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1. Introduction: 
Algorithm: The word algorithm came from the name of a Persian mathematician Abu Jafar 

Mohammed Ibn Musa Al Khowarizmi (ninth century). An algorithm is simply s set of rules used 

to perform some calculations either by hand or more usually on a machine (computer). 

Definition: An algorithm is a finite set of instructions that accomplishes a particular task. 

Another definition is a sequence of unambiguous instructions for solving a problem i.e, for 

obtaining a required output for any legitimate (genuine) input in a finite amount of time. 

In addition all algorithms must satisfy the following criteria (characteristics). 

1. Input: zero or more quantities are externally supplied as input. 

        Consider Fibonacci numbers program, here aim of the problem is to display ten 

Fibonacci numbers. No input is required; in the problem itself this is clearly mentioned as ten 

Fibonacci values. So zero items required for input. 

        Another problem is displaying given numbers of evens, so user should accept how 

many evens required. Based on the user input the number of evens is to be displayed. So, one data 

item is required as input. 

2. Output: At least one quantity is produced by given algorithm as output. 

       In the case of Fibonacci numbers program after executing the program, first ten 

Fibonacci values displayed as output.  

In second case, based on user input it should display given number of evens. An input of 

negative number is wrong, should display proper error message as output. So this program 

displays at least one output as error message, or number if outputs that show given number of 

steps. 

3. Definiteness: Each instruction is clear and unambiguous i.e. each step must be easy to 

understand and convey only a single meaning. 

4. Effectiveness: each instruction must be very basic, so that it can be carried out by a 

person using only pencil and paper. 

     This step is common in both Fibonacci and primes. For example, if user enters a negative 

numbers as input in evens, if you have a step like 

Step: If N < 0 then 

       Go to ERROR 

A wrong instruction given as go to ERROR, those kinds of instructions should not be there 

in an algorithm. 

5. Finiteness: If we can trace out the instructions of an algorithm then for all cases, the 

algorithm terminate after a finite number of steps. 

Either in the case of Fibonacci or even numbers problem should be solved in some number 

of steps. For example, continuous display or Fibonacci series without termination leads to 

abnormal termination. 

                                              

Criteria for Algorithms

Input: Zero or more inputs

Output: At least one output.

Finiteness: N number of steps.

Definiteness: Clear algorithm step.

Effectiveness: A carried out step.
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2. Process for Design and analysis of algorithms: 

 

                                 

Understand the problem

Solution as an algorithm
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      is it efficient

Code the algorithm

Algorithm Design

     technique

Fig: Process for design and analysis of algorithms  
1. Understand the problem: This is very crucial phase. If we did any mistake in this step 

the entire algorithm becomes wrong. So before designing an algorithm is to understand the 

problem first. 

2. Solution as an algorithm (Exact vs approximation solving): Solve the problem exactly if 

possible. Even though some problems are solvable by exact method, but they are not faster when 

compared to approximation method. So in that situation we will use approximation method.  

3. Algorithm techniques: In this we will use different design techniques like,  

i) Divide-and-conquer 

ii) Greedy method 

iii) Dynamic programming 

iv) Backtracking 

v) Branch and bound…. etc., 

4. Prove correctness: once algorithm has been specified, next we have to prove its 

correctness. Usually   testing is used for proving correctness. 

5. Analyze an algorithm: Analyzing an algorithm means studying the algorithm behavior 

ie., calculating the time complexity and space complexity. If the time complexity of algorithm is 

more then we will use one more designing technique such that time complexity should be 

minimum. 

6. Coding an algorithm: after completion of all phases successfully then we will code an 

algorithm. Coding should not depend on any program language. We will use general notation 

(pseudo-code) and English language statement. Ultimately algorithms are implemented as 

computer programs. 

 

 

3. Types of Algorithms:    
 There are four types of algorithms 

1. Approximate algorithm. 

2. Probabilistic algorithm. 

3. Infinite algorithm. 

4. Heuristic algorithm. 
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1. Approximate Algorithm: An algorithm is said to approximate if it is infinite and repeating. 

1. 

2

3

= 1.414

= 1.713

= 3.14

Ex:

etc...  
2. Probabilistic algorithm: If the solution of a problem is uncertain then it is called as 

probabilistic algorithm. Ex: Tossing of a coin. 

3. Infinite Algorithm: An algorithm which is not finite is called as infinite algorithm. 

Ex: A complete solution of a chessboard, division by zero. 

