Understand the traditional software development.
- 2.Learn the rise of agile methodologies.
- 3. Define and design purpose of DevOps.

MEAN STACK TECHNOLOGY -LAB

EMPLOYABILITY SKILLS –II

NRI INSTITUTE OF TECHNOLOGY (AUTONOMOUS) Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in; emall: principal@nriit.edu.in; Mobile: + 91 8333882444

Cour	se Outcomes and the subsection of parameters of the control of the
Upon	successful completion of the course, the student will be able to:
CO ₁	Recite the corporate etiquette.
CO2	Make presentations effectively with appropriate body language
CO3	Be composed with positive attitude
CO4	Apply their core competencies to succeed in professional and personal life

IV-I

BLOCKCHAIN TECHNOLOGY

Course Code	Course Outcomes
CO1	Contentedly discuss and describe the history, types And applications of Blockchain.
CO2	GainsfamiliaritywithcryptographyandConsensusalgorithms.
CO3	Demonstratetheblock-chainservicestodevelopaNewParadigmofOrganizationalactivitie.
CO4	Learn the limitations of the block-chain mechanism to develop an efficient organizational structure.
CO5	Applying Bit-Coin protocols and how to develop the digital currency in the websites.

Cognitive Science and Analytics

Course Code	Course Outcomes
CO1	Understand the basic principles and processes of cognitive science.
CO2	Demonstrate qualitative and quantitative skills and critical thinking in cognitive science by applying suitable methodology to real-world applications.
CO3	Apply declarative and logical models.

NRI INSTITUTE OF TECHNOLOGY (AUTONOMOUS) Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V); Agiripalli (M), Eluru District, A.P., India; Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in; Mobile: 7.91 8333882444

CO4	Envisage the concept of cognitive learning.
	Demonstration with the acquired inter-disciplinary knowledge in language processing and application of different research approaches with cognitive science

Computer visionRegulation

Course Code	Course Outcomes
CO1	Studentsshouldbeabletoappreciatethedetailedmodelsofimageformation.
CO2	Analysethetechniquesforimagefeaturedetectionandmatching.
CO3	Applyvariousalgorithmsforpatternrecognition.
CO4	Examinevariousclusteringalgorithms.
CO5	Analyzestructuralpatternrecognitionandfeatureextractiontechniques.

Data Science

Course Code	
CO1	Understand the applications of Data Science.
CO2	Apply summary and descriptive statistics on various data sets.
CO3	Apply Statistical and Linear Algebra functions.
CO4	Apply Classification and Regression to decision-making Scenarios.
CO5	Develop Unsupervised and Reinforcement applications.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

DEEP LEARNING AND ITS APPLICATIONS

Course Outcomes
Recognize the characteristics of deep learning models that are useful to solve real-world problems
Understand different methodologies to create application using deepnets.
Identify and apply appropriate deep learning algorithms for analyzing the data for variety of problems.
Implement different deep learning algorithms
Design the test procedures to assess the efficacy of the developed model.
Combine several models into gain better results

DESIGN THINKING IN SOFTWARE DEVELOPMENT

Course Code	Course Outcomes
CO1	Explain the principles of design thinking and its approaches.
CO2	Identify the empathy, define phases in human centered design problems.
CO3	Develop an idea, build a prototype and test in design thinking context.
CO4	Apply design thinking techniques for product innovation.
CO5	Use design thinking in business process models.

NRI INSTITUTE OF TECHNOLOGY (AUTONOMOUS) Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

DATA VISUALIZATION TECHNIQUES

Course Code	Course Outcomes
CO1	Able to Identify and recognize visual perception and representation of data
CO2	Able to Illustrate about projections of different views of objects.
CO3	Apply various Interaction and visualization techniques
CO4	Analyze various groups for visualization.
CO5	Able to visualizations
CO6	Able to understand the importance and applications of data visualization

DATA VISUALIZATION LAB

Course Code	Course Outcomes
CO1	Able to apply different data visualization techniques on real time data
CO2	Able to understand the importance and applications of data visualization
CO3	Design information dashboard

High Performance Computing

Course Code	Course Outcomes
CO1	Ability to define, understand the database management system structure
CO2	Ability to apply as relational algebra to find solutions to a broad range of queries
CO3	Ability to create applications using various normal forms, functional dependencies, validating and identifying anomalies
CO4	Will be able to explain the principle of transaction management design.

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Eluru District, A.P., India, Pin: 521 212
URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

CO₅

Understands and applies indexing mechanisms in databases

NATURAL LANGUAGE PROCESSING

Course Code	Course Outcomes
CO1	Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
CO2	Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
CO3	Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
CO4	Able to design, implement, and analyze NLP algorithms
CO5	Able to design different language modeling Techniques.
CO6	Describe the branch and bound paradigm and deterministic methods e-plain when an algorithmic design demands it.

Parallel and Distributed Computing

Course Code	Course Outcomes
CO1	Understanding Concept of parallel processing and parallel architectures
CO2	Understanding the concepts of shared memory based and thread based
CO3	To learn the two modes of distributed computing using message passing and remote procedure calls.
CO4	To learn introductory techniques of parallel debugging, and be introduced to other parallel paradigms.
CO5	To introduce basic concepts of distributed data bases and distributed operating systems.
CO6	Understanding implementations of Distributed Databases and Distrbuted Operating Systems.

PREDICTIVE ANALYTICS

Course Code	Course Outcomes
CO1	Understand the importance of predictive analytics

Approved by AICTE, New Delhi: Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC with "A" GRADE, Accredited by NBA (CSE, ECE&EEE) An ISO 9001:2015 Certified Institution

Pothavarappadu (V), Agiripalli (M), Elury District, A.P., India, Pin: 521 212 URL: www.nriit.edu.in, email: principal@nriit.edu.in, Mobile: + 91 8333882444

	DE TRANSPORTE
CO2	Able to prepare and process data for the models
CO3	Learn about statistical analysis techniques used in predictive models
CO4	Apply regression and classification model on applications for decision making and evaluate the performance
CO5	Build and apply time series forecasting models in a variety of business contexts

Quantum Computing

Course Code	Course Outcomes
CO1	Analyze the behavior of basic quantum algorithms.
CO2	Implement simple quantum algorithms.
CO3	Implement information channels in the quantum circuit model.
CO4	Simulate a simple quantum error-correcting code.
CO5	Prove basic facts about quantum information channels.

Social Networking and Semantics

Course Code	Course Outcomes
CO1	Understand the basics of Semantic Web and Social Networks.
CO2	Ability to understand and knowledge representation for the semantic web.
CO3	Learn the various semantic web applications.
CO4	Ability to create ontology.
CO5	Ability to build a blogs and social networks.

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriil.edu.in

Subject Name	APPLICATIONS	OF PYTHON- NumPy,Pandas	C229
			2.35
OHEGO			TAD

Course Code	Course Outcome	TAR GET
C229.1	Understand the workings of various numerical techniques, different descriptive measures of Statistics, correlation and regression to solve the engineering problems	70.
C229.2	Understand how to apply some linear algebra operations to n-dimensional arrays	70
C229.3	Use NumPy perform common data wrangling and computational tasks in Python	70
C229.4	Use Pandas to create and manipulate data structures like Series and DataFrames, work with arrays, queries, and dataframes	70
C229.5	Query DataFrame structures for cleaning and processing and manipulating files	70
C229.6	Understand best practices for creating basic charts	70

Course Code	CO-PO & PSO Relevance Matrix														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	POI 1	PO1	PSO 1	PSO 2	PS O3
C229.1	3	2	-		-	-	2	-	-	-	-	2	-	2	
C229.2	2	3	3		2	-	3	-	-	-	-	-	2	-	-
C229.3	2	2	2		2	-	2	-	-	-	-	2	-	2	-
C229.4	2	2	3		3	-	2	-	-	-	-	2	2	-	-
C229.5	2	2	3		3	-	1	-	-		-	2	2	-	-
C229.6	2	3	3		2	-	2	-	-	-	-	-	2	-	-

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name.

