Unit-1
Theory of Elasticity & Functional Approximating Methods:
Introduction to Theory of Elasticity: Definition of stress and strain - plane stress - plane
strain — stress strain relations in three dimensional elasticity.
Introduction to Variational Calculus: Variational formulation in finite elements — Ritz method -
Weighted residual methods - Galerkin - sub domain - method of least squares and
collocation method - numerical problems
One Dimensional Problems: Discretization of domain, element shapes, discretization
procedures, assembly of stiffness matrix, band width, node numbering, mesh generation,
interpolation functions, local and global coordinates, convergence requirements, treatment of
boundary conditions. Steady state heat transfer analysis : one dimensional analysis
TEXT BOOKS:
1. An introduction to Finite Element Method / JN Reddy / McGraw Hill
2. The Finite Element Methods in Engineering / SS Rao / Pergamon.
References
1. Tirupathi R. Chandrupatla and Ashok D. Belugundu (2011) Introdution to Finite Elements in
Engineering, Prentice Hall.
2. Seshu P., Text Book of Finite Element Analysis, Prentice Hall, New Delhi, 2007.
3. Zienkiewicz O.C., Taylor R.L., Zhu J.Z. (2011), The Finite Element Method: Its basis and
fundamentals, Butterworth Heinmann.
E-RESOURCES: https://nptel.ac.in/courses/112/104/112104193/

https://mecheng.iisc.ac.in/suresh/me237 /feaNotes


https://nptel.ac.in/courses/112/104/112104193/

Unit-2
Analysis of Trusses:Finite element modelling, coordinates and shape functions,
assembly of global stiffness matrix and load vector, finite element equations,
treatment of boundary conditions, stress, strain and support reaction calculations.
Analysis of Beams: Element stiffness matrix for Hermite beam element,
derivation of load vector for concentrated and UDL, simple problems on beams.

Unit-3
Two Dimensional Problems: Finite element modelling of two dimensional stress
analysis with constant strain triangles CST and treatment of boundary conditions,
Higher order and isoparametric elements: Two dimensional four noded
isoparametric elements and numerical integration.
Axisymmetric Problems: Formulation of axisymmetric problems.

Unit-4
Dynamic Analysis: Formulation of finite element model, element consistent and
lumped mass matrices, evaluation of eigen values and eigen vectors, free vibration
analysis.Steady state heat transfer analysis: one dimensional analysis of a fin.
Introduction to FE software.



FEM

* Numerical method for
engineering solution.

Finite Msticd
* Reducesthe Element
degrees of
freedom from + All of the calculations are made at a limited number
infinite to finite of points known as nodes.

* The entity joining nodes and forming a specific
shape such as quadrilateral or triangular is known
as an Element.



“”FEM is a numerical technique to find the approximate solutions
of partial differential equations. It was originated from the need of
solving complex elasticity and structural analysis problems in
Civil, Mechanical and Aerospace engineering.””

Difference between FEM and FEA ??

Finite Element Method (FEM) involves complex mathematical procedures (like a theory
manual, lots of equations and mathematics).

Finite Element Analysis (FEA) involves applying FEM to solve real world/ engineering
problems.

https://www.amazon.com/DonaldsPractical-Stress-Analysis-Elements-Hardcover-d
p-BO0OSKZ2UJE/dp/BO05SKZ2UJE/ref=mt_other? encoding=UTF8&me=&qid=
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Modern FEM packages

(ansys, abaqus ), include |

specific components such
as Fluid, thermal, EM and

structural working
environments
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In structural analysis, FEM
helps in producing stiffness
and strength visualizations. It
helps in minimising the material
and cost of the structures.
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Bulk or hydrostatic stress, also known as volumetric stress is a .
component of stress which contains uniaxial stresses, but not shear Bulk AP stress Compressibility
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Equilibrium of an Elastic Body : Consider a body with surface ‘S* occupying a volume ‘77, in which points are located by a
coordinate system (x. y and z coordinates) shown in figure (1). At particular part, boundary is constrained. Some other region
of boundary is subjected to traction ‘T” (uniformly distributed force or load per unit area). Deformation of the body occurs due

to force and is specified at constrained part of the boundary. Displacement of any point x = (x, y. z)7 is given by u = (. v. w)~.

Figure (1)



Types of forces acting on the body are surface loads
(friction, viscous drag) which exists whenever one body
moves past to other body in contact T'=(7,, T. T)’, body loads
(forces distributed on volume of body like self weight, inertia,
centrifugal forces, temperature, etc.) f= (£, £, f.)” and point
loads (loads concentrated on a point in continuum like tensile
or compressive loads) P, = (P,, P, P)".

a

—XZ +__)i+,a_(zl+f =0
ox oy g 2

(i) Strain-dis'placement Relations

Considering the deformation of the dx-dy face,

4

Figure (3): Deformed Elemental Surface
Then, corresponding strains are given by,

T

e=[e 8. 8. 7. 1. %)
Where.
€,, €, &, — Normal strains

Tz Ve 1o~ EDgineering shear strains

-

)



Figure |2): Equilibrivm of Elemental Volums
Thers are throe stz of eguations of equilibryum i theory

of elasticity, they are,

U]

(3) Differential equations of equilibrium.

(;1) Strain-displacement relations.

{m1) Stress-stramn relations.

Differential Equations of Equilibrium

For elemental volums &F. 3 % 3 symmetnc matnx 15

used fo specify the components of the stress tensor. Bat
for mstant 31X mdependent components are employed to

represeat the stress.
o=[0,.0,9, 1, 1. 1,F

Where,

o, 0, o, - Normal stresses

T ‘l’;_,_. Shear stresses
Considering equilibrium of an alemental volume, Tf =
0, 5f = 0. If = 0 and coassdening dV = dvdvdz. and by
using, forces are obtainad by multiplving stresses with

their corveaponding aress, equilibrinm equatsons are

given by,
E—l‘pfﬂ.‘.&‘p‘f:o (1)
ar ay a

¥y, B0, B, .
ax oy & ¥

=0 .. {2)

(iin

Considerng sll the faces for small deformations.

_|ou v ow av | aw Bu  dw Bw  av [
i I R O L T YR S N O 1Y
Stress-strain Relations

Applymg Hooke's law 10 elemmental volume 'di”, strams
1 terms of strees and matenal properties of 1sotropic
malenals (elastic modulus and Poisson's ratio) are
obtainad as,

5 = ek iy EI” -44)
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v =
Where,
E - Young's modulus
U — Possion‘s rato

G - Modulus of nigidsty

:\‘_‘v

And,
E

o= 21+u)
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FIGURE 1.1 Three-dimensional body.
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FIGURE 1.2 Equilibrium of elemental volume.
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dy

FIGURE 1.4 Deformed elemental surface.
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E

(1+v)(1-2v)

N

v V 0
1—v V 0
V 1-v 0

i i (1-2v) ;
2

: - : (1-2v)
2
0 0 0 0

D = Constitutive matrix
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1.4. If a displacement field is described By 16. A displacement Skl

U=2+2x+ 45 + 3y
u = (x* + 4y* — 16xy)10°* v=xy - &

y = (yz — 5x + 8y)10“4 is imposed on the square element shown in Fig. P16.

¥

determine ¢,, €, ¥,, at the point x=1,y =0. ,

(1,1)

(0.0)

{(-1.-1)
FIGURE P1.6

(a) Write down the expressions fore, e ,and y, .

() Plot contours of e,, €, and y,, using, say, MATLAB software.

1.3. In a plane strain problem, we have ) Pl wheste ¢ i i i thi Sapee

o, = 30,000 psi, o, = —15,000 psi
E =30 X 10°psi,v = 0.3

Determine the value of the stress o ..



1.3

1.4

Plane strain condition implies that
o G {
£.= ()= _v...:‘}. = N i o e

which gives

L v(n, +c,,)
We have. 6, =20000psi o, =—10000psi E=30x10°psi v=03.
On substituting the values,

o, =3000psi [ ]
Displacement field

u= 10"(- < +2y° +6xy)
y= 10'4(3x+6y—y:)

S0 2rey) Sm10 iy )
13..""=3’<|0“4 2‘-'-=10“(6+2y)
oxX ()"r
ou
ox
Be
£=1 5
oy
cu  ov
-——+ —o—
&y ox




L5 On inspection. we note that the displacements « and v are given by

u=01y+4
=10 . o A

: 1.6 The displacement field is given as
It is then easy to see that

__, u= l*3.tq+4x3*61y"
S v=xy—T7x
e,=_j‘!=0
& (a) The strains are then given by
Y =@+@=0.l cu 2 b
Yooy ox E, =—=3+12x" +6)°
ox
ov
E' =T=x
@0
ou ov
 =—+—=12xy+ y—14x
Yx) &' 3).’ y -

(b) In order to draw the contours of the strain field using MATLAB, we need to create a
script file, which may be edited as a text file and save with "*.m" extension. The file
for plotting & is given below

file “prob1pSb.m"
[X,¥) = meshgrigd{~i:.1:1,~-1:.1:1);
Z o 124X 246 AY. 72
[C,h] = contour(X,¥,2Z):
clabel (C,R);

On running the program, the contour map is shown as follows:
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Contours of &,

Contours of &, and y., are obtained by changing Z in the script file. The numbers on
the contours show the function values.

(c) The maximum value of ¢, is at any of the corners of the square region. The

maximum value is 21.
"




Q6. Define Weighted - Residual method?
Ans:
Generally, the solutions obtained by solving most of the problems of engineering field are approximate solutions and it is difficult

to get accurate solutions, as error exists in the solution.

Weighted residual methods are used to reduce these errors in the problems. This method consists of substituting a trial
function in the differential equations formulated for the system and residual obtained is equated to zero. Thus, a solution which

is very close to the exact solution, is obtained.

Q8. Why is variational formulation referred to as weak formulation?

Ans: [Nov./Dec.-18, (R13), Q2| Model Paper-lll, Q1]

Weakening or reducing the governing differential equation of the problem by the process of integration is referred as
weak formulation. In the variational formulation, differential equation of the physical problem is rewritten in the form of an
equivalent integral. Thereby, upon integration, differential equation gets reduced, i.e., reduction of double differentiation into

single differentiation occurs. Therefore, variational formulation
referred to as weak formulation. Using variational formulation
it 1s possible to obtain approximate solutions of spatially
continuous type with less difficulty and evaluated approximate
solutions forms continuous type functions of coordinates of
position within the domain.



General expression for weighted residual methods,

J'R(x)wi(x)dx=0 i=12,...n
Q
Weighting functions associated with different weighted residual techniques are,

Weighted Residual . e y
S.No Technique Expression Weighting Function
L. Point Collocation Method =d(x—x
oint Collocation Me fS(x—x,-)R(x,a,-)dx=0 w,=08(x—x)
0
2 b-Domain M =1
Sub-Domain Method J‘ R(x,a)dx=0 W,
Q
3 Least square Method w=1

I= f[R(x,a,-)]zdx = minimum

4, Galerkin's Method J‘ J(OR ( % ai) e w=y(x)

Q




Q10. Write about the concept of potential energy?

Ans: It states that, the total potential energy within the body
becomes stable or minimum, when the displacement equations
satisfy the equilibrium cquations. These displacement equations
that satisfy equations of cquilibrium basically fulfills the
boundary conditions and are internally compatible,

Q11. Write the potential energy for beam of span L
simply supported at both ends, subjected to a
concentrated load P at mid span. Assume El as
constant.

Ans: Potential energy 'n' for a beam of span 'L', simply
supported at both ends and subjected to a concentrated load * 7
at mid span is given by,
n=U-H
oo PP
A El
Where,
ET — Flexural rigidity of the beam (constant)
[/ -~ Strain energy
H — Work potential,

Q12. Mention the basic steps of Rayleigh-Ritz
method.

Ans: The basic steps of Rayleigh-Ritz method are,
2 Assumption of a displacement field
2: Determination of the total potential

3. Solving the system of equations.



Boundary Value Problem : If a governing equation which is
formulated over the domain, consists of dependent variables
which compulsorily takes and its partial derivative which may
probably takes particular values on the boundary of domain ,
then such equation describes ‘boundary value problem’.
Examples of Boundary Value Problem: Analysis of axial
deformation of concrete pier, study of steady-state heat flow in
a bar, drawn from solid mechanics and heat transfer.

Initial Value Problem : A governing equation, formulated over
a domain is said to define a initial value problem, if dependent
variables are compulsorily needed and its partial derivatives
are probably needed to specified initially, that is at time t = 0.
Generally, initial value problems depends on time.

Example of Initial Value Problem: Analysis of linear motion
of simple pendulum drawn from dynamics.

Boundary and Initial Value problem : If the differential
equation formulated for a problem, contain dependent variables
which are, needed to take specific values on the boundary and
required to specified initially, then such problem is said to be
both boundary and initial value problem.

Example of Boundary and Initial Value Problem: Unsteady-
state heat transfer in a bar drawn from heat transfer.

Eigen Value Problem : A problem is said to be eigen value
problem, if an unknown parameter exists in formulated
governing equation in addition to unknown dependent variable.
In eigen value problem it is needed to determine both unknown
parameter and dependent variable. while satisfying differential
equation and related boundary conditions.

Example of Eigen Value Problem: Analysis of axial vibrations
of a bar drawn from dynamics.




Finite clement method was initially developed for the analysis of aircraft structures, but the wider nature of the theory
enables it to be applied for variety of boundary value problems in engineering, where the solution has to be obtained in the region
or domain of a system subject to the fulfillment of certain boundary conditions. The application of finite element methods is more
in the following categories of boundary value problems.

(1) Steady-state or equilibrium or time independent problems
(i) Eigen-value problems
(iii) Transient or propagation problems

The following table gives details about the specific application of FEM in different categories.

¢ of Boundary Value Problem
$.No. | Field of Application Typ undary Valu

Equilibrium Problems Eigenvalue Problems Propagation Problems
1. | Aircrafl structure In static analysis of a Natural frequencies, In the study of response
aircraft wings, fins, flutter, and in the stability | of aircraft structures to
missile and rocket of rocket, spacecraft random loads, dynamic
structures. and missile structures. response of aircraft and
space craft to periodic loads.
2. | Mecchanical In stress analysis of Natural frequencies and | Problems of crack and
design pistons, pressure stability of gears, machine | fracture under dynamic
vessels, gears, composite | tools and linkages. loading.

materials and linkages.



weighted residual method 1s given by,

J’WiR(x,ai_)dx=0 i=1,2,3,..n
Q
Where,

W.— Weighting function

Q — Domain

a— Unknown coefficients



weighted residual method is given by,
[WRaa)dx=0  i=1,2.3, ..
Q
Weighting functions associated with different weighted residual techniques are,

Weighted Residual . o y
S.No Technique Expression Weighting Function
L. Point Collocation Method =d(x—x
oint Collocation Me fS(x—x,-)R(x,a,-)dx=0 w,=08(x—x)
Q
2 b-Domain M =1
Sub-Domain Method J‘ R(x,a)dx=0 W,
Q
3 Least square Method w=1

I= f[R(x,a,-)]zdx = minimum

4, Galerkin's Method J‘ YR ( % ai) e w=y(x)

Q




dly
dx
0 < X <10 and with boundary conditions y(0) =0
and y(10) = 0, find the solution of this problem

For the differential equation +500x2 =0for

using any two weighted residual methods.



d2v
For the differential equation dT‘ +500x2 = 0for

0 < X <10 and with boundary conditions y(0) =0
and y(10) = 0, find the solution of this problem

using any two weighted residual methods.

Given that,
Differential equation,

%+500x2=0; 0<x<10

Boundary conditions, y (0)=0and y (10)=0
Consider a trial function,
y =a,x(10-x)
y =10a x—a,x’
Differentiating with respect to “x’,
% =10a, — 2a,x
Agam differentiating with respect to “x’,
2
Substrtuting 1n equation (1),
Residual, R =—2a, + 500x®



T,

Point Collocation Method
In this method residual 1s set to 0.
1e.,R=0
—2a, +500x*=0

One collocation point is required. since there exist one
unknown coefficient in the residual. Collocation point
should lied between 0 and 10.

Assume, collocation point. x =5
—2a,+500(5)*=0
500 x 25 =2a,
. a,=6250

.. Trial function, y=6250x(10-x)



2. Sub-domain Collocation Method

This method involves setting, integral of residual over
sub-domain to zero.

10
[ a0
0

[ 2a,+5002%) dx =0

3 \10
10 > 0 .
- 2(11():)0 +500><(--§—)0 =0

— 2a (|0)+5—(103) 0

— 20a + 232 x10° =0
_ 500x10°
30, =S X1T
_ 25000
a ===
Trial function, y =220 (10 - x)



3. Least Square Method

In this method, integral of square of weighted residual
over the domain 1s minimum
10

I=/R2dx

0
10

= | (-2a,+500x%)%dx
10

= [ (4a] +250000x* ~ 2000%a;)dx

5410 10
o 2,10 X
= 4a, (x)0 1“250000[—]0 —2000(—3 ]oa'

5
2000 2
I= 4a?x10+50000x10° — 29 x10%¢ =g =i
For stationary value of I°, a,= 230 %102
of

. Trial function, y = g x (10 —x)

8a,x10 - 2900 x10° =0




4. Galerkin's Method

In Galerkin's method, the domain integral which is the

product of trial function and residual 1s set to zero.
10

fdex=0

0

10
f y(2a,+ 500x2) dx=0
0

10
[ ax(10 - x) (24, + 5005} dx = 0
0

10

[ (10a,x - a,%) (24, +500x)dx = 0
0

10
[ (~20ax +5000a,* + 2423 - 5004, x* )dx = 0
0



10
f (—20 afx + 500()aI x + 2a12x2 = SOOal Xt )dx =0
0

5 \10 4\10 3 \10 10
21X X 21 X XS -
—2001(—'2—)0 +50000|(T)0 +Za| (?)0 —SOOal(—S—)O =0

~10a; x10*+1250 g, x104+~§—a;’- x10% —100a,x10° =0

00 424 25x10%, =0

a, = 7500
Trial function, y = 7500x (10 — x).



The following differential equation is available
for a physical phenomenon.

d?y

——+50=0=<x<10

dx?

The Trial function is y = a,x(10 — x)
y(0)=0

The bound diti -
e boundary conditions are y(10)=0

Find the value of the parameter a, by the
following methods.
(i) Leastsquare method

(ii) Galerkin's method.



Consider a bar subjected to a uniform axial
load as shown in the figure, which can steadily

show that the deformation of a body is given
2

by differential equation AE %*’qo: 0 with

X

d
boundary conditions u(0) =0, a: =0 atx =1I. Find

the approximate solution by using weighted
residual method.

f 9

Y —> —

7 d

7 2 =0
G dx
x=0 X={

Figure



Consider a bar subjected to a uniform axial
load as shown in the figure, which can steadily

show that the deformation of a body is given
2

by differential equation AE%+qo= 0 with
X
d
boundary conditions u(0) =0, a—z- =0 atx=1I. Find

the approximate solution by using weighted
residual method.

l
l

Figure

Ans:

Given that

Differential equation.

AESY

—+ =0
dx* L

Boundary conditions,

du
u(0)=0, —(1)=0
dx
Let, the trial function be,
U(X) = ai — a:x -4 :}:2

Differentiating equation (2),
du

=a,+ 2a,x
dx | ?



Again differentiating.
2
Subjecting to boundary condition 2(0) =0,
0= a,+a(0) + a,(0)
a,=0
Subjecting to boundary condition %( [)=0
0=a,+2a)
a;=-2a,l
On substituting coefficients in equation (2),
u(x) =0+ (- 2a,0)x + ax*
u(x) = ax*—2a,lx
On substituting equation (3) i equation (1),

Residual,
R=AEQa) g,
R=2aA4E+gq,

Using point collocation method (a weighted residual

.(3) method) 1n which residual 1s set to zero.

R=0
2a AE+q,=0
2T T 24K
On substituting “a,” value in equation (4). approximate
solution for elongation at any distance “x” 1s obtained.

oo

s afX)=— _2]};(" —2kx)

Elongation at freeend 1.6, atx =/,

ey )
=~ - 20(1)
—_ T
-3 AL( ?)
gol®



Discuss the following methods to solve the

2

. . . . d-y
given differential equation : El = T—-M(x)=0
X

2

With the boundary condition y(0)=0and y()) =0
1. Sub-domain method

2. Point collocation method.




Discuss the following methods to solve the

Y

d- y
given differential equation : El ‘ -M.., =0
dx* (x)
With the boundary condition y(0)=0and y(/)= 0
1. Sub-domain method

2. Point collocation method.

Ans:

Given that.
.
Integral equation, EJ ? -M(x)=0
Boundary conditions,
y(0)=0and y(x)=0
Let, y= asin ( EIX—) be the trial function for deflection.
Differentiating °y°,
dy T ( X ]

T = a~l--cos T
dz)’ n? (nx)
=i -a12 sin{

Therefore,
_ dy
Residual, R=EI ;;;- - M(x)

_glEe, (E) P
R =Ell— = sin 7P x) (1)




§ Sub-domain Method

In this method, integral of residual over domain 1s set to

Z2ro.

fl |— “122“ EIsin(%)— M(x)ldx =0

—%EI[—COS(E;')(%)]’ ~[Mx1’ =0

naIE[ [cos (m)— cos(O)]— MI=0
""[EI (—-1-1)-MI=0
_2755‘;!2{ -
2 2
a= ~~2%157- =-0.159 %

i |
Trial function, y = —0.159 2 sin( T )



1.

Sub-domain Method

In this method, integral of residual over domain 1s set to

Z2ro.

fl |— “122“ EIsin(%)— M(x)ldx =0

—%EI[—COS(E;')(%)]’ ~[Mx1’ =0

nakl

!

EI
"a[ C1-1)-MI=0

_2755‘;!2{ -

[cos(rz) = cos(O)]— MI=0

_ MR MP
a= — Akl =-0.159 £l

i |
Trial function, y = —0.159 2 sin( T )

2

Trial function, y = — 0.1 59—41%- sin(

Atx=12,y=y__

1e.y

V

max

v max

2
=-0.159 -%%sin

B MP
=-0.159 “Fr

|

nl

5)

¥



2. Point Collocation Method

In this method. the residual is set to zero.
R=0

n’a 18
— 12 Elsm( T) Mx)=0
- F—izﬂElsin(ﬂf— ) =M
Atx =12,y =y__. Therefore, substitute x = //2 in the
above equation.
5 .
n°a .. | ml
- ?—Elsm(j*l—) =M

El
B lg =M
M
w2 El

a= —

2
Trial function, y = — ;?{% sin( E[I )



2. Point Collocation Method

In this method. the residual is set to zero.
R=0

n’a 18
— 12 EIsm( —[—) Mx)=0
- F—izﬂEisin(% ) =M
Atx =12,y =y__. Therefore, substitute x = //2 in the
above equation.
5 .
n°a .. | ml
- ?—Elsm(*ﬂ*) =M

El
B l‘% =M
MP
w2 El

a= —

2
Trial function, y = Mﬁ sm( 1n[x )

2
Trial function, y = — ;‘“fﬁ sin

Atx=02.y=y,..
. MP l
} '2"E_,]' Sln 2[

MP
= - 0.101 5

%

osin—=1



Variational Methods

Variational method involves rewriting the differential
equation of physical problem in the form of equivalent integral.

Obtained integral is termed as|functional fand is allowed to

become stationary. Functional becomes stationary at extremum

conditions 1.e., minimum or maximum conditions.

Therefore, functional is allowed to reach extremum conditions

by using appropriate trial functions.

For a problem, trial function which 1s employed
to make the integral stationary 1s termed as
approximate solution.



Any approximation method which uses the principle such
as principle of minimum potential energy and principle of virtual

work are said to be variational principles.

Rayleigh-Ritz method
is a variational method and is employed to evaluate solution

of structural problems. Potential energy will be stored in all
structures when acted upon by the load. Stored potential energy
is considered as functional. An approximate solution or trial
function is assumed so that functional becomes minimum when
trial function is substituted in it.

Usage of variational method is

limited to the problems governed by the differential equations
with order greater than one. If there exists first derivative in
the differential equation, it is not possible to apply variational
method for that problem.