4. Heuristic algorithm: Giving fewer inputs getting more outputs is called the Heuristic 

algorithms. 

Ex: All Business Applications. 

 

4. Criteria’s (or) Issues for algorithm:  
There are various issues in the study of algorithms; 

1. How to devise algorithms: The creation of an algorithm is a logical activity which may 

never be fully automated. 

2. How to express algorithms: We shall express all of our algorithms using the best 

principles of structuring. 

3. How to validate algorithms: After creation of algorithms is to validate algorithms. The 

process of checking an algorithm computes the correct answer for all possible legal inputs is called 

algorithm validation. The purpose of validation of algorithm is to find whether algorithm works 

properly without being dependent upon programming languages. 

4. How to analyze algorithms: Analysis of algorithm is a task of determining how much 

computing time and storage is required by an algorithm. Analysis of algorithms is also called 

performance analysis. The behavior of algorithm in best case, worst case and average case needs 

to be obtained. 

5. How to test a program: Testing a program really consists of two phases: 

i). Debugging: While debugging a program, it is checked whether program produces faulty 

results for valid set of input and if it is found then the program has to be corrected.  

ii). Profiling or performance measuring: Profiling is a process of measuring time and space 

required by a corrected program for valid set of inputs. 

 

5  Specification of algorithm: 
 There are various ways by which we can specify an algorithm. 

                       

Algorithm

Using natural language

Pseudocode

Flow chart

Program (Using programming language)  
It is very easy to specify an algorithm using natural language. But many times 

specification of algorithm by using natural language is not clear, and may require brief 

description. 

Example: Write an algorithm to perform addition of two numbers. 

Step 1: Read the first number, say ‘a’. 

Step 2: Read the second number, say ‘b’. 

Step 3: Add the two numbers and store the result in a variable ‘c’. 

Step 4: Display the result. 
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Such a specification creates difficulty, while actually implementing it (difficulty in 

converting into source code). Hence many programmers prefer to have specification of algorithm 

by means of pseudo-code. 

Another way of representing the algorithm is by flow chart. Flow chart is a graphical 

representation of an algorithm, but flowchart method work well only if the algorithm is small 

and simple. 

 

Pseudo-Code for expressing Algorithms 

Based on algorithm there are two more representations used by programmer and those are 

flow chart and pseudo-code. Flowchart is a graphical representation of an algorithm. Similarly 

pseudo-code is a representation of algorithm in which instruction sequence can be given with the 

help of programming constructs. It is not a programming language since no pseudo language 

compiler exists. 

The general procedure for writing the pseudo-code is presented below- 

1. Comments begin with // and continue until the end of line 

2. A block of statements (compound statement) are represented using { and } for example if 

statement, while loop, functions etc.,. 

                                      

Example

{

   Statement 1;

   Statement 2;

      .........
      .........
}

 
 

3. The delimiters [;] are used at the end of the each statement. 

4. An identifier begins with a letter. Example: sum, sum5, a; but not in 5sum, 4a etc.,. 

5. Assignment of values to the variables is done using the assignment operators as := or . 

6. There are two Boolean values TRUE and FALSE. 

Logical operators: AND, OR, NOT. 

Relational operators: <, , ≥,,=,. 

Arithmetic operators: +, -, *, /, %; 

7. The conditional statement if-then or if-then-else is written in the following form. 

If (condition) then (statement) 

If (condition) then (statement-1) else (statement-2) 

‘If’ is a powerful statement used to make decisions based as a condition. If a condition is 

true the particular block of statements are execute. 

                                    

       Example

if(a>b) then

  {

    write("a is big");

  }

 else

  {

     write("b is big");

  }
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8. Case statement 

                     

case

{

    :(condition -1): (statement-1)

    :(condition -2): (statement-2)

    :(condition -n): (statement-n)

      ..............

      ..............

   else     :(statement n+1);

}
 

If condition -1 is true, statement -1 executed and the case statement is exited. If 

statement -1 is false, condition -2 is evaluated. If condition -2 is true, statement-2 executed 

and so on. If none of the conditions are true, statement –(n+1) is executed and the case 

statement is exited. The else clause is optional. 

9. Loop statements: 

For loop: 

i). The general form of the for loop is 

   

for variable:=value 1 to value n step do

{

     Statement -1;

     Statement -1;

         .......

         .......

     Statement -n;

}

Example:

for i:=1 to 10 do

{

   write(i); //displaying numbers from 1 to 10

    i:=i+1;

}

 
ii). While loop: 

          The general form of the while loop is 

              

while <condition> do

{

   <statement 1>

   <statement 2>

    ........