APTITUDE AND REASONING

C2110

Course Code	Course Outcome
C2110.1	Solve the Arithmetic and Reasoning Problems as fast as possible and as simple as possible.
C2110.2	Exhibits good analytical skills and aptitude skills.
C2110.3	Perform well in all competitive exams like RRB, SSC, GROUPS, and BANKING etc
C2110.4	Clear the aptitude section of exams for higher education like CAT, GMAT, and GRE etc

Course Code	217	CO-PO & PSO Relevance Matrix														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO2	PS O3	
C2110.1	2	2	2	2	-	2	2	-	-	-	-	*	-	-	-	
C2110.2	2	2	2		5	3	3	(6)	36	*	-	-	4	ü	Į.	
C2110.3	2	2	1.0		1	-	2	37.)	-	2	-	-		8	ŝ	
C2110.4	2	1		1	-	-	2	(9)		-	¥	0		æ	-	

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph : 0866 2469666, Email : principal@nriit.edu.in

	Computer Organization and	
Subject Name	Architecture	C214

Course Code	Course Outcome
C214.1	Understand the numeric information in different forms and interpret different logic gates.
C214.2	Analyze and Design various combinational circuits like Encoders, Decoders, multiplexers, and Arithmetic Circuits.
C214.3	Able to understand the basic components and the design of CPU, ALU and Control unit
C214.4	Students can calculate the effective address of an operand by addressing modes
C214.5	Ability to understand memory hierarchy and its impact on computer cost/performance
C214.6	Ability to understand the advantage of instruction level parallelism

Course Code	31	CO-PO & PSO Relevance Matrix													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C214.1	3	3	2	-	-	-	-	-	-	-	-	2	-	-	-
C214.2	3	3	2	-	-	-	-	-	-	-	-	2	-	-	-
C214.3	3	2	2	-	-	-	-	-	-	-	-	2		-	-
C214.4	3	-3	3	•	-	-	-	-	-	-	-	2	-	-	-
C214.5	3	3	2	-	-	-	-	-	-	-	-	2	-	-	-
C214.6	3	3	2	-	-	-	-	-	-	-	-	2	-		-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

DATA BASE MANAGEMENT SYSTEMS

Course Code	Course Outcome
C213.1	Ability to define, understand the database management system structure
C213.2	Ability to apply as relational algebra to find solutions to a broad range of queries.
C213.3	Ability to create applications using various normal forms, functional dependencies, validating and identifying anomalies
C213.4	Will be able to explain the principle of transaction management design.
C213.5	Understands and applies indexing mechanisms in databases

Course															
Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C213.1	3	3	2	-	-81	-	-	-	Y(4)	-	-	2	3.00	2.00	3.00
C213.2	3	3	2	-	(6)	-	-	-		25	•	2	3.00	2.00	3.00
C213.3	3	2	2		ces	-	ç	0.0	(*)	₹:	-88	2	3.00	2.00	3.00
C213.4	3	3	3	-	-31	-	-	-	154	-	130	2	3.00	2.00	2.00
C213.5	3	3	2		-	-	-	-	Ų.	-	-	2	3.00	2.00	2.00

Subject Name

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanentiy affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalil Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph : 0866 2469666, Email : principal@nriit.edu.in

DATA BASE MANAGEMNET
SYSTMES LAB
C217

Course Code	Course Outcome
C217.1	Queries for Creating, Dropping, and Altering Tables, Views, and Constraints
C217.2	Queries to Retrieve and Change Data:Select, Insert, Delete, and Update
C217.3	QueriesusingBuilt- InFunctions:StringFunctions,NumericFunctions,DateFunctionsandConversion Functions.
C217.4	Queries using GroupBy,OrderBy,andHavingClauses
C217.5	Queries on Joins and CorrelatedSub-Queries
C217.6	Queries on Controlling Data:Commit,Rollback,andSavepoint

Course	100	CO-PO & PSO Relevance Matrix														
Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2	PS O3	
C217.1	3	3	2	-	2	2.0	_	-	-	-	2.00	2	-	-	2	
C217.2	3	3	2	-	2	2.0	_	-	-	-	2.00	2	-	2	-	
C217.3	3	2	2	-	2	-	-	-	-	-	2.00	2	3	-	2	
C217.4	3	3	3	-	2	-	-	-	-	-	2.00	2	-	-	-	
C217.5	3	3	2	-	2	-	-	-	-	-	-	2	3	-	-	
C217.6	3	3	2	-	2	7.1		-	-	-	2.00	2	-	3	-	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

	Vector calculus, Transform	
	Techniques and Partial	
Subject Name	Differential Equations	C211

Course Code	Course Outcome
C211.1	Interpret the physical meaning of different operators such as gradient, cur land divergence
C211.2	Estimate the work done against a field, circulation and flux using vector calculus (L5)
C211.3	Apply the Laplace transform for solving differential equations (L3)
C211.4	Find or compute the Fourier series of periodic signals (L3)
C211.5	Knowandbe able to apply integral expressions for the forwards and inverse Fourier transform to arrange of non-periodic wave forms (L3)
C211.6	Identify solution methods for partial differential equations that model physical processes (L3)

Course Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO	PSO 2	PSO 3
C211.1	3	3	2	2	-			-	-	-	-	-	-	-	·
C211.2	3	3	2	2	-	-		-	-	-	-	-	-	-	-
C211.3	3	3	2	2	-	2		-	-	-			-	-	¥
C211.4	3	3	2	2	1,00	-		-	101	-	-	-	-	-0,	-
C211.5	3	3	2	2	7-8	-		-	120		e.	-	×	a).	-
C211.6	3	3	2	2	-	-		- 8	-27	-	-8	-	-	20	£

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

INTERNET OF THINGS

Course Code	Course Outcome
C215.1	Understand Device-processor communication models & protocols
C215.2	Understand the application areas of IOT.
C215.3	Visualize the effect of internet on Mobile Devices, Cloud & Sensor Networks.
C215.4	Acquire programming experience with Raspberry Pi kit to interface various devices.
C215.5	Implement Programming models for IoT Cloud Environment

Course Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C215.1	2	0	-	-	2.00	-	-	-	2.00	-	-	-	-	-	-
C215.2	-	_	-	2	-	-	2	-	-	-	-	2.00	-	-	-
C215.3	2	-	_	3	-	-	_	3	2	3		3	-	-	-
C215.4	-	-	-	3	-	-	-	3	-	-	-	2	-	-	-
C215.5	2	_	_	_	-	-	-	2	-	2	-	3	-	-	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affillated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	IOT LAB	C218
--------------	---------	------

Course Code	Course Outcome
C218.1	Understand the application areas of IOT.
C218.2	Understand building blocks of Internet of Things and characteristics.
C218.3	Understand enabling technologies Embedded Devices and communication protocols for Handson activities.
C218.4	Write programs using Python for processing Internet of Things

Course Code		CO-PO & PSO Relevance Matrix														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	
C218.1	3	3	2	2	-	-	2		-	-	-	-	3.00	2.00	2.00	
C218.2	3	3	2	2	-	-	3	-	1.	-	-	-	3.00	2.00	2.00	
C218.3	3	3	2	2	-	-	2	-	-		-	-	3.00	2.00	2.00	
C218.4	3	3	2	2	-	2	2	-	-	-	-	-	3.00	2.00	2.00	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh • 521212 URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

F (2 5)		
Subject Name	Python Programming	C212

Course Code	Course Outcome
C212.1	Experience with an interpreted Language and to build software for real needs
C212.2	Use basic Decision structures, Boolean logic, variable types, assignments and operators.
C212.3	Describe and use of Python lists, dictionaries, tuples and sets.
C212.4	Implement methods and functions to improve readability of programs
C212.5	Describe and apply object-oriented programming methodology, top-down concepts in algorithm design.