Principle of Minimum Potential Energy

For conservative systems, of all the kinematically admissible displacement
fields, those corresponding to equilibrium extremize the total potential en-
ergy. If the extremum condition is a minimum, the equilibrium state is stable.

Kinematically admissible displacements are those that satisfy the
single-valued nature of displacements (compatibility) and the boundary
conditions.

Principle of Virtual Work

A body is in equilibrium if the internal virtual work equals the external virtual
work for every kinematically admissible displacement field (¢,e(d)).




Principle of virtual work:

For every displacement field of kinematically admissible
type. Abody is said to be in equilibrium. if value of the internal
virtual work becomes same as that of external virtual work.

. oU=cW

The internal virtual strain energy.

oU = f(aa)To dv . (D
V

Where,
U — Strain energy (internal work)
W — External work
€ — Strain vector
G — Stress vector

V' — Volume of Element.



Total external virtual workdone.
oW =(0u) P + f(au)deV + f(au)quA
v A
. (4)
From minimum potential energy principle.
Total potential energy. n=U— W, .. (5)

Where,
U — Strain energy of the system
W~ Total work potential of the load.

Total potential energy for the general elastic body is
given by.

= % f o' edV — f u’ bdv — f u” qdA - ) ul P
v Vv A {

. (6)




on _

1.e., ;-
Where,
7 — Total potential energy
x — Displacement field
Also,t=U-W
Where.
U — Strain energy within the body

W — Work done on the system



Derivation of Equilibrium Equation
For the body shown in figure,
Let,
P — Load acting on the body
u — Deformation

K — Stiffness

Figure

Workdone on the body,
W = Applied load x Deformation length
=Pxu



Strain energy within the body,

U= :}Z_ [Force in the body x deformation length]

= —%— [Ku % u]
I U
=5 Ku*
But, total potential energy, n=U—- W
= % Kiw? — Pu
Under equilibrium condition, for potential energy to be
minimum,
a_,
du
O 1,2 L,
2| 2 Ku—P.u |=0
Ku—-P=0
Ku=P

Equilibrium equation 1s given by, Ku = P.



Finite Element Discretization Corresponding to Variational

Formulation

The mathematical model of a bar is discretized and
assembled to form a model. which comprises of small bar
elements. Then, equations for finite elements of the bar is

derived by using total potential energy functional.

Figure (2): Bar Member
T B T e e Tl
o HCHCH
2 3 4 6 7
Figure (3): Discretized Bar Member

el
h ==



/ -

)
Figure (2): Bar Member
Uy -1, =00, ) el =21, el
0:0:90:9:0:0;
2 3 4 5 6 7
Figure (3): Discretized Bar Member

¥

el

u(x)

u, u, U, Us Us T--]
u,::rﬂﬂﬂ] .I—

TPE-total potential energy

Consider a bar member, divided into certain number
of elements, as shown in figure. TPE functionals are scalar
quantities and for a discretized bar member, TPE functional is
the summation of functional of each element.

L., =T Ty Foes TRy TR

Where,

n — Total number of elements

»> X

Figure (4): Representation of u (x), the Displacement Trial Function



+ 7

n-1 n

L., M= T8+ ... +%

Similarly, internal energy, external energy and condition
of minimum potential energy principle are formed by summation
of the corresponding parameter of each finite element.

Minimum potential energy principle is given by,

dn=0m +om, +...+0om _, +6m =0

For an element ‘e’ as a whole, based on variational
calculus fundamentals, the above equation can be written as

on,=oU — oW =0

This equation is called variational equation and it is
a basic formulation. from which stiffness equations for the
elements can be developed, after discretization of displacement
field for the bar member.



Rayleigh — Ritz method 1s a variational method and
mostly used to solve structural problems which are complex in
nature.

There are two techniques of problem solving in Rayleigh-Ritz method.

j Rayleigh-Ritz Method Using Minimum Potential
Energy Concept

2. Ravleigh-Ritz Method Using Integral Approach



Rayleigh-Ritz Method Using Minimum Potential

Energy Concept

In this method, initially a trial function in terms of
Ritz parameters (coefficients) is considered. Structure of
assumed trial function may be a polynomial function or

trigonometric function.

Structure of polynomial trial function,

y=a taxtar+ax+.. (1)
Structure of trigonometric trial function,
TR 3nx — Snx 2
'=a, sin —- a,sin—— + a,sin——+__
) e T el
-(2)
Where,
a,. a,, a,..a —Ritz parameters or coefficients
Then. total potential energy 1s formulated using anyone

of two trial function structures mentioned above.

Total potential energy.
n=U-W

Where, *U” and “ 7~ are strain energy and workdone
due to external force respectively and are specified so that
they forms the functions of approximated trial function.
Then formulation of total potential energy is carried out
by deriving the trial function compatible with the formats
of ‘U” and “‘W”. Finally. approximate solution can be
evaluated when total potential energy 1s made to reach

minimum value.

For potential energy to be minimum,

o o _ -2 5
da, da, T Qa,

Thus, from above equation, Ritz coefficients @, a,... a_

can be calculated.



2

Ravleigh-Ritz Method Using Integral Approach

This method involves rewriting the differential equation
of physical problem in the form of equivalent integral.
Obtained integral 1s termed as functional and 1s allowed
to become stationary. Functional becomes stationary
at extremum conditions 1.e, minimum or maximum
conditions. Therefore, functional is allowed to reach
extremum conditions by using appropriate trial functions.
For a problem, trial function which 1s employed to make

the integral stationary 1s termed as approximate solution.

Consider a physical problem whose governing
differential equation 1s given by,

2
Kﬂ +L=0 Where,
2
dx K, I — Constants or variables

Subjected to boundary conditions,

W0) =y,
W=y,

An integral equivalent to differential equation is given by.
[I Kl v "-"I P

I —Functional

Where.

Then anyone of the types of trial functions in
equations (1) and (2) 1s considered and differentiated
so that it is suitable for equivalent integral format.
Evaluation of the approximate solution is obtained by
making the integral to become stationary.

Where.i=1.2.3 ....n



Ravleigh-Ritz Method Using Integral Approach

General Steps

.

Formulate Potential Energy Functional
Assume a trial displacement function, which should satisty
boundary condition

Substitute admissible trial displacement function into Potential

Energy Functional and simplify it

4. Minimize the Potential Energy Functional so as to obtain the
equilibrium condition

Determine the unknown displacement, hence strain and stress




Explain the potential energy formulation for
obtaining element equations in Finite element
methods.

Consider a stepped bar with three nodes and two elements.

-

Z @

=

1 A»F 2¢»F, 3¢ T

=

=

-1

~

-
| > u >y,
1 2 3

Figure

F . F, F,—Concentrated loads at each node
u,. u,, u; — Displacements at each node
Total potential energy = Strain energy + Workdone
n=U-W
(*—ve’ sign due to workdone on the system)

For mimimum potential energy,

on

as 0



Since, the bar 1s divided into two elements,
Total potential energy, 1= m,+xt, (1)
Considering element (1),
Element potential energy.
n,=U-W
1 2
= [7/{1(“2‘ul) —(Au +quz)]
1 2
=5k ("2"“! ) -RFu - Ry

For potential energy to be minimum at each node of
element (1),

1.e.. atnode 1,
om,
du, a

a1
a_ul[“jkl("z_ "1)2‘ Fiu - Fz"z] =4

k(u,—u)(-1)-F =0

ku —ku, =F, I )

And, at node 2,
aﬂ|
—_— =0
8u2

411 (u—u)2 =
u, S k\~ ) = Ru- Fu)p =0

k(u,—u) (1) = F,=0

— —_ —
ku, + ku,=F,

- (3)



k, — Element stiffness
- AE
=<
Fmite element matrix is obtained by writing equations

(2) and (3) in matrix form.

1 2

el B @



Considering element (2),

Element potential energy,

=U,-W,
1
= [5"2 (= 1,)'— (Fyy F}lg)]

1
o= 5/(2(“3- ) - Fyuy~ Fu,

For potential energy to be minimum at each node of
element (2).

1.e_atnode 2,
omn,
E)u2

2 L v ] =0
T o i U S e =
ky(u, — 1) (F1) = F,=0

ku,—ku,=F, 5]

u3

And, at node 3.
omn,
E
9 [1
8—143[5/‘2 (g1 Fyu,- Ez"z] =0

k(u,—u)(1)-F,=0

—ku, +ku, =F,

. (6)



Finite element matrix 1s obtained by writing equations
(5) and (6) in matrix form.

LEEE o

Global finite element matrix 1s given by,
(K] {u} = {F}
It obtained by adding equations (4) and (7).



.. (4)

. Ch)

Global finite element matrix 1s given by,
(K] {u} = {F}
It obtained by adding equations (4) and (7).

lctlon 2 3
k™ =k 01 iy K
—kl kl+k2 —-k22 Uy = F'2
0 —k2 k2 3 |u F;

Where.
[X] - Global stiffness matnx

{u} —Global displacement vector
{F} —Load vector



Consider a bar subjected to a uniform axial
load as shown in the figure, which can steadily

show that the deformation of a body is given
2

by differential equation AE %*’qo: 0 with

X

d
boundary conditions u(0) =0, a: =0 atx =1I. Find

the approximate solution by using weighted
residual method.

f 9

Y —> —

7 d

7 2 =0
G dx
x=0 X={

Figure



Q- The functional form of a bar clamped at one end and left free at the other end and subjected to uniform
axial load q is given by,
! : 2
1 du
=1l= — | —qu |dx
0 .
The essential boundary is u(0) = 0, obtain the approximate solution to the problem by using Rayleigh-

Ritz method.
(Or)

Example 3.1. A bar under uniform load. Consider a bar clamped at one end and left free
at the other end and subjected to a uniform axial load g, as shown in Figure 3.4. The governing
differential equation is given by d’u

g_, . dx

9 R with the boundary conditions ©(0) = 0; qul 0.
— —p e b s ] dx |,
. illustrate the solution using the R-R method.

x =0

Fig. 34 Rod under axial load (Example 3.1),



General Steps

|. Formulate Potential Energy Functional

2. Assume a trial displacement function, which should satisfy
boundary condition

Substitute admissible trial displacement function into Potential

Energy Functional and simplify 1t

. Minimize the Potential Energy Functional so as to obtain the
equilibrium condition
Determine the unknown displacement, hence strain and stress

. _ . L] 1 du 3
Strain energy stored in the bar, U = J —AE]| — | |dx
o |2 dx
L
Work potential of the external forces, W = —j gout dx -
0
. L1 du Y
I (Functional) or I, = J —AE} — | — quu | dx
0 |2 dx



u(x) = ¢;x + c2x2

This satisfies the essential boundary condition that #(0) = 0. We have

B = ¢ + 20;x
dx
AE
I, = .[o I:T(cl + 2¢,x)° — golex + cpx )]
AE[ 2 + 4c; 13 e e, [? r
= — o - Go—— = Gty —
7 3 162 qo 5 qo 3
a& - O, = 1’ 2



Therefore,

oIl I

P -0 = ﬂ(chL + 2e,12) — = - ¢
dc; 2 . 2
oIl AE 5

2= 0= Z2@e,BB + 202 - 20— =
de, 2 3

Solving, we obtain
qoL , 9o

AE® 27 TouE
Thus,

(S5
S

4o 4o
=t el i Iy = EE Dy —
ulx) AE % XZ) 2AE( ==
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Example 3.2. A simply supported beam under uniform load. Consider a simply supported
beam under uniformly distributed load ¢, as shown in Figure 3.5. For a deformation v(x), we
have

do

Fig. 3.5 Simply supported beam under load (Example 3.2).



The strain energy

2
L 2%
0 2 | dx®

The potential of the external forces is

L
V= —J q,v dx
0

Thus we have the total potential

5
LVEI[d*v )
l_[p = IO [?(F} =2 qOV] dx

Assume a displacement field. Let us assume v(x) = ¢; sin (wx/L). This satisfi
boundary conditions w(0) = 0 = w(L). We have

d’v T 3 . X
= —C] = Sln ——
& L




Evaluation of the total potential. The total potential of the system is

R 2
L| EF Ty o KX . X
I, = J.o [7(—c, (z) sin T} dx — q,¢ smT] dx

m'El s 2q,k
— 3 ¢ —
4L T

G

oIl

)

d¢

Thus the final solution is

4

_ GoL

x) = 0.01307 22—

n'El . _ 2qL _ . EI
2 P

L
¢; = 001307 0

i X
sin —
L



Example 1.2

The potential energy for the linear elastic one-dimensional rod (Fig. E1.2), with body force
neglected, is

N du'\?
b= EA EA(E) x =2 where u; = u(x = 1).

u=0atx=0andu =0atx = 2.

Write the expression for the displacement and stress?

.
ol A

”l
[/
i
Z

\\\\l.\\\\
K -




Let us consider a polynomial function
u=a + ax + a3x2
This must satisfyu = Oat x = 0Oand 4 = 0 at x = 2. Thus,

O=a|
0=a, + 2a, + 4a;

Hence,

a; = —2(13

u = a;(—2x +x%) at x=1, u=uy

U, = —ay

Then du/dx = 2a;(—1 + x) and
12
I1 = 5/ 4a3(—1 + x)’dx — 2(—as)
0
= 2a§/ (1 = 2x + x*)dx + 2a;
0

= 2a3(3) + 2a;



We set dll/da; = 4a3(§) + 2 = (), resulting in
az; = —0.75 wy = —a; = 0.75
The stress in the bar is given by

o= EdE”= 1.5(1 - x)



-

J
E‘ | ! 1
Solution from
mechamcs
Approximate
solution
0,75

™

Solution from
L~ mechanics

Stress from

~— approxinate

solution




Approximative Methods
Variational Methods Weighted Residual Methods

approximation is based on the
minimization of a functional, as those
defined in the earlier slides.

* Rayleigh-Ritz Method

start with an estimate of the the solution and
demand that its weighted average error is
minimized

* The Galerkin Method

* 'The Least Square Method
* 'The Collocation Method
* The Subdomain Method



1 Dimensional Problems
Ex: Bars
Trusses
Beams



Steps in an FE Analysis




Preprocessor / Modeling:

* Identification of the appropriateness of analysis by FEM
* Identification of type of analysis

* |[dealization, ie., choice of element type/types




Preprocessor / Modeling:

* Identification of the appropriateness of analysis by FEM
* ldentification of type of analysis

* Idealization, ie., choice of element type/types

* Creation of material behavior model

* Discretization of the solution region (meshing)

* Application of boundary conditions




N

Analysis run/ Solve: =




\

Analysis run/ Solve: =




\

Postprocessing / View results:

* View results (displacements, stresses, mode shapes, etc.)
* Interpret and validate results

* If required, re-formulate, and re-analysis




Basic Steps Involved In FEM:

Domain Discretization

Selection of displacement functions (interpolation)

Formation of elemental (stiffness matrix and load vector)
Formation of Global (stiffness matrix and load vector) : KU = F
Application of boundary condition

Solution of simultaneous equations (for unknown nodal
displacements))

. Calculation of stresses and strains

8. Interpretation of results

ok own -~



1. Domain Discretization: It is performed by using
the mesh generating programs (preprocessors). This
step involves splitting the structure into number of
small regular shaped elements. Generally. a body is
discretized by using tetrahedron or hexahedron elements
in 3D analysis, whereas. by employing triangular or

quadrilateral elements in 2D analysis. Element Name Element Shape
First Order Second Order

1D Elements  Spring, Damper
Line Element Beam' Truss

Surface Element

2D Elements Shell, Plane2D _/E

2. Selection of displacement functions
(Specifying the interpolation function order
1.e, Linear or Quadratic approximation)

1

Tetrahedral

3D Elements Hexahedral
Volume element



The loading consists of three types: the body force f, the traction force 7', and the point
load F.These forces are shown acting on a body in Fig. 3.1. A body force is a distributed

FIGURE 3.1 Omne-dimensional bar loaded by traction, body, and point loads.
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¥ (a) (b)

One-dimensional bar loaded by traction, body, and point loads. FIGURE 3.2  Finite element modeling of a bar.



element model in Fig. 3.2b has five dof. The displacements along each dof are denoted
by Q1, Q,, ..., Os. In fact, the column vector Q = [Q,, O>,..., Qs]" is called the global
displacement vector.The global load vector is denoted by F = [F, F>, ..., FS]T. The vec-
tors Q and F are shown in Fig. 3.3 . The sign convention used is that a displacement or

:’//_A‘ ﬁ/éﬁ 4_/‘/_4 ‘_/445//5 :‘/z. 4
leF

l 01 13

‘QJ"’\

‘ Qs,"'a

l Qs Fs
Q= [0 0y Q3 Q4 O

\'. F=[F.Fy by Fy F)

FIGURE 3.3 Q and F vectors



FIGURE 3.4

Element connectivity.

1= 22— 33— 4 — 5 —
O, O 0 0Oy Os
Global numbering
1. @ 3 Elements Nodes
== —_—
Local
1 2 <::l
N 12 @ numbers
— | — =
fi  Local numbering f, @ 1 2
©, Z 3 | Global
@ 3 4 numbers
® |5




3. Formation of elemental (stiffness matrix and load vector)

« » Eme[ 1 —1]
e— —_— ke =
a 7 ¢, -1 1
. - ft, -
hi Local numbering  f, q-= [Cll, qz]T

4. Formation of Global (stiffness matrix and load vector)

(KQ — F) =0




5. Application of boundary condition
Apply displacement and forced boundary conditions
6. Solution of simultaneous equations

(KQ — F) =0



Interpolation Functions: Interpolation function is also known as approximate function. which is defined to obtain the approximate

solution for a given problem, by dividing the domain into smaller elements| It must be selected for each element|in such a way

that, it must provide better solution for a finite element problem.

Forms of Interpolation Functions
There are two forms of Interpolation functions. They are,
1. Polynomial form
2. Trigonometric form.
Considering one dimensional element in which ‘¢’ represents a field variable and.

The variation of ‘¢’ m polynomial form is represented as.
¢=a,tax+ax’+ax +ax'+..

The variation of ‘¢’ in trigonometric form 1s represented as.

. (x|, . [ 3mx . | Smx
¢ =a, sin = +a, sin T +a, sin ~ e



Then. consider two equations of “¢’.
¢=a,+tax+tax’+ax’+ax

And, ¢ =a,+tax+ax

Equations (1) gives the accurate solution because of its higher order,

For most of the problems. polynomial form 1s adopted because of the following advantages.

L.
Z;
3

Easy to formulate the equation
More accurate results are obtained
Simple Structure.

: Exact solution
; X
®(x) Exact solution )

A
A
x prmg
P(x) = a, S Exact solution

N o ¢(x) =a, +a,x +a.x?

* -y
> X N
l«—Element —>{ |<——Element — l<—Element —>|

Figure (a): Approximation Figure (b): Linear Approximation Figure (c): Quadratic Approximation



Derivation of 1D [ifl@@ll interpolation function for the displacement function

Or 2 noded bar element Or Linear bar element

Function. u = u(x)

Consider a linear interpolation formula for a function
u = u(x) in the range u, and u, as,

u=a,+ax .. (1)
Where,

»X a,.a,— Constants

Applying boundary conditions,

i.e., u(x,) = u, and u(x,) = u,.




Substituting the above values in equation (1).
1e.u =a tax (2}
i, =a, tax, 2 (3}
Solving the above two equations,

_ UpXy — X
= and
Xy — X

U — U
g = ——
Xy — X,

Substituting ‘a,” and ‘a,” values in equation (1).

1% X —1 Uy — U
u:(lz 2x1)+x 2 Yy
(x; —x) (% —x)
_ U Xy — UpXy + Uy X — U X
(X, —xp)

_ (X —Xx)+uy(x—x))

- (X, —x;)




(x, — ) (=% N,. N,— Shape functions
S A )

(X, —x;) . (x; —xp)

X—X XX

) NI o (e
u(x) = [NI Nzl ] | ™
: N U, : 2 : :
2 X—X X-X
j‘\f: = 1 = ,\'3 —x
1 l 2 A
N, (x) = —
X, —X
—>x
!
1
1
fe L >1 fe L > pe— L >

Linear interpolation of the displacement function within an element

Then. shape functions are given by,

“2



Q. Define the shape function. What are the properties of a shape function?

Ans: The mathematical expression which defines the geometry or shape of the finite element is termed as shape function.
They are used to determine the variation of field variables such as displacement, temperature, etc. In finite element method, the
problems cannot be solved without using shape functions.

The properties of shape functions are as follows,
(a)  The summation of all the shape functions is equal to 1.
(b)  The value of each function at its own node is 1 and the value at other node is zero

(¢)  The shape functions can be linear or quadratic functions, based on the conditions that, first derivative of shape function should

be infinite within the element and the displacements across element boundary should be continuous.



Coordinates, penalty approach

Local Coordinates: In local coordinate system, the nodes of
various elements of the structure are specified by the origin.
which 1s placed within the element. This type of coordinate
system 1s adopted, in order to minimize the computational efforts
while calculating the global stiffness matrix and displacement
vectors. Local coordinates may be different for different

elements.

---------------- (X,.y,)

E(Xz:}ﬁ)i

: : > X
UL g

L X 1
I~ 2 e |

Figure (4): Global Coordinate System



Natural coordinate system

2
)\

s+l




N,. N,— Shape functions

Then, shape functions are given by, —>x . Ny
. s N
e XX XX o 1-¢ 1
SN = ‘1 = x;_xl Ni(€) = e 1
E—% EE 1+€
. N, = | = L Ny(¢) = b L >| e L
i / X —X 2
N; N,
A A
I _ | o g 1 +& I
N T
| |
| | »
— ' > I s
1 ‘ ‘2 § 1 2
E=0

Linear interpolation of the displacement function within an element



Derivation of 1-D Quadratic interpolation function for the displacement function

Or 3 noded bar element Or Quadratic bar element

—>X
1 : 3 x >2
u, u, u.
| l.a"2 | -
[
< >

Figure: Quadratic Bar Element

Boundary Conditions.
Atnode-1. u=u,.

X =
At node-2, Xy=

U= 1U,. :

I\)|\’\-o

Atnode-3., u=u_.x,=

2 2

Consider a quadratic bar element of length */". Let u,.
u,. u, are the nodal displacement at nodal points 1.2.3.

The polynomial for one dimensional quadratic bar

element 1s given by,
u=a,+a xtrax .. (1)

Equation (1) can be written in matrix form,

{u}= [1 X xz]‘ 4. )




Substituting the boundary conditions in eq 1. and solving for unknowns a0, a1, a2 we get

u {u} =Nu, +Nu, +Nu,

12 3] 2f =
u 1 N
3 ,
Where. ;;,_

3x 2 12 1
J\r, =] _—=F X

/ & L

X 2 N3 : l
JV., . _r _)'xz 1
2 I /2




Shape Functions for Bav Element

1
-T e O o — & —O——O — @

M 1§ Nz §(E = 1) =-3 5+ L)(5-1)(5 D)
Ha® 1% =5 (-8) BE: 'z(“‘ﬂi' Dy
= Ns = §(§+ 1 Na=-2l (S*')(S-!%)Lg-l)

Nes 2 (C3HXE-D)

B
T
W
/

Lt
&ﬂ?




Derivation of strain displacement matrix (using 2 noded bar element)

u(x) = [NI Nz] zl
2

U= ]\/'1111 + Nzuz

Xy —X X—X
:( 2[ )u,+( l 1)u2

The strain for element is defined as. Also.
du -
e=—=t2"% du dN,
dx / E=—m = ——, +

dx

dx




du _ dN, dN,
e ! U,
dx dx % -
~1 1
= —l =l
/ /-

1.e.,e=[B] {u}
Where,

1
B]l=—[-11
A== -11]

_1
JBl= =11

The above equation is known as ‘element strain
displacement matrix’ for one dimensional element.



Potential Energy Approach

General expression for total potential energy in an

elastically loaded structure is.

1 . C g -
T= EfGIadV — f u’ fdv - / u"TdA _Zu,-TH
y l

V A

N

It can be written for the 1D problems as

1

1= E/U'TGA dx — /lefA dx — /uTde - > uP;
L L L i



Element Stiffness Matrix, K

Derivation of Elemental stiffness matrix

Figure (1)

Consider first term in the general expression,
Let, x,, x.— Lengths at node-1 and node-2

Total strain energy.

