
Unit – II

Logic Concepts and Logic Programming: Introduction, Propositional Calculus,

Propositional Logic, Natural Deduction System, Resolution Refutation in Propositional Logic,

Predicate Logic, Logic Programming. Representing Knowledge Using Rules: Logic

programming, Procedural Vs Declarative knowledge, Forward Vs Backward Reasoning,

Matching.

TOPIC: Introduction to Logic Concepts and Logic Programming:

Artificial Intelligence (AI) is the ability for an artificial machine to act intelligently. Logic

Programming is a method that computer scientists are using to try to allow machines to reason

because it is useful for knowledge representation. In logic programming, logic is used to

represent knowledge and inference is used to manipulate it.

Prolog(PROgramming in LOGic), is a declarative programming language which is based on the

ideas of logic programming.The idea of Prolog was to make logic look like a programming

language and allow it to be controlled by a programmer to advance the research for theorem-

proving.

propositional calculus and propositional logic in artificial intelligence:

Propositional logic (PL) is the simplest form of logic where all the statements are made by

propositions. A proposition is a declarative statement which is either true or false. It is a

technique of knowledge representation in logical and mathematical form.

http://www.doc.ic.ac.uk/~cclw05/topics1/glossary.html#inference

Example:

1. a) It is Sunday.

2. b) The Sun rises from West (False proposition)

3. c) 3+3= 7(False proposition)

4. d) 5 is a prime number.

Following are some basic facts about propositional logic:

o Propositional logic is also called Boolean logic as it works on 0 and 1.

o In propositional logic, we use symbolic variables to represent the logic, and we can use

any symbol for a representing a proposition, such A, B, C, P, Q, R, etc.

o Propositions can be either true or false, but it cannot be both.

o Propositional logic consists of an object, relations or function, and logical connectives.

o These connectives are also called logical operators.

o The propositions and connectives are the basic elements of the propositional logic.

o Connectives can be said as a logical operator which connects two sentences.

o A proposition formula which is always true is called tautology.

o A proposition formula which is always false is called Contradiction.

o Statements which are questions, commands, or opinions are not propositions such as

"Where is Rohini", "How are you", "What is your name", are not propositions.

Syntax of propositional logic:

The syntax of propositional logic defines the allowable sentences for the knowledge

representation. There are two types of Propositions:

1.Atomic Propositions

2.Compound propositions

o Atomic Proposition: Atomic propositions are the simple propositions. It consists of a

single proposition symbol. These are the sentences which must be either true or false.

Example:

1. a) 2+2 is 4, it is an atomic proposition as it is a true fact.

2. b) "The Sun is cold" is also a proposition as it is a false fact.

o Compound proposition: Compound propositions are constructed by combining simpler

or atomic propositions, using parenthesis and logical connectives.

Example:

1. a) "It is raining today, and street is wet."

2. b) "Ankit is a doctor, and his clinic is in Mumbai."

Logical Connectives:

Logical connectives are used to connect two simpler propositions or representing a sentence

logically. We can create compound propositions with the help of logical connectives. There are

mainly five connectives, which are given as follows:

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either Positive

literal or negative literal.

2. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is called a conjunction.

Example: Rohan is intelligent and hardworking. It can be written as,

P=Rohanisintelligent,

Q= Rohan is hardworking. → P∧ Q.

3. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called disjunction,

where P and Q are the propositions.

Example: "Ritika is a doctor or Engineer",

Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ Q.

4. Implication: A sentence such as P → Q, is called an implication. Implications are also

known as if-then rules. It can be represented as

 If it is raining, then the street is wet.

 Let P= It is raining, and Q= Street is wet, so it is represented as P → Q

5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If I am

breathing, then I am alive

 P= I am breathing, Q= I am alive, it can be represented as P ⇔ Q.

Following is the summarized table for Propositional Logic Connectives:

Truth Table:

In propositional logic, we need to know the truth values of propositions in all possible scenarios.

We can combine all the possible combination with logical connectives, and the representation of

these combinations in a tabular format is called Truth table. Following are the truth table for all

logical connectives:

Truth table with three propositions:

We can build a proposition composing three propositions P, Q, and R. This truth table is made-

up of 8n Tuples as we have taken three proposition symbols.

Natural Deduction:

ND techniques were used as early as people did reasoning, it is unquestionable that the exact

formulation of ND and the justification of its correctness was postponed until the 20th century.

Applications

There are three main fields of application of ND systems: practical, theoretical and

philosophical.