    ........

  <statement n>

}

Example:

i:=1;

while(i<=10)do

{

   write (i);//displaying numbers from 1 to 10

   i:=1+1;

}

 
Note that the statements of while loop are executed as long as <condition> is true. 

iii). Repeat-until loop: 

  The general form of repeat-until is- 

                 

repeat

{

  <statement 1>

  <statement 2>

    ......

    ......

  <statement n>

}until <condition>

Example

i:=1;

repeat

{

   write (i);

   i:=i+1;

}

until (i>10);
 

        Note that the statements are executed as long as <condition> is false. 
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10.  Break: this statement is exit from the loop. 

11.  Elements of array are accessed using [ ]. 

For example, if A is an one-dimensional array, then ith element can be accessed using 

A[i]. If A is two-dimensional array, then (i, j)th element can be accessed using A[i,j]. 

12.  Procedures (functions): There is only one type of procedure: 

An algorithm consists of a heading and a body. 

                          

Algorithm Name (<parameter list>)

{

   body of the procedure

}

procedure name of the procedure

Syntax:

 
13. Compound data-types can be formed with records 

                 

Syntax:

Name = record

{

   data-type -1 data 1;

   data-type -2 data 2;

   data-type -n data n;

}

Example

Employee =record

{

int no;

char name[10];

float salary;

}
 

Example 1: Write an algorithm to find the sum of n numbers. 

Algorithm sum(n) 

   { 

    total:=0; 

   for i:=1 to n do 

   total:= total + i; 

   i:=i+1; 

} 

        Example 2:  Write an algorithm to perform Multiplication of two matrices. 

         Algorithm Multiplication (A, B, n) 

                         { 

                            for i:=1 to n do 

                                  for j:=1 to n do 

                                      C[i,j]:=0; 

                                 for k:=1 to n do 

                                          C[i,j]:=C[i,j]+A[i,k]*B[k,j]; 

                         } 

 

 

6.  Performance Analysis:  
Performance analysis or analysis of algorithms refers to the task of determining the 

efficiency of an algorithm i.,e how much computing time and storage an algorithm requires to 

run (or execute). This analysis of algorithm helps in judging the value of one algorithm over 

another. 

To judge an algorithm, particularly two things are taken into consideration 

1. Space complexity 

2. Time complexity. 

Space Complexity: The space complexity of an algorithm (program) is the amount of 

memory it needs to run to completion. The space needed by an algorithm has the following 

components. 
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1. Instruction Space. 

2. Data Space. 

3. Environment Stack Space. 

Instruction Space: Instruction space is the space needed to store the compiled version of the 

program instructions. The amount of instruction space that is needed depends on factors such as- 

i). The compiler used to compile the program into machine code. 

ii). The compiler options in effect at the time of compilation. 

iii). The target computer, i.,e computer on which the algorithm run.  

Note that, one compiler may produce less code as compared to another compiler, when the 

same program is compiled by these two. 

Data Space: Data space is the space needed to store all constant and variable values. Data 

space has two components. 

        i). Space needed by constants, for example 0, 1, 2.134.  

       ii). Space needed by dynamically allocated objects such as arrays, structures, classes. 

   Environmental Stack Space: Environmental stack space is used during execution of 

functions. Each time function is involved the following data are saved as the environmental 

stack. 

       i). The return address. 

      ii). Value of local variables. 

     iii). Value of formal parameters in the function being invoked. 

Environmental stack space is mainly used in recursive functions. Thus, the space requirement 

of any program p may therefore be written as 

      Space complexity S(P) = C + Sp (Instance characteristics). 

This equation shows that the total space needed by a program is divided into two parts. 

 Fixed space requirements(C) is independent of instance characteristics of the inputs and 

outputs.  

- Instruction space 

- Space for simple variables, fixed-size structure variables, constants. 

 A variable space requirements (SP(1)) dependent on instance characteristics 1. 

-  This part includes dynamically allocated space and the recursion stack space. 

Example of instance character is: 

Examples: 1 

    Algorithm NEC (float x, float y, float z) 

      { 

                Return (X + Y +Y * Z + (X + Y +Z)) /(X+ Y) + 4.0; 

      } 

In the above algorithm, there are no instance characteristics and the space needed by X, Y, Z is 

independent of instance characteristics, therefore we can write, 

         S(XYZ) =3+0=3 

            One space each for X, Y and Z 

           Space complexity is O(1). 