Course Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSC 3
C212.1	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-
C212.2	1	2	2	1	-	-	3	-	-	-	-	-	-	-	-
C212.3	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-
C212.4	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-
C212.5	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

PYTHON PROGRAMMING LAB

C216

Subject Name

Course Code	Course Outcome
C216.1	Experience with an interpreted Language and to build software for real needs
C216.2	Use basic Decision structures, Boolean logic, variable types, assignments and operators.
C216.3	Describe and use of Python lists, dictionaries, tuples and sets.
C216.4	Implement methods and functions to improve readability of programs
C216.5	Describe and apply object-oriented programming methodology, top-down concepts in algorithmdesign.
C216.6	Design, code ,test and debug python language programs

Course	- 13	CO-PO & PSO Relevance Matrix														
Code	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	POI 1	PO1 2	PSO 1	PSO 2	PSO 3	
C216.1	3	3	2	-	2	-		-	-	-	-	-	3.00	3.00	2.00	
C216.2	3	3	2	les:	2	97			161	10-1	-	ù.	3.00	2.00		
C216.3	3	2	2	74-2	2	3		-	21	-	2	-	3.00	3.00	2.00	
C216.4	3	3	3	-	2	40		-	-	1%	*	20	3.00	3.00	7	
C216.5	3	3	2	41	2	(4):				-	-	-	3.00	3.00		
C216.6	3	3	2	-	2	-81		-	-	-	-	20	3.00	3.00		

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripaili Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriil.edu.in

Subject Name	PROBABILITY AND STATISTICS	C221	
oudject I tuite		. 0221	į.

Course Code	Course Outcome
C221.1	Classify the concepts of data science and its importance
C221.2	Interpret the association of characteristics and through the correlation and Regression tools
C221.3	Make us of the concepts of probability and their applications
C221.4	Apply discrete and Continuous probability distributions
C221.5	Design the components of a classical hypothesis test
C221.6	Infer the statistical inferential methods based on small and large sampling tests

Course Code	PO 1	PO 2	PO 3	PO 4	P O 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS 01	PS O2	P8 03
C221.1	1	2	1	2	-	-		-	-	-	-	2.0	2.0	-	2.00
C221.2	1	2	2	1	-	-		-	-	-	-	2.0	2.0 0	-	2.00
C221.3	1	2	1	2	-	-		-	-	-	-	2.0	2.0	-	2.00
C221.4	1	2	1	2	-	-		-	-	-	-	2.0	2.0	2.0	2.00
C221.5	1	2	1	2	-			-	-	-	-	2.0	2.0	-	2.00
C221.6	2	3	2	2	-	-		-	-	-	-	2.0	2.0	-	2.0

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

Formal Languages and Automata Theory

Course Code	Course Outcome
C225.1	Able to use basic concepts of formal languages of finite automata techniques
C225.2	Student able to design Finite Automata's for different Regular Expressions and Languages
C225.3	Construct context free grammar for various languages
C225.4	Solve various problems of applying normal form techniques, push down automata and Turing Machines
C225.5	Participate in GATE, PGECET and other competitive examinations

Course Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C225.1	1	2	1	2	-	-	3	-	-	-	-	-	02	-	-
C225.2	1	2	2	1	-	-	3	-	-	-	-	-	-	-	-
C225.3	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-
C225.4	1	2	1	2	-	-	3	-	-	-	-	-	-	-	72
C225.5	1	2	1	2	\.e.	7-	3	-				(8)	1 10	-	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcotteges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

	OPERATING	
Subject Name	SYSTEMS	C224

Course Code	Course Outcome
C224.1	Understand the important computer system resources and the structure and functioning of operating system.
C224.2	Understand process management policies and scheduling of processes by CPU.
C224.3	Evaluate the requirement for process synchronization and coordination handled by operating system. Describe and analyze the memory management and its allocation policies.
C224.4	Understand demand paging, thrashing and principles of deadlocks.
C224.5	Understand File system Interface, File System implementation, Mass-storage structure and Disk scheduling algorithms.

Course Code	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C224.1	3	3	2	-	-	-	-	-	-	-	-	2	2		
C224.2	3	3	2	-	-	-	-	-	-	-	-	2	2		
C224.3	3	2	2	-	-	-	-	-	-	-	-	2	2		
C224.4	3	3	3	-	-	-	-	-	-	-	-	2	2		
C224.5	3	3	2	-	-	-	-	-	-	-	-	2	2.00		

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

WEB TECHNOLOGIES LAB

Course Code	Course Outcome
C226.1	Createawebsitestaticallyordynamically
C226.2	Getknowledgeon displayingand decoratingthecontentsin awebpage.
C226.3	Learntheconceptsofstoreandtransportthedataamongwebpages
C226.4	Createobjectswithwhichtheclientcancommunicatewithserver.
C226.5	Generatestaticordynamiccontentaccordingtotheclient's request
C226.6	ProvideUser Authentication byusingcookiesand back end operations usingJDBC and PHP

Course	1000	CO-PO & PSO Relevance Matrix														
Code	PO 1	PO 2	PO 3	PO 4	PO PO PO PO 5 6 7 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3				
C226.1	3	3	2	-	2	-	-	-	-	-	-	2	9	-	-	
C226.2	3	3	2		2	-	-	-	-	-	-	2	-	-	-	
C226.3	3	2	2	-	2	1,2-	-	· -	-		-	2	-	-	-	
C226.4	3	3	3	-	2		-	-	-	1,5	-	2	-	-	-	
C226.5	3	3	2	-	2	χ=	-5	-7.	=		.5	2	(4)	-	ř	
C226.6	3	3	2	-	2	18:	-	-	-	-	- 5	2	8	-3		

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanentiy affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212
URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriil.edu.in

Subject Name

SOFTWARE ENGINEERING

Course Code	Course Outcome
C223.1	Understand the basic concepts of Software engineering and applications
C223.2	Compare different software engineering process models
C223.3	Analyze the principles of requirement Engineering
C223.4	Create design models for software Engineering projects
C223.5	Apply different testing techniques

Course															
Code	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C223.1	3	3	2	_	-	-	_	-	-	-	-	2	-	3.00	-
C223.2	3	3	2	_	-	-	-	-	-	-	-	2	-	3.00	-
C223.3	3	2	2	-	-	-	-	-	-	-	-	2	-	3.00	-
C223.4	3	3	3	-	-	-	-	-	-	-	-	2	-	3.00	-
C223.5	3	3	2	_	-	-	_	-	-	-	-	2	-	3.00	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

SOFTWARE ENGINEEEING
LAB C227

Subject Name

Course Code	Course Outcome
C227.1	Ability to translate end-user requirements into system and software requirements
C227.2	Analyze the principles of requirement Engineering
C227.3	Ability to generate a high-level design of the system from the software requirements
C227.4	Create design models for software Engineering projects
C227.5	Will have experience and/or awareness of testing problems and will be able to develop a simple testing

Course Code		CO-PO & PSO Relevance Matrix														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1	PSO 1	PSO 2	PSO 3	
C227.1	2	2	2	2	-	-	2	-	-	- 04	-	-	-	3.00	-	
C227.2	2	2	1	_	-	-	3	-	-	-	-	-	-	3.00	L	
C227.3	2	2	1	-	-	-	2	-	-	-	-	-	-	3.00	35	
C227.4	2	1	-	1	=	-	2	-	-	-	-	-	-	3.00	-	
C227.5	2	2	1	2	-6	-	1	-	(40)	81	-	(e)	-0.5	3.00	-	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nnit.edu.in

	Operating Systems &Unix	
Subject Name	programming Lab	C228

Cours e Code	Course Outcome
C228.	Students able to implement CPU scheduling algorithms ,File
1	Organization techniques and pagingtechniques
C228. 2	Students able to write shell scripts in Linux platform.