Ue= ljfcsTadV
Vv

u,. u,— Displacement vectors

here.

B — Strain displacement matrix
U = ‘7 / (EBu)T (Bu) Adx "pIac
v

E_—Young's modulus of the element

[".- c=EBuand £=Bu|

A_— Cross-sectional area of th\silemem
5 And.
= luTuE A BTBf dx 1) N\
5 A X . () ’
X

' O



We have the equation----1.

. T ¢
& = Eu ut ,A,B Bf dx
1 1 -1 X
BTB=-—~2[ ‘ .

I2
And dx = [\] =%.—x, =1
Xy 2 1 e

1
Where,

[, — Length of the element



On substituting in equation (1),

I = 1|{1 -1
09_5“ EeAeF - T [,tu
e
I
Ue— Eu K(,u
Where.,

E(’A e

Stiffness matrix. K =

1 -1]
L

And, global stiffness matrix Kglobal = ZK 5 g
e

summation of individual element stiffness matrices.



Element Body Load Vector (F)

Considering the second term in 7.

f uTjdv - f (Nu)TfAdx
!

vV

= '/‘uTNT]Adx

/

3 Nidx
=u€49fj N dx =uAd [ f >
/

| Aefle) 1
“T - 2 {




Element Traction Load Vector (T)

Considering the third term in 7.

f u Tdx= [ (Nu) Tax =u?{T f Nidx}
1 !

/
N, dx
= 5T f '

dex

1
[uTTa'x % i —%’-{1} =T

/

Where.



Temperature Load Vector
Thermal load= A * thermal stress
If a temperature gradient exists then. temperature load,
0 =AEg,
=AE a AT

Temperature load vector.

I Refer..Chandrupatla

—1 |1

GeZAECI.AT I < 3.10 TEMPERATURE EFFECTS

Then, global load \-’ectdr. U = / -;-(e — €))"E(e — €,)Adx
L

F=2IF T +8]+R,



Element stiffness matrix.

global stiffness matrix K = ZK .
e

K (global) U = F (global)

Global load vector,

F=) (F,+T,+6)+P,
e

Where.

el |1
cop Al ) ]
ety

0,=4,E a AT

i



Equilibrium Equation
[K] {u} = {F}
Where.
[K] — Global stiffness matrix
{u} — Global displacement vector

{F} — Global load vector

Equation for stress, strain and support reactions are.

c=Fe. ¢e=Bu. R=Ku=F

If temperature gradient is present then,
6= E(e-¢,)
= E[e— aAT]

G = E[Bu— oAT]



Example

A, =2400 mm?
E, =83 GPa

Figure (2)

Temperature gradient, AT = 80°C

For this problem, calculate nodal
displacements, stresses in each
bar, Reactions at the supports



A, =2400 mm?

4 E, =83 GPa
Bronze 60 kKN
o, =189x 10~ %rC

B 800 mm ~,_ 600mm | 400 mm |
U i -1
10 o2 @ 53 ® 4
800 600 400
uy.F U, F, usF, Uy F,
Boundary conditions, #, = u, =0

Basic Steps Involved In FEM:

0 N

Domain Discretization

Selection of displacement functions
Formation of elemental (stiffness matrix
and load vector)

Formation of Global (stiffness matrix anc
load vector) : KU =F

Application of boundary condition
Solution of simultaneous equations (for
unknown nodal displacements )
Calculation of stresses and strains
Interpretation of results



Element stiffness matrix, A, = 2400 i
BTl A, =1200 mm?
= E.A4.|1 -1 E, =70 GPa
s le |-1 1
Bronze 60 kN

Stiffness matrix of element—1.

o, =189 x 107 5rC

Al
0, =23 %10 8°C

75 kKN
- oy

—— sk

. 83x%10°%x2400| 1 -1

K= 300 O 1] i
I 2

[ 249 249

Ki=10°) 549 249 P




Stiffness matrix of element—2.

x = 70x10°x1200( 1 -1
2 600 i
2 3
~ 14 -14)2

K=1001 14 14 3

Stiffness matrix of element—3.

K = 200x10°x600( 1 ~I
3 400 1 1
3 4
K=10°|3 -3[3
-3 3 4

4 E, =83 GPa

Bronze 60 kKN

0, =189 x 10~ %C




Global stiffness matrix,

!

1 2 3
249 249 0
51249 249+14 -14

0 —-14 14+3
0 0 -3
1 2 3 4
249 249 0 0|l
|-249 38 -14 o0
0 -14 44 303
0 0 3 34

0

-3

3

Global load vector,

F=) (F,+T,+6)+P,
e



Temperature load on element-1,
In this problem, body loads and traction loads are absent.

; —1
Temperature loads, 0, = 2400 x 83 x 10° x 18.9 x 107% x 80 { }

1
4} 3.012 |1 |
1 PP
| 6, =20 {3.012 }2

Temperature load on element-2,

0,=4,E o AT

A, =2400 mm? X e -1
4 E-83GPs PR 6,= 1200 x 70 x 10° x 23 x 1076 x 80 ! : ;
E, =70 GPa -
5 {—1.54}2
7 Bronze 60 KN | Al 75 KN 2 1.54 [3

!
!

I
s
i
!

BERANNANNANNNNNNNNNN

G R4
0, =189x 107 %cC |o,=23x107 Src Temperature load on element-3,

3 -1
8, =600 x 200 x 10° x 11.7 x 107° x 80 { 1 }

h
f
\
\

o =1.1213
3 1.12 |4



Points loads,
Atnode-1=0

Atnode-2 = — 60 x 10° N
Atnode-3= —-75 x 10°N
Atnode-4=0

Global load vector,
F=) (F,+T,+8)+P,
e

-3.012%x10°

(F) = | (3:012-1.54-0.6) X 10°
(1.54—-1.12-0.75) X 10°
112X 10°

-3.012
0.872
-0.33

1.12

{F}=10°

BN

B DY



Then,

[K]{u} = {F}
(249 249 0 0w 3.012
105249 389 14 0 [Juy|_q05 ] 0.872
0 14 44 3| u 0.33
0o 0o 3 3|u 1.12

Applying the boundary conditions, = u, = 0.

By elimination approach, the above equation reduces to,

;1389 —14||u,| __ ; |0.872
10 {—1.4 44 HuJ 10 1—0.33}

3.89 u,—1.4u=0.872
-1.4 U, + 4.4 U;=— 0.33

Solving the above two equations,
Global displacement vector, u=[0 0.223 —0.00415 0}'mm
u,=0.223 mm

== 0.00415 mm



Calculation of stresses,

6 = E(Bu—aAT)

Stress induced in element—1,

6,=83x10°| g0 [-1 1]

" 0, =—102.366 MPa

A, =2400 mm?
B SiGs A, = 1200 rom?
E, =70 GPa

Bronze 60 kN | Al 75 kN

0, =189x10°%rc [a,=23x10"6C
0
—~18.9x 10°x 80
0.223

800 mm 600 mm | 400 mm |

Stress induced in element—2, f< > >

0.223

6
_0.004 —23 X107 X 80

5, =70x10°| g [-1 1]

. 0,=-155.28 MPa

Stress induced in element-3,

—0.004

G, =200 103
: 0

11.7x10°x%x 80

aoo -1 1

. ¢, =—185.2 MPa



Solving for the support reactions,
Kitul+ K u, +K u + Kldu4 =F TR
K41 ul+ K. ut+K.u* Kddud =F +R,
(—2.49 x 0.223) x 10° =R +(-3.012) x 10°
R, =245.6 KN
(—3 x—0.004) x 10° =R, +(1.12 x 10°)

. R,=—110.8kN



Example 3.8

An axial load P = 300 X 10° N is applied at 20°C to the rod as shown in Fig. E3.8. The
temperature is then raised to 60°C.

(a) Assemble the K and F matrices.
(b) Determine the nodal displacements and element stresses.

|‘7 200 mm =i: 300 mm 4’{
|

2 7
lﬁ e $ —— X
2 |
e ® 7
Aluminum Steel

E; =70 X 10” N/m? E5 = 200 x 10° N/m?

Ay = 900 mm? Ay = 1200 mm?

a, = 23 X 10"%per’C a,= 11.7 X 10~¢ per'C

FIGURE E3.8



Solution

(a) The element stiffness matrices are

,_70x103><900[1 —1]
= 200 oy g |Domm
200 X 10° x 1200] 1 -1
K = N
300 [—1 1] o

35 =315 0
K = 10°| =315 1115 -800 [N/mm
0 =800 800



Now, in assembling F, both temperature and point load effects have to be considered.
The element temperature forces due to AT = 40°C are obtained from Eq. 3.106b as

| Global dof
-111
9‘=70x10‘><900><23><10‘6><40{ q }2 N

and

=142
62 = 200 X 10° X 1200 X 11.7 X 10'6><4O{ 1 }3 N

Upon assembling ', ©7, and the point load, we get

-57.96
F = 10° 57.96 - 112.32 + 300
232

or

F = 10°[-57.96, 245.64, 112.32]'N



(b) The elimination approach will now be used to solve for the displacements. Since
dof 1 and 3 are fixed, the first and third rows and columns of K, together with the
first and third components of F, are deleted. This results in the scalar equation

10°[1115]Q, = 10° X 245.64
yielding
0, = 0.220 mm
Thus,
Q =[0, 0220, 0]"mm

In evaluating element stresses, we have to use Eq. 3.108b:

70 x 10° 0 %
oy = W[_l 1]{0.220} - 70 X 10° X 23 X 107® x 40
= 12.60 MPa
and
200 x 10° 0.220
o = T[—l 1]{ " } =200 X 10° X 11.7 X 107% X 40

= —240.27 MPa m



Concept of assembly

2LL /////_L////// L

----E_)--- A
B
B

|4 ¥
'5

|

7
“'D

CECICES

Figure (1): Bar Element

[KI1{U}={F}

1 2 3 4 5
1 -1 0 0 O]
11+1 -1 0 O
AE
—0 =1 1+1 -1 0
0 0 -1 1+1 -1
0 0 0 -1 1
1 2 34 5
1 =10 0 0
. 2 =1 0 "0
ATEO—12—10
0 0 -1 2 -1
0 0 0 -1 1

N B W N -

L S ¥ S

"Jsﬁ.} -bhr'“ '.u”j f\J‘TJ —-.’.]

i e U




Using two finite elements, find the stress
distribution in a uniformly tapering bar of cross
sectional area 300 mm? and 200 mm? at their
ends, length 100 mm, subjected to an axial
tensile load of 50 N at smaller end and fixed at
larger end. Take E = 2 x 10° N/mmZ.

a. = 300 mm?

100

a2

Y

p=>50N

200 mm?

Figure (1): Tapered Bar

Given that.

Cross sectional area of bigger end, @, = 300 mm’

Cross sectional area of smaller end. a, =200 mm-

Length of the bar, /=100 mm
Axial tensile load, P=50 N

Young's modulus, E =2 x 10° N/mm?

‘a, =300 mm?
‘a; =200 mm’
a,= '_12_.=,

300 + 200
2

a,= 250 mm?



/
X Ll LMLl
7 A @
= X 2
0 T
2 |~0
p=50N 200 mm? up=501\'

Figure (1): Tapered Bar Figure (2): Stepped Bar

Areas of the Stepped Bar
Area at node 1, g, = 300 mm?

Area at node 3, g; = 200 mm’

4 " %4
Areaatnode 2, a, = 5

a ta
Area at element (1) 4, = —‘—2—2—

300+ 250
T2

A4, =275 mm-

a +ta
Area of element (2), 4, = . > :
_200+250
- 2
4,=225 mm’



Element (1)

A

50

©,

(

2
Figure (3): Element (1)

Finite element equation for element (1) 1s given by,

AE 1 -3 174 F
11 B ST G4
[ [—1 1]u F

275%2%10°[ 1 —1]]‘. _ |5
50 -1 1|4, F
5 | | lll F;
11x10 [—1 ‘]l“ =1p
2 2
1. 2 i
sfir -nji ¥ |
10{ ] = .. (1)
-11 nz{u2 Fz[

B

Element (2)

~ @

50

3y

p=350N
Figure (4): Element (2)

Finite element equation for element (2) 1s given by,

AE u F
LT A%, K

225x2x10°[ 1 —l]"‘z _5
50 SRS N
s[ 1 —1]|% F,
ox10°| | u{nﬁ}= ;
2
105[9 —9]2{“2 _ ? -
9 9 3u, i




From equation (1) and (2),

Finite element equation 1s given by,

1 2 3
1 -1 oopl4) 1A
10°]-11 11+9 opju l - F,
0 -9 9u| |F
1t —11 0| n
10°{-11 20 —9fj#,}t = 1F,
| 0 9 9}|u, F

Applying the boundary conditions,
u,=0,F =0,F,=0,F,=50N

From equation (3),

11 —11 0% 0
10°|-11 20 —9fju,f =10
0 -9 9flul |50

<30

Eliminating the first row and first column,

Since =9

u g i
l 05[20 —9] { 2} — { 0 i On solving the above equations.

9 9 fjuf ™ |s0

10520, — 9u,) = 0
10°(=9u, + Su,) = 50

Stress Distribution
For element (1)
uo—u
Stress. G, = El * —*I—l

=2x10

c,= 0.1818 N/mm

For element (2)

5
= 210" x

u,=4.545 x 107
u,=10.101 = 107

-5
s {4545%10 " _0)

{

!

2

u} —u
Stress, G, = E’ > L

G,=0.222 N/mm?

50

101010 —4.545%10 ")

50



What is study state heat transfer analysis? Write its governing Equation?

Steady state heat transfer is defined as the temperature

at any point in the medium does not change with time.

For a one dimensional steady state heat transfer,

T
K5 +q=0
dx”

K — Thermal conductivity

T — Temperature

g — Internal heat source per unit volume



3D Conduction heat transfer

General 3D conduction Equation:

i
ax ax ay ay 0Z 0z T

For constant conductivity:

T T T
— + —=+ — +
ax2  3yr 9z

19T
a Ot

- hR.

= kipc

= Thermal diffusivity of a material



Q. Give the finite element equation for a one dimensional heat conduction element.

Ans: The finite element equation for a one dimensional heat conduction element is given by,

F} = K] T}

{F} — Force vector

F
= l FI } for a two noded element
2

[K ] Stiffness matrix in case of heat conduction

_ KA1
I -1 1
{7} — Nodal temperature vector

Similar to structural problems

T
= {Tl} for a two noded element
2



Unit 2
Trusses

suppot




A
n - 9,
N
0
1
» X
0
Figure(1): Pin Jointed Bar Element Figure(2): Components of Nodal Displacements
v, Uy, V5, U, — Components of nodal displacements g, g,
x.y — Global co-ordinates in the global co-ordinate system (x,y directions)

m.n — Local co-ordinates

g, =u,cos®+v sinb

4,»4,— Displacement at nodes 1,2 in the local co-ordinate q,
system (m,n directions) 4} =

4, g.=u,cos0+v, sinb



g, =ucos 6 +v snb

9,
{g} = i q,=u,cos 6 +v,sin B

2

q, B [cose sin6
q, 0 0

LetC=cos0,5S=s1n6

ql_[csoo
9] 0 0cCsS

] |

0 0

cosB sinB

] ,
U,

{q}z{:}z[c S00

00CS
{g} =[L] {8}
Where,
CS00
2 =[0 0 C S]

Transformation matrix

] |




Strain Energy

U= j,lz-{q}r[Kzl{q}

- % VALY (K| (LK

U= %{8'}7’[1(]{8'}

Where
[K]=[L]" [K] [L]

Truss is a one dimensional element in the local co-
ordinate system. Therefore, element stiffness matrix of a truss
element in local co-ordinate system is given by.

AE| 1 -1
K]=—
-7
A — Area of cross-section of truss element
E — Young's modulus
[ — Length of truss element
(7

= Element stiffness matrix in global co-ordinate

system



[K]=[LVIK] [£]

e
S 0l4e[ 1 <1]Jc § 0 0
[K] = g
0cCcll]|-1 1flo o cC S
10 S}
@
_ AE|S O[C S =g -8
E |0 €l=-¢ -8 € 8§ . _x-x
0 5 =cosf= %
2 G P -] i = GoRl= "’2;”(=sine)
e
AEICS & =C§5 =¥° |
[K]=T_C2 S C2 cS €e=\“(x2-xl)2+(,v2-yl)2
cs -5+ B8 &

LetC=cos0,S=sin6



Bar Element

Truss Element

Displacements of a loaded bar element occurs only
in X-direction (horizontal).

The loads 1n the bar elements are applied in axial
direction.

For joining bar elements. various types of weldings
are used.

Stiffness matrix for bar element 1s given by,
1 =l
-1 1

Stress in a bar element 1s.

c=Ecie.,o=E[B] {8}

K= &

Where, [B] — Strain displacement matrix

{0} — Nodal displacement.

The joint displacements of a loaded truss element are
neither horizontal nor vertical. but they are
resolved into horizontal and vertical components.

The load applied in the truss elements are either
compression or tension.

To join truss elements. pin joints are used.

Stiffness matrix for truss element 1s given by,
€ s - -¢s
E4| cs §* -cS - &
K=~71 3 2
=8 €~ €S
=8 = 6§ B
Where, C =cos 6 and S=s1n 6.
Stress in a truss element 1s.
c=Es

= £[-c s ¢ s]u

Where. u — Nodal displacement.
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The plane truss shown in figure is composed
of members having 0.1 m? cross-sectional area
and modulus of elasticity E = 70 GPa,

(a) Assemble the global stiffness matrix
(b) Compute the nodal displacements in the
global coordinate system.




Given that,

Area of truss members, 4 = 0.1 m?

Young’s modulus, £ =70 GPa= 70 x 10° N/m?

v,
D o,
3
] Letu,. v,. u,, v,, u, and v, are the nodal displacements in
‘x” and ‘y” direction respectively.

The stiffness matrix for truss element is given as,

— B

(2 9 =% (%
AET €8 & =% —§°

i K] =—
‘L V) K] L |- -y & &8
Ph Lz f_,.uz -cs -s* cs S* |
Y @ 1000 N Where, C' = cos0 and .S = sinf

|e— 1m —|

Figure (1): Truss Element



For Element-1

8, =0°

C =cosel=cosO°=l

S =sin61=sin0°=0

(K]

_ 0.1x70x10° | 0 0
- 1 -1 0

o o o O

For Element-2

6, = 90° defined from node 1

~

C =cosez=cos90°=0

S =sin92=sin90°=1

0.1x70x10°

K]=—

=7 x10°

[0
0
0

0




For Element-3

1
sinf. = =
\ 2
6, =-45° (cw)
=135° (ccw)

Figure (2)

C =cos 0, =cos (135°) =

S =sin 0, =sin (135°) =

0.1x70x10°
X

A

=710

u,

[ 0.354

-0.354
—0.354

| 0.354

—ﬁ =—0.707
2 ] .

[ 05 =05 =05 05 ]
-05 05 05 -05
-05 05 05 -05

0.5 -05 -05 05

1’2 u3 1"3
~0354 —0354 0354 |u
0354 0354 —0.354
0354 0354 —0354 |,
~0354 —0354 0354 |,

L=

<
()




The global stiffness matrix is calculated as,

K] = [K]+ [K]+ [K]

[K]=7 x 10°

[K]=7 x 10°

u,
u, v
1 0
0 1

-1 0
0 0
0 0
0 -1

1.3 —
U,
1'l
U,
uS
"3
u, v,
-1 0
0 0
1.354 —0.354
-0354 034
-0.354 0354
0.354 —0.354

u,
3
0

0

—0.354
0.354

0.354
—0.354

1'3

0

-1
0.354
—0.354
—0.354
1.354




Global displacement vector, Global force vector,

U

v

u
FRL — 2
{o'}=

Vs

uj

“"’

5l

-

(Fy=1

-

o B BN |

b

)

-

<

Nodal Displacements: The finite element matrix equation for truss structure can be written as,

[K] {8} = {F}

==

7 x 10°

I
V—i
_—0 OO = O

o O O

ol | 0

0 0
1.354 —0.354
— 0354 0.354
—-0.354 0.354
0.354 —0.354

0 0

0 — 1
—0.354 0.354
0.354 —0.354
0.354 —-0.354
—0354 1.354

i

1-‘1

(4, )

M

<

b

-

>

1]
Y]

“




1 % 1 0 ) o—|{u}—{Fs
0 0 1 ¥ Fly
1 1354 —0354 —0354 0354 | |u | | Fs
7x10° | ¢ _0354 0354 0354 —0354 | )% = F2,>
4—0—o: : 354 —03541 | = E.,
0 -1 0354 -035%4 —0354 1354 || | Fy

Applying boundary conditions,
i€, w = vy=u,=0

Hence, omit 1%, 2% 5% row and columns in finite element

equations,
1354 -0354 0354 (], 0
—-0354 0354 -0.354 v, ;=4-1000
7 %10 2

0354 -0354 1.354 |}, 0



u,] [1354 -0354 0354 o

—-0354 0354 -0.354| <-1000 pXx 1

2 9
| [03s4 —0354 13u4 o | ™10
u, ~1000
Iyl =1-4824.859 | x——-m
7x10

| ~1000

u,|  [142.857
1v, 1 =1689.266 x10™° mm

b (142857
i




For the two bar truss as shown in figure
determine the displacements at node 2 and the
stresses in both elements.

g>1 5 12 kN Given that,
Young’s modulus, £ =70 GPa= 70 x 10° N/mm’
E=70GPa | forboth ' ,
A =200 mm? }memberéOO mm Area, 4 =200 mm?

400
mm

Truss 1s divided into two elements as shown in figure.
3 Fl},

Figure T
u, F

Ix

Figure(1)



Let,

U, U, u;— Displacements along x-axis at nodes
1. 2 and 3 respectively.

v, v,, v; — Displacements along y-axis at nodes
1. 2 and 3 respectively.

F, . F,,F, —Forcesalongx-axisatnodes 1,2 and
3 respectively.

F,.F,.F, —Forcesalongx-axisatnodes1,2and
3 respectively.

The stiffness matrix for truss element is given as,

& 8 =C* —Cs
k) =AE| €S §? -cs -§?

L |-c* -cs c¢* ¢S
-cs -s* cs S§* |

Where, C' = cosB and S = sinf




Stiffness matrix for element (1), S=sinf =sin0°=0

(2 s -2 -S| Length, L, = 500 mm
K] = AE|cs s -cs -8 Area, 4, =4 =200 mm’
L |-¢*-cs & cs ‘ : q
—cS -2 s S Young’s modulus, £, = E= 70 x 10° N/mm°
Where, Then,
C=c0s0 =cos0%=1 :ll i y
; ; 1 0-10%
(.- Element (1) is on x-axis, 6, = 0) 200x70x10°| 0 0 0 ol
(K] = 500 10 1 0w
0 0 0 0f%
U v, UV,
(10 -1 0]y,
0 000
= 28 % 10° "
-10 1 0f,
2
0000




Stiffness matrix for element (2),

AE,

K=

& 65 =& =¢S5

cS §* -cs -§?
-t -¢cs ¢ cs

-CSs -§* ¢S §*

300 mm

From figure,

o 300
Sin ) —500

0, = s (0.6)

=36.87°
Then.
C=cos 6, =cos (- 36.87)=0.8

(‘—ve’ sign due to clockwise consideration
from positive y-axis)

S=sm6, =sin(-36.87)=-0.6
Length, /, = v/300% +400* = 500 mm
Area, 4,=4 =200 mm

Young’s modulus. E, = E =70 < 10° N/mm*



u,
0.82

_ 200X70%10°[ (0.8 X~ 0.6)

(X, 500 -0.82

= R X1

— (0.8 X—0.6)
i, Vy Uy
[ 0.64 —0.48 —0.64
-048 036 048
~0.64 048 0.64

| 0.48 -0.36 —048

Global stiffness matrix, [K] = [K ] + [K]]

[K] = 28 X 10°

u v u, Vy

(1 0 -1 0
00 0 0

V2 Uy
(0.8 X—-0.6) -0.8°
(-0.6)> —(0.8%X-0.6)
—(0.8 X—0.6) 0.87
—(-0.6)> (0.8 X-0.6)
Vi

0.48 |u,

036

—0.48 |u;

0.36 |V
Uy Vi
0 0 |4
0 0 v

=10 1+0.64 0-048 -0.64 048 %
0 00-048 0+0.36 048 -0.36[V;
0 0 -064 048 0.64 —0.48u;
0 0 048 -036 -048 0.36 |v;

V3
—(0.8 X—0.6),
—(=0.6)*
(0.8 X—0.6)

u,
V5
Uy

(- 0.6)°

13



The finite element equation can be written as,

[K][87=1{F}

1o -1 o o o0 |[u [A]
00 0 0 0 0 |lv K,
e x 03|10 164 048 —0.64 048 |Jin| _ |Fy|
0 0-048 036 048 —036(lv F,
0 0-064 048 0.64 —0.48||u E,_
[0 0 048 -0.36 —0.48 0.36 ||%; E,

Nodal Displacements
From nodal boundary conditions,
u,=0:v,=0:4,=0:v,=0
£ =1 Fz}, =—-12000 N

Eliminating 1, 2, 5, 6 rows and columns,

1.64 —0.48||1| _ { 0 }
-0.48 0.36 [|v, —12000

1.64 x 28 x 10° x u, —0.48 x 28 x 10° x v, =0
—0.48 x 28 x 10° x u, + 0.36 x 28 x 10° x v, =—12000

28 x 10°




Solving equations (2) and (3).
u, =—0.571 mm
v, =-1.95 mm

.. The displacement at node 2 along ‘X" and ‘Y" directions
(i..e, u, and v,) are — 0.571 mm and — 1.95 mm respectively.