Examples: 2 

Algorithm ADD ( float [], int n) 

   { 

     sum = 0.0; 

     for i=1 to n do 

     sum=sum+X[i]; 

     return sum; } 
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   Here, atleast n words since X must be large enough to hold the n elements to be summed. 

Here the problem instances is characterized by n, the number of elements to be summed. So, we 

can write, 

           S(ADD) =3+n 

           3-one each for n, I and sum 

          Where n- is for array X[], 

        Space complexity is O(n). 

 

Time Complexity 
The time complexity of an algorithm is the amount of compile time it needs to run to 

completion. We can measure time complexity of an algorithm in two approaches 

1. Priori analysis or compile time 

2. Posteriori analysis or run (execution) time. 

In priori analysis before the algorithm is executed we will analyze the behavior of the 

algorithm. A priori analysis concentrates on determining the order if execution of statements. 

In Posteriori analysis while the algorithm is executed we measure the execution time. 

Posteriori analysis gives accurate values but it is very costly. 

As we know that the compile time does not depend on the size of the input. Hence, we will 

confine ourselves to consider only the run-time which depends on the size of the input and this 

run-time is denoted by TP(n). Hence 

 

      Time complexity T(P) = C + TP(n). 

 

The time (T(P)) taken by a program P is the sum of the compile time and execution time. 

The compile time does not depend on the instance characteristics, so we concentrate on the 

runtime of a program. This runtime is denoted by tp (instance characteristics). 

The following equation determines the number of addition, subtraction, multiplication, 

division compares, loads stores and so on, that would be made by the code for p. 

     tp(n) = CaADD(n)+ CsSUB(n)+ CmMUL(n)+ CdDIV(n)+…………….. 

where n denotes instance characteristics, and Ca, Cs, Cm, Cd and so on….. 

As denote the time needed for an addition, subtraction, multiplication, division and so on, 

and ADD, SUB, MUL, DIV and so on, are functions whose values are the number of additions, 

subtractions, multiplications, divisions and so on. But this method is an impossible task to find 

out time complexity. 

Another method is step count. By using step count, we can determine the number if steps 

needed by a program to solve a particular problem in 2 ways. 

 

Method 1: introduce a global variable “count”, which is initialized to zero. So each time a 

statement in the signal program is executed, count is incremented by the step count of that 

statement. 
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Example:

Algorithm Sum(a, n)

  {

   s:=0;

   for i:=1 to n do

   {

     s:=s+a[i];

   }

return s;

}

Algorithm sum with count statement added

count:=0;

Algorithm Sum(a,n)

  {

    s:=0;

    count:=count+1;

        for i:=1 to n do

           {

              count:=count +1;

              s:=s+a[i];

              count:=count+1;

           }

    count:=count+1; //for last time of for loop

    count:=count+1; //for return statement

    return s;

}
Thus the total number of steps are 2n+3

 
Method 2: The second method to determine the step count of an algorithm is to build a 

table in which we list the total number of steps contributed by each statement. 

                   

1. Algorithm Sum(a, n)

2.  {

3.     s:=0;

4.      for i:=1 to n do

5.      s:=s+a[i];

6.      return s;

7.  }

Total

Statement S/e Frequency Total steps

2n+3 steps

0

0

1

1

1

1

0

-

-

1

n+1

n

1

-

0

0

1

n+1

n

1

0

Ex:

 
The S/e (steps per execution) of a statement is the amount by which the count changes as 

a result of the execution of that statement. The frequency determines the total number of times 

each statement is executed. 

Complexity of Algorithms: 

1. Best Case: Inputs are provided in such a way that the minimum time is required to 

process them. 

2. Average Case: The amount of time the algorithm takes on an average set of inputs. 

3. Worst Case: The amount of time the algorithm takes on the worst possible set of inputs. 

                  

3 4 5 6 7 9 10 12 15

Linear Search

A           1         2           3          4           5         6           7          8         9 

Example:

 
Best Case: If we want to search an element 3, whether it is present in the array or not. First, A(1) 

is compared with 3, match occurs. So the number of comparisons is only one. It is observed that 

search takes minimum number of comparisons, so it comes under best case. 

                                              Time complexity is O(1). 
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Average Case: If we want to search an element 7, whether it is present in the array or not. 

First, A(1) is compared with 7 i,.e, (3=7), no match occurs. Next, compare A(2) and 7, no match 

occurs. Compare A(3) and A(4) with 7, no match occurs. Up to now 4 comparisons takes place. 

