
UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 1

1. GENERAL METHOD

Greedy method: It is most straight forward method. It is popular for obtaining the

optimized solutions.

Optimization Problem: An optimization problem is the problem of finding the best

solution (optimal solution) from all the feasible solutions (practicable of possible solutions).

In an optimization problem we are given a set of constraints and an optimization functions.

Solutions that satisfy the constraints are called feasible solutions. A feasible solution for

which the optimization function has the best possible value is called optimal solution.

Ex: Problem: Finding a minimum spanning tree from a weighted connected directed

graph G.

Constraints: Every time a minimum edge is added to the tree and adding of an edge

does not form a simple circuit.

Feasible solutions: The feasible solutions are the spanning trees of the given graph G.

Optimal solution: An optimal solution is a spanning tree with minimum cost i.e.

minimum spanning tree.

Q: Find the minimum spanning tree for the following graph.

The feasible solutions are the spanning tree of the graph G. Those are

 From the above spanning tree the figure 4 gives the optimal solution, because it is the

spanning tree with the minimum cost i.e. it is a minimum spanning tree of the graph G.

 The greedy technique suggests constructing a solution to an optimization problem

hrough a sequence of steps, each expanding a partially constructed solution obtained so far

until a complete solution to the problem is reached to each step, the choice made must be

feasible, locally optimal and irrecoverable.

Feasible: The choice which is made has to be satisfying the problems constraints.

Locally optimal: The choice has to be the best local choice among all feasible choices

available on that step.

Irrecoverable: The choice once made cannot be changed on sub-sequent steps of the

algorithm (Greedy method).

A B

C D

2

3 1

2

Graph G

A B

C D

2

3 1

A B

C D

3 1

2

A B

C D

2

3

2

A B

C D

2

1

2
 1 .Total Weights=6 2 .Total Weights=6 3 .Total Weights=7 4 .Total Weights=5

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 2

Control Abstraction for Greedy Method:

Algorithm GreedyMethod (a, n)

{

 // a is an array of n inputs

 Solution: =Ø;

 for i: =0 to n do

 {

 s: = select (a);

 if (feasible (Solution, s)) then

 {

 Solution: = union (Solution, s);

 }

 else

 reject (); // if solution is not feasible reject it.

 }

 return solution;

 }

In greedy method there are three important activities.

1. A selection of solution from the given input domain is performed, i.e. s:= select(a).

2. The feasibility of the solution is performed, by using feasible ‘(solution, s)’ and then

all feasible solutions are obtained.

3. From the set of feasible solutions, the particular solution that minimizes or maximizes

the given objection function is obtained. Such a solution is called optimal solution.

Q: A child buys a candy 42 rupees and gives a 100 note to the cashier. Then the cashier

wishes to return change using the fewest number of coins. Assume that the cashier has Rs.1,

Rs. 5 and Rs. 10 coins.

This problem can be solved using the greedy method.

2. APPLICATION - JOB SEQUENCING WITH DEADLINES

This problem consists of n jobs each associated with a deadline and profit and our

objective is to earn maximum profit. We will earn profit only when job is completed on or

before deadline. We assume that each job will take unit time to complete.

Points to remember:

 In this problem we have n jobs j1, j2, … jn, each has an associated deadlines are d1,

d2, … dn and profits are p1, p2, ... pn.

 Profit will only be awarded or earned if the job is completed on or before the

deadline.

 We assume that each job takes unit time to complete.

 The objective is to earn maximum profit when only one job can be scheduled or

processed at any given time.

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 3

Example: Consider the following 5 jobs and their associated deadline and profit.

index 1 2 3 4 5

JOB j1 j2 j3 j4 j5

DEADLINE 2 1 3 2 1

PROFIT 60 100 20 40 20

Sort the jobs according to their profit in descending order.

Note! If two or more jobs are having the same profit then sorts them as per their entry

in the job list.

index 1 2 3 4 5

JOB j2 j1 j4 j3 j5

DEADLINE 1 2 2 3 1

PROFIT 100 60 40 20 20

Find the maximum deadline value

Looking at the jobs we can say the max deadline value is 3. So, dmax = 3

As dmax = 3 so we will have THREE slots to keep track of free time slots. Set the

time slot status to EMPTY

time slot 1 2 3

status EMPTY EMPTY EMPTY

Total number of jobs is 5. So we can write n = 5.