Stress Induced in Element (2)]

U,
E V)
6,= —[-c -5 ¢ s} %}
= L2 Uy
Y3
-0.571
70 x 10° -1.95
= W[ 0.8 0.6 0.8 —0.6] o
0

= 140[0.4568 — 1.17 + 0 — 0]
G, =—99.848 N/mm’
. Stress at element ‘1 - 37 1s — 99.848 N/mm-.



4.3. For the pin-jointed configuration shown in Fig. P4.3, determine the stiffness values
K. K,,and K, of the global stiffness matrix.

0Oy

7
T é 1' iy
1200 mm
1 E =200 GPa

NNNNNN

<750 mm-——>

FIGURE P4.3



1. For the truss shown in the figure, a horizontal load P (N) is
$ applied in the x direction at node 2.

(a) Write down the element stiffness matrix k for each element.
@ 10 m (b) Assemble the K matrix.

(¢) Using the elimination approach, solve for Q.

(d) Evaluate the stress in elements 2 and 3.

(e) Determine the reaction force at node 2 in the y direction.

E=210 GPa
A=100 mm*2



4.4. For the truss in Fig. P4.4, a horizontal load of P = 2500 Ib is applied in the x direction at
node 2.

A

30 in. =!
E =30 X 10°psi
A = 1.5in.2 for each member

FIGURE P4.4



(a) Write down the element stiffness matrix k for each element.
(b) Assemble the K matrix.

(¢) Using the elimination approach, solve for Q.
(d) Evaluate the stress in elements 2 and 3.

(e) Determine the reaction force at node 2 in the y direction. |

3 2 3 4
1 0O —1 O
. O O O O
30
O O O O
E =30x10° psi _3 A S ) B
A=1.5in" (o © O O
y 0) 1 0) —1
k(2)=3O><10 % 1.5 0 0 0 0
40
0O —1 0] 1




.36 —.48 —.36 48

_.48 64 .48 — .64

6
k(3)=30><1500><1.5 — B 48 36 i R
48 —.64 — .48 .64

k(4)=30><106><1.5 10 1

30




K

_ 30x10° %1.5

| 2 3
(20 0 —20
0 0
24.32

600

Sym

Solution of KQ=F

1 5 6 1 §

0 O 0 O 0

0 O 0 O 0
—-576 0 0 —4.32 5.76

2268 0 —-15 0 -—-7.68
20 0 =20 O
15 O 0

24.32 —-5.76

7.68

)
O

Qs
Qs
Qs
Qs
Q;

\QSJ




(¢) Eliminating dof’s 1,2,4.7.8,

K Q=F s
1 5 6
— ]5‘24.32 0 0
T 0 20 0
600
0 0 15

The solution 1s

Q, =219.3x107in
O;=0
Q(, =0

O,
s

‘.Qﬁ -




(d)

[,
(219.3x10°° |
)
0
g m a5 G 1Y L =0
40 0
\0 J
(Check with free body of Node 3)
0 )
6 0
03=30;:0 [-6 8 +.6 -.8]42l93x10_5»=789.5psi
LO y




| 2 3 4 ¥ 6 1 8

(20 0 =20 0 0 0 0 0

0O 0 0 0 0 0 0
2432 -576 0 0 —4.32 5.76

K _30><106 x1.5 2268 0 -15 0 -7.68
600 20 0 -20 O
15 0 0
Sym 24.32 -5.76
e) Reaction of Node 2 in y- direction is 7.68 |
8
R, = K4j Qj
j=l
30x10°x1.5

= e [-5.76x219.3x107° 1=-947.4lb (downward pull)



Unit 2
Beams

Bar Element

Beam Element

Bar 1s a structural element that is subjected to only axial

loading.

When a bar element is loaded. it is described by the
--axial-- displacements only.
Stiffness matrix for a bar element is given by,
AE11 -1
[K]= T[—l 1 ]

Bar elements are used in model cables, prismatic

structural members and ropes.

. | Beam is a structural element that is subjected to

transverse loading

. | When a beam element is loaded., it is described by the

transverse displacements and rotational (slope)

displacements.

. | Stiffness matrix for a beam element is given by,

12 6L —12 6L
_ EI|6L 41’ —6L 2L’
K1= "5 12 61 12 6L
6L 20I' —6L 4l

. | Long horizontal members used in buildings, bridges and

shafts are some of the examples of beams.




Assumptions used in beam elements are:

L8
2

The beam elements are straight and prismatic.

The material of beam 1s linearly-elastic, isotropic and
homogeneous.

The cross-section of beam is either constant or varies
smoothly. Deformation of cross-section does not occur in
its plane. but subjected to warping in longitudinal direction.

The transverse shear and axial force effects are assumed
to be negligible. In case of bending moment deformation,
internal strain energy of the beam element is considered.

The resultant of stresses (i.e..internal moments) are
determined by Euler-Bernoulli theories for bending
stress and Timoshenko theory for torsional stress.

The beam elements have larger displacements and
smaller strains.

External load applied on a beam 1s static and conservative.



Derivation of shape functions for beam element

v, v,

T f
+

dv dv
x=0,1'=v1,~dx~=9l (1 +2>62 x=11—1:,g=92
5 I
L >
Figure: Beam Element
The above figure shows abeam oflength ‘/ upon loading a

the beam will have four displacements. v, v, are the Transverse , ‘\
displacements and 0, 6, are rotational displacement. |' Il e | 1q4

Q‘J\‘; .

The polynomial function of a beam element of two
nodes and with four displacements is given by,

— r
wWx) =a,+ax + ax’+ax’ (D) q= [ql ’ q?. ? q3 2 q4]

' — Transverse displ : = ' : ]
v — Transverse displacemen — vl . vl : v2 y v2
a,, a,, a,, a,— polynomial coefficients



v(x) =a,+ax + ax*+ax’

Upon derivating equation (1),
dv

_ 2
i =gyt Za;r + 3a,*pc

Applying boundary conditions to equation (2),
At

At

(1)

Q)

From equation (1) and (2).
¥
0, =a,

v=a,+al+al+al’

<~

,=a,+2a,l+3a,l’

(3)
(4
(5

.. (6)



From equation (5), (4). (3)

v,=a,+al+al+al’

[

) =4 -+ 1 2 2
v,=v,+08l+al’+a P

ali+aP=v,—v —8/] +(7)

From equation (6), (4). (3)
0,=a,+2al+3al’
8,=8 +2wl+3aq P
2a,l+3al*=6,-8, -(8)



Multiplay equation (7) by ‘3’ and equation (8) by */°
3a,l*+3a,’ =3v,—3v,-36,/

2a.l*+ 3;3.4[3
2

Q@ O

a,l*=3v,—3v, —36,/-6,/+ 6,/

=6,7-8,1
Q O

a, 2= 3v,— 31-‘1 —-20,1-6,]

a,= (v2 1 26 +0 )

Substitute the ‘a,’ value in equation (7).
al’ =v,—-v,—8l-a,l
3
12( V=) - "(26 +0,)(12
=v,—v,—0/-30,—-v)+ 26, +6,)

i 1

al =v,— v,-8,/-

=v,—v,—8,/—=3v,+3v,+206,+6,]

3 ¥4
a413 =—2v,+2v, + 0,/ + 6,/
2 2 0, 9_2~

4= FtEt



Wx)=a,+a,x+ax’+ax

3 I \ -4 94 % 6
o =+ 8+ [ 5 03~ <000 | o, S A
3 3 1 1 2 2 0 0
vx) =v, +0x+ szxz —-13 le2 - “1*29')(2 - 762x2 - —1-3- v2x3 + Fle:" + —I—il,x:" - —17:2— x
> 5, 2 3 2 5. & 3 5 2 X
=nfl-p* +?]+92 AT AR e R

N,. N,. N;, N, — Shape functions of a beam element

v,, 0, v, .6, — Nodal displacements of a beam element



v=Nv,+NB, + Ny, + N6, (or) N6, + N5, + N0, + N,0,

N,. N,. N;, N, — Shape functions of a beam element

v,, B, v, .6, — Nodal displacements of a beam element

Where,
3 2
W= 2 v v
: I El I
Vo, X x 1 2
Nore / " 2 . : >
_ I
A’-‘"’ - 12 a 13
i
;V S — +_

&

N ,(X) -3{.

xV

- 2
L

[,

x
L

’,



Element Stiffness Matrix ( K)_4by4

Strain energy 1n an element of length dx 1s M

dU:ljagdAdx
2/1

1( M2, j
=—| —5 | y'dA |dx
2(51 [

j y°dA is the moment of inertia I
A

The total strain energy for the beam 1s given by-

L d*v/dx* =M/ EI
U= EjEl(dzv/dxz)dx
0



1 — Beam deflection

Figure: Beam Element

[ 2
El
.dx

~ 8
0

ﬂ

dx?

From nodal displacement equation,
V=ENY, + N + Ny, +ND,

(or)
v=N_§, +N_§,+ NS, + N3,

Differentiating twice on both sides.

_ 1 2 s
di2 B dx2 o)+ X 0, 2 05t 52 Oy
L&t
B = d2N| Where,
N e A" 2
N=1-—+—"
&N B &
32: 22 2x2 x3
dx N_,—x— '1— +72—
2
e d°N, 32 953
3 2 .;Vs"_' " ey
dx 2 P
dzN _YZ X3
Y dx? Y A

— =B, +B5,+B35,+B3,



d*v "
— =B8,tB8, B3+ B,

Expressing the above equation in matrix form.

d? )
;‘2’ =[B, B, B, BJA *

d*v B
P e [B] {3}

Squaring on both sides,
vaas
| dx” |
vaas

| dx? |

_[1B1{8})°

={8}* [B)' [B] {3}

2 P
U=3wawﬁmwa

U

=

!
1 soer r
~-{5) E10f[31 [B).dx

R
S8 [k (8}

18}



U=%{MIMH6}

Where,

{
[ = £ [ (81" 1B).dx
0

mzﬂf
0

m:ﬂf
0

2
BIBQ B2
B|B3 BZB3

BB, B,B,

1B, B, By B,lax

BB, BB,
BZB3 BZB4
B} BB,

2
BB, B}

dx



From shape functions. Now

B:dzN, L T 12
1 2 !Bl.dx—éfk[—z*-T dx
B I
M=+ 0% _ ff36+144x2 144x} 0
dN, —6x+6x2 0 v e Py
P 3
3 A‘;’x _16 121 ) [36x | laay? 144x7-L
s TN g geX It 3 28
dx? =
6 1 _ 36, 14487 721
B =Ft g T ar P
Similarly, _ 36 N 48 72
For, s s P B P
e 2x b = ;
[ I fBlz.dx S
dzN2 -4 6x 0 :
B.= =




Similarly solve for all the values ‘B’ in equation (3), 1.e.,
B B, .BB.BB,..BB,B;

The end matrix will be in the following form,

(12 6 -12 6]
2 |F 2 TFE R |
Bl_ Ble B|B3 BlB4 6 4 _.6 2 (12 61 _]2 61
BB, B2 BB, BB, | 1 p 1| _ 1|6l 4* -6l 2P°
— ——3-_
BB, BB, B2 BB, |-12 6 12 6| F|712-6 12 -6
3 2 3 2 2 2
BB, B,B, BB, B P F P 1 |61 27 —61 417
| g, & g0 5
LF I g 1



We have

| B2 BB, BB, BB,
2

BB, B, B,B, B,B,

BB, B,B, B BB,

BB, B,B, BB, B;

[4] =EIJ!
0

(12 6/ —12 6l ]

EIl 61 47 —6l 2P
pl-12 -6l 12 -6l

| 61 27 —61 41

[k] =




Force Vector

F, F,

! i
N P

Figure: Beam Element

FF, — Shear forces in upward direction at nodes 1,2.

M,. M, —Bending Moments in counterclockwise at node

12

[

x
3

Figure: Beam Element

Force vector for a beam element is given by.
{F}y =[K] [9]

{F} — Force vector

| M, |

{0} — Nodal displacement vector

P




F2
T E I T
is 5
S E S

Figure (2): FE Model

12 6 -12 61"

| _ EI{ 61 4P -6l 217||%]
F |  P|-12 -6l 12 -6l

M, |61 21 61 4P||6




Simple Support Roller Support ; Internal Support
n =y={ v=0 v=0

mm—“ﬁ = mmg: =0

Fixed Support Guided Support
u=v=6=0 6=0 Internal Hinge
V,‘:‘g_. N M=0
GILE Ry () SRR Iy ine ]

Figure 4.12. Typical beam boundary conditions

Guided Support

V=0
vi=0




Deflection: v
Rotation: f=—

g v
Bending moment: M =El—;

9x®

2
Shear force: V= 56; [EI %]



For the cantilever beam shown in the figure determine the nodal displacements. Construct the shear
force and bending moment diagrams. Compare the results. Given E = 210 GPa and | = 5000 cm®*.
20 kN

) 20 kN

E =210 GPa
I = 5000 cm*

2l I

|
1.5 m—4<—1.5m—,|

Figure

AOUUNOINNINNNNNNNYS



Given that.
Young’s modulus, £ =210 GPa =210 = 10° N/m’
Moment of inertia. 7= 5000 cm®* = 5000 < 10~ m*

20 kN

y 3 20 kN
4 .
/)

g» 2 » I

7
jg—l.Sm—>I-—|.5m—>|
V1 V: V3
t @ I © 4
61 6_7 ¢

P~
b

Figure (1): Discretization of Beam



Letv,. 0,.v,. 6,. v.. 6, are the nodal displacements.

The element stiffness matrix for beam element is given by,

- 5

12 6 -12 6l

_EL V61 4 -6l 217
[K] = —

I |-12 =61 12 -6l

6/ 21> -6 4%

Element-1

Stiffiness matrix for element (1) is given by.

(12 6/ 12 6l ]
Er|6l Ar -6l 21’
K = il
%] P =12 61 12 -6l
|

6l 21;2 -6l 4112



Where, I, =2/ _ _
12 6015 -12 6(1.5)

9 8 2
210x10°x5000 x10 °X2 |6(1.5) 4(1.5) —6(1.5) 2(1.5)
(1.5)° 12 615 12 —6(1.5)

6(1.5) 2(1.5) —6(1.5) 4(1.5) |

(12 9 =12 9]
9 9 -9 45

K] =

— 6
SR, Lo oo T i
9 45 -9 9|
13 9 —12 97
_ y ) v, 0,
—fgsege | 2 3 =R HS - ! : :
-12 -9 12 -9 7464 5598 —7.464 5.598 |v
9 45 -9 9

- = - | 5.598 5.598 -5.598 2.799
[K]=10".
—7.464 —5.598 7.464 -5.598

| 5.598 2.799 -5.598 5.598




Element-2
Stiffness matrix for element (2) is given by.
12 6 -12 6 '

grlel 4 —el 2
[K]= 22 2 2 2 2
2 3

£ |-12 -6 12 -6l
2 2 2
6l 200 6L 4’
2 2 2 g
Where. I, =1 _ 12 9 —12 9
12 6015 -12 6(15) 5 & b &3
(K]- 210x10°x5000x10 * 16(1.5) 4(1.5) —6(1.5) 2(1.5) | =311 x 107 B2 W
: (1.5)° 12 -6(15) 12 -6(1.5) =12 =& 12 =9
16(1.5) 2(1.5) —6(1.5) 4(1.5) | | ¥ 45 =D 9

v, 8, v, 8

2 3 3

(3732 2.799 -3.732 2.799 |

v,
[K] =107.2799 2799 -2.799 14 |6,
—-3.732 —2.799 3.732 -2.799|v

L

12799 14 2799 2.799 | ©




v 0 v, 0,

1 1 2 2
7464 5598 —7.464 5.598 |v
_ | 5598 5.598 -5.598 2.799 |6
[K,]=10". 1 v 8 v 0

~7.464 —5.598 [7.464 —5.59§|| v, 2 2 3 3

PR pu— (3732 2.799] —3.732 2.799 | v

K] =107. 2799 2.799| 2799 14 |6
- ~3.732 —2.799 3.732 —2.799| v,
2799 14 2799 2.799 | 6,

Global stiffness matrix.,

[K]=[K ]+ [K]

vl el V2 6?. v3 63
[ 7464 5598 —-7.464 5.598 0 0 v,
5.598  5.598 —5.598 2.799 0 0o |9,
[K]=107 [—7464 —5.598 [11.196 —2.799| -3.732 2799 |V,
5.598 2799 [-2.799 8397 | -2799 14 |6,
0 0  —-3.732 -279 3732 -2.79 |V,
0 0 279 14 =279 2799 |6,




The finite element equation 1s given by,

[K] {0}={F}
[ 7.464 5.598 —7.464
5508 5598 —5.598
|-7464 -5.508 11.19
107) 5508 2799 —279
0 0 —3732
|0 0 279

Applving boundary conditions.

!}:61=0;

5.598
2.799
-2.799
8.397
=2.799
1.4

0
0
—-3.732
—2.799
3.732
—2.799

¢ ]
0 &
2799 | |,
14 | |8,
—2.799 v,
2799 | |8,]

Deleteing 1, 2% row and column from the above equation,

-

10

[11.196
-2.799
—3.732

| 2.799

—2.799
8.397
=2.799
1.4

-3.732
—2.799
3.732
—-2.799

2.799 |
1.4
=2.799

2.799 |

_20x10°]
0
-20x10°
0




On solving above equation,

v, [ —0.00375m |
%2 _ ]-0.00428 rad|
V.| | -0.01232m
5,1 |-0.00642 rad

- Nodal displacement vectors.
{8} ={0 0 -0.00375 -0.00428 —0.01232 -0.00642}"



Gauss Elimination Method

mﬁe or remove variables

from ?
System of Linear Equations

a|x +'b1y+'c1z = dl)_’ Remove
asx + boy + coz = dy /t)
asx + b3y +c3z = dj Remove 4

Second Method Then f:m},/’ Z
Form augmented matrix [ A | B]
’\/ v v Vv

O v v| Vv

0O (0 v|Vv

Solution of Augmented Matrix

A is upper triangular matrix

Smeysz=d

3 r‘;mwz,r ump ”Js-ﬂppécawu.w“wnmeﬂ hod W"d"‘ fiéé‘fi"%"‘%%"z;'f% bE:
Yl . B i 'y L4 3 ‘:' . , 2 »I‘. p oAt 'l ' '_ M ,;r“"‘ .,- f

x+4y-z2=-5
x+y—-6z2=-12
Ix-y-2=4

1 4 -1}|x -5
:Wehave |1 1 -6||y|=|-12
3 -1 -1})|z 4

1 4 -1flx -5
Operate R, - R, and R, -3R,, |0 -3 -5||y|=|-T7
0 -13 2}|z 19

1 4 -1[«x] [ -5
0 -3 -5l|lyl=| -7
0 0 71/3||z| [148/3

Thus, we have z = 148/71 = 2.0845,
By=T-52=T7-104225=-34225 ie, y=-1.1408
x=-5-4y+2=-5+4(1.1408) + 2.0845 = 1.6479
Hence x = 1.6479, y = — 1.1408, z = 2.0845.

Operate R, ~ % R,




1 4 -1||x -5
tWehave |1 1 -6||y|=[-12
3 -1 -1||z 4

1 4 -1]fx] [-56
Operate R, - R, and R, - 3R,, [ -3 -5}[ =[-7]

0 -13 z

Operate R, - 1:12,, -
o o s 148/3

Thus, we have z = 148/71 = 2.0845,
3y=7-52=7-10.4225=-3.4225 ie, y=-1.1408
x=-5-4y+2=-5+4(1.1408) + 2.0845 = 1.6479

Hence x = 1.6479, y = — 1.1408, z = 2.0845.




Deleteing 1%, 2*¢ row and column from the above equation,

[11.196

~2.799
107 | —3.732
| 2.799

—=2.799
8.397
=2.799
1.4

Rounding off the values

R2=R2+R4

-3.732
—2.799
3.732
—-2.799

2.799
1.4

~2.799

2.799 |

3

1

=3

3

-4 3
-6 4
4 -3
-3 3

"'

)

2

2
3 >

Vv
3

6

4

|

_20%10°
0
—-20x%10?

0

AN

e




R3=11*R3 + 4*R1 /"

o

R4=11"R4 - 3*R1 /l

R3=9*R3 + 5*R2 [

11
0
0
3

-3 -4
9 -6
-5 0
1 -3
-3 -4
9 -6
-5 0
20 -21
-3 -4
9 -6
0 -30
20 -21

w w & W

AN




R4=9"R4 - 20*R2 4 11

R3= -R3
R4= -R4

R4=30*R4 - 69*R3

-3

-4 3
=6 4
-30 47
-69 136
~4 3
-6 4
30 -47
€9 -136
-4 3
-6 4
30 -47

0 -837

54
-5346




11 -3 -4 3115 -2
0 9 -6 4 62> = < 0 >
0 0 30 =47 | v 54
0 0 0 -837 | 64 -5346 |

On writing each equation separately one can calculate the unknowns



[K] {8}={F}

[17.464 5598 —7.464 5.598 0 0
5598 5598 —5598 2799 0 0
|=7464 —5.598 11.196 —-2.799 —3.732 279
107) 5508 2799 -2799 8397 -2799 14
0 0 —3732 -279 3732 —2.79
0 0 279 14 279 279

F=10"[-7.464 v, + 5.598 x 6,]

=107 [(7.464 = 0.00375) — (5.598 x 0.00428)]
F,=40305.6 N
M, =107 [-5.598 x v, +2.799 x 6,]
=107 [(5.598 % 0.00375) — (2.799 x 0.00428)]
=107 % 0.00901 N-m =90127.8 N-m

K=
M, |3
—-20x10?
M,
-20x10°
M

v

M2, M3 are zero
From the diagram



A 1 20N

/] Y P,=20 Fy= 20
Vs \ =)

; Y ‘ ‘

v 21 ! I ,i% B

5 b

5 '\" ) " -

7

T £y , i ol ‘
F, = 403036 kN // H =V20kN i Z - SR »
| /,////,/I/l/% FI 201N -

LA A A AV i o A A 4

Shear force dagram

M, =901278 N-m

Bending Moment Diagram

Figure (2): SF and BM diagrams

https://beamguru.com/online/beam-calculator/



Determine the maximum deflection and slope
for the simple supported beam subjected to
uniformly load ‘q’ as shown in Figure.