Now compare A(5) and 7 (i.,e, 7=7), so match occurs. The number of comparisons is 5. It is 

observed that search takes average number of comparisons. So it comes under average case. 

Note: If there are n elements, then we require n/2 comparisons. 

        
. . 
.

Time complexity is O
n

2
= O(n) (we neglect constant)

 
Worst Case: If we want to search an element 15, whether it is present in the array or not. 

First, A(1) is compared with 15 (i.,e, 3=15), no match occurs. Continue this process until either 

element is found or the list is exhausted. The element is found at 9th comparison. So number of 

comparisons are 9. 

                          Time complexity is O(n). 

Note: If the element is not found in array, then we have to search entire array, so it comes under 

worst case. 

 

7.  Asymptotic Notation: 
Accurate measurement of time complexity is possible with asymptotic notation. 

Asymptotic complexity gives an idea of how rapidly the space requirement or time requirement 

grow as problem size increase. When there is a computing device that can execute 1000 complex 

operations per second. The size of the problem is that can be solved in a second or minute or an 

hour by algorithms of different asymptotic complexity. In general asymptotic complexity is a 

measure of algorithm not problem. Usually the complexity of an algorithm is as a function 

relating the input length to the number of steps (time complexity) or storage location (space 

complexity). For example, the running time is expressed as a function of the input size ‘n’ as 

follows. 

                           f(n)=n4+100n2+10n+50 (running time) 

There are four important asymptotic notations. 

1. Big oh notation (O) 

2. Omega notation (). 

3. Theta notation () 

Let f(n) and g(n) are two non-negative functions. 

 

Big oh notation 
Big oh notation is denoted by ‘O’. it is used to describe the efficiency of an algorithm. It is 

used to represent the upper bound of an algorithms running time. Using Big O notation, we can 

give largest amount of time taken by the algorithm to complete. 

Definition: Let f(n) and g(n) be the two non-negative functions. We say that f(n) is said to be 

O(g(n)) if and only if there exists a positive constant ‘c’ and ‘n0‘ such that, 

            f(n)c*g(n) for all non-negative values of n, where n≥n0. 

Here, g(n) is the upper bound for f(n). 
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Ex: Let f(n)    =  2n
4
 + 5n2 + 2n +3

                     2n
4
 + 5n

4
 + 2n

4
 +3n

4

                    (2+5+2+3)n
4

                    12n
4
.

                   f(n)=12n
4

This implies     g(n)=n
4
, n

                        c=12 and n  =1

                       f(n)=O(n
4
). .

.
. .
.

. .
.

<

<

<

>1

0

n0

f(n)

c*g(n)

 
The above definition states that the function ‘f’ is almost ‘c’ times the function ‘g’ when ‘n’ is 

greater than or equal to n0.  

This notion provides an upper bound for the function ‘f’ i.,e, the function g(n) is an upper 

bound on the value of f(n) for all n, where n≥ n0. 

 

Big omega notation 

Big omega notation is denoted by ‘’. It is used to represent the lower bound of an 

algorithms running time. Using big omega notation we can give shortest amount of time taken by 

the algorithm to complete. 

Definition: The function f(n)= (g(n)) (read as for of n is omega of g of n) if and only if 

there exist positive constants ‘c’ and ‘n0’ such that, 

                         f(n) ≥ c*g(n) for all n, n≥n0 

            

Example:

. .
.

>1

                 g(n)=n
4
, c=2 and n  =1

                 f(n)=   . .
.

. .
.

0

(n
4
)

f(n)    2n
4, n>

c*g(n)

n0

f(n)
Let f(n)    =  2n

4
 + 5n2 + 2n +3

                     2n
4  (for example as n 

lower order oterms 

are insignificant)

> ,

 

Big Theta notation 

The big theta notation is denoted by ‘’. It is in between the upper bound and lower 

bound of an algorithms running time. 

Definition: Let f(n) and g(n) be the two non-negetive functions. We say that f(n) is said to 

be (g(n)) if and only if there exists a positive constants ‘c1’ and ‘c2’, such that, 

                         c1g(n)  f(n)  c2g((n) for all non-negative values n, where n ≥ n0. 

The above definition states that the function f(n) lies between ‘c1’times the function g(n) 

and ‘c2’, times the function g(n) where ‘c1’ and ‘c2’ are positive constants. 

