Credit Distribution Pattern

	SEM-1	SEM-2	TOTAL
I	18	22	40
п	21	20.5	41.5
III	21	22	43
IV	21.5	14	35.5
TOTAL	81.5	78.5	160

I YEAR - I SEMESTER

L - LECTURE T – TUTORIAL P – PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

Sl. No	Course Code	Title of the Course	Scheme of Instruction (Periods Per Week)		Scheme of Examination (Maximum Marks)			No. of Credits		
			L	Т	P/D	Tota l	CIA	SEA	Total	Creuits
1	18A1100101	Professional English-1	2	1	0	3	40	60	100	3
2	18A1100201	Engineering Mathematics-1	2	1	0	3	40	60	100	3
3	18A1100203	Applied Physics	2	1	0	3	40	60	100	3
4	18A1105301	Programming and Problem Solving with C	2	1	0	3	40	60	100	3
5	18A1103302	Engineering Graphics	1	0	2	3	40	60	100	2
6	18A1100191	English Communication Skills Lab-1	0	0	3	3	40	60	100	1.5
7	18A1100292	Applied Physics lab	0	0	2	2	40	60	100	1
8	18A1105392	Programming and Problem Solving with C Lab	0	0	3	3	40	60	100	1.5
9	18A1100801	Environmental Studies	2	1	0	3	40	60*	100	0
	Τ	otal	11	5	10	26	360	540	900	18

I YEAR - II SEMESTER

L - LECTURE T – TUTORIAL P – PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

				Scher				eme o		
Sl. No	Course Code	Title of the Course	Instruction (Periods Per Week)		Examination (Maximum Marks)			No. of		
51. 1 10	course coue	The of the course	L	T	P/D	Tota l			Total	Credits
1	18A1200101	Professional English-II	2	1	0	3	40	60	100	3
2	18A1200201	Engineering Mathematics-II	3	1	0	4	40	60	100	4
3	18A1200205	Applied Chemistry	2	1	0	3	40	60	100	3
4	18A1205401	OOPS through Java	2	1	0	3	40	60	100	3
5	18A1202301	Fundamentals of Electrical Engineering	3	0	0	3	40	60	100	3
6	18A1200191	English Communication Skills Lab-II	0	0	3	3	40	60	100	1.5
7	18A1200294	Applied Chemistry lab	0	0	2	2	40	60	100	1
8	18A1205391	Automation Tools and Professional Workshop	0	0	3	3	40	60	100	1.5
9	18A1205491	OOPS through Java Lab	0	0	4	4	40	60	100	2
	Т	otal	12	4	12	28	360	540	900	22

II YEAR I SEMESTER

L - LECTURE T – TUTORIAL P – PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

					ne of			neme o		
Sl. No	Course Code	Title of the Course		struction (Periods Per Week)			s Examination (Maximum Marks)			No. of
51. 190	Course Coue	The of the Course	L	T	<u>´</u>	Tota l	```		Total	Credits
1	18A2100203	Discrete Mathematical Structures	3	1	0	4	40	60	100	4
2	18A2105401	Data Structures	3	0	0	3	40	60	100	3
3	18A2105402	Data Base Management Systems	3	0	0	3	40	60	100	3
4	18A2105403	Digital Logic Design	2	0	2*	4	40	60	100	3
5	18A2105391	Internet of Things Lab	0	2	2	4	40	60	100	3
6	18A2105491	Data Structures Lab	0	0	2	2	40	60	100	1
7	18A2105492	Data Base Management System Lab	0	0	2	2	40	60	100	1
8	18A2105494	Python Programming Lab	0	1	2	3	40	60	100	2
9	HSS Elective	Humanities Elective-1	2	0	0	2	40	60	100	1
10	18A2100801	Professional Ethics and Human Values	2	0	0	2	40	60*	100	0
	Т	otal	15	4	10	29	400	600	1000	21

* No External Evaluation

List of Humanities Electives

А	18A2100601	Professional Communication Skills	D	18A2100604	Psychology
В	18A2100602	Visual Communication	Е	18A2100605	Philosophy
С	18A2100603	Sanskrit			

II YEAR II SEMESTER

L - LECTURE T – TUTORIAL P – PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

Sl. No	Course Code	Title of the Course	Instru	Scheme of Instruction (Periods Per Week)			Sch Exar (Maxim	No. of		
			L	Т	P/D	Tota l			Total	Credits
1	18A2200201	Probability and Statistics	3	1	0	4	40	60	100	4
2	18A2205401	Web Technologies and Advanced Java Programming	3	0	0	3	40	60	100	3
3	18A2205402	Software Engineering	3	0	2	5	40	60	100	4
4	18A2205403	Computer Organization	3	0	0	3	40	60	100	3
5	OE-1	Open Elective-1	3	0	0	3	40	60	100	3
6	18A2205491	Web Technologies and Advanced Java Programming Lab	0	0	3	3	40	60	100	1.5
7	18A2205492	Aptitude and Reasoning	0	0	2	2	40	60*	100	1
8	18A2205901	Mini project	0	0	2	2	40	60*	100	1
	Т	otal	15	1	9	25	320	480	800	20.5

III CSE - I SEMESTER

L - LECTURE T – TUTORIAL P – PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

Sl. No	Course Code	Title of the Course	Scheme of Instruction (Periods Per Week)		Scheme of Examination (Maximum Marks)			No. of Credits		
			L	Т	P/D	Tota l	CIA	SEA	Total	Creans
1	18A3105401	Advanced Data Structures	2	1	0	3	40	60	100	3
2	18A3105402	Computer Networks	2	1	0	3	40	60	100	3
3	18A3105403	Formal Languages and Automata Theory	3	0	0	3	40	60	100	3
4	PE-I	Professional Elective- 1	3	0	0	3	40	60	100	3
5	OE-II	Open Elective-II	3	0	0	3	40	60	100	3
6	18A3105492	Computer Networks lab	0	1	2	3	40	60	100	1.5
7	18A3105491	Advanced Data Structures Lab	0	0	3	2	40	60	100	1.5
8	18A3101301	Basics of Civil and Mechanical Engineering	0	2	0	2	40	60*	100	1
9	18A3105791	Competitive Coding	0	0	2	2	40	60*	100	1
10	18A3105792	Seminar	0	0	2	2	40	60*	100	1
11	18A3100801	Indian Constitution	0	1	2	2	40	60*	100	0
	Т	otal	13	6	11	28	440	660	1100	21

Code	Professional Elective – 1
18A3105511	1.1 Scripting Languages
18A3105512	1.2 Computer Graphics and Multimedia animation
18A3105513	1.3 Data Warehousing and Data Mining
18A3105514	1.4 Principles of Programming Languages

III CSE - II SEMESTER

L - LECTURE T – TUTORIAL P – PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

Sl. No	Course Code			Scheme of Instruction (Periods Per Week)			(Maxim	No. of Credits		
			L	Т	P/D	Tota l	CIA	SEA	Total	creates
1	18A3205401	Operating Systems	2	1	0	3	40	60	100	3
2	18A3205402	Design and Analysis of Algorithms	3	0	0	3	40	60	100	3
3	18A3205403	Compiler Design	3	0	0	3	40	60	100	3
4	PE-2	Professional Elective -2	3	0	0	3	40	60	100	3
5	PE-3	Professional Elective -3	3	0	0	3	40	60	100	3
6	18A3205404	Artificial Intelligence	3	0	0	3	40	60	100	3
7	18A3205491	Operating Systems & Unix programming Lab	0	0	2	2	40	60	100	1
8	18A3205492	R Programming lab	0	0	2	2	40	60	100	1
9	18A3205991	Aptitude and Reasoning -2	0	0	2	2	40	60*	100	1
10	18A3205791	Hackathon	0	0	2	2	40	60*	100	1
11	18A3200791	Biology for Engineers/ Enterprising and Startup/ NSS / YOGA / Social service/ sports /games	0	2	0	2	40	60*	100	0
	Т	otal	17	3	8	28	440	660	1100	22

Code	Professional Elective -2	Code	Professional Elective -3
18A3205511	2.1 Advanced Database Management Systems	18A3205521	3.1 Computer Vision
18A3205512	2.2 UML & Design Patterns	18A3205522	3.2 Data Analytics
18A3205513	2.3 Distributed Systems	18A3205523	3.3 Software Testing Methodologies
18A3205514	2.4 Adhoc and Sensor Networks	18A3205524	3.4 Cloud Computing and Application Development

IV CSE - I SEMESTER L - LECTURE T – TUTORIAL P – PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

Sl. No	Course Code	Title of the Course	Scheme of Instruction (Periods Per Week)		Scheme of Examination (Maximum Marks)			No. of Credits		
			L	Т	P/D	Tota l	CIA	SEA	Total	Creans
1	18A4105401	Managerial Economics and Financial Accounting	3	0	0	3	40	60	100	3
2	18A4105402	Cryptography and Network Security	3	0	0	3	40	60	100	3
3	PE-4	Professional Elective - 4	3	0	0	3	40	60	100	3
4	PE-5	Professional Elective - 5	3	0	0	3	40	60	100	3
5	OE-3	Open Elective -3	3	0	0	3	40	60	100	3
6	18A4105491	AI Application Development Lab	0	1	2	3	40	60	100	1.5
7	18A4105492	Predictive Analytics Lab	0	1	3	4	40	60	100	2
8	18A4105493	Full Stack Web Development Lab	0	0	2	2	40	60	100	1
9	18A4105791	Minor project	0	1	3	4	40	60*	100	2
10	18A4100804	Research Methodology	2	0	0	2	40	60*	100	-
	Т	otal	17	3	10	30	400	600	1000	21.5

Code	Professional Elective -4	Code	Professional Elective -5
18A410551	4.1 Natural Language Processing		5.1 Real Time Systems
1			
	4.2 AR & VR		5.2 Data Science
	4.3 Block chain Technology		5.3 High performance computing
	4.4 Intelligent Systems	18A41	5.4 Machine Learning
		05524	

IV CSE - II Semester

L - LECTURE T – TUTORIAL P – PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

Sl. No	Course Code	Title of the Course	Instru	Scheme of Scheme of Ex Instruction (Periods Ex Per Week) (Maxin					n	No. of Credits	
			L	Т	P/D	Tota l	CIA	SEA	Total		
1	PE-6	Professional Elective- 6	3	0	0	3	40	60	100	3	
2	OE-4	Open Elective-4	3	0	0	3	40	60	100	3	
3		Major Project (Internal/Industry Internship) dissertation***	0	5	7	12	40	60	100	8	
	Т	6	5	7	18	120	180	300	14		

Code	Professional Elective - 6
	6.1 Deep Learning
	6.2 System Modeling and Simulation
	6.3 Social Networking and Semantics
	6.4 Cyber Forensics

* Professional Elective- 6 and OE-4 is offered through blended learning method. Regular classes as well as online classes will be conducted as per the choice of the students (moocs). However, students will have to write their regular exam at the end semester.