/'
WA A A A VY




Q. For the beam shown in figure calculate the deflection under the load for the beam.

30 kN E =20 x 10°N/em?
1=2500 cm*

Figure



Given that,
Young’s modulus of the beam material, £ =20 x 10° N/em?
Moment of inertia, 7= 2500 ¢cm® 30 kN
Point load, W =30 kN = 30000 N g

Length of each element, /, =/, = 2m = 200 cm.

2m 2m
> >l >
AV AV, AV:
10 12 @ 3
[ & @
— —A
L6> 0, 0,

1 <
Figure: Discretization of Beam

Letv, 0,. v, 0., v,, 0, are the nodal displacements.

P & Z



For element — 1

Element stiffness matrix,

Stiffness matrix for element (1) is given by,

(12 6/ 12 6l ]
6l 4 61 e
-12 61 12 -6l

6l 2lf 61 41f

El]l
[Kl] = "3
ll
.. 20x10°%2500
K =
[ 1] (200)3

[ 12 1200

12 6/ -12 6l |
B 6l 4% -6l 2

P |-12 -6l 12 -6l
61 2° —61 4%

12 1200 |
1200 160000 —1200 80000
~12 —1200 12 —1200

11200 80000 —1200 160000 |

= 6250

¥ 6, ) 0,
12 1200 12 1200
1200 160000 —1200 80000
12 -1200 12 —1200

)

11200 80000 -1200 160000

6,



For element — 2

Stiffness matrix for element (2) is given by,

E212
[K:] = B
12

K] = 6250

(12 6/ -12 6 |
2 2

6l 4> —6l 21
2 2 2 2

<19 =6l 17 =6l
2 2

6l 20° 6 4l
|2 2 % =
Vs 9, Vi 0,
12 1200 -12 1200 |
1200 160000 —1200 80000

-12 -1200 12 -1200

1200 80000 —1200 160000 |



. Thy 0, = 0, .
12 1200 -12 1200 |v,
1200 160000 —1200 80000 |6
K. ] =6250 !
%] 12 —1200 (12 —1200)(v,
leOO 80000 |—-1200 160000-62
Global Stiffness Matrix

[K]=[K]+[K)]

Yi
12

[K] = 6250 x

9[
1200

—12 -1200
1200 80000
0 0
0 0

Va

—12

[K,] =6250
9, V3
1200 0

1200 160000 —1200 80000

24
0

0

—12

1200 80000 -1200 160000_93

—-1200

0
—12

320000] —1200 80000

12

Vs

9,

Vi

1200

12
1200 160000

—12

6,

0
0
1200

—-1200

—1200

6,

12

11200 80000 —1200 160000 |

-12
—1200 80000

93
1200 |

—1200




The finite element equation is given by,

[K] {3} = {F}

o

D O

)

12 1200 |}%|_ }-30000 |

<. D <

623911200 80p00 0 320000 1200 80000 ||6.[T] 0
121200121200 | |, 0
0 3; 1200 80000 —1200 160000 | |o° 0

Applying bouﬁdary conditions:

v=H =p=10

The rows and columns related to degree of freedom 1, 2 and 5 are deleted from [K] matrix.

24 0 1200 V) —-30000
- 6250 x| 0 320000 80000 |16, = 0
1200 80000 160000 | |6, 0



On solving above equations,

24y, + 12000, =—4.8 = v, = — 48— 120093
- 7 - 24
93
320000('7)2 - 80000(7')3 =0)=> 62= = 3

1200v, + 800008, + 1600000, = 0

—4.8-12000,
24

— 240 — 600006, — 200000, + 1600000, = 0

+ 1600000, = 0

_93
+ 80000 [ "

1200 [

:.8,=0.003
—4.8-1200(0.003 )
V= 24 =—-0.35cm

6,= =22~ 000075 rad

(2]

The nodal displacement vector is given by,

{8}=[0 0 —035cm -0.00075rad 0 0.003 cm]”



Gravity loading

Gravity loading is a typical body force and is given by (pg) per unit volume or (pAg) per unit
length, where p is the mass density of the material. The equivalent nodal force vector for the
distributed body force can be obtained as

L
Wq:f q‘VdS
(2] "
) - L. . ’N2
U= [V ) dv = [[INT (poddx = (pag} 1 @120
17112
[ g, L2 |
B gy 12
(= | IV g dx = | »
GoL/2
—go L'/12)




PEPRRRRRRRRAL, =

[
|‘é\,{9"w |

ql/2 ql/2

qLA2/12 qLA2/12



L

EENNYNNEYIRY w w
[« L =I %Lz—z :%:
/Cl
B Y] 1 {}




Q. For the beam and loading shown in the figure
determine,

(i) The slopes at2and 3

(if) The vertical deflection at the midpoint of
the distributed load.
12 kKN/m

g H\Vt‘#t“t**
A L
I(—lm >I< lm—>|

E =200 GPa I1=4 % 106 mm*




12 kN/m

VY VY VYV VY Y

B S
|<— Im >|< Im —>|
E =200 GPa I=4 % 10 mm*
6000N 6000 N
1000 N-m
1000 N-m 1
2 3

Figure



Given that.
Young’s modulus. E =200 GPa=200 = 10° N/m?
Moment of inertia, / =4 * 10 mm*=4 = 10° m*
Length of elements. /, =/,=1m F 1= F
Let, v, 0, v, 0,, v, 6, are the nodal displacements. QAMI UM Q}I\/I

Nodal displacement vector {&} is given as, T T T
\‘?1? el ‘ e v

3:0,
{0} = [vl 6, v, 0, v 93]

Figure (1): Discretization of Beam



For Element (1)

Stiffness matrix,

200%10° x4x107°

[K1] = 13
vy 1
(12 6
Kl=swi| ® 4
~12 =6
| 6 2

(12 6 -12
6 4 -6
-12 -6 12
6 2 -6
v, 9

-12 6 |v,
-6 2|8,
2 -6{v
-6 49,

Element stiffness matrix is given by,

y—

-

12 6 -12
6/ 41> -6l
12 -6l 12
6l 20> -6l




For Element (2)

Stiffness matrix,

200%10° x4x107°
[Kz]z 2
1
v, 62
12 6
|6 4
[K]=8x10° . .
K

[ 12
6
=12

4
-6

—-12
-6
12
-6

Element stiffness matrix is given by,

y—

12 6 -12 6l

6/ 4> -6 2
-12 -6l 12 -6l
| 61 20 -6l 4%



Then, the global stiffness matrix ‘K" 1s given by.
[K]=[K]+[K)]

12 6 =12 6 0 0]
6 4 -6 2 0 0
w1 —12 -6 (12+12) (-6+6) —12 6
6 2 (-6+6) (4+4) -6 2
0 0 -12 -6 12 -6
0 0 6 3 =g &
vi 8 vy 8, vy 6y

(12 6 -12 6 0 0
6 4 -6 2 0 0
K]=8x10° [-12 -6 24 0 -12 6 |%
6 2 0 8 -6 2
0 0 —12 -6 12 —6|v,
0 0 6 2 -6 4lp,




Finite element equation is given by,

[K] {8} = {F}
(12 6 12 6 0 0]y F+E, Following are due to UDL
6 4 6 2 0 01}]6 M+ M,,
8% 10° -12 6 24 0 -12 6||v|_| H+F, | F,. F,, F,,— Nodal forces
6.2 0 8 -6 2] Moty M, ., M, ., M. .— Nodal bending moments
0 0 -12 -6 12 —6||w E+FE, 12 Y Mg g
0 0 6 2 -6 4_L93J ~M3+M3d‘




]
~—
]
]
[~
]
]
-

Applying the boundary conditions,
I(— I m )|< Im —>|
E =200 GPa 1=4x% 105mm* ‘ v,=0,6,=0,v,=0,v,=0,F,=0,M,=0,
F,,=—6000 N, M, ,=—1000 N-m, F,,=—6000 N,
M,,=+1000 N-m, M, =0, M, =0
6000N 6000N
1000 N-m
1 X1000N-m Y 3 Wi 12000 X1
Fy=Fy=— =—5— =6000N
2 3
_ wIF 1200017
Figure My=M,= 75 = B = 1000 N-m



12 6 -126 0 0}l F,
6 4 6 2 0 0]l8 M,
axio|-12 6 24 0 12 6|jw|_]F —6000|
6 2 0 8 —6 216, 1000
0 0 —12 -6 12 —6|[v| |F—6000
0 0 6 2 —6 4]i6, 1000
8 2]/6,] [-1000
5 2| _
sxld [2 4]93} {1000}
8 x 10°[86, + 26,] =-1000 On solving the above equations,
8 x 10°[26, +46,] = 1000 6,=—2.679 x 10~ rad

0, =4.464 x 10~ rad
Nodal displacement vector,

_ T
Bl=lo 0 0 —2.679x10% 0 4.464x107]



Vertical Deflection at the Midpoint of the Distributed
Load

Consider element (2)

W=12KN'm For a beam, element, the vertical deflection is given by,
V=Nyv,+NO +Nyv, +N0 .. (1)
Where,
N,, N,, N;, N, — Shape functions
i Consider element (2) as separate element and mark as
l‘ ’l node 1 and 2 as shown below,
: L 95m |
Figure (3): Element (2) I 1

Figure (4)



V= 0
6,=-2.679 x 10~ rad (2 3
o R
\
62= 4.464 x 10~ rad
(—(0.5¢ (0.5) -
=% ](4.464 x107%)
Ny, =0 \ 1
, 5 A )
: NB,=—558x% 10"
N8, = x_ﬁ+_x2_9 o
< 1 l |
' 2(0.57% (0.5¢ .
= |05 ](—2.679 x107")

V=Ny, + N6 + Ny, +N§B,
N6, =—3.348 x 107
V=0-3.348 x 105+ 0—5.58 x 10~}

Ny, =0 -
V=-8928 x 107 m



w kN/m

bbodbdydbbddblody
Ay b
< L 8
GT; ® /T\ ® /T;

8, \49: \463

Force vector,

{Fy=

[ wi

4
w2
48

+R]

B

\_




Determine the deflection in the beam, loaded as
shown in figure, at the mid-span and at a length

of 0.5 m from left support. Determine also the
reactions at the fixed ends.

E =200 GPa.l, =20 x 10-5m*. 1, =10 x 10-5 m*.
P=5000N

l g = 1000 N/m

| ;

1

AR R Y

| 5.2. A three-span beam is shown in Fig. P5.2. Determine the deflection curve of the beam and
«— 1 M —>le— 1 M —>! evaluate the reactions at the supports.

AALAANAA R ALY

4000 1b
1500 Ib/ft
N i,
S S P S
| 7 7 7.
| 5 ft | 5 ft i 8 ft 6 ft




2. Determine the deflection in the beam, loaded as
shown in figure, at the mid-span and at a length

of 0.5 m from left support. Determine also the
reactions at the fixed ends.

E=200GPa.l, =20 x10-°m* |,=10 x 10-° m*.

P (N) Q(N/m)




Unit 3
Plane Problems (Two Dimensional Problems)

y
A
5 2 3 . 2 3
1 4
5 1 4 3 u;
3 = : 5 oS
(1) Triangle (11) Rectangle (iii) Quadrilateral ~ (1v) Parallelogram

Figure: Two Dimensional Elements

> X

Figure (1): Constant Strain Triangle (CST)



Displacement vector

u=[u v]

Stress and strains are,

o=[o, 0, T_‘.__\,]T

A € = [e €, 'Y.ry]T

t = thickness at (x. y)
fe- f, = body force components
per unit volume at (x, y)
> X

FIGURE 6.1 Two-dimensional problem.

f=[f, f,' T=[T, T,]' and dV =tdA



Plane (2-D) Problems
e Plane stress:

c.=7,=T, =0 (. #0) (1)

A thin planar structure with constant thickness and
loading within the plane of the structure (xy-plane).

bV Ay

e Plane strain:
& =Y. =Ya=0 (0. #0) (2)

A long structure with a uniform cross section and
transverse loading along its length (z-direction).

A " A ]'

=




Stress-Strain-Temperature (Constitutive) Relations
For clastic and isotropic matenals, we have,

£, VE —-viE 0 |e Y-
£ p=|-v/E IE 0 o, r+i¢, (3)
Y 0 0 VG, | [V

where &, is the iitial strain, £ the Young's modulus, v the
Poisson’s ratio and & the shear modulus. Note that,

E

G=
T a1+w)

(4)

which means that there are only two independent materials
constants for homogencous and isoropic matenals,

We can also express stresses in tenmns of strains by solving
the above equation,

v

a, I v 0 e, g,

E
a, e v I 0 F ot el & PN (5)
T, 0O 0 (I-v/2)17. ) o



The above relations arc valid for plane stress case. For
Plane strain case, we need to replace the material constants in
the sbove equations i the following fashion,

E
E— T
v—>L (6}
I—v
GG
For example, the stress is related w strain by
o, 1-v v 0 e, £
E
a, .m Vv l-v 0 £ 1~16,
rn - 0 o ‘l -21') 'Xz 7.. 7.... .

in the plane sirain case,

[nitial straing due 10 temperature ¢change (thermal loading )
is given by,

Co aAT
£, = {aAT (7)
0 [

where & is the coefficient of thenmal expansion, AT the change
of temperature. Note that if the structure 1s free to deform under
thermal loading, there will be no (clastic) stresses in the
structure,



o=DE€ i L. 0

Plane stress: D= g v 1 0

_[a_ua_v(%+a_v)]T i i S
€ dx dy \dy ox l-v v 0
Plane strain: D= i A
' (1+v)(1-2v) 0 0 [=2y
2

Strain and Displacement Relations
For small strains and small rotations, we have,

e a 4 ov % at v
AT i W S Sis Sy
& T & Y & &
In matrix form,
£, 2l é 0
u
g r=| 0 2l { }, (8)
‘ %
4 el é/ox

7oy

From this relation, we know that the strains (and thus
stresses) are one order lower than the displacements, if the
displacements are represented by polynomials.



FIGURE 6.2 Finite element discretization.



Constant term (1) —

Linear terms (2) -

Quadratic terms (6) —

Cubic terms (10) —

Xy > 4

Pascal triangle

boc

ta

In order to develop a polynomial with three terms,
Expression to be selected 1s,
u=a,+ax+ay
In order to develop a polynomial with four terms,
Expression to be selected 15,
u=a +tax+ay+axy
In order to develop a polynomial with six terms,
Expression to be selected 1s,

u=a,+ax+ay+ax’+axy+a)’



LINEAR Displacement TRIANGLE or (CST)
Alinear triangle is a plane triangle whose field quantity varies linearly with Cartesian coordinates x and y. In stress analysis, a linear

displacement field produces a constant strain field, so the element may be called a constant-strain triangle (CST).

Constant Strain Triangle (CST): It consists of three nodes and six unknown nodal displacements. Its field varies linearly

with coordinates x and y, giving rise to a linear displacement and a constant strain field.
Let. at a particular node,
u — Displacement along x-axis
v — Displacement along y-axis. A
Then, components of displacement for CST element are given by,
u=a,+ax+ay

v=a,tax+ay

X X}r _\r-’

> X

Figure (1): Constant Strain Triangle (CST)



U=a, ~ax + a.y

v=a,tax+ay

a,
u=|[1 x yKa,
as

_u

Yo = 5 ox

7xy = a3+ as

aq
£ =a_u £ =Qg =a-—l-‘+a—l-)
T ox Y dy Yoy dy odx
o "
5, oz °
o ||u
£ = B
i ¥ {v}
Yxy 3 9
|0y Ox ]




QUADRATIC Displacement TRIANGLE or (LST) displacement field varies quadratically

9

Linear Strain Triangle ( LST): It consists of three primary nodes and three secondary nodes at the mid-points of the sides
of the triangle. Each node possess two degrees of freedom (DOF). Therefore each element has 12 DOF. Displacement

function for this element is a quadratic equation and strain field varies linearly.

Components of displacement for LST element are given by,

u=a,+ax+ay+ax’+axy+ay’

>

V=a.wax -~ ay a:UX‘ T a, Xy — a,,-

dx Y 7 9y

> X

X’ X’y Xy’ ¥ Figure (2): Linear Strain Triangle (LST)



CST element: (constant strains, linear displacements)

shape functions V,, V, and V.. Variation of these shape functions
occurs linearly in CST element. These shape functions have a
value of unity at their corresponding nodes and reduce to the
value of zero at other nodes. Only two of the shape functions
are independent and are represented by & and 1 in natural

coordinate system.

N =t N,=m,N,=1-&-n

1 3

N, +N,+ N, =1

In two dimensional problem, the x-y coordinates are

represented by € and 1) coordinates in natural coordinate system.

0

alpha

e

epsilon

L

iota

\Y

nu

P

rho

¢

phi

beta

2e1a

gamma

eta

lambda

omicron

tau

psi

n

delta

-n)

theta

a 2F

pi

C

upsilon

omega



Fig. (a) 1.e, at node-1.

Ni=1
N=N,=0
Fig- (0) A node-2,
N1
N,=N,=0
Fig- (©) A node-3,
N~
N=N, =1

FIGURE 6.4 Shape functions.



The shape functions can be physically represented by area coordinates. A point
(x, y) in a triangle divides it into three areas, A, A,, and A;, as shown in Fig. 6.5. The
shape functions N,. N,, and N; are precisely represented by
sl il e 6.11
where A is the area of the element. Clearly, N, + N, + N, = 1 at all points inside the
triangle.

oy
1l
-



The displacements inside the element are now written using the shape functions
and the_nodal values of the unknown displacement field.

The displacements can be written as,

u=N u+Nu+N,u, \

This is in the form of.
u = NS
v =N;v, +N,v, + N v, Where,

MN10N20N3O
- O M 0 Ny 0 M5

>l

ll—lvl

A

(o]
Il




Isoparametric Representation
It is possible to represent the coordinates (x. y) of

any point ‘P’ within the linear triangular element in terms
of nodal coordinates by employing the same shape functions
used to represent displacements # and v. Such a method of

representation is known as ‘isoparametric representation °.
Thus, coordinates (x, ) of point ‘P’,
165 ¥=N-% ENX TN
=Ex X (1 —E=0)x,
=z ST =N TR
L X=x38txntx
y=Ny, +N,y,+ Ny,

S— e . | . £ [, .

=cy, Ty td-c-n)y,

==y}t =ity

Y= &+ ynnty




X = lel + Nzxz 3= N3x3
y = Ny; + Npy;, + Nays

X = x;36 + xp3m + x5
Yy = yi3€ + yun + y;

Example 6.1

Evaluate the shape functions N,, N,, and Nj; at the interior point P for the triangular
element shown in Fig. E6.1.

),‘
1 3(4.7)

2(7.3.5)

1(1.5,2)

» X

FIGURE E6.1 Examples 6.1 and 6.2.



x = Nix; + Noxy + Nix; N =t 3(4.7)
y = Ny + Ny, + Nays N, =n

3.85 = 1.5N, + 7N, + 4N, j

4.8 = 2N, + 3.5N, + 7N, 2 (7,3.5)

385 = =256 +3n+ 4
48 = —=5¢ =359+ 7

1(1.5,2)

2.5¢ — 3n = 0.15 Solving the equations, we obtain ¢ = 0.3 andn = 0.2,
56 + 35 =22
N,=03 N,=02 N;=05



Q. Estimate the shape functions of a triangular
element at the point P(22, 44) of a CST with the
coordinates 1(0, 0), 2(46, 8) and 3(18, 62). All
dimensions are in mm.

Ans: N1=0.11, N2=0.21, N3=0.68



The displacements can be written as,

u =Nl ul+]\/2uz+N3 u,

v =Nl vl+N2v2+N3v3

Similarly we can write the coordinates:

X = lel + Nz.xz - = N3X3
y = Ny, + Nyy, + N3y

g

Figure

= X3 + Xpm + X3

Vi€ T Yosm + 3

similarly
u

U3 +uym + Uy
V= Vg T Vigal) T ¥y



(Recall the strains definitions )

Au _ Av
= ax g &= &y Av
A“ r- l-—------—-——-.l-.*__..
Ax : Ax A
l
|
Ay : Ay
:
I
I
I
anJ

(a) (b)

_Au Av
.yx'y"z;"'&
o Au
e
e I
i Ax !
| |
Au :' l,
A_y -~ f !
I |
A}' A_(_} I Arv
e
_} *
(c)

Figure 3.1-1. An infinitesimal rectangle, subjected to (a) x-direction normal strain, (b) y-direction

normal strain, and (c) shear strain.

_ du Bv
ay ox



:In fluid mechanics, velocity V=ui+ v j+wk

The velocity of a fluid is not only a function of time but also of space:

u = f(x,y2,0)
By the chain rule of differentiation,

du du auax auay du 0z
dt ot ax ot ay ot az ot

Using the chain rule for partial derivatives of u, (u is the x- displacement of nodes)

ou  dudx  Jdudy

+
0é dx & Ay dé
ou dudx  oudy
+

dn  dxdn  dydn




du _ dudx o du dy
d¢é  ax9&  dyd€
du _ dudx 4 ou dy
dn dxdn dydnm

which can be written in matrix notation as

4 \ =7 s
du dx dy Ju
; o0& - o0& o0& dax :
du dx dy Jdu
b | dn dn || 9y |
J (2 * 2) square matrix is denoted as

the Jacobian of the transformation, J:



du

a&
du

<Py

0x
0§
dx

[xlzs )’13]
X23 Y23
’au’

ox

D T —
di

| 0¥ |

X136 + XM + x5
Yiz€ T Yasm t+ ¥;

p

JK




where J™! is the inverse of the Jacobian J, given by X23 Y23

Ji = 1 [)’23 _}’13}
dClJ —X>3 X13

detJ = x;3 ¥ — X3 V13

From the knowledge of the area of the triangle, it can be seen that the magnitude of det J
is twice the area of the triangle

|a b

A= %Idet J| When Matrix A = 1 o
41 = 1 |d =b
ad —bcl-c a




Area of triangle,

1 x y
4 == 1% )
| X3 W3

A(x1,y1)

B (x2,y2) C(x3,y3)

Area of A = %{X1(yz-Y3)+X2(Y3‘V1)+X3(V1-Y2)}




Example 6.2
Determine the Jacobian of the transformation J for the triangular element shown in
Fig. E6.1.

3(4.7)

2(7,3.5)

Solution We have

J - x13 yl3 . _2.5 —5.0
X23 Va3 30 —35

Thus, det J = 23.75 units. This is twice the area of the triangle.

1(15,2)



r’ﬂ
ax
ou

4

ay

Replacing u by the displacement v, we get a similar expression

J7K

du
a€

du

[ 9 |

4 3\ 4

Ju ou
0x o 1 : y”ag
au detJ du
il B e
[ 9Y ) | €
( 3 4

v v
ax {_ 1 LT
v detJ v
oy oo
3y ) | ¢

S 5

+ X133 -
an

av\

an

Jv
+ b 7 P

on )

u=upé +uym+ u;
V=V3E+ Vun + v;




Using the strain—displacement relations

fai )
0x
v
& =4 — )
ay
ou Jdv
( 9y ox )
1 Yo3(u1-u3 ) — y;3( u2-u3 )

—Xp3( v1-v3 ) + xy3( v2-v3 )

~ detJ
—X53( u1-u3 ) + X13( u2-u3 ) + yr3( v1-v3 ) — y;3( v2-v3)

we can write y3; = —yizand y, = yi3 — Y3



’au 1
4 A
% 1 Ya3u1l + y3qu2 + y;,uld
v
PYREY iasia y = S Xaovd + Xingg T X5qv3 2
< oy detd 2 13v2 21
aH. ( X32u1 + Yo3vl + Xj3u2 + y31v2 + Xp1u3 + yiov3 )
( 9y ox (ut |
€ = Bq =B U vi
u2
U= < vz q
B = u3
0 0 0
1 Y23 Y31 Y12 \ v3d First row of B matrix
B= detJ 0 X32 O x13 0 le uy uy uy
123 231 312
| X32 Y23 X133 Y31 X221 Y12

where B is a (3 X 6) element strain—displacement matrix relating the three strains to
the six nodal displacements and is given by

o=D €



Example 6.3

Find the strain—nodal displacement matrices B® for the elements shown in Fig. E6.3. Use
local numbers given at the corners.

3]
Il
[y

A

Y

3 in.