ND systems became a standard tool of working logicians, mathematicians, and philosophers. At

least in the Anglo-American tradition, ND systems prevail in teaching logic. They also had

strong influence on the development of other types of non-axiomatic formal systems such as

sequent calculi and tableau systems

Topic: Resolution Refutation in Propositional Logic

Resolution is one kind of proof technique that works this way - (i) select two clauses that

contain conflicting terms (ii) combine those two clauses and (iii) cancel out the conflicting

terms.

For example we have following statements,

 (1) If it is a pleasant day you will do strawberry picking

 (2) If you are doing strawberry picking you are happy.

Above statements can be written in propositional logic like this -

 (1) strawberry_picking ← pleasant

 (2) happy ← strawberry_picking

And again these statements can be written in CNF like this -

 (1) (strawberry_picking ∨~pleasant) ∧

 (2) (happy ∨~strawberry_picking)

By resolving these two clauses and cancelling out the conflicting

terms 'strawberry_picking' and '~strawberry_picking', we can have

one newclause,

 (3) ~pleasant ∨ happy

How ? See the figure on right.

When we write above new clause in infer or implies form, we have

'pleasant → happy' or 'happy ← pleasant'

i.e. If it is a pleasant day you are happy.

But sometimes from the collection of the statements we have, we want to know the answer of

this question - "Is it possible to prove some other statements from what we actually know?" In

order to prove this we need to make some inferences and those other statements can be shown

true using Refutation proof method i.e. proof by contradiction using Resolution. So for the

asked goal we will negate the goal and will add it to the given statements to prove the

contradiction.

Let's see an example to understand how Resolution and Refutation work. In below

example, Part(I) represents the English meanings for the clauses, Part(II) represents the

propositional logic statements for given english sentences, Part(III) represents the Conjunctive

Normal Form (CNF) of Part(II) and Part(IV) shows some other statements we want to prove

using Refutation proof method.

Part(I) : English Sentences

(1) If it is sunny and warm day you will enjoy.

(2) If it is warm and pleasant day you will do strawberry picking

(3) If it is raining then no strawberry picking.

(4) If it is raining you will get wet.

(5) It is warm day

(6) It is raining

(7) It is sunny

Part(II) : Propositional Statements

(1) enjoy ← sunny ∧ warm

(2) strawberry_picking ← warm ∧ pleasant

(3) ~strawberry_picking ← raining

(4) wet ← raining

(5) warm

(6) raining

(7) sunny

Part(III) : CNF of Part(II)

(1) (enjoy ∨~sunny∨~warm) ∧

(2) (strawberry_picking ∨~warm∨~pleasant) ∧

(3) (~strawberry_picking ∨~raining) ∧

(4) (wet ∨~raining) ∧

(5) (warm) ∧

(6) (raining) ∧

(7) (sunny)

Why ∧ at the end of above statements?

Part(IV) : Other statements we want to prove by Refutation

(Goal 1) You are not doing strawberry picking.

(Goal 2) You will enjoy.

(Goal 3) Try it yourself : You will get wet.

http://athena.ecs.csus.edu/~mei/logicp/unification-resolution/CNF_resolution.pdf

Goal 1 : You are not doing strawberry picking.

Prove : ~strawberry_picking

Assume : strawberry_picking (negate the goal and add it to given clauses).

Goal 2 : You will enjoy.

Prove : enjoy

Assume : ~enjoy (negate the goal and add it to given clauses

Predicate Logic:

Predicate Logic

Predicate Logic deals with predicates, which are propositions, consist of variables.\

A predicate is an expression of one or more variables determined on some specific domain. A
predicate with variables can be made a proposition by either authorizing a value to the variable or by
quantifying the variable.

The following are some examples of predicates.

o Consider E(x, y) denote "x = y"

o Consider X(a, b, c) denote "a + b + c = 0"

o Consider M(x, y) denote "x is married to y."

Quantifier:

The variable of predicates is quantified by quantifiers. There are two types of quantifier in predicate
logic - Existential Quantifier and Universal Quantifier.

Existential Quantifier:

If p(x) is a proposition over the universe U. Then it is denoted as ∃x p(x) and read as "There exists at
least one value in the universe of variable x such that p(x) is true. The quantifier ∃ is called the
existential quantifier.

There are several ways to write a proposition, with an existential quantifier, i.e.,

(∃x∈A)p(x) or ∃x∈A such that p (x) or (∃x)p(x) or p(x) is true for some x ∈A.

Universal Quantifier:

If p(x) is a proposition over the universe U. Then it is denoted as ∀x,p(x) and read as "For every
x∈U,p(x) is true." The quantifier ∀ is called the Universal Quantifier.

There are several ways to write a proposition, with a universal quantifier.

∀x∈A,p(x) or p(x), ∀x ∈A Or ∀x,p(x) or p(x) is true for all x ∈A.