** Internship or Professional certification courses may be opted as self-learning course. Students register and complete the opted course in approved technology platform on or before Last Instruction Day of VIII Semester. They have to submit the certificate before the last Instruction Day of VIII Semester.

Technical Writing/Paper publication in a reputed journal can be done on or before Last Instruction Day of VIII Semester.

		List of Open Ele		
Offering Department	OE-1	OE-2	OE-3	OE-4
CSE	Data Structures	OOPS through C++	Database Management Systems	AI
CSE	-	Java Programming	-	Data Science
IT	Software Engineering	Web Technology	R- programming	ЮТ
IT	-	-	Python Programing	Machine Learning
ECE	Microprocessors and applications	VLSI Design	Embedded Systems	Image processing
ECE	Basic Electronics	IC Applications	Principles of Communications	Electronic Measurements and Instruments
EEE	Electrical Materials	Renewable energy sources	Electrical and Hybrid vehicles	Electrical Power Utilization
EEE	Control Systems	Modeling & Simulation of Systems	MATLAB and Applications	Energy Audit
CE	Elements of Civil Engineering	Building Materials	Building construction	Project Management
CE	Basic Surveying	Air Pollution & Control	Green Buildings	Remote Sensing & GIS
ME	Basics of Mechanical Engineering	Introduction to Robotics	Mechatronics	Nano Technology
ME	Industrial Materials	Introduction to Material handling Equipment	Hydraulics and Pneumatic Systems	Additive Manufacturing
H&S	Organizational Behavior	Financial Management	Operations Research 3-0-0 (only for CSE & IT)	-
H&S	-	_	Transform Techniques & Special Functions 3-0-0 (only for CSE & IT)	_

List of Open Electives

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Lecture - Tutoria	al:		3 -	0-0				In	ternal M	Iarks:	2	10
Credits:			2					Ex	ternal N	Marks:	6	50
			3									
Course Objective	es:											
 To enhance the optimum solution To develop the To provide the To share the optimum solution To provide an analysis. 	ne knowledge o ations and dem ae concepts viz e knowledge r concepts like n vareness regard the concepts- l	and r»re , consu egarding narket st ding cap	ecosfing mer beh g produc ructures vital bud	method avior ar ction and and bu geting d	ls. nd dema d cost ar siness o	nd conc nd break rganizat	ept. even ar tion.	nalysis.				
Course Outcome												
Upon successful	-											
theor		-			-		-			-		
to ma	se of production anage markets	& break	k-even p	oint.	-			-				
know	op ability to id ledge of mana	igerial e	conomi	cs.	-			• •				
c04 chang	ize about chara ing business er	nvironm	ent in p	ost-libeı	ralizatio	n scena	rio.		-			
	ce their capab			erpretatio	on of b/s	s that ar	e follow	ed in in	dustries	,		
	financial anal tunities.	ysis, caj	oital buc	lgeting t	techniqu	les in ev	aluating	y various	s investr	nent		
Contribution of			vards ac	chievem	ent of I	Program	n Outco	mes				
(I- Low, 2- Media	<i>,</i> 0	-										
	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1 CO2	1	1										
CO2 CO3	2	$\frac{1}{2}$	1									
CO3	Ĺ		1				1					
C04 C05	1		1			2	1					
CO6	1		1		1	4					1	
	1				*						*	

MIAIS . ACADEMI CONTON D. TECH (COMPOTEN SCIENCE AND ENGINEERING)
UNIT I
Introduction to Managerial Economics and Demand Analysis
Nature and scope of managerial economics & its relationship with other subjects concept of demand, Determinants of
demand-law of demand &its limitations Elasticity of demand Types of measurements- De mand r»recasting and methods.
UNIT II
Cost Analysis & Introduction to Markets
Different cost concepts: Opportunity costs, Explicit & Implicit costs, Fixed & Variable costs Average & Marginal. Short
run & Long run costs, Break Even Analysis(Simple Problems), market-nature and types-monopolistic competition and
oligopoly
UNIT III
Types of Business Organization & Business Cycles
Features and Evaluation of sole Trader, Partnership, Joint Stock company & Co-operative Societies. Business Cycles:
Meaning & features of Business cycles-Phases & control of Business cycles-concept of money and mnney supply, Functions
of Commercial banks and RBI credit control methods UNIT IV
Introduction to Accounting and Financial Analysis
Introduction to Double entry system, Journal, Ledger, Trial balance & fiinal Accounts
Financial Analysis
Ratio Analysis- Need & significance(Simple Problems) Cap ital budgeting Meaning & importance- Methods of Capital
Budgetlng: payback period, ARR(Accounting Rate of Return), NPV(Net PresentValue)(Simple Problems) TEXTBOOKS
• Dr. A.R. Aryasri-Managerial Economics and Financial Analysis TMH 2011.
• Dr. N. Appo Rao, Dr. P. Vijay Kumar: Managerial Economics and Financial Analysis carigage publications,
New Delhi-2011.
Prof J.V. Prabhakara Rao, Pro(. P, Venkat Rao, Managerial Economics and Financial Analysis
REFERENCES
V. Maheswari Managerial Economics Sultan fhand. 2014.
• Dr. B. Kuberudu and Dr. T. V. Ramana:managerial economits and Financial Analysis, Himalaya
publishing House, 2014.
• Suma Damndaran: Managerial Economics, Oxford, 2011.
 Maheswari: Financial Accounting, Vikas Publications.
 Shailaja, Gajj;:la and Usha Muniphlle, Universities press, 2015
 Ranking Law and Practise, Gordan and Mithani, Himalaya Publications
E-RESOURCES
http://pntel.ac.in/courses.nhn

- http://nptel.ac.in/courses.php
- http://jntuk-coeerd.in/
 https://ocw.fnit.edu/courses/electrical-engineering- /

NRIA18 : ACADEMI CURRICULUM FOR B.TECH (COMPUTER SCIENCE AND ENGINEERING) **Course Code- Cryptography and Network Security**

Lecture – Tutorial- Practical::		3	0	0	Internal Marks:	40
Credits:	3				External Marks:	60

Prerequisites:

Computer Networks, Arithmetic Calculations

Course Objectives:

- To present an overview of the main concepts of cryptography, understand the threats & attacks, understand ethical hacking
- To understand the difference between stream ciphers & block ciphers, present an overview of the Feistel Cipher and explain the encryption and decryption, present an overview of DES, Triple DES, Blowfish, **IDEA**
- To present the basic principles of public key cryptography, Distinct uses of public key cryptosystems
- To Present overview of the basic structure of cryptographic functions, Message Authentication Codes, • Understand the operation of SHA-512, HMAC, Digital Signature
- To Provide an overview of Key distribution and management, Email security, IP Security, web security, • concept of firewalls, virus and Malicious code

Cours	e Outcomes:
Upon	successful completion of the course, the student will be able to:
CO1	Understand the principles of cryptography and security, with enciphering Techniques and analyze a variety of threats and attacks.
CO2	Distinguish the black ciphers and stream ciphers and apply them on a various symmetric cryptographic techniques.
CO3	Understand the principle and mathematical models used in public-key cryptosystems by applying them on different (various) types of algorithms.
CO4	Analyze the message authentication functions with its types and digital certifications for secure communication.
CO5	Understand the user authentications principles and security approach at both the web and email.
CO6	Understand the concept of Email, IP, web Security with its services and dealing with the firewalls and Viruses
Contr	bution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 –

contribution of Course Outcomes towards achievement of Program Outcomes (1 Low, 2- Meuluin, J

	PO	PO	РО	PO	PO	РО	PO	PO	PO	РО	PO	PO	PSO	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	03
CO1	3	2	-	-	-	2	-	-	-	-	-	-	3	-	2
CO2	3	3		2	-	2	-	_	-	-	-	-	3	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	-	3	2	-
CO4	3	3	-	2	-	-	-	-	-	-	-	-	3	2	2
CO5	3	2	-	2	-	-	-	-	-	-	-	-	3	2	2
CO6	3	2	-	2	-	-	-	-	-	-	-	-	3	2	2

UNIT I :

High)

Introduction, Computer Security Concepts, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security, **Classical Encryption Techniques**, Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, **Symmetric Encryption**, Mathematics of Symmetric Key Cryptography, **Modern Symmetric Key Ciphers**, Data Encryption Standard, Advanced Encryption Standard, BlowFish, IDEA, CAST-128 algorithms

UNIT II:

Block Cipher Operations, Multiple Encryption and Triple DES, Electronic Codebook Mode, Cipher Block Chaining Mode, Cipher Feedback Mode, Output Feedback Mode, Counter Mode, **Asymmetric Encryption**, Mathematics of Asymmetric Key Cryptography, Number Theory, Prime Numbers, Fermat's and Euler's Theorems, Testing for Primality, The Chinese Remainder Theorem, Discrete Logarithms, Asymmetric Key Ciphers Principles of Public-Key Cryptography ElGamal Cryptosystem, Elliptic Curve Cryptography

UNIT III:

CRYPTOGRAPHIC DATA INTEGRITY ALGORITHMS, Cryptographic Hash Functions, Applications of Cryptographic Hash Functions, Two Simple Hash Functions, Hash Functions Based on Cipher Block Chaining, Secure Hash Algorithm (SHA), **Message Authentication Codes**, Message Authentication Functions, Message Authentication Codes, Security of MACs, MACs Based on Hash Functions: HMAC, MACs Based on Block Ciphers: DAA and CMAC

UNIT IV:

Digital Signatures, ElGamal Digital Signature Scheme, Schnorr, Digital Signature Scheme, Digital Signature

Standard (DSS), **Key Management and distribution**, **Electronic mail security**, PGP, S/MIME, IP Security, Web security, System Security, Intruders, Malicious Software, Viruses, Firewalls

TEXT BOOKS:

1. Cryptography And Network Security Principles And Practice 6th Edition, William Stallings, Pearson Education

- 2. Cryptography And Network Security, Behrouz A Forouzan, Debdeep Mukhopadhyay, 3E) Mc Gra Hill
- 3. Atul Kahate, Cryptography and Network Security, TMH. (2003)

REFERENCE BOOKS:

- 1. Network Security Essentials: Applications and Standards, by William Stallings. Prentice Hall
- 2. Cryptography: Theory and Practice by Douglas R. Stinson, CRC press.
- 3. Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security: Private Communication in Public World, 2 nd Edition, 2011, Pearson Education. 95
- 4. Network Security and Cryptography, Bernard Meneges, Cengage Learning

E-RESOURCES:

- 1. http://users.abo.fi/ipetre/crypto/
- 2. https://www.vssut.ac.in/lecture_notes/lecture1428550736.pdf
- 3. https://analyticsindiamag.com/top-10-free-resources-to-learn-cybersecurity/
- 4. https://lecturenotes.in/subject/112/cryptography-and-network-security-cns
- 5. https://www.smartzworld.com/notes/cryptography-network-security-notes-pdf-cns-notes-pdf/
- 6. https://studentsfocus.com/cs6701-cns-notes-cryptography-network-security-lecture-handwritten-notes-cse-7th-sem-anna-university/
- 7. https://www.jntufastupdates.com/jntuk-r16-4-1-cns-material/

NRIA18 : ACADEMI CURRICULUM FOR B.TECH (COMPUTER SCIENCE AND ENGINEERING) Course Code-NATURAL LANGUAGE PROCESSING

Practi	re – ical::	Tutor	ial- 3-	0-0							I	nternal	Marks	5:	40
Credi	ts:		3								Ε	xternal	Mark	s:	60
Prere	quisites	::													
Data s	structure	s, finite	automa	ta and J	probabi	lity theo	ory								
Cours	se Obje	ctives:													
Introd	uce to s	ome of t	he prob	olems ar	nd solut	ions of	NLP an	d their	relation	to lingu	istics a	nd statis	stics.		
	se Outco														
Upon	success	ful com	pletion	of the	course,	, the stu	ıdent w	ill be a	ble to:						
CO1	Show	sensitiv	vity to li	nguisti	c pheno	omena a	nd an al	bility to	model	them wi	ith form	al gram	mars.		
CO2	Unde	rstand a	nd carry	y out pr	oper ex	perimer	ntal met	hodolo	gy for tr	aining a	and eval	uating			
	empirical NLP systems														
CO3	Able	to manij	pulate p	robabil	ities, co	onstruct	statistic	al mod	els over	strings	and tree	es, and			
	estim	ate para	meters	using su	apervise	ed and u	insuperv	vised tra	aining n	nethods.					
CO4	Able	to desig	n, imple	ement, a	and ana	lyze NI	.P algor	rithms							
CO5	Able	to desig	n differ	ent lang	guage m	odeling	g Techn	iques.							
Contr	ribution	of Cou	rse Ou	tcomes	toward	ds achi				~ `	aag (1	T			2
				ceonics			evemen	t of Pr	ogram	Outcon	les (1 -	Low, 2	2- Med	iuiii,	3 -
High)	I						evemen	t of Pr	ogram	Outcon	les (1 –	Low, 2	- Med	iuiii,	3 -
	РО	РО	PO	PO	РО	РО	PO	t of Pr PO	ogram PO	Outcon PO	PO	Low, 2 PO	PS	PS	Р
															P S O
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS O	P S
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS O	P S O
High)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО	РО	PS O1	PS O 2	P S O 3
High) CO1	PO 1	PO 2 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1 3	PS O 2 3	P S O 3 2

	N	RIA18 :	ACADE	MI CUR	RICULU	M FOR	B.TECH	(COMP	UTER SO		AND EN	IGINEER	ING)		
CO5	_	2	2	3	3	_	_	_	_	-	-	-	2	2	2
UNIT	[:														

Introduction to Natural Language Processing: The study of Language, Applications of NLP, Evaluating Language Understanding Systems, Different levels of Language Analysis, Representations and Understanding, Organization of Natural language Understanding Systems, Linguistic Background:An outline of English syntax

UNIT II:

Grammars and Parsing: Grammars and sentence Structure, Top-Down and Bottom-Up Parsers, Transition Network Grammars, Top- Down Chart Parsing. Finite State Models and Morphological Processing, Grammars and Logic Programming., Augmented Transition Networks.

UNIT III:

Semantics and Logical Form: Word senses and Ambiguity, Encoding Ambiguity in the Logical Form, Verbs and States in Logical Form, Speech Acts and Embedded Sentences, Defining Semantic Structure: Model Theory

UNIT IV:

Language Modeling: Introduction, N-Gram Models, Language Model Evaluation, Parameter Estimation, Language Model Adaptation, Types of Language Models, Language-Specific Modeling Problems,

TEXT BOOKS:

1. James Allen, "Natural Language Understanding", Pearson Education

2. Multilingual natural Language Processing Applications: From Theory to Practice – Daniel M.Bikel and ImedZitouni, Pearson Publication

3. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary

REFERENCE BOOKS:

1. Speech and Natural Language Processing - Daniel Jurafsky& James H Martin, Pearson

Publications

2. Christopher D Manning and HinrichSchutze, "Foundations of Statistical Natural Language Processing" MIT Press, 1999.

3. Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, "NLP: A Paninian Perspective", Prentice

E-RESOURCES:

1. <u>https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2511f6e1</u>

2. . http://www.nptelvideos.in/2012/11/natural-language-processing.html

Course Code- Augmented Reality & Virtual Reality

Credits: 3 Exte	ernal Marks: 60

Prerequisites: Computer Graphics

Course Objectives: This course provides students with an opportunity to explore the research issues in Augmented Reality and Virtual Reality (AR &VR). It also makes the students know the basic concept and framework of virtual reality.

Course Outcomes: Upon successful completion of the course, the student will be able to:

	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	S O 3
	PO	PO	РО	PO	PO	РО	PO	РО	PO	PO	РО	PO	PS	PS	P
Contri	ibution (of Cou	rse Outo	comes to	owards	achieve	ment of	Progra	m Outo	comes (1	– Low,	2- Med	lium, 3	– Hig	gh)
CO6	Expre	ss the o	bject po	sition ar	nd orient	tation in	virtual	space.							
CO5	Analyze the performance of various virtual reality applications.														
CO4	Classify human factors that affect VR experience														
CO3	Descr	be vari	ous inpu	it and ou	itput dev	vices rec	quired fo	or VR ex	xperienc	e					
CO2	Under Realit		Basics of	f Virtua	l Realit	y and I	nteractio	ons. Fun	damenta	al Conce	epts and	Compo	onents (of Vir	rtual
CO1	Under its fea		Basics of	Augme	nted Re	ality and	d Intera	ctions. F	Fundame	entals of	Augmei	nted , M	ixed R	eality	and

	NI	RIA18 : A	CADEM	II CURRI	CULUM	FOR B. I	ECH (CC	DMPUTE	R SCIEN	CE AND	ENGINE	ERING)			
CO1	3	3	3	-	3	-	-	-	-	-	-	-	2	-	-
CO2	3	3	3	-	3	-	-	-	-	-	-	-	-	2	-
CO3	3	3	3	-	_	-	_	-	-	-	-	-	-	2	-
CO4	3	3	3	-	-	_	-	_	_	-	-	-	-	-	3
CO5	3	3	3	_	3	-	-	-	_	-	-	3	-	-	3
CO6	3	3	3	-	_	-	-	-	-	-	-	-	3	-	-

NEWARD A CARENAL CURRICULUMA FOR R TECH (COMPLITER COLENCE AND ENCINEERING)

UNIT I :

Introduction to Augmented Reality -Augmented Reality Interactions, Monitor Based Displays, Head-mounted Displays, AR Interaction, AR Tracking, Augmented and Mixed Reality, Technology and features of augmented reality, Typical AR Experiences, Difference between AR and VR, Challenges with AR, AR systems

UNIT II:

Introduction to Virtual Reality- Historical development of VR Fundamental Concept and Components of Virtual Reality, Primary Features and Present Development on Virtual Reality, The three I's of virtual reality, commercial VR technology and the five classic components of a VR system

UNIT III:

Input Devices: Three-dimensional position trackers, navigation and manipulation, interfaces and gesture interfaces. **Output Devices:** Graphics displays, sound displays & haptic feedback

UNIT IV:

Human Factors: Methodology and terminology, user performance studies, VR health and safety issues.
Applications: Medical applications, military applications, robotics applications.
Virtual Space: Visual and object space, defining position and orientation in three dimensions
TEXT BOOKS:

1. Alan B. Craig, "Understanding Augmented Reality: Concepts and Applications", Newnes

- 2. William R. Sherman and Alan B. Craigm, "Understanding Virtual Reality ", Morgan Kaufmann Publishers
- 3. John Vince, "Virtual Reality Systems", Pearson Education.

4. Steve Aukstakalnis, "Practical Augmented Reality: A Guide to the Technologies, Applications, and Human Factors for AR and VR", Addison-Wesley.