FIGURE E6.3



Solution We have

Remember,
y23=y2 -ys3,
1 y2. 0 ys3 0 y;» O x13=x1-x3
b= T X33 0 x3 0 Xy
X32 Y23 X13 Y1 X1 iz Taking origin at 1
; ; x1,y1=0,0
det J is obtained from x;3y,5 — X395 = (3)(2) — (3)(0) = 6.  x2,y2=0,2
x3,y3=-3,0
1 2 0 B 6 =2 9
= 0 —3 0 3 0 O



Potential Energy Approach

General expression for total potential energy in an

elastically loaded structure is.

3 5 )
s R e T £14., . I p
T= 2./0 ed) —j u' fdv - /u TdA - E,— ui P
g

o

% 1

~N

TPE (TT) = Strain Energy + External Work done

o=D € /

For plane problems,

i T .
= 5/ €' DetdA — /qutdA - /uTTtdL’ - Eu;rP,-
A L ;

A




¢ T .
L= 5/ €' DetdA — /qutdA — /uTTtd{f - Zu;rP,-
A 7 & ]

A

1 = Z%[éTDetdA = 2 [qutdA = /LuTTzde - IEu,-TP,-

n= %y~ % / u"FdA — / u"Trde — S ulP,
e e e ) i

where U, = % fe e'DetdA is the element strain energy.

-
= /eTDetdA e =Bq =BU

q"B"DBq! dA

Il
N = N
. &



Element Stiffness, Ke

i ¥
U, = E/GTDEIdA

Lo =
=3 /qTBrDBqtdA

Taking the element thickness (te) as constant over the element and
remembering that all terms in the D and B matrices are constants, we get

1 »

U, = EqTBTDBI(,</dA>q
1 T T

U, = 5q".AB'DBq

[.dA = A_ where A, is the area of the element.

1 where k° is the element stiffness matrix given by

U, s T Tke
¢~ p 1% k’ = 1, A B'DB



1 T
= —q'k*
U, 51 kq

1
U= 5a'kq = %QTKQ =l U'KkU

Force Terms

The body force term [,u'frdA

/qutdA =1, / (uf, + vf,) dA

Using the interpolation relations

Substitute, ==
u Nl U, +N2 u:,'+N3 U,

v =Nl vl+N2v2+N3v3



/qutdA = u (tefY/NldA> L (te,g,/Nl dA)
+U2 (t(,fx/deA> +v2(teﬁ,/N2dA)
3( ¢ V3 N-dA ! /]
oo vas) ol [) [yt

1 1
/quldA - qTfe ZNldA = gAeh = gAe

e

[.N,dA = [[N;dA = 1/3A.,.
t,A

F="% & & & & &




Traction force vector

€1

6

t
| o7, + T, 2T +T, T +27, T},1+2Ty2]T

= %/ €' DerdA — /qutdA - /uTTtd€ - Eu;-rP,-
A L 7

A

Il = %QTKQ - Q'f

KQ=F (Or) KU=F



Q. Assuming plane stress condition, evaluate
stiffness matrix for the element shown in figure.
Assume E = 200 GPa, Poisson’s ratio 0.3.

(0, 1)

3

2 >(2,1)

1

(0,-1)

Coordinates are in mm Figure



A = idet
Q. Assuming plane stress condition, evaluate 2' J|

stiffness matrix for the element shown in figure. J = X13 Y13
Assume E = 200 GPa, Poisson’s ratio 0.3.

X23 Y23
(0, 1) R 0 ysui 0 yi, O
- B = em— 0 %, 0 x5 0 x5y
X32 Y23 X13 Y31 X211 Y12
> (2.1) E 1 v O
Plane stress: D= +—— v 1 0
L=Y'10 0 L
1
g 1-v v 0
W=t in: = ve 1=y 0
. Plane strain: D A+ -2) . . T
Coordinates are in mm Figure 2

k¢ is the element stiffness matrix given by

k‘ =, A B"DB




Given that.

Young’s modulus, £ =200 GPa =200 x 10° N/mm?*

Assume.

Thickness. /=1 mm
Poisson’s ratio. 1t = 0.3

0. 9 And, given coordinate are in mm.
H

3

2 >(2,1)

1

(0,-1)
Global coordinates of .

Node-1, (x,. v;) =(0,-1)
Node-2, (x,.,) =(2.0)
Node-3. (x,.v,) =(0. 1)



Stiffness matrix for linear triangular element,

[K]=[B]" [D] [B] A.t

Stress-strain relationship matrix. considering plane stress condition.

tp o (1 03 0
1y o 12K T o0t |, 1203
’ 2
1 03 0
[D] =219.78 x 1¢° 03 1 0
0 0 035



X13 Y13
X23 Ya3

detJ = xy3 23 — X3 V13

J =

A = j|det J|

_Y23 0
0 x3

| X372 Y23

1
B =
detJ

Y31
0

X13

0 yi2

X13
Y31

0
X21

YS =%
‘('2 =K
X=X
V, =¥
Y, —)
Yi—=¥



1 B 2]
-1 0o20-10 0 -2 -1
[B]= {0 200 0 2 [B],zlzoo
2 -3 02 2 40 0 2
-1 0 2
5 2 3
Stiffness matrix for linear triangular element,
[K]=[B)" [D] [B] A.t
1 6 -2
. 1 03 0 -1 020-10
1{2 0 0 . 1
[K]:Z 0 0 2 x219.78x10°10.3 1 0 |X a4 0 200 0 2|fx2x1
10 2 0 0 035 2 -102 2 -1
0 2 -1




<1 0 -2
2_02_01 1 03 O01[-1 0 20-10
=27472.5 d W 9 031 00 2000 2
16 o 0 0 03542 -102 2 -1
0 2 -1
=] =03 —0.7
_(2)'6 82 _%35 10 2 0 -10
=27472.5 ' 0 20 0 0 2
0 0 g 3.0 F 3 i
1 63 a7 [5=" K
06 2 —0.35
(24 13 2 14 -04 0.1 |
13 435 —12 —07 —0.F —365
=3 =2 4 O =2 13
— 34
LEI=2 ¥ —14 -07 0 14 14 -07
04 -01 2 14 24 -3
| 6.1 <365 1.2 —07 =13 435 |




Q. It is required to determine the transverse displacement and the stresses induced in the plate shown in
figure using a one-element idealization. Determine the constitutive matrix and the strain-displacement
matrix and hence the stiffness matrix and the load vector. Assume E =205 GPa, 1 =0.33, and t=10 mm.

P=1000 N
20 mm



Given that.
Young’s modulus, £ =205 GPa =205 x 10° N/mm?
Poisson’s ratio, |t = 0.33
Thickness. + = 10 mm
Coordinates of,
Node-1. (x,.y,) = (0. 0)
Node-2. (x,. y,) = (50. 20)
Node-3. (x,, »,) = (0. 40)

Transverse Displacement

Nodal Displacement can be obtained by using the relation,

[K] {3} = {F}



Stiffness matrix for linear triangular element.

[K]=[B]" [D] [B] 4.1

Constitutive matrix or stress-strain matrix,

[D] =

_205%10°
1-0.33*

2

l—p”

]
pl 0
-

00 5

1 033
033 1

0 0

Area of triangle,

0

0
1-0.33

2

X
g [ 13 )’13]
X23 Y23
detJ = xy3 ¥ — X3 V13
1 x » 1
L% y| ©F A= §|det J|
| X3 Wi 1
= 5[2000]
1 033 0
[D]=230.052 x 10°|0.33 1 0
0 0 0.335




1 23 0 y5u 0 y;, O
B = detJ 0 X35 0 X13 0 X721 .}"3_.}"1=40_0=4O
| X32 Y23 X13 Y31 X211 Y12 ¥ =3»=0-20=-20
Then, Xy =35 =0—30=—=30
. [20 0400 20 0 %, —x,=0-0=0
[B] = 0500 0 0 50 B B
21000 50 20 0 40 50 20| %% =30-0=50
20 0 40 0 20 0O
[B]=--27106 0500 0 0 50 £0g, | ‘
-50 =20 0 40 50 -20 20 0 =50
0 -50 -20
1 |40 0 O
g . B
BI'= %000l 0 0 40
20 0 50
0 50 20




(K]

= 575.13

2000

20 0 -50
0 -50 -S0
40 0 0
0 0 40
20 0 50

0 50 —20

-20 0 40 0O

i
2000

20 0 -50
0 -50 -20
40 0 0
0 0 40
20 0 50
0 50 20

1

x230.052x10%|0.33

0
-50 20 0 40 50 -20

l

1

033 1
0 0.335)|-50 -20 0 40 50

0

0

=50 0 0 O

033 0

0

-20 0 40 0O

0

033 0
1 0
0 0.335

=20 0

50 |x1000 =10

50 0 0 0

20 0

50
-20

|



20 0 -50]

400 ‘30 -gow 20 —165 40 0 —20 165

=s71513 0 o ol 66 50 132 0 —66 50
0 o0 soll “1675 —67 0 1341675 —67
0 50 —20

(12375 665 —800 —670 —437.5 5 |
665 2634 660 —268 -5 2366
-800 —-660 1600 0 -800 660
-670 —-268 0 536 670 268
-4375 -5 —-800 670 12375 —-665
5 2366 660 —268 —665 —2634

[K] = 575.13

Verification: Evaluated stiffness matrix is said to be correct 1f 1t satisfies two conditions such as it should be symmetric
and sum of values of any row or column should be zero. As these conditions are satisfied by obtained stiffness matrix, it
1s said to be correct.



Figure

Figure

-
-




(12375 665 —800 —670 —437.5
665 2634 -—-660 —268 -5
—-800 —660 1600 0 — 800
575.13
-0670 —-268 0 536 670
—-4375 -5 —-800 670 12375
5 — 2366 660 —268 —0665

Applying boundary conditions.

“1"‘1“”3"‘3”0

1600 O

0 535“33}:{—1%00}

On writing above matrix in equation form.

575.13[

575.13 x 1600 u, =0

u, =0 mm

5
— 2366
660
— 268
— 065

2364




Also.

575.13 x 536 v, =-1000

—1000

1v

2~ 575.13x536
v, =—3.244 > 10° mm

Stresses Induced in the plate

Stress vector for linear triangular element.

o} =[D] [B] {5}

1
{c} =230.052 x 10°|0.33
0

033 0
1 0
0 0.335

-
2000

-20 0 40 0 20 O

0O 50 0 0 O
50 =20 0 40 50

50 [x1074
-20

(‘—ve’ sign indicates downward displacement)




1

=0.115]0.33

=0.115

0

0
0
-20 —-165 40 0 20 16.5 0
-66 50 132 0 -6.6 50 19
—-16.75 —-6.7 0 134 16.75 —6.7 O
0
0
0
—43.47

0.33
1

0
0

-20 0 40 0 =20 O
0 50 0 0 0O 50

0 033550 20 0 40 50 -20

<




Gy 0 N/ mm2
Ty |—4.999

Therefore,
Normal stress in x — direction, 6, = 0 N/mm’
Normal stress in ¥ — direction, 6, = 0 N/mm*

Shear stress in x-y plane. T_ =—4.999 N/mm’




4 u, 3 v,
4Nem - (4
1 ®
6cm s 6 cm
! ¥ ¥
8cm—> i % S om Tk
< >
Figure: Nodal Displacements
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Figure: Nodal Forces



Axisymmetric Solids Subjected to Axisymmetric Loading

The problem is said to be axisymmetric type. if the object has an axis of symmetry and parameters such as geometry

boundary conditions, loading and materials are symmetric about this axis. Axisymmetric solids are also known as solids of
revolutions. Analysis of such problems is termed as axisymmetric analysis.

Z 0= o w] z
T=[7T,. 1]
' ' =z [.'f' 'r.],
_— il T p o lll"P:]] ‘
.\ _ P dstributed P
' ae N
A A el on circle | G
4 \
A £
o2y | " Revolving
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Mlmx Figure (3): Hollow Cylinder Subjected to Internal Pressure
Figure {1): Press Fit of Ring on a Rigid Shaft



Belleville (Disk) spring

~

Figure (2)

[ My
c‘,_:"U




coordinate system are 7. 0. z and u. v, w are their respective
displacement functions.
Strain occurring in the element,

8"

In axisymmetric problem. parameters such as surface {e} = - %9 :
loading and geometry are independent of the circumferential “z
direction ‘0. Thereby. displacement in circumferential direction Yz,

‘v will be zero. Thus, only displacements corresponding to
direction ‘7’ and ‘' remains. ou |
ie.u=f(r.z) or
y=0 t
”
w=/.) =1 . |
oz
u ¥ aw
dz  or




0"
o} =1o.

ATrz
Where,

o, —Radial stress
¢, — Circumferential or tangential stress
¢, — Longitudinal or axial stress
T_— Shear stress.
Using Hooke’s law, for stress-strain relationship.,
{o} =[D] {&}
Where,

[D] — Stress— strain relationship matrix.

Oy E

6, (] + p.)(l—Zp.)

{c} =[Dlis}

o L
o I-p
pou
0 0
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-
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—— - -

-

Figure

Axisymmetric element:

[D] =

Plane stress:

Plane strain;

(1+p)(-2p)| * *
0 0




Q.. Calculate the stiffness matrix for the axisymmetric element
3 (20.30) Shown in the figure

Given that,

Coordinates of.

1(10,10) 2 (30,10)

> X Node-1. (r,.z,) =(10. 10)
Figure Node-2, (r,, =,) = (30, 10)
Node-3, (r,. z,) = (20, 30)

Assume. given coordinates are in mm.



Constitutive Matrix

Assume,

Young’'s modulus, £ =2 x 10° N/mm*

Poisson’s ratio. it = 0.3

Constitutive matrix or stress-strain relationship matrix is given by,

)

Pl = (1+w(1-2p)

I pp
wol-pop
poop Ip

12
0 0 0 [—“}

[D] = 384X%10°

0
0
0

2
7 3 3 0]
3730
3370

00 0 2

2X%10°

T (1+03)(1-0.6)

1-03 03 03
03 1-03 0.3
03 03 1-03
0 0

|

0

0

0
1-0.6

|




Higher Order elements U=a,+ax+ay+ax+axy+ay?

3 u=a, ~ax+a) v=a, +ax+ay+a C+axy+ag)t

6 5
&
1 2 4
(a) Linear Element (n = 1) (b) Non-linear Quadratic Element
Figure(1): Single Order Element Figure(2): Higher Order Element

If the order of interpolation polynomial of an element 1s two or more than two such an element 1s called lugher order element.
They are complex or multiplex elements. whose order 1s greater than one. These elements consist both primary as well as secondary
nodes. Primary nodes include corner nodes while secondary nodes include miernal or mid-point nodes.



1D Elements
Line Element

2D Elements
Surface Element

3D Elements

Volume element

Element Name

Element Shape
First Order Second Order

Spring, bamper
Beam, Truss

Shell, Plane2D

Hexahedral

Tetrahedral



Isoparametric Element
If the shape or geometry and field displacement vanables of the elements are described by the same shape functions of the
same order. then the elements are known as isoparametric elements. In isoparametric elements, the number of nodes for defining

both geometry and displacements are equal (7 =).

Figure: Isoparametric Element

s —» Nodes for defining displacements
] — Nodes for defining geometry

Two dimensional and three dimensional elasticity problems can be solved using the isoparametric elements.

The displacements can be written as,
Similarly we can write the geometric coordinates:

X = lel ST Nzxz 5 = N3x3
v =N1 V1+N2V2+MV3 == Nl.yl + Nz)’z + N3y3

u =Nl ztl+]\72142+N3 u,



Significance of Jacobian Transformation

1.

o

A Jacobian transformation gives the relation between the
derivatives in the global and local coordinate systems.

It evaluates the deviation of given element from the
standard element.

It 1s used to compute the strain displacement matrix.



Most of the problems for which i1soparametric elements are emploved involves curved boundaries. The finite elements
of such problems involves curved sides. These curve sided actual elements are approximated into sunple shapes possessing flat
surfaces or straight edges. Triangular and quadnlateral elements are the mostly used 1soparametric elements.

[y

Triangular Elements

(X3, ¥3)

1
(X45 ¥4 X2 ¥2)

(0, 0)

> X

Figure(1): Two Dimensional Triangular Element

The actual finite triangular element with curved sides. represented in global coordinate system is transformed into straight
edged triangular element. represented in natural coordinate system.



2. Quadrilateral Elements

A
Ya
(X ' Y 4
p? 3](X3: ¥3) (1, 1) ?1,1)
1 0,0 -> £
,
(x4, ¥4) 5%z, ¥7) ) 3
(0, 0) = (-1, 1) “, -1)

Figure(2): Two Dimensional Quadrilateral Element

The actual finite Quadrilateral element with distorted sides. represented in global coordinate system is transformed into
straight edged element. represented in natural coordinate system.

Natural co-ordinates are used to specify a point with in the element with the help of dimensionless numbers whose magnitude
do not exceed unity.



Difference between isoparametric, Subparametric, Super parametric elements

Isoparametric Element Subparametric Element Superparametric Element
If the shape or geometry and field | 1. | If the geometry of the elements are | 1. | If the geometry of the element is
displacement variables of the described by lower order shape described by higher order shape
elements are described by same functions compared to field variables functions compared to field variables
shape functions of the same order, (displacements). then the elements (displacements) then the elements are
then the elements are known as are known as subparametric element known as super parametric elements.

isoparametric elements.

The number of nodes for defining | 2. | The number of nodes for defining | 2. | The number of nodes for defining
both geometry and displacements the displacements is more than the displacement 1s less than the
are equal. the number of nodes for defining number of nodes for defining
geometry geometry
3. 3.
A A A
P AN o e H—F—

Figure: Isoparametric element Figure: Subparametric element Figure: Superparametric element




Consider the general quadrilateral element as shown in figure. The local nodes are numbered as 1, 2. 3 and 4

1=
(Xl‘-yl) 3 u,

TE(X,5,)

Figure (1) : Four-Noded Element (Global Co-ordinate System)
Four-node quadrilateral element.

Let (x.v). (X, %) . (x;.3,). (x,. v,) are the co-ordinates at nodes 1. 2. 3. 4.

u,. Uy, u,. u, — Displacements along x—axis at nodes 1. 2. 3. 4.

1‘.

v,. v,. v, v, — Displacements along y—axis at nodes 1. 2. 3. 4.,



The quadrilateral element in £, n space (the master element).

uém)=a, +a+an+atn

viEn)=a,tag+tan+askn

2 a,. a,. a,. ...a, — Polynomial coefficients.
(—15 l) (1’ l)
4 3
oP(En) |
0J0) > §

1 2
(-1,-1) (1,-1)

g=sl

n=+1

Figure (2): Isoparametric Quadrilateral Element (Natural Co-ordinate System)



(x5, y1)

(a) Slave (distorted) element

X = X(&.ﬂ)
y = y(§m)

§ =§&(xy)
n =n(xy)

Coordinate
Transformation

(

»

4 Y o S 93
1
E=1
E=-1 e
Q,
l i
! —r

(b) Master (parent) element

Isoparametric coordinate transformation.



u=a,+a,&+tantaln

After substituting the coordinates, we will get the following form
1 . i L . . 1 ; .
u= 1A= A-mu+ A+ A-nu+ A+ A+mu+ (A=A +n,

The above equation can be written as,

1 at nodei

u=Nu, +Nu,+Nu,+Nu, N. =

0 at all other nodes
Where,

NN N N~ Shape functions of the isoparametric element

N \ The Fso':lr N«;‘de Bi.lime::"oQuad:N1 =1 atnodel
N, = Z(]—g)(l—"- — ape Function ot = (0 atnodes 2,3, and 4

Np= 711‘(1 +&)(1-n)

N,= ((1+8)(1+n)

N,= 5(1-8)(1+n)




Similarly v=a;ta, E+anm +a, én

The displacements are
U= N1”1 + N+ N+ N4u 4

v=Nayt Nove+ Nove+ N,

becomes

y=Ny, + Ny, +Ny,+Ny
11 272 3’2 474

u_N|0 N20 Ngo N4O
v[ 10 Ny O N,O N, 0 N,

= [V] {3}
[V] — Shape function matrix

{0} — Nodal displacement vector




Displacements of any point P, U
inside the quadratic element Vi

Jul] _|M O N, 0 Ny 0 N, 0 ffw
lv] [0 N 0N 0N 0 N|u

U,
Va

Using Isoparametric representation,

we can write the geometric coordinates of Point “P” Xy
Y
X,

[x
|y

l = Nl 0 ‘N3 0 ‘N3 0 N'-’i O )f"’
[Tlo N, O N, 0 N, 0 N |




Let.

S=Axy)

F=Ax(En), y(&n)]

By chain rule of partial differentiation.

o _o o o
9 dx 95 9y I8
afzafx8x+8fx8y
on ax dn  Jdy I
Above equations in matrix form can be expressed as,
o |ox aylfar
< & dE 9E || ax
I (x|l
om) [an anfloy.
This 1s known as the

Jacobian matrix (J) for the
mapping (& 7) — (x.y)

[J]- Jacobian matrix

[/]=

9g 9¢g
ox ?X

|on an |

- Ju i
S I

|




From equations.

= + ax 9N, aN. oN. oN.
i s M e K*&:aézagﬂ+agh+a;%+3§%
YENY TNy, TNy TNy, ;- _9N_ 3N, N, 0N,
) ) 2 35_, E N ai V2 & Y3 & Va
o ) E)N- 9N BN- aN-
_|9& 9E|_|Ju i gy TR ML, AR P B0
V1=15s ay —[ E b < A9 T omr  am? on ¢
|on 9n | 9 AN, aN, AN, 9N,

\_ ‘]22 an— an.YI+ am »t an.VS-*'W.VAt

Shape functions for an isoparametric Quadrilateral
element is given by.

N,= 5 (1-£)(1-n)
N,= %(1 +&)(1-n)
Ny= 51 +8)1+n)

N,= 4(1-8)1+n)



1 =
=4 -D0-n)= T(I—n)

| 1
7 (D)= Z(l—n)

1 I
2 (Da+m =7 —(1+n)

i _
2D +m)= T(] +1)

1 : —3 =
Z(l_ E)(-1)= T(l -£&)

1 z ——_1 =
71+8ED)=—7(1+8)
10+8M)= %(1 +2)
—(1 8)(1)= (1—‘-)



ox
Ny
ay
o
- o || ox
S I §-£
dy
N
| Ju Jia < & >
Sy I _aL
am
| o L[ I —le}
WAIEY /ST

of
e
I

of
o _L[Jzz
L/ VA
ay

Ji

af
¢ |
f

an

Replacing f with u and v separately we get,

ox
%
ay

v
ox
&
ay

T 171

1

BV

1T [Jzz ~/is
—le Jll
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o
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Using the strain—displacement relations

( du
ax
av
oy
ou

L 9y

\

0x |

0 0 - Jy

(B =k @ 0

S Ju Jn o

A

Ju
[ 9y

u
ox
dv

av

0x |




From equations.
u=Nu +N,u,+Nu +N,u,

V= Nl "’1 T N2 1"2 +JVB‘.3 +N4‘.4

Differentiating the above equations w.r. to ‘&’ and ‘n’.

all . aNI aNZ 8N3 8N4
9~ et e TR Mt e
'a—u = -aﬁ + _aﬂz_ A aN3 i aN4
an T am @ T
av aN, aN, oN; aN,

a&) = aE_. v|+ a::- V2+ a&_ V3+ aa- V4
on an Vi an V, an V3 an Vs

N,
dg
N,
an

N,

9g
N,




[ ON, ON,
ot 0 9t 2

0 0 % 0 88N2
~au Ju fx o o
2
Jn = 0 ?él 0 —ag
o M, N,
an an

N,

aN;

an

[B]

Strain Displacement Matrix




—(1-n) 0 (I-n) 0o (+m) 0 —(1+n)
A-1-8) 0o -(+g) o (1+g) 0 (1-§)

4/ 0 (l-m) o0 (1-n) 0 (1+m) 0
o -(1-§ o -(+g& o (1+& 0

Jp < 00
0 0 -5 Jy
L i Jn

1B1= 177

Element stiffness matrix is given by,
[K1= ¢ (81" [DI[Blav

(k)= [[ (B [D[B] ¢ dx dy

Where.