Negation of Quantified Propositions:

When we negate a quantified proposition, i.e., when a universally quantified proposition is negated,
we obtain an existentially quantified proposition,and when an existentially quantified proposition is
negated, we obtain a universally quantified proposition.

The two rules for negation of quantified proposition are as follows. These are also called DeMorgan's
Law.

Example: Negate each of the following propositions:

1.∀x p(x)∧ ∃ y q(y)

Sol: ~.∀x p(x)∧ ∃ y q(y))
 ≅~∀ x p(x)∨∼∃yq (y) (∴∼(p∧q)=∼p∨∼q)
 ≅ ∃ x ~p(x)∨∀y∼q(y)

2. (∃x∈U) (x+6=25)

Sol: ~(∃ x∈U) (x+6=25)
 ≅∀ x∈U~ (x+6)=25
 ≅(∀ x∈U) (x+6)≠25

3. ~(∃ x p(x)∨∀ y q(y)

Sol: ~(∃ x p(x)∨∀ y q(y))
 ≅~∃ x p(x)∧~∀ y q(y) (∴~(p∨q)= ∼p∧∼q)
 ≅ ∀ x ∼ p(x)∧∃y~q(y))

Propositions with Multiple Quantifiers:

The proposition having more than one variable can be quantified with multiple quantifiers. The
multiple universal quantifiers can be arranged in any order without altering the meaning of the
resulting proposition. Also, the multiple existential quantifiers can be arranged in any order without
altering the meaning of the proposition.

The proposition which contains both universal and existential quantifiers, the order of those quantifiers
can't be exchanged without altering the meaning of the proposition, e.g., the proposition ∃x ∀ y p(x,y)
means "There exists some x such that p (x, y) is true for every y."

Example: Write the negation for each of the following. Determine whether the resulting statement is
true or false. Assume U = R.

1.∀ x ∃ m(x2<m)

Sol: Negation of ∀ x ∃ m(x2<m) is ∃ x ∀ m (x2≥m). The meaning of ∃ x ∀ m (x2≥m) is that there
exists for some x such that x2≥m, for every m. The statement is true as there is some greater x such
that x2≥m, for every m.

2. ∃ m∀ x(x2<m)

Sol: Negation of ∃ m ∀ x (x2<m) is ∀ m∃x (x2≥m). The meaning of ∀ m∃x (x2≥m) is that for every m,
there exists for some x such that x2≥m. The statement is true as for every m, there exists for some
greater x such that x2.

Topic: Difference between Procedural and Declarative

Knowledge
Procedural Knowledge:

Procedural Knowledge also known as Interpretive knowledge, is the type of knowledge in which

it clarifies how a particular thing can be accomplished. It is not so popular because it is generally

not used.

It emphasize how to do something to solve a given problem.

Let’s see it with an example:

var a=[1, 2, 3, 4, 5];

var b=[];

for(var i=0;i<a.length;i++)

{

 b.push(a[i]);

}

console.log(b);

Output is:

[1, 2, 3, 4, 5]

Declarative Knowledge:

Declarative Knowledge also known as Descriptive knowledge, is the type of knowledge which

tells the basic knowledge about something and it is more popular than Procedural Knowledge.

It emphasize what to do something to solve a given problem.

Let’s see it with an example:

var a=[1, 2, 3, 4, 5];

var b=a.map(function(number)

{

 return number*1});

console.log(b);

Output is:

[1, 2, 3, 4, 5]

In both example we can see that the output of a given problem is same because the only

difference in that two methods to achieve the output or solution of problem.

Difference the Procedural and Declarative Knowledge:

S.NO Procedural Knowledge Declarative Knowledge

1.

It is also known as Interpretive

knowledge.

It is also known as Descriptive

knowledge.

2.

Procedural Knowledge means how

a particular thing can be

accomplished.

While Declarative Knowledge

means basic knowledge about

something.

3.

Procedural Knowledge is generally

not used means it is not more

popular.

Declarative Knowledge is more

popular.

4.

Procedural Knowledge can’t be

easily communicate.

Declarative Knowledge can be

easily communicate.

5.

Procedural Knowledge is generally

process oriented in nature.

Declarative Knowledge is data

oriented in nature.

6.

In Procedural Knowledge

debugging and validation is not

easy.

In Declarative Knowledge

debugging and validation is easy.

7.

Procedural Knowledge is less

effective in competitive

programming.

Declarative Knowledge is more

effective in competitive

programming.