REFERENCE BOOKS:

1. Gregory C. Burdea & Philippe Coiffet, "Virtual Reality Technology", Second Edition, John Wiley & Sons, Inc.

2. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", Springer-Verlag London 2005
E-RESOURCES:

http://www.vrac.iastate.edu/
http://www.hitl.washington.edu/projects/education/pf/whatvr1a.htm
https://learn.unity.com/course/create-with-code 4. https://www.wikitude.com/smart-augmented-reality/
https://www.coursera.org/learn/ar

5. https://www.coursera.org/learn/handheld-ar

Course Code- BLOCKCHAIN TECHNOLOGY

Lectur Practic		3-0-0		Internal Marks:	40
Credit	s:	3		External Marks:	60
Prerec	luisites:				
1. Kno	wledge in security ar	nd applied cryptography.			
2. Kno	wledge in distributed	databases.			
Cours	e Objectives:				
• • • Course	Discuss the fundame Identify the different	chain technology and Cr ental ideas of Bit coin M t components of the bloc rences between block cha	OOCs.	ypto currencies.	
Upon s	successful completion	on of the course, the stu	dent will be able to:		
CO1	Learn about resear	ch advances related to or	ne of the most popular techn	nological areas today.	
CO2	Demonstrate the b	ock-chain services to de	velop a New Paradigm of C	Drganizational activities	
CO3	Learn the limitatio	ns of the block-chain me	echanism to develop an effic	cient organizational structure	
CO4	Applying Bit-Coin				

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	P S O 3
CO1	3	3	2	2	-	-	-	-	-	-	-	3	3	3	2
CO2	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3
CO3	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3
CO4	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3

UNIT I :

Introduction: Block chain or distributed trust, Protocol, Currency, Cryptocurrency, How a Cryptocurrency works, Crowdfunding

UNIT II:

Extensibility of Blockchain concepts, Digital Identity verification, Block chain Neutrality, Digital art, Blockchain Environment

UNIT III:

Blockchain Science: Gridcoin, Foldingcoin, Blockchain Genomics, Bitcoin MOOCs.Currency, Token, Tokenizing, Campuscoin, Coin drop as a strategy for Public adoption.

UNIT IV:

Currency Multiplicity, Demurrage currency.

Technical challenges, Business model challenges, Scandals and Public perception, Government Regulations **TEXT BOOKS:**

1. Blockchain Blue print for Economy by Melanie Swan

REFERENCE BOOKS:

1. Blockchain Basics: A Non-Technical Introduction in 25 Steps 1st Edition, by Daniel Drescher

E-RESOURCES:

- 1. Blockchain | Tools, Publications & Resources (ala.org)
- 2. <u>Blockchain Learning Hub | UNICEF Office of Innovation</u>

Course Code- INTELLIGENT SYSTEMS

Lecturo Practic		Tutor	ial- 3-	0-0							I	nternal	Marks	•	40
Credits	5:		3								E	xternal	Marks	5:	60
Prereq	uisites:	NIL													
Course	Object	ives:													
AI prob gives a understa	olems. T clear vi	his give ew of k of uncert	s a clea nowled	r view o ge, repro	of analyzesentation	zing AI on of kr	problen 10wledg	ns, types e, types	s of prol of logic	blems te c and its	chnique algoritl	ney used s of solv hms. It p opriate e	ing pro provide	oblem s a be	s. It
Upon s	uccessfi	ıl comp	letion o	of the co	ourse, th	e stude	ent will	be able	to:						
CO1	Explor	e variou	ıs Artifi	cial Inte	elligence	proble	m solvir	ng techn	iques.						
CO2		•								U	-	ation, Source in Al		-	gies,
CO3	Apply	the AI t	echniqu	les to so	lve vari	ous AI p	oroblem	s.							
CO4	Analyz	ze and c	ompare	the rela	tive cha	llenges	pertaini	ng to de	sign of l	ntellige	nt Syster	ms.			
Contril	bution a	of Cours	se Outc	omes to	wards a	achieve	ment of	Progra	m Outc	omes (1	– Low,	2- Med	ium, 3	– Hig	gh)
	PO	РО	РО	РО	РО	РО	РО	PO	PO	PO	РО	РО	PS	PS	Р
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	S O 3
CO1	_	2	_	_	2	2	_	_	3	-	-	2	2	_	2
CO2	2	_	-	-	_	-	_	3	_	3	-	-	2	-	-
CO3	-	3	3	-	_	3	-	_	-	-	-	_	3	-	3
CO4	-	-	-	3	_	-	3	-	-	-	3	_	_	3	-
UNIT I	: Over	view of	Artifici	al Intel	ligence									1	
Artifici	al Intelli	gence a	nd its Δ	nnlicat	ion area	s. Knox	vledge F	2enrese	itation a	nd Sear	ch. The	Predicat	e Calc	որոշ.	The

Artificial Intelligence and its Application areas; Knowledge Representation and Search: The Predicate Calculus: The

Propositional Calculus, The Predicate Calculus, Using Inference Rules to Produce Predicate Calculus Expressions, Application: A Logic-Based Financial Advisor; Structures and strategies for state space search: Introduction, Structures for state space search ,Strategies for State Space Search, Using the State Space to Represent Reasoning with the Predicate Calculus; And/or Graphs

UNIT II: Searching

Heuristic Search: Introduction, Hill Climbing and Dynamic Programming, The Best-First Search Algorithm, Admissibility, Monotonicity and Informedness, Using Heuristics in Games, Complexity Issues. Control and Implementation of State Space Search: Introduction, Recursion-Based Search, Production Systems, The Blackboard Architecture for Problem Solving.

UNIT III: Other Knowledge Representation Techniques

Semantic Networks, Conceptual Dependencies, Scripts and Frames, Conceptual Graphs. Knowledge Intensive Problem Solving: Overview of Expert System Technology, Rule-Based Expert Systems, Model-Based, Case Based, and Hybrid Systems Planning: Introduction to Planning, Algorithms as State-Space Search, Planning graphs **UNIT IV: Automated Reasoning**

Introduction to Weak Methods in Theorem Proving, The General Problem Solver and Difference Tables, Resolution Theorem Proving; Uncertain Knowledge and Reasoning: Introduction to Uncertainty, Inference using Full-Joint Distribution, Independence, Bayes' Rule and its use. Representing Knowledge in Uncertain Domain: Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Exact Inference in Bayesian Network, Approximate Inference in Bayesian Network

TEXT BOOKS:

- 1. Elaine Rich, Kevin Knight and ShivashankarB.Nair, —Artificial Intelligencel, TMH, Third edition, 2009.
- 2. Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Pearson Education Asia, Second edition, 2003.
- 3. N. P. Padhy, —Artificial Intelligence and Intelligent System, Oxford University Press, Second edition, 2005.

REFERENCE BOOKS:

- Artificial Intelligence A Modern Approach, Stuart Russel, Peter Norvig, 3rd Edition, Pearson Publication, 2015, ISBN-13: 978-93-325-4351-5
- Artificial Intelligence, Elaine Rich, Kevin Knight, 3 rd Edition, Tata McGraw Hill, 2009, ISBN-10: 0070087709, ISBN-13: 978-0070087705
- 3 Artificial Intelligence Structures and Strategies for Complex problem Solving, George F Luger, 6th Edition, Pearson

Publication, 2009, ISBN-10: 0-321-54589-3, ISBN-13: 978-0-321-54589-3

4. Intelligent Systems-A Modern Approach, Grosan, Crina, Abraham, Ajith, Springer-Verlag Berlin Heidelberg 2011, ISBN 9783642269394, 2011.

E-RESOURCES:

1. www.nptel.ac.in

2. https://www.britannica.com/technology/artificial-intelligence

3. https://www.tutorialspoint.com / Artificial Intelligence / AI – Overview

Course Code-Real Time Systems

Lectu Pract		Tuto	orial-	3-0-	0							Inte	rnal Ma	arks:	40
Cred	its:			3								Exte	ernal M	arks:	60
Prere	equisi	tes:													
1		<u> </u>		and (Operat	ting S	ystem	, Mic	roproc	essor&	Micro	contr	oller		
Cour	se Ob	jectiv	es:												
To pr	ovide	broad	under	stand	ing of	the re	equire	ments	of Re	al Time	e Oper	ating	Systems	5.	
To ma	ake th	e stud	ent un	dersta	ınd, ap	oplica	tions o	of the	se Rea	l Time	feature	es			
Cour	se Ou	tcome	es:												
CO1	Und	erstan	d conc	cepts o	of Rea	ıl time	e Syste	ems a	nd con	nmands	•				
CO2	mut		clusion				-		-	-		0	-		priority inversions, use time, and
CO3	Disc	cuss ho	ow tas	ks car	n com	munic	ate us	sing se	emapho	ores, m	ailbox	es, an	d queue	s.	
CO4	Be a	ble to	expla	in hov	w the	real-ti	me op	peratir	ng syst	em imp	lemen	ts tim	e manag	gement.	
	Con – Hi		tion of	f Cou	rse O	utcon	nes to	ward	s achi	evemei	nt of P	rogra	am Out	comes (1 – Low, 2- Medium, 3
	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	2		2								2	2	2
CO2	3	2	2		2									2	
CO3	3	2	3										2	2	2
					2								2	2	2
CO4	2	2	2		2								-	-	
CO4		2 [T I :	2		Z								2		

Process Control (fork, vfork, exit, wait, waitpid, exec).

UNIT II:

Real Time Operating Systems

Brief History of OS, Defining RTOS, The Scheduler, Objects, Services, Characteristics of RTOS, defining a Task, asks States and Scheduling, Task Operations, Structure,Synchronization, Communication and Concurrency. Defining Semaphores, Operations and Use, Defining Message Queue, States, Content, Storage, Operations and Use

UNIT III:

Objects, Services and I/O

Pipes, Event Registers, Signals, Other Building Blocks, Component Configuration, Basic I/O Concepts, I/O Subsystem

UNIT IV:

Exceptions, Interrupts and Timers

Exceptions, Interrupts, Applications, Processing of Exceptions and Spurious Interrupts, Real Time Clocks, Programmable Timers, Timer Interrupt Service Routines (ISR), Soft Timers.