Cours		CO-PO & PSO Relevance Matrix														
e Code	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
C228.	2	2	2	2	-	-	2	-	-	-	-	-	-	-	-	
C228.	2	2	2		-	-	3	-	-	-	-	-	-	-	-	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nnit.edu.in

	Web Application Development Using Full	
Subject Name	Stack – Frontend Development – Module - I	C219

Cours e Code	Course Outcome
C219.1	Analyze a web page and identify its elements and attributes
C219.2	Demonstrate the important HTML tags for designing static pages and separate design from contentusing Cascading Style sheet
C219.3	Implement MVC and responsive design to scale well across PC, tablet and Mobile Phone
C219.4	Create web pages using HTML and Cascading Style Sheets

		CO-PO & PSO Relevance Matrix														
Cours e Code	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C219.1	2	2	2	2		-1	2	200	-	×	-	-	-	9	-	
C219.2	2	2	2		-	*()	3	40	~	-	e:		5	**	-	
C219.3	2	2	1.0		-		2	8*	-	-	-	(#)	*	-	-	
C219.4	2	.1		1	-	-	2	-	-	-	-	-	-	-	-	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name Web Technologies C222

Course Code	Course Outcome
C222.1	Student able to Implement and design webbased applications using features of HTML
C222.2	Implement webbased applications using features of XML
C222.3	Student will Apply the concepts of server side technologies for dynamic web applications
C222.4	Ability to design the webbased applications using effective database access with rich client interaction
C222.5	Abilityto Develop reusable component for Graphical User Interface applications

Course Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C222.1	1	2	1	2	-	-	3	-	-	-	-	-	3.00	2.00	3.00
C222.2	1	2	2	1	-	-	3	-	-	-	-	-	3.00	5	3.00
C222.3	1	2	1	2	-	-	3	-	-	-	-	-	3.00	2.00	3.00
C222.4	1	2	1	2	-	-	3	-	-	-		-	3.00	-	3.00
C222.5	1	2	1	2	-	-	3	-	-	-	-	-	3.00	-	3.00

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriil.edu.in

Subject Name

APPLIED CHEMISTRY

Cou rse Cod e	Course Outcome
C11 3.1	Analyze the different types of composite plastic materials and interpret the mechanism of conduction in conducting polymers
C11 3.2	Predict potential complications from combining various Chemicals, metals in engineering setting and categorize materials science relevant to corrosion phenomena
C11 3.3	Apply new materials with excellent engineering properties to take care of society needs and environment
C11 3.4	Analyze the principles of different analytical instrumentation and applications
C11 3.5	Design models for energy by different natural sources
C11 3.6	Understand the knowledge of computational chemistry and molecular machines

Cou rse Cod e	P 0 1	P O 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	P 0 1 0	P 0 1 1	P 0 1 2	P S O 1	P S 0 2	P S O 3
C11 3.1	1	2	1	2			3								
C11 3.2	1	2	2	1			3								
C11 3.3	1	2	1	2			3								
C11 3.4	1	2	1	2			3								
C11 3.5	1	2	1	2			3								
C11 3.6	2	3	2	2			2								

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph : 0866 2469666, Email: principal@nriit.edu.in

Subject Name

PROFESSIONAL COMMUNICATION

Course Code	Course Outcome
C111.1	Use grammar accurately in various formal and functional contexts.
C111.2	Build good vocabulary and develop the ability to use in various contexts.
C111.3	Comprehend, analyze and evaluate texts critically.
C111.4	Develop effective reading and writing skills to enhance communicative competence.
C111.5	Help the students to inculcate and apply human values and professional ethics in their academic, professional and social liv
C111.6	Read texts for pleasure and analyse them critically

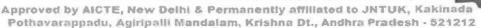
Course															
Code	PO1	PO2	РО3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PS
C111.1	-	-	-	7.5	746	-	-	-	1.00		-	-	-	-	
C111.2	•:	-		3.00	780	-	-	2.0	-	-	-		-	-	
C111.3	•	-	-	14	20	2	- 1	1.00	-	2.00	-	1.00	2	-	
C111.4	1007	-	-	æ.	(4)		ja;	1.00	-	2.00	-	1.00		-	
C111.5	-	31	ž	-	27	3.00	3.00	1.00	3.00	2.00	21	2.00	-	•	
C111.6			-	- 2	45	-	•	-	4.5	1.00	-	-5.	-	.5	

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name APPLIED CHEMISTRY
LAB C128


Course Code	Course Outcome
C128.1	Engineering students should understand the basic laboratory fundamentals and its knowledge and analysis of substances can solve few problemsof the society
C128.2	Neutralization reaction between acids & bases and alkalinity of water is performed by the engineering students to gain the knowledge in neutralization process.
C128.3	Redox reactions are the most observed reactions in chemistry &nature and the students are exposed to such reaction
C128.4	Complexometricreactions are carried out as experiments by the students and learn to solve some of the engineering problems
C128.5	Students should understand different ions in the environment, their identification & estimation which enables them to assess the environmental problems.
C128.6	Conductivity and potentials are used in analysis of materials and budding engineers should be able to develop and analyze the materials

Course Code	P 0 1	PO2	PO3	P04	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1
C128.1	2	2	2	2.00	-	-	1	-	-	-	-	-	-
C128.2	2	2	1		-	-	3	-	-	-	-	-	-
C128.3	2	2	1.00		-	-	1.00	-	-	-	-	-	-
C128.4	2	1		1.00	-	-	1	-	-	-	-	-	-
C128.5	2	2	1	2.00	-	-	2	-	-	-	-	-	-
C128.6	2	1	1	1.00	-	-	1	-	-	-	-	-	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	ENGINEERING MATHEMATICS-I	C112

Course Code	Course Outcome
C112.1	Student will be able to solve the linear system of homogeneous and non-homogeneous equations by applying using technology to facilitate row reduction determine the rank
C112.2	Student will be able to write Eigen values and eigenvectors, diagonal form and different factorizations of a matrix .identify special properties of a matrix, such as positive definite, etc., and use this information to facilitate the calculation of matrix characteristics
C112.3	Students will be able to find an approximate root of algebraic and transcendental equations by applying Bisection, Regula-Falsi, Iteration and Newton-rap son methods. find the function values without knowing function by applying interpolation(equal/unequal) techniques with the help of data
C112.4	Students will be able to evaluate the definite integrals without knowing integrand by Trapezoidal, Simpson's 1/3rd & 3/8th rules. solve initial value ordinary differential equations by applying Taylor's series, Pickard's, Euler's, Modified Euler's & Runge-Kutta methods
C112.5	Student will be able to find partial derivatives numerically and symbolically and use them to analyze and interpret the way a function variesacquire the Knowledge maxima and minima of functions of several variable . Utilize Jacobean of a coordinate transformation to deal with the problems in change of variables
C112.6	Student will be able to examine the properties of Laplace transformation . apply the Laplace and inverse Laplace transformations for different types of functions evaluate ordinary differential equations by using Laplace transformation technique

Course Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS 02	PS 03
C112.1	2	=	-3		(4)	-	20	-	9	- 2	-	'S'	-	-	2
C112.2	2	- 2		-	-	-		-	-0	-	-	-		w)	-
C112.3	2	-	6-	8		+0	હે	8	ન્	-3	-	J.	- 2	п	-
C112.4	2	-	gat.	-	-	104	-0	-	-	- PC	-	-6	-	-	-
C112.5	2	8		-	3.	:	3	-	9	-	-	-	-	-	-
C112.6	2	-	-	-	-	-	-	-	-	-	-	-	-	-	·