Note!

If we look at job j2, it has a deadline 1. This means we have to complete job j2 in time

slot 1 if we want to earn its profit.

Similarly, if we look at job j1 it has a deadline 2. This means we have to complete job

j1 on or before time slot 2 in order to earn its profit.

Similarly, if we look at job j3 it has a deadline 3. This means we have to complete job

j3 on or before time slot 3 in order to earn its profit.

Our objective is to select jobs that will give us higher profit.

time slot 1 2 3

Job J1 J2 J4

Profit 100 60 20

Total Profit is 180

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 4

Pseudo Code:

for i = 1 to n do

 Set k = min(dmax, DEADLINE(i)) //where DEADLINE(i) denotes deadline of ith job

 while k >= 1 do

 if timeslot[k] is EMPTY then

 timeslot[k] = job(i)

 break

 endif

 Set k = k - 1

 endwhile

endfor

Algorithm:

Time Complexity = O (n2)

3. APPLICATION - KNAPSACK PROBLEM

In this problem the objective is to fill the knapsack with items to get maximum benefit

(value or profit) without crossing the weight capacity of the knapsack. And we are also

allowed to take an item in fractional part.

Points to remember:

In this problem we have a Knapsack that has a weight limit W

There are items i1, i2, ..., in each having weight w1, w2, … wn and some benefit

(value or profit) associated with it v1, v2, ..., vn

Our objective is to maximise the benefit such that the total weight inside the knapsack

is at most W. And we are also allowed to take an item in fractional part.

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 5

Example: Assume that we have a knapsack with max weight capacity, W = 16.

Our objective is to fill the knapsack with items such that the benefit (value or profit) is

maximum.

Consider the following items and their associated weight and value

ITEM WEIGHT VALUE

i1 6 6

i2 10 2

i3 3 1

i4 5 8

i5 1 3

i6 3 5

Steps

1. Calculate value per weight for each item (we can call this value density)

2. Sort the items as per the value density in descending order

3. Take as much item as possible not already taken in the knapsack

Compute density = (value/weight)

ITEM WEIGHT VALUE DENSITY

i1 6 6 1.000

i2 10 2 0.200

i3 3 1 0.333

i4 5 8 1.600

i5 1 3 3.000

i6 3 5 1.667

Sort the items as per density in descending order

ITEM WEIGHT VALUE DENSITY

i5 1 3 3.000

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 6

i6 3 5 1.667

i4 5 8 1.600

i1 6 6 1.000

i3 3 1 0.333

i2 10 2 0.200

Now we will pick items such that our benefit is maximum and total weight of the

selected items is at most W.

Our objective is to fill the knapsack with items to get maximum benefit without

crossing the weight limit W = 16.

How to fill Knapsack Table?

is WEIGHT(i) + TOTAL WEIGHT <= W

if its YES

then we take the whole item

How to find the Benefit?

If an item value is 10 and weight is 5

And if you are taking it completely

Then,

benefit = (weight taken) x (total value of the item / total weight of the item)

weight taken = 5 (as we are taking the complete (full) item, no fraction)

total value of the item = 10

total weight of the item = 5

So, benefit = 5 x (10/5) = 10

On the other hand if you are taking say, 1/2 of the item

Then,

weight taken = 5 x (1/2) = 5/2 (as we are taking 1/2 item)

So, benefit = (weight taken) x (total value of the item / total weight of the item)

= (5/2) x (10/5)

= 5

Values after calculation

ITEM WEIGHT VALUE TOTAL WEIGHT TOTAL BENEFIT

i5 1 3 1.000 3.000

i6 3 5 4.000 8.000

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 7

i4 5 8 9.000 16.000

i1 6 6 15.000 22.000

i3 1 0.333 16.000 22.333

So, total weight in the knapsack = 16 and total value inside it = 22.333336

Algorithm:

Time Complexity = O (n2)

4. APPLICATION - MINIMUM SPANNING TREE

A spanning tree is a subset of Graph G, which has all the vertices covered with

minimum possible number of edges. Hence, a spanning tree does not have cycles and it

cannot be disconnected.

Note: Every connected and undirected Graph G has at least one spanning tree. A

disconnected graph does not have any spanning tree.