TEXT BOOKS:

1. Real Time Concepts for Embedded Systems - Qing Li, Elsevier, 2011

REFERENCE BOOKS:

1. Embedded Systems- Architecture, Programming and Design by Rajkamal, 2007, TMH.

- 2. Advanced UNIX Programming, Richard Stevens
- 3. Embedded Linux: Hardware, Software and Interfacing Dr. Craig Hollabaugh

E-RESOURCES:

- 1. https://www.guru99.com/real-time-operating-system.html
- 2. https://www.tutorialspoint.com/Real-Time-Embedded-Systems
- 3. https://nptel.ac.in/courses/106/105/106105036/

COURSE CODE- DATA SCIENCE

Practi	re – ical::	Tutor	rial- 3.	-0-0							Inte	rnal N	Marks:		40
Credi	ts:		3								Exte	ernal	Marks:	:	60
Prere	quisites:	Linear	Algebr	a, Desc	riptive	Statistic	es, Data	Mining	, Pytho	n, R					
	se Objec l Develo								Data Ex	traction	and H	Pre-Pi	rocessir	ng Me	ethods
Cours	se Outco	mes:													
Upon	successf	ul com	pletion	of the c	ourse, tl	he stude	ent will	be able	to:						
CO1	Able	to learn	fundam	entals of	f Data S	cience.									
CO2	Under	rstandin	g differe	ent Data	collecti	on and l	Pre-Proc	essing r	nethods.						
CO3	Under	rstandin	g the us	e of vari	ious Des	criptive	Statistic	cs.							
CO4	Analy	zing va	rious Da	ita analy	tics tecl	nniques.									
CO5	Use o	f Regres	ssion Te	chnique	es.										
CO6	Evalu	ation of	Various	s Model	s.										
Contr	ibution	of Cour	rse Outo	comes to	owards	achieve	ment of	Progra	m Outc	omes (1	– Low	v, 2- N	ledium	n, 3 – 1	High)
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO	PSO	PS	PSC
	1	2	3	4	5	6	7	8	9	10	11	12	1	02	3
CO1	3	2	2	2	2	2							2	2	3
	3	2	2	2	2	2							2 2	2	3
CO2															
CO2 CO3	2	2	3	2	2								2	2	2
CO1 CO2 CO3 CO4 CO5	2	2	3	2	2								2 3	2 3	2 2

UNIT I: INTRODUCTION TO DATA SCIENCE

Introduction to Data Science: Evolution of Data Science, Data Science Roles, Stages in a Data Science Project, Applications of Data Science in various fields, Data Security Issues.

UNIT II: Data Collection and Data Pre-Processing

Data Collection Strategies, Data Pre-Processing Overview, Data Cleaning, Data Integration and Transformation, Data Reduction, Data Discretization.

UNIT III: Descriptive Statistics and Exploratory Data Analytics

Mean, Standard Deviation, Skewness, Kurtosis, Correlation, ANOVA, Box Plot, Histogram, Scatter Plot, Multi-vary chart, Pivot Table, Heat Map.

UNIT IV: Model Development and Evaluation

Regression Techniques: Linear, Multiple, K-Means.Evaluation Techniques: Precision, Recall, F1-Score, R-Square, MAE, MSE, RMS, Residual Plots, Distribution Plots, Cross-Validation, Prediction.

TEXTBOOKS:

1. Jojo Moolayil, "Smarter Decisions: The Intersection of IoT and Data Science," PACKT, 2016.

2. Cathy O'Neil and Rachel Schutt, "Doing Data Science," O'Reilly, 2015.

3. David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big data Analytics", EMC 2013

4. Raj, Pethuru, "Handbook of Research on Cloud Infrastructures for Big Data Analytics," IGI Global

REFERENCE BOOKS:

1. David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big data Analytics", EMC 2013

2. Raj, Pethuru, "Handbook of Research on Cloud Infrastructures for Big Data Analytics," IGI Global

E-RESOURCES:

- 1. <u>https://nptel.ac.in/courses/106/106/106106179/</u>
- 2. <u>https://www.coursera.org/browse/data-science</u>
- 3. https://swayam.gov.in/explorer

NRIA18 : ACADEMI CURRICULUM FOR B.TECH (COMPUTER SCIENCE AND ENGINEERING) **COURSE CODE- HIGH PERFORMANCE COMPUTING**

Lecture –	ecture – Tutorial- Practical::							3	0	() I	nterna	al Mar	ks:	40	
Credits:3								0	3		F	Extern	al Mar	rks:	60	
Prerequisi	tes:															
Course Ol	ojective	s:														
The main Principles	•				is to	make	the	studen	ts fai	niliar	with	High	Perfor	mance	Computin	
Course Ou	itcome	s:														
Upon succ	essful o	comple	etion (of the	cours	e, the	stude	nt wil	l be a	ble to	:					
CO1	Ana	ful completion of the course, the student will be able to: Analyze the functionality of Modern Processor.														
CO2	Con	Comprehend and implement various optimization techniques for serial code.														
CO3	Des	Design the concept of parallel computing and Programming.														
CO4	Tos	study a	bout r	nemor	y para	ıllel pı	ogran	nming	using	g open	MP a	nd MI	PI			
Contribut	ion of (Course	e Outc	omes	towaı	ds ac	hieve	ment o	of Pro	ogram	Outo	comes				
(1 – Low,	2- Med	lium, 3	3 – Hi	gh)												
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2			2				2					2			
CO2														2		
CO3	2					2				2		_	2			
CO4		2			3			2							2	

UNIT I : Modern Processors: Stored Program Computer Architecture, Architecture of microprocessor based on cache- Performance based metrics and benchmarks, Moore's Law, Pipelining, Super scalarity, SIMD, Different classes of Memory- cache, mapping, pre-fetch ,Introduction to different types of processor such as Multicore processors, Multithreaded processors, Vector Processors

-- 3 -- -- 2 -- --

UNIT II: Requirements and General Issues: Scalable parallel computer Architectures, A cluster computer and its Architecture, clusters classifications, Commodity components for clusters, Network services/Communication SW, Cluster middleware and single system Image(SSI),Resource Management and Scheduling(RMS),Programming environments and Tools, Representative cluster Systems. High speed Networks: Design issues, Fast Ethernet, High Performance parallel interface (HPPI), Asynchronous transfer mode (ATM), Myrinet.

UNIT III: Parallel Computers: Taxonomy of parallel computing paradigm, Different types of memory computers such as Shared memory computers, Distributed memory computers, Hierarchical systems, Basics of parallelization.

Parallel Scalability- Factors that limit parallel execution- Scalability metrics- Simple scalability laws- parallel efficiency - serial performance Vs Strong scalability- Refined performance models- Choosing the right scaling baseline- Case Study: Can slow processors compute faster- Load balance

UNIT IV: Distributed memory parallel programming with MPI: Brief introduction to MPI such as messages and point-to-point communication - collective communication – Non blocking point-to-point communication-virtual topologies, MPI parallelization of Jacobi solver- MPI implementation - performance properties .MPI performance tools, communication parameters, Synchronization, serialization.

TEXT BOOKS:

1.Georg Hager, Gerhard Wellein, Introduction to High Performance Computing for Scientists and Engineers, Chapman & Hall / CRC Computational Science series

2. Gene Wagenbreth and John Levesque, High performance Computing: Programming and Application, CRC press, Taylor and francis group

3.MaciejBrodowicz, Matthew Anderson, and Thomas Sterling, High Performance Computing: Modern Systems and Practices, Morgankaufmann publishers

REFERENCE BOOKS:

1. Charles Severance, Kevin Dowd, "High Performance Computing", O'Reilly Media, 2nd Edition, 1998.

2. Kai Hwang, Faye Alaye Briggs, "Computer Architecture and Parallel Processing", McGraw Hill, 1984.

E-RESOURCES:NPTL Videos And IEEE Journals,

1.https://www.intel.com/content/www/us/en/high-performance-computing/processors.html

2.https://www.usgs.gov/core-science-systems/sas/arc/about/what-high-performance-computing

3. https://en.m.wikipedia.org/wiki/Parallel_computing

4. https://www.open-mpi.org/

Course Code- MACHINE LEARNING

Lectur Practi		Tutor	rial- 3	-0-0							Ι	nternal	Marks:		40	
Credi	ts:		3								I	Externa	l Marks:	•	60	
Preree	quisites	: linea	r algeb	ra, pro	babilit	y and s	tatistic	S								
Cours	e Obje	ctives:														
How line Improvide How n	inear m ving eff	odels a iciency etworks	re learn of the	it data p ning from models n increa	m the d using	ata. nonline	arity an	-		on						
Upon	success	sful cor	npletio	n of th	e cours	e, the s	tudent	will be	able to	D:						
C O1			•	nachine							ed					
CO2	How	linear r	nodels	help in	predict	ion										
CO3	Dista	How linear models help in prediction Distance based models complexity														
CO4	Proba	Probabilistic models understanding														
CO5	Nonli	Trobabilistic models understanding Nonlinear models and ensembles improve efficiency														
CO6	How	neural	networ	k provid	de nonl	inearity										
Contr	ibution	of Co	urse O	utcome	s towa	rds ach	ieveme	ent of P	rogran	n Outco	omes (1	- Low	, 2- Med	ium, 3 –	High)	
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PSO1	PSO2	PSO3	
	1	2	3	4	5	6	7	8	9	10	11	12				
CO1	2		2	3	3								2	2		
CO2			2	2	2									2	3	
CO3			2	3	2									2	2	
CO4	2		3	2	2									3		
CO5	2		2	2	2								2			
CO6	2		2		2									2	2	

UNIT I :The Ingredients of Machine Learning: Introduction to Machine Learning, Types of Machine Learning, Models - The output of Machine Learning

Binary Classification and related tasks: Classification, Calculating accuracy in classification.

Natural Language Processing (NLP): Text data preprocessing, Bag of words, Plane and Hyper-plane for machine learning, Data Cleaning, Data Preprocessing (Min – Max Scaling), One Hot Encoding

UNIT II:

Beyond Binary Classification: Handling more than two classes, finding minimum and maximum of a function, Gradient Descent, Linear Regression, Multiple Regression, Calculating accuracy in regression (RMSE), Effect of outliers and noisy data, overfitting and underfitting models, K-fold cross validation

Logistic Regression and SVM: Sigmoid function in logistic regression, loss functions in logistic regression.SVM.