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)
Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriil.edu.in

Subject Name

ENVIRONMENTAL SCIENCES

Course Code	Course Outcome											
C117.1	Illustrate the importance of sustainability in the progress of a nation. (L2)											
C117.2	Infer the existence of ecosystems in maintaining ecological balance. (L2)											
C117.3	Recall the importance of biodiversity and its conservation. (L1)											
C117.4	Summarize the role of natural resources for the sustenance of life on earth and recognize the need to conserve them. (L2)											
C117.5	Identify the environmental pollutants and the abatement devices to be used. (L3)											
C117.6	Interpret environmental related acts and social issues. (L2)											

Course Code	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C117.1		2	3				3	-	-	-	-	2.00	-	-	-
C117.2		2	1				3	-	-	-	-	2.00	-	-	-
C117.3		2	1				3	-	-	-	-	2.00	-	-	-
C117.4		2	3				3	-	-	-	-	2.00	-	-	-
C117.5		2	1				3	-	-	-	-	2.00	-	-	-
C117.6		2	1				3	-	-	-	-	2.00	-	-	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

ENGINEERING MATHEMATICS-II

Course Code	Course Outcome
C121.1	Student will be able to find the General/Particular solutions of first order and first degree ordinary differential equations by apply different methods.find orthogonal trajectories of the given family of curves.
C121.2	Student will be able to identify the essential characteristics of linear differential equations with constant coefficients solve the linear differential equations with constant coefficients by appropriate method
C121.3	Student will be able to evaluate double integrals of functions of several variables in two dimensions using Cartesian and polar coordinates. Evaluate areas bounded by region by apply double integration techniques .evaluatevolume of solids by apply triple integration techniques
C121.4	Student will be able to find length of the arc, volume of solid of revolution and surface area of solid of revolution.
C121.5	Student will be able to apply del to Scalar and vector point functions illustrate the physical interpretation of Gradient, Divergence and Curl
C121.6	Student will be able find the work done in moving a particle along the path over a force field .evaluate the rates of fluid flow along and across curves. Apply Green's, Stokes and Divergence theorem in evaluation of double and triple integrals

Course Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1	P01	PO1 2	PSO 1	PSO 2	PSO 3
C121.1	2	-	1.50	-	-	5		-	-	-		*	2:	•	
C121.2	2	14.	(#.)	-	-		- GEC	×	-) <u>*</u>	-	-	-	>*
C121.3	2	- 2	<i>(3)</i>	-	-	-	227	*	-5			-	2)	3	
C121.4	2		2#3	-		-	3.40		a.	21	(=	-		8	1+1
C121.5	2	-	3,5	-		-	100	-	- 32	ē.	1-	-5	- 5	-	
C121.6	2	-	-	- ×-	-	*	-	-	-)¥C	16.	-	-	-	194.7
Average	2.0		-		4	12	81				-				

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripaili Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

DIGITAL LOGIC DESIGN

Cour se Cod	
е	Course Outcome
C12 3.1	To define different number systems, binary addition and subtraction, 2's complement representation and operations with this representation.
C12 3.2	To understand the different switching algebra theorems and apply them for logic functions
C12 3.3	To develop and define the Karnaugh map for a few variables and perform an algorithmic reduction of logic functions.
C12 3.4	To analyse various combinational logic gates starting from simple ordinary gates to complex programmable logic devices & arrays.
C12 3.5	To analyse and design various sequential circuits like latches and flip flops
C12 3.6	To analyse and design sequential circuits like registers and counters.

Cour se Cod e	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	P 0 1 0	P 0 1 1	P 0 1 2	P S 0 1	P S 0 2	P S O 3
C12 3.1	3	3											-	-	-
C12 3.2	3	3	3										-	-	-
C12 3.3													-	-	-
C12 3.4													-	-	-
C12 3.5	2	3	3	3								3. 0 0	-	-	-
C12 3.6		2	2				3						-	-	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

APPLIED PHYSICS

Course	Course Outcome
C122.1	Apply the interaction of light with matter through interference, diffraction, polarization and identify these phenomena in different natural optical processes and optical instruments.
C122.2	Apply the comprehended knowledge about laser and fibre optic communication systems in various engineering applications.
C1.22.3	Interpret the knowledge of dielectric and magnetic materials with characteristic utility in appliances.
C122.4	Apply the knowledge of basic quantum mechanics, to set up one dimensional Schrodinger's wave equation and its application to a infinite potential well.
C122.5	Summarize the importance of free electrons in determining the properties of metals and understand the origin & role of energy bands in classifying the solids
C122.6	Understand the physics of Semiconductors and their working mechanism for their utility in sensors.

Course		2 0				2									
	PO1	P02	P03	P04	P05	P06	P07	PO8	P09	PO10	P011	PO12	PS01	PSO2	P\$03
C122.1	2	2							1.0	-	*	341	7.	34	665
C122.2	2	2						*			70	1877	-		S
C122.3	2	2						e	-	-	97	(4)		-	0.0
C122.4	5	2								-	10	-	-		75.
C122.5	2	2							- 0	12	2	63			- 140
C122.6	2	2						*	-			30	-		100

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in; Ph: 0866 2469666, Email: principal@nriil.edu.in

ning and Problem solving with C	C115

Course Code	Course Outcome
C115.1	Understand the programming terminology and implement various c-tokens & input-output statements to solve simple problems
C115.2	Able to compare and differentiate various looping & branching constructs and apply the best looping structure for a given problem
C115.3	Identify the necessity of modularity in programming and design various function types
C115.4	Understand pointers and implement the programs to directly access memory locations
C115.5	Interpret and implement the need of arrays and structure/union to store homogeneous and heterogeneous groups of data
C115.6	Contrast the need of using files in programming and implement file operations

Course Code									,						
Code	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PS02	PS03
C115.1	3	3	2	-	-	-	-	-	-	-	-	2		-	
													3.00		3.00
C115.2	3	3	2	-	-	-	-	-	-	-	-	2			
													3.00	2.00	
C115.3	3	2	2	-	-	-	-	-	-	-	-	2			_
													3.00	2.00	
C115.4	3	3	3	-	-	-	-	-	-	-	-	2			-
CLISIT													3.00	2.00	
C115.5	3	3	2	-	- 1	-	-	-	-	-	-	2		-	-2
CAASIS													3.00		
C115.6	3	3	2	-	- 1	-	-	- 1	-	-	_	2		-	-
C115.0													3.00		

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affillated to JNTUK, Kakinada

Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

APPLIED PHYSICS LAB

Course Code	Course Outcome
C126.1	Understand principle, concept, working of an instrument and can compare results with theoretical calculations.
C126.2	Analyze the physical principle involved in the various instruments; also relate the principle to new application.
C126.3	Understand design of an instrument with targeted accuracy for physical measurements.
C126.4	Develop skills to impart practical knowledge in real time solution.
C126.5	Acquires the Practical knowledge in the areas of optics, mechanics, Electricity and magnetism.
C126.6	Think innovatively and also improve the creative skills that are essential for engineering.

						co-	-PO &	PSO R	elevar	nce Ma	trix			5. Y	
Course Code	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C126.1		2		2.0	3.0				3.0						
C126.2		2		2.0	3.0				3.0						
C126.3		2		2.0	3.0				3.0 0						
C126.4		2		2.0	3.0				3.0						
C126.5		2		2.0	3.0 0				3.0 0						
C126.6		2		2.0	3.0				3.0						

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AiCTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nnit.edu.in

Subject Name

Communicative English lab-2

Course Code	Course Outcome
C129.1	Attain better understanding of the nuances of english language to put into use in various situation and events.
C129.2	Aware of the need of pronunciation and intonation in improving their speaking skills
C129.3	Understand the importance of communication skills and instill the need for life -long learning
C129.4	Enchance their employability skills and critical thinking skillsnwith participation in group discussion
C129.5	Communication and present their ideas and sources accurately and effectively
C129.6	Acquire speaking skills with clarity and confidence which in turn enchances their employability skills.