[B]- Strain-displacement matrix
[D]— Stress-strain relationship matrix

— Thickness of the element




[k]=[[ [BY [D[B] ¢ dx dy

The above equation is in global co-ordinate system.

|| ryaxdy=[[ f&m|J|as dr

In natural co-ordinate system. stiffness matrix is given by.

k1=[" [ (BY[DIBIt||d& dn

Element Stress {G}

105 = [D][BI{3}

[D] — Stress-strain relationship matrix




Q. Figure shows a four-node quadrilateral. The
(x, y) co-ordinates of each node are given in
the figure. The element displacement vector
{3} is given as,

{5}=10,0,0.20, 0, 0.15, 0.10, 0, 0.05]"

Find the following,

(a) The x, y-coordinates of a point P whose Figure
location in the master elementis given by
c=0.5and n=0.5and

(b) The u, v displacements of the point P.



Given that.,

Displacement vector,

{a}:ul i Va2 U3 V3 Uy Vg \Y
[0, 0, 0.20, 0, 0.15 0.10, 0, 0.05]"

n=E=05 —> P(&.n)

The coordinates of the four noded quadratic element are,

Xy=1 yi=1
X =2 L B=

=6 ; %=0
e yi=4




(@)

Coordinates of Point ‘P’

The coordinates of point P(x, v) are given by,
=N =N x, + Nt Nox,

.‘5 —s AN1‘1.'1 +N’.1_‘1 +‘N:.1‘: |—N4.1.4

Ny = 1-6)0+n)
(=11)

Ny =+ 61+

(1,1

4

1

3

£
b;

2

(=L-1)

Ny =5 (-&)-n)

(1.-1)
1
Ny =720+ —7)



Shape functions of a four noded quadratic element are.

v 2 1=9d-n _(1-05(1-05)

; =0.0625
4 4
N = (1+8)(1-1) _ (1+0.5)(1-0.5) 01875
- 4 4
1 ) :
W = (1+&)1+m) _ (1+0.5)(1+0.5) pe—
4 4
B 1-0.5)1+0.5
N, = 2 F’L(Hn) . L( i =0.1875

=N, %, TN X BN TN X
=0.0625 (1) +0.1875 (5) + 0.5625 (6) + 0.1875 (1)

x =4.5625

=N,y =N P AN Yt Ny,
=0.0625(1)+0.1875(1)+0.5625 (6) +0.1875 (4)
=4.375

s P(x.v) =(4.5625. 4.375)




(b)  Displacements of Point *P’

u. v displacements of point ‘P’ are given by,

u=Nu +N,u,+N,u,+N,u,

=0.0625(0) +0.1875(0.20) + 0.5625 (0.15)
+0.1875 (0)

=0.121875

v=NvwtNv,+N v+ NV,
=0.0625(0)+0.1875(0)+0.5625(0.10) +0.1875

(0.05)
1 =0.065625

s (u.v) =(0.121875. 0.065625)




Q. Consider a rectangular element as shown in figure. Assume plane stress condition, E = 206850 MPa,
v=0.3, {3} =0, 0, 0.05, 0.075, 0.15, 0.8, 0, 0]" cm. Evaluate JacobianJ,Bandcat:=0andn =0.

y
A
\.’4 VS
A
| 114 s 113
4(0.2.5) 3(5.2.5)
vy C(2.5.1.25) E
| u, T_,u, X
1 —

~J

1(0.0) 2(5.0)



Given that.
Young’s modulus. £ = 206850 MPa
= 206850 N/mm?*
E =20.685 x 10° N/cm?
Poisons ratio, v =0.3

Displacement vector,

u v, U Vv, U, V3 Uy v,
{8} = [0, 0, 0.05, 0.075, 0.15 0.8, 0, 0]"cm

Local coordinates. £ =0.1=0

For a plane stress condition,

1 v 0 ]
Elv1l 0
[‘D]=]2 1_
oo -

L 2 |

y
A

\"4 VS

A

| 114 i ll3

4(0.2.5) 3(5.2.5)

Vi C(2.5.1.25) E

u, T__,u,\
1 ~—3p X

1(0.0) 2(5.0)

Co-ordinates of the Quadratic element is

x,=0,9,=0
X=39=0
e O A
X, =0.04=2

4

h

h



Jacobian J,Bandc

[J]- Jefz)la;%mmx ‘r‘;_]é = %(_1)(1_]])= :41—(1—1])
] = ?g gj =[j'2: jl?i] Where, 38122 = %(l)(l—n)=%(l—n)
30 o x=N,x, + N,x, +N,x, +N,x, %Z% _ %(1)(1 +T1)=%(1 +n)
y=Ny, +]\:;71i+l]\(7];)"(lNﬂ; % _ 1%(_1)(1 +1) =—:71(1 +1)
Ny = ? = 31][ = Z(l—é’;)(—l)=7(1—i)
N,= z(1+&)1-n) So= 31+ = (1+8)
N,= 5 (1+8)1+m) 3 = 31+ OMm=501+8)
N,= %(l—é)(l +n) % = :‘1.(1_';)(1)=%(1-a_)




J, = %[—(1 —)x; + (1=1)x, + (1+m)x; — (1+1)x,] [ (1-&)x —(1+&)x + (1+E)x; + (1-)x,]

?'J

= %[(1-0)o+(1 ~0)5+(1+0)5 —(1+0)0] Z[‘(I‘O)O‘(l +0)5+(1+0)5+(1-0)0]
= -}1—(5+5) J,, =0
=25 Jzzzzl —(I=Ep—(1+E)ym +(1+ &)y + (1-8)y,4]
J,= %[—(l—n)y.+(l—n)y2+(1 1)y~ (1+n)y,] %[ (1-0)0— (1+0)0+(1+0)2.5+(1-0)2.5]
=3 %[_(1—0)o+(1—0)0+(1+0)2.5—(1+0)2.5] = 711-(5)
L, =125

Jacobian Matrix.
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Using the strain—displacement relations

m
Il

( du
ax
av
ay
ou

L 9y

\

| Jy
0 0
—Jn

0 O
~Jn i
Jn )

A

9g

1| 2%
an

o
Gla
av

el

= N1”1 + N:.“:, + Vu + N4u 4

v=Ny+ N+ Ny + Ny,

u

N, N, aN; oN,

9

.-u+ % u‘\+ -.,-u’+ uu
98 ' 9E "2 9 3 9g "¢



N,

9
N,

N,

9
N,

N,

9
N,

N,

9g
N,

an
N,
9§

N,
98

1

—
3}; - Z(_])(]_n)_ 4 (l—n)

| 1
;1-(1)(1—11)=74—(1—n)

1 1
7 (DU +m)=7(1+n)

1 -1
27D+ =—(1+n)

| 1,
= Z(l_ E)-1)= 7(1 -£)

Lo iong s b &
z(1+s)(—1)— 4 (1+€)

1 . 1 ,
Z(l +&)(1)= Z(l +§)

L evn=L_e
19 =401-8)



Strain-Displacement Matrix [B]

~(=) o (I=m) 0o (I+m) 0 —(1+m) O
—(1-¢) o —(+g) o (+g) o (1-§) 0
0 (=) o (=) o0 (1+n) 0 —(1+n)
0 (1) o -(1+g) 0o (1+g) 0 (1-¢)

Jn =S, 0 0
0 0 —Jy Jy
S Ju S i

[B] = —

1
W
/] 4

|J| = [(J11% Ja2) — (D2 % Joy)]

=(2.5%1.25)-0

kL =53.125
. o[-0 o (1-0) 0 (@{1+0) 0 -(1+0 0
125 0 0 0
5] = 1 § T B 25xl—(1—0) 0 -(1+0 o0 (@(1+0) 0 (1-0) 0
3.125 X 25]25(‘) 4 0 —(1-0 0 (1-0) 0 @1+0) 0 -(1+0)
. 2 L - 0 —(1-00 0 —(1+0) o @1+0 o0 (' =) |
T 10 1 010-10
_ 1 Ooozsxl_lo—lololo
3‘1250251256 4lo -1 0 101 0 -1
- - ] 0 .10 -1010 1]




0 0 0 —0.25 0 0.25 0 025 0 -025 O
0 0 0 o0slxl™ 025 0 -025 0 025 0 0.25 0

0 08 04 0 0 -025 0 025 0 025 0 -025
' 0 -025 0 -025 0 025 O 0.25]

(0.4 x—0.25) 0 (0.4 x0.25) 0 (0.4x2.5) 0 (0.4x-0.25) 0
0 (0.8 x—0.25) 0 (0.8x—0.25) 0 (0.8 x0.25) 0 (0.8 x0.25)
(0.8 x—0.25) (0.4x—0.25) (0.8x0.25) (0.4x0.25) (0.8x0.25) (0.4x0.25) (0.8x0.25) (0.4x—-0.25)

0.4

01 0 01 0 01 0 —01 0
B]=| 0 -02 0 -02 0 02 0 02
~02 -0.1-02 0.1 0201 02 —0.1




Element Stress {G}

{o} = [D][B]{3}

[D] — Stress-strain relationship matrix

For a plane stress condition,

E

D]~ 1—v?

v 1

00

(1 v

6 ]

0

1—v

2 J

_ 20.685x 10°

1—(0.3y

1 03 0

{6}=22.731x10°103 1 O

0 0 0.35}

x3

“gx]

01.3 Oi3 g | 1 03 0
- 023 [D]=22.73x10°(03 1 O
0 0 5 0 0 035
0
0
-0.1 0 0.1 0 01 0 —-0.1 0O 0060755
0O -02 0 -02 0 02 0 0.2 *615*
-02 -0.1 -02 0.1 02 0.1 02 -0.1 L
3x81 0.8
0
0




-0.1 -006 0.1 -006 0.1 0.06 —-01 0.06
=22.731x10°/-0.03 —-0.2 0.03 -02 0.03 02 -0.03 0.2

—0.07 —0.035 - 0.07 0.035 0.07 0.035 0.07 -0.035 -

0.05
=22.731 x 10°] 0.14695
0.028175

1.136 x10°
{6} =13.34x10° {N/cm?
0.64 x10°

0.05

|0.075

0.015
0.8




Consider a quadrilateral element as shown
in figure. The local coordinates are & = 0.5,
n = 0.5, Evaluate Jacobian matrix and strain -
Displacement matrix.

A

Figure



Numerical Integration

Element stiffness matrix is given by,
[X] = f (81" (DI[Bav

=[] 18

D]|B] t dx dy

([ fGyyaxay=[[ r(&m|J|de dn

:f_ll fl, [B]' [D][B]t|J|d& dn




Consider Gauss Quadrature formula.

b n
I= | f@dx = Y Wfx)
& i=1
Where,
W, — Weight function

x.— Sampling point

one point technique

Let. n=1.

|
I= f J(x)dx =W flx)
I

The polynomial order is (2n—1)
=21)-1)
=1
Therefore. the polynomial function is given by.

fxX)=a, +ax

Gauss quadrature of linear polynomial



7= f(_a, +ayx)dx = Wflx)
l

(@ +ax)dx— W fix) =

S S

-

- -

alx]' +a

"1 - Wa -W g o=
2a,— Wa, - W,a,x, 0/
a(2- WI) - Wl a,x, =0

0

(@ +aX)dx — W, (a, +a,x)=0

!
12 ] ~W(a, +ax;) =0

Let. n=1.

I
1= fj(x)dx =WAx)
-1

satisfied only if W, =2 orx = 0.

I
I= | fix)dx=2f(0)
/



Two Point Technique (Formula)

Consider Gauss Quadrature formula,

b n
= ff(x)dx — ;mf(xf)

Let. n=2.

|
= f fx)dx = Wf(x) + Wafix,)

The polynomuial order is (2n— 1)
=(2(2)-1)
=3

Gauss quadrature of Cubic polynomial

Therefore. the polynomial function is given by.

fX)=a, +ax+ax +ax

-

ax+a, = +ay—= 3 -+ - 3 —Wif(x)-

-

/ (@ + ayx +asx® + agx’) dx = Wf(x) + Waf(x,)
!

2 3 T
X X
5 mf("z =



x2 x3 x41
alx+027+a3?+a47

_Wlf(x,)— Wlf(vx"z) =)

1

2 :
2a,+ 0+ —a,+ 0| W (a, + ayx, + asxi + asx)) — W, (a,+ ayx, + asx2 + a3x3) =0
I 3% (@ T ayx + azxy + asx; > (a taxx,

2
a2 (Wi + W) |- ay [Wixi + Waxs |-as | Wix? + Wox3 —

3 "04[W;x|3 + VVZX‘;] =0

satisfies only if.
W, + W,=2

Wx,+ Wx,=0 ; :
"2 2 On solving the above equations,

2
Wixi +Wox; = 5 w,=W,=1
, 1
Wix? + Woxi=0 x,= 3 =0.5773502
=]
x,= —— =-0.5773502

o

© W



On solving the above equations,

w,=W,=1
1
= — =0.5773502
X, 73
=]
x,= —— =-0.5773502
Z V.'3

I= f Ax)dx = (1)£(0.5773502) + (1)f(= 0.5773502)

Let. n=2.

|
JF= f SIx)dx = Wif(x)) + Wyf(x,)
|




Two Dimensional Problem

Integral to evaluate two dimensional problem,

1= fl f Jx.y)dx dy

-1 -1

Using two Gauss integration points,
On generalizing the relation,

Forn=2,
! n
7~ f > W, |dy x,=y,=+0.57735
1 i=1 W/I: 1

n a 2
: ie.,
j=1 " li=l x=y, =0.5773j
n n
I~ Zl ZlWl_Wj f(%7;) x,=y,=-0.57735
i=1j= — =
W=W,=1
Then. equation (2) becomes.
I~ WX, y)+W2(x,y,)
. I~ f{0.57735. 0.57735) + —0.57735.—-0.57735)



Unit 4

Dynamic Analysis:
Formulation of
finite element model,
element consistent and lumped mass matrices,
Evaluation of eigenvalues and eigenvectors,
Free vibration analysis.
Steady state heat transfer analysis:
one dimensional analysis of a fin.
Introduction to FE software.




Types of analysis of a Problem

1. Static Analysis
In case, if the interia effects are not considered and damping is zero, then it is said to be quasistatic and the analysis is a
static analysis.

K] {8} = (F}
Where.
[K] — Global stiffness matrix
{8} — Global displacement vector

{F} — Global load vector



Types of analysis of a Problem

2. Eigen Value Analysis

If the interia effects are taken into consideration with zero damping and applied loads. then the equations of motion is
reduced to a generalised eigne value problem. In such cases. following can be used to obtain the solution.,

[MKS}+[KKS} =0
Where.
[M] — Global mass matrix

{5 }— Global nodal acceleration vector



Types of analysis of a Problem

3. Transient Dynamic Analysis

If the loads are arbitrary but known functions of time. then the analysis is known as transient dynamic analysis. In such
cases.

[MK5}+[CKS}+[KK8}=F()
7 . X
Where, m _I_

[C] — Global viscous damping matrix

{5} — Global nodal velocity vector k C

4. Frequency Response Analysis

If the structure is subjected to harmonic loads, then the analysis is known as frequency response analysis. In such cases,

MRS} +[CHS}+[KK8}= Fsin(wt)



Steps in an FEM Analysis

Preprocessor/Modeling Analysis run / Solve:

\ « Formulation of element stiffness matrices

+ formulation of load vector {F}

R * Solution of [K|{u}={F} to get nodal displacements {u}

Kl [KI- M



Longitudinal Vibrations

Transverse Vibrations

The vibrations, in which the particles of the shaft
move parallel to the axis of the shaft are called
longitudinal vibrations.

\
£

-
]
1
]
— — L) - - - - - - -
0 s
1
1
1

>
L
!
L
:
I
!
i
<>

g e st i

Figure: Longitudinal Vibration

The vibrations, in which particles of the shaft move
perpendicular to the axis of the shaft are called
transverse vibrations.

Figure: Transverse Vibration




Longitudinal Vibrations

Transverse Vibrations

In case of longitudinal vibrations. the shaft is
elongated and shortened alternately.

Tensile and compressive stresses are induced alternately.
The natural frequency of free longitudinal vibrations is.

_ 04985

L

In case of transverse vibrations. the shaft is straight
and bent alternately.

Bending stresses are induced.

The natural frequency of transverse vibrations is,

_0.4985
Vs

t,

;oL [ PRI 1 049ss
oA, T m A WfA;




longitudinal vibration of bar element, o
transverse vibration of beam element,

Finite Element Equation
[[K]- 0’ [MINE) = {F}
[K] — Stiffness matrix
[M] — Mass matrix

{3}— Displacement vector

Finite Element Equation
[(K1- o’ (M8} = {F}
Stiffness Matrix

12 6l —12. 6L
EIl 61 4* —e1 21

{F}—Force element [K]= —
- 4l £ =
Stiffness Matrix ! - 6; e _6,[
EAT1 _1 | 6/ 21" —61 41 |
K= T ]

E —Young's modulus of the bar material
A — Area of crossection of the bar

L — Length of the bar




longitudinal vibration of bar element, transverse vibration of beam element,

Consistent Mass Matrix Consistent Mass Matrix
156 221 54 -131]
o = pAL[ ] g = PAL| 221 ar 131 3
420 54 131 156 =221
131 3" =221 4l |

p — Density of the bar element

Lumped Mass Matrix
A — Area of cross-section of bar (1 0 0 0
pAL|0O 0 0 0
L — Length of the bar [M]= 210010
0 0 0 0]

Lumped Mass Matrix

=5 i




Find the natural frequencies for the longitudinal

vibrations of the stepped bar. Assume A, = 2A,
A,=AandE =E, =E.

O
7
7 A A=A
7
7
7
7
2( L/2 >l L2 >
Figure(1) [[K] - ?’[M]] {8} = {F}
u,_ 1.12 u_:
T ® 2 @O s
L/2 L2
3 > >

Figure (2): Bar Element Model



Stiffness Matrix

For element (1).

1
-1

_ EQA)
=L

{

Global Stiffness Matrix

[K]=[K]+[K]

22 0] ..
[K]=|-2 3 -1 [x2:4

0 -1 1

For element (2).

[K.]

_ ExA>

5

EW|
77

2EA




Mass Matrix

For element (1).

_pAL|2 1

_ pRALD)|2 1
6 12

_ pAL|4 2

Global mass matrix.
[M]=[M,] + [M]
% it
12

[M] =

T S RS X
-y N
o - O

For element (2),

21
1 2

_ pA2Ls
) = P4

_pan)|2
- 6

21
1 2

AL
[M,] = ‘plz

|



Finite element equation for the longitudinal vibrations
of a bar element is given by.

[IK] - o2{M]] {8} = {F}

2 20 42 0114 |
24AE AL
22 3 |-’ P52 6 1|[{ut= 1E
L 12 Z 2
0 -1 1 01 2|}|u F1
Applving the boundary conditions,
F=0,F,=0.F,=0
5] 2 2 0 pAL420 LS
it B a2 Bt T
i 2 3 dl-o . B 261 ,{=0
0 -1 1 012 u3

**One can eliminate the 1st row and column to reduce computation



Characteristic equation is given by.

K] - o[M]|=0
2 20 420
%4 3 1 —mz.%z 6 1|[=0
0 -1 1 012

24E
Divide by —, on both sides.

(2 2 0] paz [420

|0 -1 1] L 012

(2. 22 0] 420
pl2a® 2

=2 3. -1 — 545 0 261 =0

0 -1 1] 012

Let

-2 3 -

-2 3 -

2 =2 B

L0 =1 ]|
(2 -2 O]

0 -1 1|

_ pL2 (02
~ 24E

420
—al2 6 1||1=0
012

4a 2a 0
—{2a 60 o
0 o 2a

0



(240} (2-—20) 0
(=2—2a) B—=6a) (—1—a)||=0
0 (—1—=a) (1—2a)

2-40)[3-6a) (1 -20)—(-1—-0a) (-1-a)]
—(-2-20)[2-40) (1 -20)] =0

2—-40)[3-6a—-6a+120°—1—a—a—a’]
—(-2-20)[(2-4a—-4a+8a?)]=0

180 (1 —20) (@ —2)=0 Theroots of above equation gives the natural frequencies
1 of the bar.
o =0, 5 2 When.
a=0
pszlz
T 2E
(912 =0

®, =0 rad/sec



’ L

2
p
E
©,= 3464 [— rad/sec
\' pL

pLzm2
o= 3
24E
pLz(x)2
2= 3
24E
»  48E
O =—7
P pL
0.~ ,'/ 48£2‘3
N pL

E
o, = 6.928 —Zl'ad/sec
V' pL



Therefore. the natural frequencies of longitudinal
vibrations of given stepped bar is given by.
©,= 0 rad/sec

22
®,= 3.464 | —5 rad/sec
2 3.

E
®,= 6.928 | —7 rad/sec
' VoL



Equations of Motion Using Lagrange’s Approach

We define the Lagrangean by

If T represents the kinetic energy of a system and 7 represents

potential energy. then Lagrange’s equations of motion

dr \ 94, 9q; | ar aq

where F|, represents the generalised force in the coordinate ¢ and ¢ = dgldt.

Lagrange’s equations of motion, we obtain

[M){0} + [K1©} — {F} = {0}

[M]{0} + [K]{8} = (F}




Solid Body with Distributed Mass TR

<

we express
displacement u in terms of
the nodal displacements q, u= Nq
using shape functions N

In dynamic analysis,
the elements of q are dependent on time, '

while N represents (spatial) shape functions.

p = density

The velocity vector is then given by u = Ngq .

1
The kineticenergy 7 = 5 / l'lTl'lp dV x
i

q"[ / pN'N vaq

This mass matrix is consistent with

m° = /pNTN dv the shape functions chosen and is
€ called the consistent mass matrix.

FIGURE 11.1 Body with distributed mass.

T, =

13

DI | =




1¢ [ 3

u,
1.11 2

= 1 > |

Figure: Bar Element

The above figure shows a bar element of length '/'. Let

u,. u, are the nodal displacements at nodal points 1.2.

Shape functions for a 1 — D bar element with two nodes

1s given by,

m’ = / pN'N dV

€

5 IV,

\[‘a-(



Mass matrix.

[M] = fp.[N]T[N]dV

X
[]—TJZ x2 X3
1 9 a2
- 37) 7
.
A7 37 3 |
o o
]—’Z 1_ 1'
— -—
= p4 3[71] L
r.ror
21 37 3
[ 1
PAL I~ "6 (12
6 3




[—x r
Bar element iNi_ ] N, = ]
I_X
[m]"=f[N]’[N]dv=AJf ¢ R B | P _ ptt)? °
i PEk| 4 ()¢ T e |1 2
7

N =1 - 3x% + 2x/6, N, =2 +x/8

Beam element N. = 33302 — 23/63, N, = e + 2P

3
EA [ 156 Symmetric |
| N, 40| 22¢ 48
[m]e = IP[N]T[N]d\,- = pAJ [Nl N2 N3 N4]dx = ._p—..
v °I N, 4201 s4  13¢ 156
| Ny | | -13¢ 36 -22¢ 42|




Determine the natural frequencies and mode shapes of a stepped bar as shown in figure, using the
characteristic polynomial technique. Assume E = 250 GPa and density is 7850 kg/m°.

400mm? 1 300 mme —>10kN

SIOUOONNINANNNNANNN

«<— 0.3 m—>te—— 0.3 m——>

Figure
. Determine the natural frequencies of a stepped
Given that. bar as shown in the figure. (E=250 GPa, density

A
Young’s modulus, E =250 GPa =250 = 10° Pa 7850 kg/m"3
Density, p = 7850 kg/m®

Evaluation 1s done using characteristic polynomial technique.