UNIT III:

Tree Model: Decision Trees, Ranking and Probability estimation trees,

Distance Based Models: Distance Measures (Euclidean, Manhattan and Minkowski), Neighbors, KNN, Distance based clustering: Hierarchical Clustering, Agglomerative Clustering

Probabilistic model: Naive Bayes algorithm for classification, Laplace, smoothing

Model Ensembles: Random Forest.

UNIT IV:

Dimensionality Reduction: Principal Component Analysis (PCA), Implementation and demonstration.

Artificial Neural Networks: Introduction, Neural network representation, appropriate problems for neural network learning, Multilayer networks and the back propagation algorithm.

TEXT BOOKS:

1. Machine Learning: The art and science of algorithms that make sense of data, Peter Flach, Cambridge.

2. Machine Learning, Tom M. Mitchell, MGH.

REFERENCE BOOKS:

1. Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz, Shai Ben- David, Cambridge.

2. Machine Learning in Action, Peter Harington, 2012, Cengage.

NRIA18 : ACADEMI CURRICULUM FOR B.TECH (COMPUTER SCIENCE AND ENGINEERING) AI APPLICATION DEVELOPMENT LAB

Lecture – 7	Futorial-	Practic	al:: 0	-1-2				I	nternal 1	Marks:		40			
Credits:			1	.5				Ε	xternal	Marks:		60			
Prerequisit	es:														
Artificial in	ntelligen	ce conce	epts, Da	ta mini	ng, prog	grammi	ng lang	uage							
Course Ob	jectives:														
1 Able to	demonst	rate prof	ficiency	in mode	ern AI ai	nd mach	ine lear	ning tecl	nniques						
	0	-	ement ef	fective A	AI soluti	ons to v	arious a	pplication	ons, con	duct pro	per eval	uations, an			
	ne AI solu														
	effective	•				0					tware pl	latforms			
	effective	• 1	•			0			-						
	demonst	trate goo	od maste	ry of mo	odern A	I and ma	achine le	earning t	echniqu	es					
Course Ou															
Upon succe		-		,											
CO1	Desci	Describe various machine learning algorithms for AI applications													
CO2		Describe the development lifecycle of AI applications													
CO3		Describe the principles of AI for IoT applications Collect data from Internet and perform data preprocessing													
CO4					-	-		<u> </u>							
CO5		•						lications							
CO6	Deve	lop soft	ware pro	grams t	o effecti	vely trai	in mach	ine learr	ning moo	lels for A	AI appli	cations			
		0	4		1 1.		C D			. (1 T	2	N. T. 11			
Contributi High)	on of Co	ourse O	utcomes	s toward	us acme	evement	01 Pro	gram U	outcome	s(1 - 1)	20W, 2-	Mealum,			
iligii)	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО			
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	3	3	3	2	-	-	-	2	-	-	2			
001	2	3	3	3	3	_	_	2	2	_	_	2			
	3		3	3	3	-	-	2	2	-	-	2			
CO2	3	3	5	5					2						
CO2 CO3		3	3	3	2	-	-	-	2	-	-	2			
CO2 CO3 CO4 CO5	3					-	-	-	2	-	-	2 2			

A. Data Collection and Preprocessing

B. Training of Machine Learning Models

C. Evaluation of Machine Learning Models

D. Deployment of Machine Learning Models E. Distributed Computing for AI

II. AI Software Engineering A. AI Software Development Lifecycle

B. Data Management for AI

C. Cloud and Edge Computing for AI

III. AI for IoT

A. Foundations of IoT

B. AI for Industrial IoT

C. AI for Smart Cities IoT

IV. AI Group Project with one or more of the following selected topics:A. Computer VisionB. Natural Language ProcessingC. AI in HealthcareTEXT BOOKS:

- 1. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, 2019
- 2. Eli Stevens, Luca Antiga, and Thomas Viehmann, Deep Learning with PyTorch, Manning Publications, 2020
- 3. Amita Kapoor, Hands-on Artificial Intelligence for IoT: Expert Machine Learning and Deep Learning Techniques for Developing Smarter IoT Systems, Packt Publishing, 2019

REFERENCE BOOKS:

- 1. V Kishore Ayyadevara, Yeshwanth Reddy, Modern Computer Vision with PyTorch, Packt Publishing, 2020
- 2. Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana, Practical Natural Language Processing, O'Reilly, 2020
- 3. Arjun Panesar, Machine Learning and AI for Healthcare, 2nd Edition, Apress, 2020

E-RESOURCES:

- 1. https://www.coursera.org/learn/ai-programming
- 2. https://www.ai-project.org/

Course Code- Predictive Analytics

Lectur Practie		Tuto	rial- 0	-1-2							Inte	rnal N	Aarks:		40
Credit	s:		2								Exte	ernal	Marks:		60
Prerec	quisites:	Linear	· Algebr	ra, Desc	riptive	Statistic	es, Data	Mining	, 'R'						
	•		'o learn 1 outcon		s Data A	Analytic	s Appro	oaches v	vith Cla	ssificati	on and	l Reg	ression	Tech	niques
Cours	e Outco	mes:													
Upon s	success	ful com	pletion	of the c	ourse, tl	he stude	ent will	be able	to:						
CO1	Able	to Imple	ement Li	inear an	d Multip	ole Regr	essions.								
CO2	Able	to Estin	nating Pr	robabilit	ies usin	g a logis	tic func	tion and	the pred	liction o	f Categ	gorica	lplacen	nent.	
CO3	Able to build Various Time-series models.														
CO4	Able to implement the applications single and multiple decision trees.														
CO5	Able to build multiple Linear regression models across the range of predictor values.														
CO6	Able	to know	outcom	ne variat	ole's valu	les.									
Contri	ibution	of Cou	rse Outo	comes to	owards	achieve	ment of	Progra	m Outo	omes (1	– Low	v, 2- N	ledium	1, 3 −∃	High)
	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	PSO	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	02	3
CO1	3	2	2	2	2	2					2		2	2	3
CO2	2	2	3	2	2						2		2	2	2
CO3	2	2	3	2	2						2		3	3	2
CO4	3	3	2	3	3	3					2		2	3	2
CO5	3	3	2	3	3	3					2		2	3	2
CO6	2	2	2	3	3	3					2		2	3	3
												<u> </u>			
		List o	of Expe	riments	5										
1.	Implan	antatio	n of Lin	ear Regi	ression										

- 2. Implementation of Multiple Regression.
- 3. Implementation of Logistic Regression.
- 4. Implementation of Multinomial Logistic Regression.
- 5. Implementation of Probit Regression.
- 6. Implementation of Auto-Regressive Time-Series Model.
- 7. Implementation Moving-Average Time-Series Model.
- 8. Implementation of Decision Tree Regression.
- 9. Implementation of Random Forests.
- 10. Implementation of the Overfitting Regression Model.
- 11. Implementation of Multivariate adaptive regression splines.
- 12. Implementation of CART Classification Model.

TEXT BOOKS:

- 1. Predictive Analytics by Jeffery S.Strickland.
- 2. R: Predictive Analysis by Tony Fischetti, Eric Mayor, Rui Miguel Forte, Packet Publishing.

REFERENCE BOOKS

1.Data Science and Predictive Analytics, Biomedical and Health Applications using R by Ivo D. Dinov

E-RESOURCES

- 1. www.onlinecourses.nptel.ac.in/noc20_mg24/preview.
- 2. www.coursera.org/learn/predictive-modeling-analytics.
- 3. https://onlinecourses.swayam2.ac.in/imb21_mg20/preview.

Course Code- Full Stack Web Development - LAB

Practic	cal::	0-0-2		Internal Marks:	40
Credits	:	1		External Marks:	60
Prerequ	isites: Basic Know	vledge of Programming, HTM	/IL, CSS.		
Course	Objectives:				
	-				
• 7 Upon c > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1	Fo develop a simple Fo implement data r ompletion of this co Design and Impleme Develop a simple we Implement data mod Used for Server side on the server-side. Easily scale applica Same language can b Requires less develo Privileged to have a progress on a regula	tion in every way by adding be used for both backend and pment and maintenance cost wide and active group of de r basis.	is; Angular JS and Express ble to: es using Angular JS. Angular JS and Express. with Express.js can be used to cre nodes and adding additional resour frontend: You can do both fronter	rces to it. nd and backend coding te to its ongoing growt	g. th and
Upon si	uccessful completio	on of the course, the student	will be able to:		
	Analyze existing p	roblems with the team, devel	opment process and wider organiz	ation	
CO1					
CO2	Apply a thorough u	understanding of Mongo Db	principles and specific practices		
CO3	Select the most app	propriate way to improve res	ults for a specific circumstance or	need	
CO4	Judge and craft ap	propriate adaptations to exist	ing practices or processes depend	ing upon analysis of ty	ypical

	problems
CO5	Evaluate likely successes and formulate plans to manage likely risks or problems
CO6	Create high quality applications

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO	PS	PS	Р											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	S O 3
CO1	3	2	2		2			2					3	2	2
CO2	3	2	2				2					2	3	2	2
CO3	2	2	2										2	2	2
CO4	2	2	3						2				2	2	3
CO5	2	2	2							2			2	2	2
CO6	2	2	2										2	2	2

LIST OF EXPERIMENTS:

- Basic JavaScript Concepts : Getting Started with JavaScript Variables, Arrays & Objects Project using Arrays and Objects Loops, Conditionals & Switches - Project on Iterations Functions & Events - Project on Functions JavaScript Form Validation - Form Project Learning Ajax - Basic Ajax Project Project - Github AJAX
- 2. jQuery Programming Techniques : Getting Started With jQuery Selectors & Mouse Events Project on Selectors Form Events Project Form Events DOM Manipulation Project on DOM Effects & Animation Project on Effect and Animation Traversing & Filtering Project on Filtering Project jQuery Image Slider.
- 3. Backend Programming with Node.js :Getting Started With Node Installation and Simple Server Express Setup and Routing Template Engines Project using template Engine Node MongoDB Driver Part 1 Node MongoDB Driver Part 2 Setup, Middleware & Routes Starting the Project Creating the UI Form Validation and User Register Password Encryption Login Functionality Access Control & Logout.
- 4. Develop a Form and validate using Angular JS, 2. Create and implement modules and controllers in Angular JS, Implement Error Handling in Angular JS, Create and implement Custom directives, Create a simple web application using Express, Node JS and Angular JS, Implement CRUD operations Implement MongoDB data models.
- Getting Started With MySQL : An Overview of SQL, XAMPP and MySQL Setup, Create Tables, Columns and Insert Data, Part 1 - Selecting Data, Part 2 - Distinct, Aliases & Concat, Update, Delete & Alter, Part 1 - Foreign Keys, Part 2 - Table Joins, Project - CD Collection Database.