This notation provides both lower and upper bounds for the function f(n) i.,e, g(n) is both 

lower and upper bounds on the value of f(n), for large n. in other words theta notation says that 

f(n) is both O(g(n)) and (g(n)) for all n, where n≥n0. 
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This function f(n) = (g(n)) iff g(n) is both upper and lower bound an f(n). 

                   

Example:

n0

f(n)
2n4     2n4 + 5n2 + 2n +3    12n4

2n4    f(n)   12n4 , n  1

g(n) = n4

c1=2, c2=12 and n0=1

f(n)=(n4)

. .
.

. .
.

. .
.

f(n) = 2n4 + 5n2 + 2n +3

c1*g(n)

c2*g(n)

n
 

 

Little ‘oh’ notation 
Little oh notation is denoted by “o”. the asymptotic upper bound provided by O-notation 

may or may not be asymptotically tight. The bound 2n2 =O(n2) is asymptotically tight, but the 

bound 2n=O(n2) is not. We use o-notation to denote an upper bound that is not asymptotically 

tight. 

Definition: f(n)=o(g(n)), iff  f(n)<c.g(n) for any positive constants c>0, n0>0 and n> n0. 

                                                                        Or 

                                                               

lim
f(n)

g(n)
=0

n  

                 

1. Algorithm Sum(a, n)

2.  {

3.     s:=0;

4.      for i:=1 to n do

5.      s:=s+a[i];

6.      return s;

7.  }

Total

Statement S/e Frequency Total steps

0

0

1

1

1

1

0

-

-

1

n+1

n

1

-

Ex:

(0)

(0)

(1)

(n)

(n)

(1)

(0)

(n)

The aymptotic complexity of sum is as follows

Find the time complexity for sum f given array elememts

 
 

The time complexity can be calculated as follows- 

First find out the basic operation of the above algorithm is- 

S:=S+ a[i] i.e., addition in the loop is the basic operation. 

The basic operation is executed every time the loop is executed. 
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T(n) =
i=1

n
1Thus time complexity 

=   1 + 1 + 1 + 1 n

=  n

T(n) = O(n). .
.

                                                   

8 Probabilistic Analysis: 
               Probabilistic analysis of algorithms is an approach to estimate the complexity of an 

algorithm. It uses the probability in the analysis of problems. It starts from an assumption about a 

probabilistic distribution of the set of all possible inputs. This assumption is then used to design an 

efficient algorithm or to compute an expected running time of a known algorithm. 

             The following is the simple example as probabilistic average case analysis. 

          Example: Consider linear search algorithm which searches a target element say x, in the 

given list of size n. in the worst case, the algorithm will examine all n elements in the list before 

terminating. 

          For a probabilistic average-case analysis, it is generally assumed that all possible 

terminations are equally likely-that is, the probability that x, will be found at position 1 is 1/x at 

position 2 is 1/n and so on. 

The average search cost is therefore the sum of all possible search costs each multiplied 

by their associated probability. 

        For example, if n=5, we would have 

Average search cost=1/5(1 +2 +3 +4 +5)=3. 

In general case we have 

Average search cost =1/n(n(n+1)/2)=(n+1)/2 

Probabilistic analysis is mainly useful in estimate running time of an algorithm, calculating 

search costs in a searching algorithm etc. 

 

9.  Amortized Analysis: 
Amortized analysis refers to finding the average running time per operation, over a worst 

case sequence of operations. That is the main goal of amortized analysis is to analyze the time 

per operation for a series of operations. Sometimes single operation might be expensive; in that 

case amortized analysis specifies average over a sequence of operations. Amortized cost per 

operation for a sequence of n operations is the total cost of operations divided by n.  

For example, if we have 100 operations at cost 1, followed by one operation at cost 100, 

then amortized cost per operation is 200/101 < 2.  Amortized analysis does not allow random 

selection of input. 

The average case analysis and amortized analysis are different. In average case analysis, 

we are averaging over all possible inputs whereas in amortized analysis we are averaging over a 

sequence of operations. 

Amortized analysis does not allow random selection of input. 

There are several techniques used in amortized analysis. 

1. Aggregate Analysis: In this type of analysis upper bound T(n) on the total cost of a 

sequence of n operations is decided, then the average cost is calculated as T(n)/n. 

2. Accounting Method: In this method the individual cost of each operation is determined, 

by combining immediate execution time and its influence on the running time of future operations. 

3. Potential Method: It is like the accounting method, but overcharges operations early to 

compensate for undercharges later. 