Ul u: u3
I ®© 2 @ s
L/2 L/2
> >t >

Figure (1): Bar Element Model



Finite element equation of a bar element is given by,

2 Y —
Stiffness Matrix [[K]- o [M]]{5} = {F}
For element (1),
EA, 1 =1 For element (2),
K=

; I =]

EA

K]=—2% [_1 ]]
- L

250x10° x400x107° | 1 -1 9 %
. = 41 _ 25010 x300x10 [1 —l]
0.3 -1 1
IR & g .
=333.333 * 10 [_1 1] K] = ]061 250 _250]2
: 250 250 |3

1 2

K]= 106[ 333.333 —333-333] 1| [Global stiffness matrix,
: —333.333 333333 | 2
[K]=[K,] + [K}]

1 2 3
333333 333333 0 |1

(K] =10° [-333.333 583333 250 |2
0 ~250 250 |3




Mass Matrix

For element (1),

[M]= i““—[z ‘]

[M]= [0.157 0.314

6 |1 2

6 1

2 1
=0.157

1 2
0.314 0.157]1

7850 x400x10™° x0.3 [2

2

1
2

|

For element (2).

pA, 1,

3] ==

o

_ 7850x300x107° x0.3

=0.117

2

e 0234 0.117]2
[M,]= 0.117 0234

P
By

3

3

Global mass matrix,

- M)

[M]

= [M] + [M]
1 2 3
0.314 0.157 0 |1
—=10.157 0.548 0.117]2

0 0.117 0.234]3




[[K] - ’[M]] {u} = {F}

333333 —333.333 0 0314 0.157 0 N|% 0
10°{-333.333 583.333 —250|-°[0.157 0.548 0.117|[{%,f =1 0
0 250 250 0 0.117 0.234{| |u 10"

Apply the boundary conditions to the above equation.
u, =0

Eliminating first row and first column of both the matrixes.

10° 583.333 —250 0 548 0.117
0 117 0.234

250 250
Characteristic equation is given by.
[K]-A[M]|=0
583. 25 . :
‘106[ 83.333 2 0] X[0548 0 117” _

Let. L = o

250 250 ) "10.117 0.234

Eq-2



583.333 —250] [0.548 0.117%
o550 Salloiim o] =

-250 250 0.1172 0.234.

583.333x10° — 0.548%. —250%10° —0.1172
250%x10°—0.117%  250%10° —0.2342

|(583.333x10° — 0.548%.) (250 x10° — 0.2342.) — (250 x 10° — 0.1172.) (250 x10° — 0.1172.)] =0

(583.333x10°x 250 x10°) — (583.333 x10° x 0.2342.) — (0.5482. x 250 x10°) + (0.5482. x 0.2341.)
—(250x10°%250x10°) — (250 x10°x 0.1172.) — (0.1172. x 250 x10°) = (0.117A x0.1171) =0

1.45 % 107 — 136.4 * 105 — 137 x 10\ +0.128 72— 6.25 x 106 — 29.25 x 106, — 29.25 x 10°A — 0.013622 =0

0.115A% —331.9 x 105 A +8.25 = 10¥ =0

., = 2611368423
A, =274718533



A, =2611368423

A= @ =2611368423

o, = y2611368423

®, = 51101.55 rad/sec.

When,
A= 274718533
1,= 0 =274718533

®,= 274718533

®, =16574.63 rad/sec

o
Natural frequency of element (1) is. f, = 2_71

51101.55
‘f;_ 21

J,=8133.064 Hz

Natural frequency of element (2).
s
h= g
16574.63
N 2n

S,=2637.93 Hz




Mode Shapes

From equation (2)
'1 o [583.33 _250| x[0.548 0.117“ “l_1lo
_ -250 250 | 10.117 0.237 . 10°

583.33><1066—O.548l -250><106"_0.1177~] “ :{ 04}
| 250x10°-0.117.  250x10°-0.2342 | %] (10

For .. = }»1
A= 2611368423

583.33%10° — 0.548(2611368423) —250x10° —0.117(2611368423)| || _ { 04},
—250%10° —0.117(2611368423) 250 x10° —0.234(2611368423) | |%,| {10

—847699895.8 —555530105.5] (%, | O
—555530105.5 361060211 | |« 10*



o

-847699895.8 ~555530105.5] || [ 0]
~555530105.5 —361060211 ]u}[ ~ o’

[-84769 -55553} %”gl _ {?} - "

-55553 -36106 u‘[

solution -0.00218 0.00333
Y
Y,
1st Mode shape 7
P Z 400mm® 1 300 mo® —>10kN
f 7
s / — 03m S 03m o
g Figure
b3
& u3 =3.33 mm
o
2
0 0.3 4n 0.3 m
Length of the beam—>
First Mode

u2=-2.18 mm



Mode Shapes For second mode shape

From equation (2)

’] 061583.33 —25()] l{0.548 0.117” “ul o
| [ 250 250 "0.117 0.237|]|%, :

583.33><1066—0.548 ) —250><106"_o.117x “ :{ 04}
| 250x10°-0.117%  250x10°-0.2342 | |%] [10
Forn=12,

A, = 274718533

583.33x10° — 0.548 (274718533) —250 x10° —0.117(274718533)
| 250x10°—0.117(274718533) 250 x10° — 0.234(274718533)

[ 432784243.9 -282142068.4] | ¥, _ 0
—282142068.4 185715863.3 | |4, 10

{2} B {134}




-28214 18571

[43278 -28214} 4|

u2 u3
solution 0.00367 0.00563

Y

?

7 400mm | 300mm [ >10KN

/]

/)

5(— 0.3 m——>te— (0.3 m—=|

Figure



Second Mode

A u3=5.63mm
5
Q
1
I >
0 0.83m 0.3m

Length of the beam—>»



KU = ovu LKA MI{U}={0}

This is the generalized eigenvalue problem

KU = \MU

where U is the eigenvector, representing the vibrating mode, corresponding to the eigen-
value A. The eigenvalue A is the square of the circular frequency w. The frequency fin
hertz (cycles per second) is obtained from f = o/(27).

EVALUATION OF EIGENVALUES AND EIGENVECTORS

The generalized problem in free vibration is that of evaluating an eigenvalue A(=w?),

which is a measure of the frequency of vibration togcther wnh the corresponding eigen-
vector U indicating the mode shape, as in

KU = AMU e Eigen Value (Frequency)

Uoru - =------- Eigen Vector (Mode shape)

[K-AM]{U}={0}




Eigenvalue-Eigenvector Evaluation
The eigenvalue—eigenvector evaluation procedures fall into the following basic categories:

1. Characteristic polynomial technique
2. Vector iteration methods
3. Transformation methods

Characteristic Polynomial. From Eq. 11.38, we have
(K- MU =0
If the eigenvector is to be nontrivial, the required condition is
det(K — AM) =0

This represents the characteristic polynomial in A.



What is study state heat transfer analysis? Write its governing Equation?

Steady state heat transfer is defined as the temperature

at any point in the medium does not change with time.

For a one dimensional steady state heat transfer,

T
K5 +q=0
dx”

K — Thermal conductivity

T — Temperature

g — Internal heat source per unit volume



Steady State Conduction

In steady state conduction, the temperature at any
point in the medium does not change with time.

It is due to the rate of heat conducted into the medium is
equal to the rate of heat conducted out of the medium.

It is a function of space coordinates and 1s given by,
T=T1(x.y, =

One dimensional heat conduction is given by.

d |, dT
k—|+qg=
[ ax] =

ox




3D Conduction heat transfer

General 3D conduction Equation:

i
ax ax ay ay 0Z 0z T

For constant conductivity:

T T T
— + —=+ — +
ax2  3yr 9z

19T
a Ot

- hR.

= kipc

= Thermal diffusivity of a material



Q. Give the finite element equation for a one dimensional heat conduction element.

Ans: The finite element equation for a one dimensional heat conduction element is given by,

Fy =K1}

{F} — Force vector Conduction (k)
(A, | |2
= l F; } or a two noded element T T,

[K ] Stiffness matrix in case of heat conduction
_ k4|1 —1] < ! >

I 1-1 1

{7} — Nodal temperature vector

Similar to structural problems

T
= {Tl} for a two noded element
2



Heat Transfer Rate Due to Conduction

-_—

0= —kA.A—LT Watts

Heat Transfer Rate Due to Convection
O = hA(T, —-T_) Watts
Where,
h — Heat transfer coefficient

T — Surface temperature
T _— Ambient temperature.

Heat Transfer Rate Due to Radiation
O = GA(AT)* Watts

Where.

o — Stefan-Boltzmann constant

c=5.67 x 107 W/m? K*.

Where.
k — Thermal conductivity
A— Surface area
AT — Temperature difference
L — Length.



Derive the stiffness matrix for a one dimensional
heat conduction element.

rJ

1 r 1

T, Tz
€ . >
Figure: Bar element

The above figure shows a bar element of length 7. Let
T. T, are the temperature at nodes 1.2 and 'K" be the thermal
conductivity of the bar element.

Stiffness matrix.
(K] =

¥

[B] — Strain displacement matrix

(BT (DY BlaV ()

[D] — Stress — strain matrix
For a one dimensional bar element.

Temperature function. =N T, + N,T,

Where.
_ A=
]
i
N,= j
Strain-Displacement matrix.
= @,
% dr dx
_ [ d l— X
dx
-1
By =| |
!

alill-[7

]



For a onc dimensional heat conduction,
[DI=K
From equation (1).

K] = f (BT L DILBlAY
11

= (14

/
1 K.
.

-_,-' : ]dV

(K] — Stiffiiess matrix in case of conduction

|~

~ ~
= | L] =

P

[S]

~

~

L~im

(3]

K.dVv

K.A.dx

fl.dx



FE Equation for 1D heat conduction element

The finite element equation for a one dimensional heat conduction element is given by,

{Fy=[K]1{T}
{F} —Force vector

F
|

F

"

VA

for a two noded element

Thermal
stiffness [K |- Stiffness matrix in case of heat conduction
matrix
_ KAl 1 —1]
= =3
{T} — Nodal temperature vector

T
TI } for a two noded element

2

Conduction (K)

2



FE Equation for 1D heat conduction and Convection element

[KKT}=A{F}

Stiffness Matrix in Case of a 1D Fin Pro

Thermal Stiffness matrix. (Kl = [Kc] + [Kne]
1 —1

—1 1

(] = A4 + hA

0 1

AK|1 -1

/ [ 1 ] — Conduction matrix

0 . .
[Khe] = le[ 0 ]I — Convection matrix

, } — Thermal load matrix

Conduction (k)

2

1

0 ol 1 T,

< J >

—
—> (Convection (h)
—_—

— T--
—_—

Figure: Element with Free End Convection

(Free end convection matrix)

A =P Arca of the wall

k =P Thermal conductivity of wall

[ === Length of the wall

hh e— Heat transfer coefficient

-ny

-m

- W/m°K

T ™ Atmospheric air temperature -K

- W/mK



Conduction (k) > _
—> (Convection (h)
y —»
% ¢, —>=T
T, —=
The finite element equation for in one dimension element
7 is given by,
| >|
{Fy =[K]I{T} —Eb
In case of conduction, stiffness matrix is given by,
AK |1 -1

Where.

K —Thermal conductivity of the element material, W/m-K
A — Area of the element. m?

[ — Length of the element. m



In case of convection (end). stiffness matrix is given by.

[Khe] = ﬂh[N]T[N]dA :(3)
A

at x = /. at the end of element

NM=[N, N]=[0 1]

i

N — Shape functions
h — Heat transfer coefficient, W/m’K

[M=[N, N] V)=
B [l -X X

NI
N
2

—r T

From equation (3).

[Khe] = f nINT [N1.dA
= ﬂh.[?][o 1]dA
-y )

mszBﬂ



Stiffness matrix.

[K]= [KC] + [Kne]

[K]= # —]1 _1]I+hA[g (1)]

Convective force vector at the free end.

Nn
{Fhe} = h7;0A N
2
Where. From equation (1).
T, — Fluid temperature { Fhe } = [K] {T}

g = ”TmA[(l)] hTmA[(l)] - [#[_‘1 _11]+hAlg ?”{YTJ}

2



A composite slab consists of three materials of
different conductivities is 20 W/imK, 30 W/mK
and 50 W/mK of thickness 0.3 m, 0.15 m and
0.15 m respectively. The outer surface is 20°C and
the inner surface is exposed to the convective
heat transfer coefficient of 25 W/im“K at 800°C.
Determine the temperature distribution within
the wall.

h=25 Wim'K |, =20 Wim'K /To =20°C
T_=800°C k= 30 WK

k =30 Wm'K
03 0.15 0.15

Given that.

For material-1,

Thermal conductivity, X, = 20 W/mK
Thickness. L =03 m

For matenal-2,

Thermal conductivity. K, = 30 W/mK
Thickness, L,=0.15m

For material-3,

Thermal conductivity, K, = 50 W/mK
Thickness, L, = 0.15 m

Temperature of outer surface. I, =20°C.
Convective heat transfer coefficient. 1 =25 W/inrK

Ambient temperature, T = 800°C



Element (1): It is subjected to both conduction and convection.
Convection is only from left side. Therefore. finite element
equation for element (1) can be written as,

AK h=23Wm'K |k =20 Win'K =20°
=i 1 0 < k, = 20 Win'K T, =20°C
[K)=—_ |]+/:.4L) OJ / :
i T_=800°C k= 30 Wm'K
Assume. 4 =1 mv’
k. = 30 WK
1x2011 -1

= 01 11 + 25 x|

_[66.66 —66.66] 25 0 03 ., 015, 015

- |-66.66 66.66

l 1
91.66 —66.66]1 IT'

K= |_e6.66 66.66 |2 i T



Since, on the left end convection takes place, load vector

on the left is given by,

{ Fhe} = hTmA{(l)}

l
{ B = {h%f‘};

h, T,

k. =20 Wim'K

K

k =30 Wm'K

/T., =20°C

= WmK




Element (2)

K] = .421\"2 | —1
27 L -1 1
(%301 —11 N . ' o
= 015 1-1 1 h=25 Wm'K k, =20 W/m'’K /To=20C
2 3 T =800°C k=30 Wm'K
(k] =| 200 —200Q2
- ~H 2P k, = 30 Wm'K
Element (3)
O -l—l II 03 015, 0.5
3 o o b -l
e R
05 |-1 1 | l @ 3 @ 3 @ i
; ) h, T, i I T, T,=20°C

-

(k] = [ 333333 3333333
~333.333 333333 |4



Global stiffness matrix,

K] = [K][][]

-91.66

- 66.66

—66.66 66.66 + 200

0
0

[ 91.66

—200 200+ 333.33 —333.33

3
0
—200

0 —333.33

— 66.66 0

—66.66 266.66 —200
—200 53333 -—-333.33

0
0

0 —333.33 333.33 |

0
0

4
0
0

333.33 |

B 0 o =



Finite element equation for the given composite slab 1s

given by,
[KI{T} = {F}
(91.66 —66.66 0 T O
~66.66 266.66 —200 o |7 0
0  —-200 53333 -333.33(|T 0
0 0 -33333 33333 || 0
hT_A=25 x 800 x 1 “
hT, 4= 20000
N ’
(91.66 —66.66 0 o 141 {20000
~66.66 26666 -200 0 |, | O
0  -200 53333 -33333(|T 0
0 0 -33333 33333 ||T 0




L =304.77°C
L, =119,04°C
L=31.1A2°C.
L, =200C
Temperature distribution within the wall is given by,

304.77]

]119.04

57.142
20

Pl A



One-dimensional Heat Transfer: When the temperature
and heat transfer in a system vary only in one direction, it 1s
known as one-dimensional heat transfer. In this. the variation
of temperature in other two directions is negligible.

Example: Heat transfer from a glass window is considered
to be one-dimensional, as the heat transfer takes place in one
direction. whereas in other directions it is zero.



One dimensional analysis of a fin
Fin (extended surface)

Fin 1s a metallic stnp of rectangular shape or circular shape and mtegral with the surface, through which heat 1s to be
transferred. Fin mcreases the surface area of heat transter and also. known as extended surface. They are used on engine cylinders.
heat exchanger pipes. etc.

Heat Transfer Enhancement by Fins TYPES OF FINS i

/ '/ /I T Ay
/ 1 f 7, /
-~ 1/ ’V;,—-
e = hA(T,-T.) g l
: Straight fin of uniform Straight fin of nonuniform
cross section cross/secﬁon
4 P ’ /
T, A .' : é o
( | ]
‘ . i | \."- &

Bare surface Finned surface Annular fin " Pin fin



A fin subjected to conduction and convection
_ Ak <1

hP121
6 11 2

[Kn] =
(K] = [Kc] + [Kal

K] {T}= {F}

[1 —1] hPl 2 1
6

QAL + PRT, I

If at free end convection exist
(Free end convection matrix)

[Khe] = 114[ — Convection matrix

01

‘K=Kc+Kh+Khe‘

h

'____; : letip
% I/ Fin base \

A = Length = Thickenss = [» t
P =2 = | (Approximately)
= Area of the fin
=2 Perimeter of the fin
=P Thermal conductivity of fin
=P Length of the fin
=P Heat transfer coefficient

T, =% Ammospheric air temperature

Q

P Heat Generation

-’
-m
- W/mK
-m

- W/im’K



A metallic fin 20 mm wide and 4 mm thick is
attached to a furnace whose wall temperature
is 180°C. The length of the fin is 120 mm. If
the thermal conductivity of the material of
the fin is 120mm. If the thermal conductivity
of the material of the fin is 350 W/m°C and
convection coefficient is 9 W/m2°C, determine
the temperature distribution assuming that the
tip of the fin is open to the atmosphere and that
the ambient temperature is 25°C.

Conduction Convenction
= 180°C = 350 W/m°C T =25°C

a \ \ \ h =9 W/m¥*C

A fin (length 120mm, 20mm wide and 4mm thick) is
attached to a furnace wall temperature of 180 C.
Determine the temperature at the midpoint of the fin
assuming the tip of the fin is open to atmosphere,
which is at 25 C(take fin’s conductivity 350 W/mK
And convection coefficient of atmosphere 9
W/m”2K)

Give that.
Width of the fin, w =20 mm =0.02 m
Thickness of the fin. /=4 mm=4 x 10° m
Wall temperature, 7, = 180°C
Length of the fin, L=120mm =0.12 m
Thermal conductivity, K= 350 W/m°C

Convection coefficient. # =9 W/m?**°C

Ambient temperature. 7, = 25°C



The fin is divided into two equal elements.

0.06 m 0.06 m
< > s
0.12
|‘ 12m )|

Figure (2): F.E Modal

Ts" @ T:" @ 4 T3

Give that,
Width of the fin, w =20 mm =0.02 m
Thickness of the fin. 7=4 mm =4 x 10" m
Wall temperature, 7, = 180°C
Length of the fin, L=120mm =0.12m
Thermal conductivity, K = 350 W/m°C

Convection coefficient. 7 =9 W/m**C

Ambient temperature. 7, =25°C



Element (1)
h

Tt D $T,

L, =0.06 m

<

Figure (3): Element (1)

Stiffness matrix for element (1).

-3

Ai =Wxf=002x4x%103=8 x 10°° m?
P=0.012m

Force vector for element (1).

F|  QAl+phT Iy
T 2 {1}

Since. 'Q' is not given in the problem, neglect the term

o)

K
|

F

255 phToo[l{l}
i 2 |1




Stiffness matrix for element (1).
AIK A hpl
==

l

8><10“5x350[1 _1I
= +

0.06 -1 1

9x0.012x0.06{2 1
6 L 2

1 Wf2 1
E 0-467[ +(1.08x10 3)ll 2]

I ]
0.467 —0.467] [216)(]0

_ 1.08x10"
0467 0467 | |1.08x10

2.16%10™

1
0.46916 —0.46592]1

[K.]=
—0.46592 0.46916 |2

|

F

b
F

. 2 -

- phTooll 1
-T2 |

0.012x9x25x%0.06

2

_ [0.081
0.081

|

1
1

|



Finite element equation for element (1).

[0.46916 ~046592]| 7| | £
-0.46592  0.46916 || T F

1 2
0.46916 —0.46592]1 |1 | _ {0.081}
046592 046916 [2|T[ [0.081

Element (2)

Since all the parameters and properties are same finite element equation for element (2) is given by.

-
2
F

3

0.46916 —0.46592]|7,| _
—0.46592 0.46916 7;

2 3

046916 —0.4659212) 5,  [0.081
~0.46592  0.46916 3|T| ~ |0.081




|

1

! 0.46916 —0.46592]1 Ll _ {0.081}
: -0.46592 046916 2|7 |  [0.081
1

Global finite element equation

|

|

E 0.46916 -04659227; _[0.081
1 ]-0.46592  0.46916 3|7 | ~

|

1 2 3
(046916  —0.46592 0 IIT' 0.081
1046592 0.46916+0.46916 —0.46592[2] 7,1 = 10.081+0.081
0 046592  0.46916 317; 0.081
(046916 —046592 0 ||| [o.081
046592 0.93832 04659117+ = 10.162
0 —046592 046916 |[T| [0.081




T1=180 C —0.46592 0.93832 -0.46591 qu = 10.162¢
0 —0.46592 0.46916 7;[ l

Writing the 2nd and 3rd rows

T
-0.46592 T1 + 0.93832 T2 - 0.46591 T3 = 0.162 Tl l 180
o= 176.83
-0.46592 T2 +0.46916 T3 = 0.081 7;[ 175.78
Conduction Convenction

= 1800(:% ‘ 350 W/m°C T, =25°C Tt O Ty @ T

a \ h =9 W/m®C l< 0.06 m )|< 0.06 m >l

|‘ 0.12m "



MEG603 — FINITE ELEMENT ANALYSIS

A« 1090 et "‘5”’

PINITE ELEMENT ANALYSES FORMULADOON BT ASOK KUMAR N IAF / MECH! 1

https://www.slideshare.net/ ASHOKKUMARZ27088700/me6603-finite-element-analysis-formula-book
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Explain about the use of ANSYS in FEA.

Ans: ANSYS is a finite element modeling package and
design analysis tool which is used to solve different problems
of engineering based on structural analysis. thermal analysis.
CFD analysis, etc.

The documentation of a product designed by ANSYS
software consists of commands reference, operations guide.
modeling guide. element reference. etc.

Solving the problem using ANSYS is carried out in three
stages namely.

1.  Preprocessing stage

2. Solution stage

3.  Postprocessing stage.

ANSYS - Analysis of Systems

Full Form of APDL is
ANSYS Parametric Design Language




ANSYS Multiphysics Utility Menu

File Select List Plot PlotCtrls WorkPlane Parameters Macro MenuCtrls Help

oDz a s s e 7 B
_ANSYS Loolbar

ANSYS Mam Menu
] Preprocessor MAR f f?l?
@ Solution 22:57:30

General Postproc
TimeHist Postpro
Topological Opt
ROM Tool
DesignXplorer
Design Opt

Prob Design
Radiation Opt
Session Editor
Finish

Basic overview: https://www.youtube.com/watch?v=ePA9csthHNM
Tutorials: https://sites.ualberta.ca/~wmoussa/AnsysTutorial/BT/BT.html



https://www.youtube.com/watch?v=ePA9csthHNM
https://sites.ualberta.ca/~wmoussa/AnsysTutorial/BT/BT.html

Preprocessing Stage

In this stage, the problem 1s described or stated clearly
by the following steps.

(1) Defining the key points, lines and areas of elements.

(11) Defining the element type which includes the
elements shape. dimensions. degrees of freedom,
etc.

(111) Defining the material properties like Young’s
modulus, Poisson’s ratio, thermal conductivity, etc.

(iv) Stating the mesh lines. areas or volumes as per the
requirement.



Solution Stage

After the preprocessing stage, the next stage 1s solution

stage, which includes specifying loads. constraints

and obtaining the solution. The sequential steps are as

follows,

(1) Stating the loads which may include pressure or
points.

(11) Adding the constraints. either translational or
rotational.

(111) Solving the equations. which are associated with
the above steps.

N Machi Utility Menu {Load Ste

Eile Select List Plot PlotCts

LlslaolsloleE
vToobar

SAVE_DB| RESUM_DB| QuiT] |

Main Menu @

& Preferences =
@ Preprocessor
= Solution
@ Analysis Type
= Define Loads
= Load Step Opts
@ SE Management (CMS)
Results Tracking
2 Solve
& Current LS
# Manual Rezoning
= Multi-field Set Up
= ADAMS Connection
= Diagnostics
Unabridged Menu
General Postproc
TimeHist Postpro
® Prob Design
@ Radiation Opt
£ Session Editor
& Finish
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