Reference Books

1. Best Book for Hands-on Learners: Web Development with Node and Express: Leveraging the JavaScript Stack - by Ethan Brown

2. Beginning Node.js, Express & MongoDB Development by Greg Lim

3. Node.js Web Development by David Herron helps you to build scalable web applications using Node.js, Express.js, and the latest

4. Murach's MySQL 3rd Edition

5. Eloquent JavaScript: A Modern Introduction to Programming , Eloquent JavaScript - by – Marjin Haverbeke , Latest Edition – 3rd Edition , Publisher – No Starch Press

6. JavaScript and JQuery: Interactive Front-End Web Development Paperback – 18 July 2014 by Jon Duckett (Author)

SUBJECT CODE: RESEARCH METHODOLOGY

Lecture – Tutorial:	2-0-0	Internal Marks:	40
Credits:	0	External Marks:	60

COURSE OBJECTIVES

1. To expose students to various perspectives and concepts in the field of strategic management.

2. To understand Strategy formulation process and frameworks, tools and techniques of strategic analysis and its application.

3. To identify the Conceptual, diagnostic and analytical and conceptual skills in strategy formulation and

execution. 4. Enable the students to understand the principles of strategy implementation in the organisation.

5. To learn about strategy evaluation and control by using quality and quantity benchmarking.

COURSE O	OUTCON	1ES:												
CO1	Have	basic av	varenes	s of soc	ial rese	arch, re	search p	process	and test	ting of h	ypothesi	s.		
CO2	Have adequate knowledge on research designs and measurement scaling techniques as well as quantitative data analysis.													
CO3	Apply various methodologies including sampling questioning, empirical techniques in their research work reports.													
CO4	Constr	ruct the	data for	r hypotl	hesis tes	sting an	d statist	tical qua	ality con	ntrol cha	rts			
CO5		ruct the ex expe		0		lti-varia	ate and	bi-varia	te techr	niques an	nd ANO	VA for		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	2		2										
CO2	1			2	3									
CO3	1				3						2			
CO4	1			2							2	3		
CO5	1			2	2							3		

UNIT-I
Introduction :
Nature and Importance of research, The role of business research, aims of social research. Research Process -
Types of Research – Defining Research Problem – Formulation of Hypothesis – Testing of Hypothesis.
UNIT-II
Data Base:

Discussion on primary data and secondary data, tools and techniques of collecting data. Methods of collecting data. Sampling design and sampling procedures. Random Vs. Non-random sampling techniques, Designing of Questionnaire –Measurement and Scaling – Nominal Scale – Ordinal Scale–Interval Scale–Ratio Scale–Guttman Scale– Likert Scale–Schematic Differential Scale.

UNIT-III

Survey Research and data analysis:

media used to communicate with respondents, personal interviews, tele phone interviews, self-administered questionnaires, selection of an appropriate Survey research design, the nature of field work, principles of good interviews and fieldwork management. Editing–Coding–Classification of Data– Tables and Graphic Presentation– Preparation and Presentation of Research Report.

UNIT-IV

Statistical Inference & quality control:

Tests of Hypothesis, Introduction to Null hypothesis vs alternative hypothesis, parametric vs. non-parametric

tests, procedure for testing of hypothesis, tests of significance for small samples, application, t-test.

Text Books:

 Navdeep and Guptha:"Statistical Techniques & Research Methodology", Kalyani Publishers
 C.R.Kothari, Gaurav Garg,"Research Methodology Methods And Techniques" New Age International Publishers,2018

3. Willam G.Zikmund, Adhkari: "Business Research Methods", Cengage Learning, New Delhi, 2013.

4. S.Shajahan: *"Research Methods for management"*, JAICO Publishing House, New Delhi,2009. **References:**

1. UWEFLICK:"IntroducingResearchMethodology",SAGE,New Delhi,2012.

2. CooperR. DonaldandSchindlerS. Pamela: "Business Research Methods", 9/e, Tata MCGraw Hill, NewDelhi.

3. M.V.Kulkarni: "Research Methodology", Everest Publishing House, New Delhi, 2010.

IV YEAR II SEMESTER

Course Code-DEEP LEARNING

Lectur Practi		Tutor	ial- 3-	0-0							Iı	nternal	Marks	5:	40
Credit	ts:		3								E	xternal	Mark	s:	60
Preree	quisites	•													
Statist	ics, Cal	culus, Li	inear A	lgebra a	and Prob	oability									
Progra	amming	Knowle	dge												
Data N	Modelin	g													
Cours	se Objec	ctives:													
	ToToTo	introdu acquire learn va gain kn	the kno arious t	owledge ypes of	e on Dee Convol	ep Leari utional	ning Co Networ	ncepts ks,Auto		·s.					
Cours	se Outco	omes:													
Upon	success	ful com	pletion	of the	course,	the stu	dent w	ill be al	ole to:						
CO1	Unde	rstand th	ne basic	concep	ots of ne	ural net	work, i	ts applie	cations a	and vari	ous lear	ning mo	odels		
CO2	Acqu	ire the k	nowled	ge on F	lecurrer	nt, Recu	rsive No	ets and	Auto-en	coder m	nodels				
CO3	Analy	ze diffe	rent Ne	twork A	Archited	ctures, le	earning	tasks, C	Convolu	tional ne	etworks				
CO4	Use a	n efficie	ent algo	rithm fo	or Deep	Models	5								
CO5	Appl	y optimi	zation s	trategie	es for la	rge scal	e applic	ations							
Contr High)		of Cou	rse Ou	tcomes	toward	ds achie	evemen	t of Pro	ogram (Outcom	nes (1 –	Low, 2	2- Med	ium,	3
	PO	РО	РО	PO	РО	PO	PO	РО	РО	PO	РО	РО	PS	PS	P
	PO 1	PO 2	PO 3	PO 4	PO 5	РО 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O 2	S (
CO1														0	S () 3
	1	2	3	4	5	6	7	8	9	10	11	12	01	0 2	8 () 3 2
CO1 CO2 CO3	1	2	3	4	5	6 2	7	8	9	10		12	01 3	0 2 2	P S C 3 2 2 3

	N	RIA18 :	ACADE	MI CURI	RICULU	M FOR I	B.TECH	(COMPL	JTER SC	IENCE A	ND ENG	SINEERI	NG)		
CO5	3	3	2	3	2	3							3	2	2
UNIT I	[:														

Introduction to Deep Learning, Historical Trends in Deep learning, Deep Feed - forward networks, Multilayer Perceptron, Example: Learning XOR ,Gradient-Based learning, Hidden Units, Architecture Design, Back-Propagation and OtherDifferentiation Algorithms

UNIT II:

Convolutional Networks: Convolution Operation, Motivation, Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the basic convolution function, Structured Outputs, Data types, Efficient Convolution Algorithms, Random or Unsupervised features, The Neuroscientific basis for convolutional networks

UNIT III:

Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, The Long Short-Term Memory and Other Gated RNNs

UNIT IV:

Autoencoders: Undercomplete Autoencoders, Regularized Autoencoders, Representational Power, Layer Size and Depth, Stochastic Encoders and Decoders, Denoising Autoencoders, Contractive Auto encoders, Applications of Autoencoders

Optimization for Train Deep Models: Challenges in Neural Network Optimization, Basic Algorithms, Parameter Initialization Strategies, Algorithms with Adaptive Learning Rates, Approximate Second-Order Methods, Optimization Strategies and Meta-Algorithms

Applications: Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language

Processing

TEXT BOOKS:

1. Deep Learning: An MIT Press Book By Ian Goodfellow and Yoshua Bengio and Aaron Courville

2. Neural Networks and Learning Machines, Simon Haykin, 3rd Edition, Pearson Prentice Hall.

3. Deep Learning (Adaptive Computation and Machine Learning Series), Ian Good Fellow, Yoshua Bengio and Aaron Courville, MIT Press (3 January 2017), ISBN-13: 978-0262035613.

4. Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, Nikhil Buduma, by O'Reilly Publications, 2016 Edition, ISBN-13: 978-1491925614.