Topic: Forward Vs Backward Reasoning:In Artificial intelligence, the purpose of

the search is to find the path through a problem space. There are two ways to pursue such a

search that are forward and backward reasoning. The significant difference between both of them

is that forward reasoning starts with the initial data towards the goal. Conversely, backward

reasoning works in opposite fashion where the purpose is to determine the initial facts and

information with the help of the given results.

BASIS FOR

COMPARISON

FORWARD

REASONING

BACKWARD

REASONING

Basic Data-driven Goal driven

Begins with New Data Uncertain conclusion

Objective is to find the Conclusion that must

follow

Facts to support the

conclusions

Type of approach Opportunistic Conservative

Flow Incipient to consequence Consequence to incipient

Definition of Forward Reasoning:

The solution of a problem generally includes the initial data and facts in order to arrive at the

solution. These unknown facts and information is used to deduce the result. For example, while

diagnosing a patient the doctor first check the symptoms and medical condition of the body such

as temperature, blood pressure, pulse, eye colour, blood, etcetera. After that, the patient

symptoms are analysed and compared against the predetermined symptoms. Then the doctor is

able to provide the medicines according to the symptoms of the patient. So, when a solution

employs this manner of reasoning, it is known as forward reasoning.

Steps that are followed in the forward reasoning

The inference engine explores the knowledge base with the provided information for constraints

whose precedence matches the given current state.

 In the first step, the system is given one or more than one constraints.

 Then the rules are searched in the knowledge base for each constraint. The rules that fulfil

the condition are selected.

 Now each rule is able to produce new conditions from the conclusion of the invoked one.

As a result, THEN part is again included in the existing one.

 The added conditions are processed again by repeating step 2. The process will end if there

is no new conditions exist.

Definition of Backward Reasoning:

The backward reasoning is inverse of forward reasoning in which goal is analysed in order to

deduce the rules, initial facts and data. We can understand the concept by the similar example

given in the above definition, where the doctor is trying to diagnose the patient with the help of

the inceptive data such as symptoms. However, in this case, the patient is experiencing a problem

in his body, on the basis of which the doctor is going to prove the symptoms. This kind of

reasoning comes under backward reasoning.

Steps that are followed in the backward reasoning

In this type of reasoning, the system chooses a goal state and reasons in the backward direction.

Now, let’s understand how does it happens and what steps are followed.

 Firstly, the goal state and the rules are selected where the goal state reside in the THEN part

as the conclusion.

 From the IF part of the selected rule the subgoals are made to be satisfied for the goal state

to be true.

 Set initial conditions important to satisfy all the subgoals.

 Verify whether the provided initial state matches with the established states. If it fulfils the

condition then the goal is the solution otherwise other goal state is selected.

Key Differences Between Forward and Backward Reasoning in AI

1. The forward reasoning is data-driven approach while backward reasoning is a goal driven.

2. The process starts with new data and facts in the forward reasoning. Conversely, backward

reasoning begins with the results.

3. Forward reasoning aims to determine the result followed by some sequences. On the other

hand, backward reasoning emphasis on the acts that support the conclusion.

4. The forward reasoning is an opportunistic approach because it could produce different

results. As against, in backward reasoning, a specific goal can only have certain

predetermined initial data which makes it restricted.

5. The flow of the forward reasoning is from the antecedent to consequent while backward

reasoning works in reverse order in which it starts from conclusion to incipient.

Conclusion

The production system structure of the search process facilitates in the interpretation of the

forward and backward reasoning. The forward and backward reasoning are differentiated on the

basis of their purpose and process, in which forward reasoning is directed by the initial data and

intended to find the goal while the backward reasoning is governed by goal instead of the data

and aims to discover the basic data and facts.

Topic:Matching: Intelligent matching is primarily used in maintaining and

extracting databases, specifically those that are very large and complex in

nature. It is generally implemented within database software, business

intelligence solutions or a big data analytics application. It works by applying

reasoning-based data matching techniques, which eventually deliver ideal or

substantially related query results.

Some of the services intelligent matching provides include:

 The ability to scan each object for duplication within the target

database

 The ability to remove duplicates within databases

 The ability to search and extract relevant information from big data

repositories

 The ability to compare data, objects or files for similaritie

	propositional calculus and propositional logic in artificial intelligence:
	Syntax of propositional logic:
	Logical Connectives:
	Following is the summarized table for Propositional Logic Connectives:

	Truth Table:
	Truth table with three propositions:

	Natural Deduction:
	Applications
	Quantifier:
	Existential Quantifier:
	Universal Quantifier:
	Negation of Quantified Propositions:
	Propositions with Multiple Quantifiers:
	Definition of Forward Reasoning:
	Definition of Backward Reasoning:

	Key Differences Between Forward and Backward Reasoning in AI
	Conclusion