Course Code						CO	-PO & P	SO Rele	vance l	Matrix					
Course Code	PO1	P02	PO 3	P04	PO5	P06	P07	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSC 3
C129.1				-	•	-	1	-	1.0	1.00	**	-	-	-	-
C129.2				-		-		-		-	్	-	-	-	-
C129.3				-	-	-	3.00	-	2.0	2.00	880		-	-	-
C129.4				-	-	3.00	1	1.0	3.0	2.00	-	2.00	-	-	-
C129.5				-	-	۰	1	1.0	2.0		-	1.00	-	-	-
C129.6				-	×	×		-	1.0	1.00	-	1.00	-	-	•

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AiCTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	Programming and Problem Solving With C Lab	C117

Cours e Code	Course Outcome
C117,	Understand basic Structure of the C-PROGRAMMING, declaration and usage of variables
C 117.2	Exercise conditional and iterative statements to inscribe C programs
C117.	Exercise user defined functions to solve real time problems
C117.	Inscribe C programs using Pointers to access arrays, strings and functions
C117.	Inscribe C programs using pointers and allocate memory using dynamic memory management functions
C117.	Exercise user defined data types including structures and unions to solve problems
C117.	Exercise files concept to show input and output of files in C

Cour					C	O-PC	& P	SO R	eleva	nce I	Matrix				
se Code	P 0 1	P 0 2	P 0 3	P O 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS 01	PS O2	PS O3
C117.	3	3	2	<u>%</u>	2		3	-	6	9	-	2	3	2	-
C 117.2	3	3	2	10-	2	-	-	-	-	-		2	3	2	-
C117.	3	2	2	-	2	-	-	-	-	-	-	2	3	2	-
C117.	3	3	3	Œ	2	-	-	-	-	-	-	2	3	2	-

Subject Name

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalil Mandalam, Krishna Dt., Andhra Pradesh - 521212 URL: www.nrigroupofcolleges.ac.in, Ph : 0866 2469666, Email: principal@nriil.edu.in

OOPS THROUGH JAVA

C117.	3	3	2	-	2	-	-	-	-	-	-	2	3	2	-
C117.	3	3	2	- ,	2	-	-	-	-	-	-	2	3	2	-
C117.	3	3	2	-	2							2	3	2	

Cours e Code	Course Outcome
C124.	Understand the concepts of object oriented programming
C 124.2	Able to understand the use of abstract classes and Packages in java.
C124.	Exercise user defined functions to solve real time problems Implement Exception Handling techniques and multiple inheritance through interfaces
C124.	Able to understand multithreaded applications with synchronization
C124. 5	IDevelop Graphical user interface applications using Swing and Applet Components

Cour					C	O-PC	& P	SO R	eleva	nce I	Matrix				
se Code	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
C124.	3	3	2	-	2	-	-	-	•	-	-	2	3	2	-
C 124.2	3	3	2	-	2	-	-	-	-	-	-	2	3	2	-
C124.	3	3	3	-	2	-	-	-	-	-	-	2	3	2	-
C124.	3	3	3	-	2	-	-	-	-	-	-	2	3	2	-
C124.	3	3	2	-	2	-	-	-	-	-	-	2	3	2	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212
URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriil.edu.in

Subject Name Data Structures C125

Cou rse Cod	
е	Course Outcome
C12 5.1	Ability to illustrate the concepts of algorithm apply the learning concepts to design data structure for the given problem definition
© 125. 2	Analyze and implement operations on linked list and demonstrate their applications
C12	Ability to design applications using stacks and queues and
5.3	implements various types of Queues
C12 5.4	Ability to analyze and implement operations on trees
C12 5.5	Ability to demonstrate various operations on binary search trees and its applicAtions

Com				76.7	CC)-PO	& PS	O Rel	evano	e Ma	trix				
Cou rse Cod e	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	P S O 2	P S O 3
C12 5.1	3	3	2	7	2	*:		*	-	-	5	2	3	2	-
C 125. 2	3	3	2	-	2	-	-8	-	-	9	2	2	3	2	-
C12 5.3	3	3	3	2/	2	-	3 56	12.7	=	-	-	2	3	2	7.
C12 5.4	3	3	3	18.	2	-	1.77	-	-	-	-	2	3	2	7.87
C12 5.5	3	3	2	-	2	-	-	-	-	-	-	2	3	2	-

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

Data Structures LAB

Cours e Code	Course Outcome
C128.	Implement different searching and sorting techniques. Compare different searching and sorting techniques.
C 128.2	Design linear data structures stacks, queues and linked lists.
C128.	Design nonlinear data structures trees and Graphs, and implement their operations
C128.	Be capable to identity the appropriate data structure for given problem
C128.	Have practical knowledge on the applications of data structures

Cour se Code		CO-PO & PSO Relevance Matrix														
	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
C128.	3	3	2	-	2	-	-	-	-	-	-	2	3	2	-	
C 128.2	3	3	2	-	2	-	-	-	-	-	-	2	3	2	-	
C128.	3	3	3	-	2	-	-	-	-	-	-	2	3	2		
C128.	3	3	3	-	2	-	-	-	-	-	-	2	3	2	-	
C128.	3	3	2	-	2	-	-	-	-	-	-	2	3	2	-	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name OOPS Through JAVA Lab

Cours e Code	Course Outcome
C127.	Understand the concepts of object oriented programming
C 127.2	Implement Exception Handling techniques and multiple inheritance through interfaces.
C127.	Apply thread capabilities and Collections framework.
C127.	Develop Graphical user interface applications using Swing and Applet Components.

Cour		CO-PO & PSO Relevance Matrix														
se Code	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	P 0 8	P 0 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
C127.	3	3	2	27	2	-	-	23	2	20	on .	2	3	2	-	
C 127.2	3	3	2	-	2	-	-	*1	-	49	-	2	3	2	-	
C127.	3	3	3	-	2	0.55	-	-	-	1-	-	2	3	2	-	
C127.	3	3	3	-	2	7/2	2	-	-	-	-	2	3	2	-	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

Design and Analysis of Algorithms

C313.

C313.1	Analyze worst-case running times of algorithms using asymptotic analysis and components
C313.2	Describe the divide and conquer method explains when an algorithmic design situation demands it.
C313.3	Describe the greedy method explains when an algorithmic design situation demands it.
C313.4	Describe the dynamic-programming paradigm explains when an algorithmic design demands it.
C313.5	Describe the back tracking method explains when an algorithmic design demands it.
C313.6	Describe the branch and bound paradigm and deterministic methods e-plain when an algorithmic design demands it.