REFERENCE BOOKS:

1. Introduction to Artificial Neural Networks, Gunjan Goswami, S.K. Kataria & Sons; 2012 Edition, ISBN-13: 978-9350142967

Course Code-SYSTEM MODELLING AND SIMULATION

Lecture Practic		Tutor	ial- 3	8-0-0							I	nternal I	Marks	: 4	0
Credits	5:		3	3							F	External	Marks	6	0
Prereq	uisites:														
Course	Object	ives:													
Course	Outcor	nes:													
Upon s	uccessfi	ul comp	letion	of the co	ourse, th	ne stude	nt will	be able	to:						
CO1	Explai	n the ba	sic sys	stem cond	cept and	definitio	ons of s	ystem							
CO2	Discus	ss techni	ques t	o model a	and to si	mulate v	various	systems							
CO3	Analyz	ze a syst	em an	d to mak	e use of	the info	rmation	to impr	ove the	performa	ance				
CO4	Illustra	ate the o	peratio	on of a dy	ynamic s	system a	nd mak	e improv	vement a	according	g to the	simulati	on resu	lts.	
CO5	Descri	be the b	ehavio	or of a dy	namic s	ystem ar	nd create	e an ana	logous n	nodel for	r a dyna	umic syst	em		
CO6	Explai	n the sy	stem c	oncept a	nd apply	functio	nal moc	leling m	ethod to	model t	he activ	vities of a	static	systei	n
Contril	bution o	of Cours	se Out	comes to	owards a	achiever	ment of	Progra	m Outc	omes (1	- Low	, 2- Med	ium, 3	– Hig	gh)
	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	PO	РО	PS	PS	Р
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	S O 3
CO1	3	_	3		2	_	_	_	2	_	-	2	2	-	3
CO2	2	-	-	_	_	-	-	2	2	-	-	2	3	-	-
CO3	3	-	-	-	-	-	-	2		-	-	-	-	2	-
CO4	-	2		3	-	-	-	_		-	-	2	-	-	2
CO5	3	-	3	-		-	_	_	2	-	_	-	3	2	-
CO6	2	-		-		_	-	_	2	-	_	2	-	2	3
UNIT I	[:		·	, 	, 		·			, 	·				

Introduction: When simulation is the appropriate tool and when it is not appropriate; Advantages and disadvantages of Simulation; Areas of application; Systems and system environment; Components of a system; Discrete and continuous systems; Model of a system; Types of Models; Discrete-Event System Simulation; Steps in a Simulation Study. The basics of Spreadsheet simulation, Simulation example: Simulation of queuing systems in a spreadsheet.

General Principles, Simulation Software: Concepts in Discrete-Event Simulation: The EventScheduling / Time-Advance Algorithm, World Views, Manual simulation Using Event Scheduling; List processing. Simulation in Java; Simulation in GPSS

UNIT II:

Statistical Models in Simulation: Review of terminology and concepts; Useful statistical models; discrete distributions; Continuous distributions; Poisson process; Empirical distributions

Queuing Models: Characteristics of queuing systems, Queuingnotation, Long-run measures of performance of queuing systems, Long-run measures of performance of queuing systems cont...., Steady-state behavior of M/G/1 queue, Networks of queues

UNIT III:

Random-Number Generation:Properties of random numbers; Generation of pseudo-random numbers, Techniques for generating random numbers, Tests for Random Numbers

Randon Variate Generation: Inverse transform technique Acceptance-Rejection technique.

Verification, Calibration and Validation: Optimization: Model building, verification and validation, Verification of simulation models, Verification of simulation models, Calibration

UNIT IV:

Input Modeling: Data Collection; Identifying the distribution with data, Parameter estimation, Goodness of Fit Tests, fitting a non-stationary Poisson process, Selecting input models without data, Multivariate and Time-Series input models.

Estimation of Absolute Performance: Types of simulations with respect to output analysis, Stochastic nature of output data, Measures of performance and their estimation, ; Output analysis for terminating simulations; Output analysis for steady-state simulations.

TEXT BOOKS:

Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-Event System Simulation, 5 th Edition, Pearson Education, 2010.

REFERENCE BOOKS:

1. Lawrence M. Leemis, Stephen K. Park: Discrete – Event Simulation: A First Course, Pearson Education, 2006.

2. Averill M. Law: Simulation Modeling and Analysis, 4th Edition, Tata McGraw-Hill, 2007

Course Code- Social Networking and Semantics

Lecture	_	Tutorial-	3-0-0	Internal Marks:	40

	IN	. 0.7			COLUIVI	I UN D.			IN SCIEN	CL AND	LINUINL	LININO)			
Practic	al::														
Credits	5:		3								Extern	nal Mar	ks:	6	0
Prereq	uisites:														
1. Knov	wledge i	n Netwo	orks												
2. Knov	wledge i	n distrib	outed da	tabases.											
Course	Object	ives:													
•	To learr To learr To learr	n Ontolo n Seman	edge Re gy Engi tic Web	presenta neering	ations, S	ervices	nantic W and Tec c web								
	Outco														
Upon s	uccessf	ul comp	letion o	f the co	urse, th	e stude	nt will b	e able t	0:						
CO1	Ability	y to und	erstand	and know	wledge 1	represer	ntation fo	or the set	mantic v	veb.					
CO2	Learn	the varie	ous sem	antic we	eb applic	cations.									
CO3	Ability	y to crea	te ontol	ogy.											
CO4	Ability	y to buil	d a blog	s and so	cial net	works.									
Contri	bution o	of Cours	se Outc	omes to	wards a	chiever	ment of	Program	n Outco	omes (1 ·	– Low, 2	2- Medi	um, 3	– Hig	gh)
	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	PO	PS	PS	Р
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	S O 3
CO1	3	3	2	2	_	-	-	-	-	-	_	3	3	3	2
CO2	3	2	3	2	_	-	-	-	-	-	_	3	3	2	3
CO3	3	2	3	2	-	-	-	_	-	-	_	3	3	2	3
CO4	3	2	3	2	_	-	-	-	-	-	_	3	3	2	3

UNIT I :

Thinking and Intelligent Web Applications, The Information Age, The World Wide Web, Limitations of Today's Web, The Next Generation Web. Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web.

UNIT II:

Ontologies and their role in the semantic web, Ontologies Languages for the Semantic Web –Resource Description Framework(RDF) / RDF Schema, Ontology Web Language(OWL),UML,XML/XML Schema. Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping.

UNIT III:

Logic, Rule and Inference Engines. Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base .

XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods.

UNIT IV:

What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks.

Blogs and Online Communities, Web Based Networks. Building Semantic Web Applications with social network features

TEXT BOOKS:

1. Thinking on the Web - Berners Lee, Godel and Turing, Wiley interscience, 2008.

2. Social Networks and the Semantic Web, Peter Mika, Springer, 2007

REFERENCE BOOKS:

1. Semantic Web Technologies, Trends and Research in Ontology Based Systems, J.Davies, Rudi Studer, Paul Warren, John Wiley & Sons.

2. Semantic Web and Semantic Web Services -Liyang Lu Chapman and Hall/CRC Publishers,(Taylor & Francis Group)

3. Information Sharing on the semantic Web - Heiner Stuckenschmidt; Frank Van Harmelen, Springer Publications.

4. Programming the Semantic W eb, T.Segaran, C.Evans, J.Taylor, O'Reilly, SPD.

E-RESOURCES:

- 1. https://www.semanticscholar.org/
- 2. https://info.sice.indiana.edu/

Course Code- CYBER FORENSICS

Lectur Practic		Tutori	al- 3-	0-0							Inter	nal Mar	ks:	4	0
Credits	5:		4								Exter	mal Ma	rks:	6	0
Prereq	uisites:														
Networ	k Secur	ity													
Course	e Object	ives:													
•	In order roles co	explanat to unde mputer p ing to a es.	erstand plays in	the obje a certai	ctives or n crime.	f comp	uter fore	ensics, fi	irst of al	l, peopl	e have to	o recogn	ize the	diffe	
Course	Outco	mes:													
Upon s	uccessf	ul comp	letion o	of the co	ourse, th	e stude	ent will	be able	to:						
CO1	Studer	nts will u	Indersta	nd the u	sage of	comput	ers in fo	orensic							
CO2	How t	o use vai	rious fo	rensic to	ools for a	a wide v	variety o	of invest	igations						
CO3	Under	standing	of the	cyber se	curity no	eeds of	an organ	nization							
CO4	It give	s an opp	ortunity	y to stud	ents to c	continue	e their ze	eal in res	search in	n compu	ter forer	sics			
Contri	bution (of Cours	se Outc	omes to	wards a	achieve	ment of	Progra	m Outo	comes (1	– Low,	2- Med	ium, 3	– Hig	gh)
	PO	PO	PO	РО	РО	PO	РО	РО	РО	РО	РО	PO	PS	PS	P a
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	S O 3
CO1	3	-	2	2	-	-	-	-	-	-	-	3	3	3	2
CO2	3	2	3	2	-	-	-	-	-	-	-	-	3	2	3

CO3	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3
CO4	3	-	3	2	-	-	-	-	-	-	-	-	3	2	3

UNIT I :

Introduction of Cybercrime: Types, The Internet spawns crime, Worms versus viruses, Computers' roles in crimes, Introduction to digital forensics, Introduction to Incident - Incident Response Methodology – Steps - Activities in Initial Response, Phase after detection of an incident

UNIT II:

Initial Response and forensic duplication, Initial Response & Volatile Data Collection from Windows system - Initial Response & Volatile Data Collection from Unix system – Forensic Duplication: Forensic duplication: Forensic Duplicates as Admissible Evidence, Forensic Duplication Tool Requirements, Creating a Forensic. Duplicate/Qualified Forensic Duplicate of a Hard Drive.

UNIT III:

Forensics analysis and validation: Determining what data to collect and analyze, validating forensic data, addressing data-hiding techniques, performing remote acquisitions

Network Forensics: Network forensics overview, performing live acquisitions, developing standard procedures for network forensics, using network tools, examining the honeynet project.

UNIT IV:

Current Forensic tools: evaluating computer forensic tool needs, computer forensics software tools, computer forensics hardware tools, validating and testing forensics software E-Mail Investigations: Exploring the role of e-mail in investigation, exploring the roles of the client and server in e-mail, investigating e-mail crimes and violations, understanding e-mail servers, using specialized e-mail forensic tools.

Cell phone and mobile device forensics: Understanding mobile device forensics, understanding acquisition procedures for cell phones and mobile devices.

TEXT BOOKS:

- 1. Kevin Mandia, Chris Prosise, "Incident Response and computer forensics", Tata McGraw Hill, 2006
- 2. Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, New Delhi.
- 3. Computer Forensics and Investigations by Nelson, Phillips Enfinger, Steuart, CENGAGE Learning

REFERENCE BOOKS:

- 1. Real Digital Forensics by Keith J. Jones, Richard Bejtiich, Curtis W. Rose, Addison- Wesley Pearson Education
- 2. Forensic Compiling, A Tractitioneris Guide by Tony Sammes and Brian Jenkinson, Springer International edition

E-RESOURCES:

- 1. www.<u>ComputerForensicsWorld.com Prevention. Protection. Safety.</u>
- 2. http://www.cyberforensics.in/

3. http://www.forensicfocus.com