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO12	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11				
C313.1	3	-	2	-	2	-	-	-	-	2	-	-	3	-	-
C313.2	3	2	-	2	-	-	-	-	2	-	2	-	3	3	-
C313.3	3	-	2	-	-	-	-	2	-	-	-	-	3	3	-
C313.4	3	2	-	2	-	-	-		-	-	-	-	3	2	-
C313.5	3	-	2	-	2	-	-	2	·2	2	-	-	3	-	2
C313.6	3	-	3	3	-	-	-	-	-	-	-	-	3	3	3

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)
Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	Artificial Intelligence	C311

Cours e Code	Course Outcome											
C311.	Possess the ability to formulate an efficient problem space for a problem expressed in English.											
C311.	Possess the ability to select a search algorithm for a problem and characterize its time and space complexities.											
C311.	Possess the skill for representing knowledge using the appropriate technique											
C311.	Possess the ability to apply AI techniques to solve problems of Game Playing, Expert Systems, Machine Learning and Natural Language Processing											
C311.	Apply the knowledge to develop the solutions for real life problems CO6 Develop new algorithms to contribute to the research arena											

Cours e Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
C311.	1	2	1	2	2	-	3	-		-	2	2	-	2	-
C311.	1	2	2	1	<u> </u>	-	3	2	-	2	2	-	70	-	-
C311.	1	2	1	2	B.	.80	3	4	m.	2	-	-	#1)	-	Į.
C311.	1	2	1	2	*	-	3	æ	*	2	Ser.	- Co.	a)	-	-
C311.	1	2	1	2	3	-	3	-	-	- 1	2.	-11	ga.	-	-

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	Computer Networks	C312

Course Code	Course Outcome
C312.1	Able to understand OSI and TCP/IP models.
C312.2	Understand data link layer protocols and flow control
C312.3	Understand routing and network layer protocols and IPV4
C312.4	Understand transport layer congestion, flow control and protocols
C312.5	Understand application layer protocols

Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
C312.1	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-
C312.2	1	2	2	1	-	-	3	-	-	-	-	-	-	-	-
C312.3	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-
C312.4	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-
C312.5	1	2	1	2	-	-	3	-	-	-	-	-	-	-	-

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

Software Testing Methodologies

Course Code	Course Outcome									
C315.1	Able To Understand Basic Testing Concepts, Testing Techniques And Strategies									
C315.2	Have Basic Understanding And Knowledge Of Contemporary Issues Like Component AndInterface Testing.									
C315.3	Able To Support In Generating Test Cases And Test Suites									
C315.4	Have Basic Understanding And Knowledge About Graphs And Matrix Relations, ApplyTesting Methods And Tools									

Course Code	P 0 1	P O 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PS O1	PS O2	PS O3
C315.1	2	3	2		-	-		-	3.0	2.00		-	-	(*	3.00
C315.2			3		3.0	=		-	2.0	2.00	¥.	2.00	(#)	S.	3.00
C315.3	3		3		100	=	2	2.0	-	2	si ¹	-	eri i	2	3.00
C315.4	2	2	2		3.0	0		2	3.0 0	2.00	-	2.00	-	Ď,	3.00

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Dolhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph.: 0866 2469666, Email: principal@nriit.edu.in

Subject Name	Computer Networks Lab	C316

Course Code	Course Outcome
C316.1	Should be able to Calculate Data link layer farming methods like bit stuffing and byte stuffing.
C316.2	Should be able to Analyze Cyclic redundancy check on different polynomials.
C316.3	Should be able to understand Socket Programming Implementation by using TCP and UDP Protocols.

7	CO-PO & PSO Relevance Matrix														
Course Code	PO1	PO 2	PO 3	PO 4	PO 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	PO 11	PO 12	PSO1	PSO2	PSO3
C316.1	3	3	3	3	-	-		-		-	-	3.0	3.0	-	-
C316.2	2	2	2		-	-		-	-	-	-	3.0	3.0	-	3.00
C316.3	3	3	3.0		-	-		-	-	-	-	3.0	-	-	-
Average	2.67	2.6	2.6	1.0								3.0	3.0		3.00

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212
URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

Artificial Intelligence Lab

Course Code	Course Outcome
C317.1	Elicit, analyze and specify software requirements.
C317.2	Simulate given problem scenario and analyze its performance.
C317.3	Develop programming solutions for given problem scenario.

Sie		CO-PO & PSO Relevance Matrix														
Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
C317.1	3	- 2	2	-	4)	2	2	¥	-	2	-				-	
C317.2	3	2	-	-	-2	4	3	-	2	-	2	g.	-	/	-	
C317.3	3	-	-	-	-	72	2	2	-	15	-	-	-	-	-	
Average	3. 0 0	2.0	2.0			65	2.8	2.0	2.0	2.00	2.00					

Subject Name	DEVOP LAB	C318
--------------	-----------	------

	Course Outcome	
0		
Course		

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

Code		ncipal@nriit.edu.i
C318.1	Realize the importance of agile software development practices in determining the requirements for a software system	
C318.2	Analyze and execute iterative software development processes to manage software development activities.	
C318.3	Apply a systematic understanding of Agile principles and defined practices for a specific circumstance or need.	
C318.4	Examine the impact of DevOps in the successful completion of software development by improving team collaboration and software quality.	
C318.5	Perform software process improvement by applying DevOps capabilities at enterprise level.	

		CO-PO & PSO Relevance Matrix														
Course Code	P O 1	P O 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
C318.1	2	2	-	-	-	-	2	-	2	-	-	3	3.00	3.00	3.00	
C318.2	2	3	2	3	-	-	3	-	-	-	2	3	3.00	2.00	2.00	
C318.3	2	2	3	3	2	-	2	-	-	-	2	-	3.00	2.00	2.00	
C318.4	2	-	2	2	2	-	2	-	-	-	-	3	3.00	2.00	2.00	
C318.5	2	-	2	2	2	-	1	-	-	-	2	3	3.00	3.00	3.00	

Subject	Name
---------	------

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Course Code	Course Outcome
C319.1	Establish effective communication with employers, supervisors, and coworkers
C319.2	Identify to explore their values and career choices through individual skill assessments
C319.3	Adapts positive attitude and appropriate body language
C319.4	Interpret the core competencies to succeed in professional and personal life

Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 3
C319.1	(20)	-	7.	-			-	2	-	2		=	-	-
C319.2	90	-	-	-	-	*	-	2	*	2		-	-	-
C319.3	-	-	-	-	0-		-	-	-	-	-	-	-	-
C319.4	-	-		-	6-	-	-	2	-	2	2	2.00	-	-

Subject Name	Compiler Design	322

(NR)

NRI INSTITUTE OF TECHNOLOGY

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

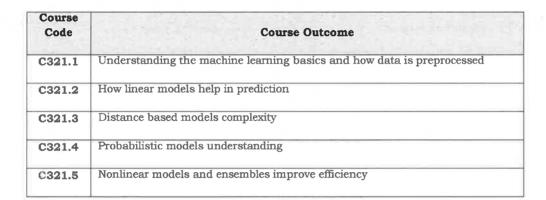
Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Course	Course Outcome
C322.1	To use the knowledge of patterns, tokens & regular expressions for solving a problem.
C322.2	To apply the knowledge of lex tool & yacc tool to develop a scanner & parser.
C322.3	To write the new code optimization techniques to improve the performance of a program in terms of speed & space.
C322.4	To employ the knowledge of modern compiler & its features.
C322.5	To participate in GATE, PGECET and other competitive examinations

Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PS O1	PS O2	PS O3
C322.1	3	3	2	3	3	-	-	-	-	-	-	-	3	2	0
C322.2	2	3	3	2	2	2	-	-	-	2	2	-	3	2	0
C322.3	3	3	3	3	3	2	-	-	-	2	-	-	3	2	2
C322.4	3	2	3	2	3	-	-	-	-	-	-	-	3	2	0
C322.5	3	3	3	1	-	-	1	-	-	2	-	-	3	2	0



Accredited : NAAC with "A", NBA (CSE, ECE & EEE)

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)
Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name

866 2 Machine Dearning Contit eco2in

Course Code	P O 1	P 0 2	P 0 3	P 0 4	P 0 5	P O 6	P 0 7	P O 8	P O 9	PO 10	PO 11	PO 12	PS 01	PS 02	PS O3
C321.1	3	2	2	×	-		-		-	.00	-	-	3.0	3.0	-
C321.2	3	2	2	2	-	-	-	2	-	-	-	-	2.0	3.0	-
C321.3	2	2	3	2	-	2	-	à	5	-	-		3.0	3.0	3.0
C321.4	3	3	2		2983	ŷ	-	2	1001	2	-	5	3.0	3.0	6
C321.5	2	2	3	2	2. 00	2	3	8	ě	-	ē	6	3.0	3.0	•

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

Cryptography and Network Security

Course Code	Course Outcome											
C323.1	Understand the principles of cryptography and security, with enciphering Techniques and analyze a variety of threats and attacks.											
C323.2	Distinguish the black ciphers and stream ciphers and apply them on a various symmetric cryptographic technique.											
C323.3	Understand the principle and mathematical models used in public-key cryptosystems by applying them on different (various) types of algorithms.											
C323.4	Analyze the message authentication functions with its types and digital certifications for secure communication.											
C323.5	Understand the user authentications principles and security approach at both the web and email.											
C323.6	Understand the concept of IP Security with its services and dealing with the prevention and detection of intrusions.											

Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
C323.1	3	2	-	-	-	2	-	1	-	-	-	1	3	1	1
C323.2	3	3	1	2	1	2	-	1	-	-	-	1	3	1	1
C323.3	3	3	-	1	1	1	-	1	-	-	-	1	3	2	-
C323.4	3	3	-	2	1	1	-	1	-	-	-	1	3	2	1
C323.5	3	2	1	2	1	1	-	1	-	-	-	1	3	1	1
C323.6	3	2	-	2	1	1	-	1	-	-	-	1	3	2	1

AUTONOMOUS

Accredited : NAAC with "A", NBA (CSE, ECE & EEE)
Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

OBJECT ORIENTED ANALYSIS AND DESIGN

Course Outcome
Analyse, design, document the requirements through use case driven approach
Identify, analyse, and model structural concepts of the system
Develop, explore the conceptual model into various scenarios and applications.
Apply the concepts of architectural design for deploying the code for software.
Identify, analyse, and model Architectural concepts of the system

Course Code	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 8	PO 9	PO1	PO1	PO1 2	PSO 1	PSO 2	PSO 3
C325.1	2	2	2		2						2		969	3.00
C325.2	3	3	3							2	2	-		2.00
C325.3	3	3			3	2				2	2.	2.00		3.00
C325.4	2	2	3		2	2				2	3		-	2.00
C325.5	3	3	3		2	3				2	2		*	3.00

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name Machine Learning Lab C326

Course Code	Course Outcome
C326.1	Should be able to do data cleaning and data preprocessing
C326.2	Should be able to apply imbalanced data sets accuracy
C326.3	Should be able to apply machine learning techniques to large data sets

Course		CO-PO & PSO Relevance Matrix														
Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS 02	PS 03	
C326.1	2	2	-	2	-	-	2	-	0000	-	-	- 1	3.00	3.00	-	
C326.2	-	2	2,	-	-	-	3	-	-	-	-2	2	2.00	3.00	3.00	
C326.3	2	-	-	2	2	-	2	-	-	-	2	2	3.00	3.00		
Average	-	+	-		2	1-0	- 1	-		-			2.67	3.00	3.00	

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

R Programming lab

Course Code	Course Outcome
C327.1	Perform basic 'R' operations.
C327.2	Understand the Sorting and Searching techniques.
C327.3	Perform Statistical functions on datasets.
C327.4	Apply Classification and Regression techniques.
C327.5	Perform Clustering.

-14-17		171			THE R	CO-P	0 & PS	O Rele	vance	Matrix					
Course Code	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PS O2	PS O3
C327.1	3	3	-	193	3.00	-	2	-	-	-	-	7	3.00	3.0	-
C327.2	3	2	3	-	2.00	-	3		*	147	-	-	3.00	3.0	-
C327.3	2	2	3	-	-	30	2	•	140	-	1990	-	2.00	2.0	-
C327.4	3	3	2	2	3.00	-	2	-		şê.		-	3.00	3.0	
C327.5	2	3	3	3	3.00	•	1	9	-	-			2.00	3.0	-

AUTONOMOUS
Accredited: NAAC with "A", NBA (CSE, ECE & EEE) Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada Pothavarappadu, Aqiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

Subject Name

Complier Design Lab

riit@328in

Course Code	Course Outcome
C328.1	To use the knowledge of patterns, tokens & regular expressions for solving a problem.
C328.2	To apply the knowledge of lex tool & yacc tool to develop a scanner & parser.
C328.3	To write the new code optimization techniques to improve the performance of a program in terms of speed & space.
C328.4	To employ the knowledge of modern compiler & its features.
C328.5	To participate in GATE, PGECET and other competitive examinations

Course Code						CO-I	PO & I	PSO R	elevan	ce Mat	trix	1,52-11			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
C328.1	3	3	2		3	-		-	-	-	-	-	3.00	-	-
C328.2	3	2	3		2	-		-	-	~	-	-	2.00	2.0	-
C328.3	2	2	3			-		-	-	-	-	-	3.00	3.0	-
C328.4	3	-3	2	2	2	-		-	-	-	-	-	3.00	3.0	-
C328.5	2	3	3	3	2	-		-	-	-	-	-	2.00	-	-

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada

Pothavarappadu, Agiripalii Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

MEAN STACK TECHNOLOGY -LAB

Course Code	Course Outcome
C329.1	To code a MEAN Stack Application
C329.2	Developing Single Page Applications (SPAs) via MEAN Stack
C329.3	Setup routing within Angular & Express
C329.4	Write Express Back-End Web Services with Express & Node
C329.5	Employ Express Web Services
C329.6	Understanding Mongo DB

Course Code		CO-PO & PSO Relevance Matrix														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
C329.1	2	2	2	2	-	-	2	-	-		-	-	14	2	*	
C329.2	2	2	2		-	-	3	-	->	SE)	- 1/2	-	45	-	-	
C329.3	2	2	1.0		14		2	J#3	-	-	R	2	2	-	-	
C329.4	2	1		1	-	-	2	/	*	-	-	-	-	22	-	
C329.5	2	2	1	2	-37	-	1	-	-	-		3	21	Al.	-	
C329.6	2	1	1	1	-	1	2	-	-	-	-8	(a)		-		

AUTONOMOUS

Accredited: NAAC with "A", NBA (CSE, ECE & EEE)

Approved by AICTE, New Delhi & Permanently affiliated to JNTUK, Kakinada
Pothavarappadu, Agiripalli Mandalam, Krishna Dt., Andhra Pradesh - 521212

URL: www.nrigroupofcolleges.ac.in, Ph: 0866 2469666, Email: principal@nriit.edu.in

Subject Name

EMPLOYABILITY SKILLS -II

C3210

C3210.1	Recite the corporate etiquette.	
C3210.2	Make presentations effectively with appropriate body language	
C3210.3	Be composed with positive attitude	
C3210.4	Apply their core competencies to succeed in professional and personal life	

1	0 2	0	O 4	0 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	PO1 2	PSO 1	PSO 2	PSO 3
2			3			2			2		2	2		
			3					2						
	3				2			-	2					2
-	2								3				3	
			3					2	3		2	2		
	2		2	2 3 3	2 3 3	2 3 3 3 2 3 3 2 2 3 3 4 3 4 3 4 4 3 4 4 4 4	2 3 2 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3	2 3 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 2 2 3 2 3 2 3 3 2 2 3 3 3 2 3 3 3 3	2 3 2 2 2 3 2 3 2 3 3 2 3 3	2 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3	2 3 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3	2 3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Head, IT Department
RI Institute of Technology
POTHAVARAPPADU (V)
Agiripalli (M), Krishna Dist