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 8

We found three spanning trees off one complete graph. A complete undirected graph

can have maximum nn-2 number of spanning trees, where n is the number of nodes. In the

above addressed example, 33−2 = 3 spanning trees are possible.

General Properties of Spanning Tree

 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and

vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph disconnected,

i.e. the spanning tree is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the

spanning tree is maximally acyclic.

Mathematical Properties of Spanning Tree

 Spanning tree has n-1 edges, where n is the number of nodes (vertices).

 From a complete graph, by removing maximum e - n + 1 edges, we can

construct a spanning tree.

 A complete graph can have maximum nn-2 number of spanning trees.

Thus, we can conclude that spanning trees are a subset of connected Graph G and

disconnected graphs do not have spanning tree.

Application of Spanning Tree

Spanning tree is basically used to find a minimum path to connect all nodes in a

graph. Common applications of spanning trees are

 Civil Network Planning

 Computer Network Routing Protocol

 Cluster Analysis

Let us understand this through a small example. Consider, city network as a huge

graph and now plans to deploy telephone lines in such a way that in minimum lines we can

connect to all city nodes. This is where the spanning tree comes into picture.

Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum

weight than all other spanning trees of the same graph. In real-world situations, this weight

can be measured as distance, congestion, traffic load or any arbitrary value denoted to the

edges.

Minimum Spanning-Tree Algorithm

We shall learn about two most important spanning tree algorithms(greedy

algorithms):

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 9

1. Kruskal's Algorithm

2. Prim's Algorithm

i. Kruskal's Algorithm

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy

approach. This algorithm treats the graph as a forest and every node it has as an individual

tree. A tree connects to another only and only if, it has the least cost among all available

options and does not violate MST properties.

To understand Kruskal's algorithm let us consider the following example:

Step 1 - Remove all loops and Parallel Edges

Remove all loops and parallel edges from the given graph.

In case of parallel edges, keep the one which has the least cost associated and remove all

others.

https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 10

Step 2 - Arrange all edges in their increasing order of weight

The next step is to create a set of edges and weight, and arrange them in an ascending order

of weightage (cost).

Step 3 - Add the edge which has the least weightage

Now we start adding edges to the graph beginning from the one which has the least weight.

Throughout, we shall keep checking that the spanning properties remain intact. In case, by

adding one edge, the spanning tree property does not hold then we shall consider not to

include the edge in the graph.

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them

does not violate spanning tree properties, so we continue to our next edge selection.

Next cost is 3, and associated edges are A,C and C,D. We add them again −

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. −

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 11

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on.

Now we are left with only one node to be added. Between the two least cost edges available

7 and 8, we shall add the edge with cost 7.

By adding edge S,A we have included all the nodes of the graph and we now have minimum

cost spanning tree.

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 12

Time Complexity = O (|E| log |E|)

ii. Prim’s Algorithm

Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm) uses

the greedy approach. Prim's algorithm shares a similarity with the shortest path

first algorithms.

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree

and keeps on adding new nodes to the spanning tree from the given graph. To contrast with

Kruskal's algorithm and to understand Prim's algorithm better, we shall use the same

example.

Step 1 - Remove all loops and parallel edges

https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 13

Remove all loops and parallel edges from the given graph. In case of parallel edges,

keep the one which has the least cost associated and remove all others.

Step 2 - Choose any arbitrary node as root node

In this case, we choose S node as the root node of Prim's spanning tree. This node is

arbitrarily chosen, so any node can be the root node. One may wonder why any video can be

a root node. So the answer is, in the spanning tree all the nodes of a graph are included and

because it is connected then there must be at least one edge, which will join it to the rest of

the tree.

Step 3 - Check outgoing edges and select the one with less cost

After choosing the root node S, we see that S,A and S,C are two edges with weight 7

and 8, respectively. We choose the edge S,A as it is lesser than the other.

Now, the tree S-7-A is treated as one node and we check for all edges going out from

it. We select the one which has the lowest cost and include it in the tree.

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 14

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will

check all the edges again. However, we will choose only the least cost edge. In this case, C-

3-D is the new edge, which is less than other edges' cost 8, 6, 4, etc.

After adding node D to the spanning tree, we now have two edges going out of it

having the same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step

will again yield edge 2 as the least cost. Hence, we are showing a spanning tree with both

edges included.

We may find that the output spanning tree of the same graph using two different

algorithms is same.

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 15

Time Complexity = O (n2)

5. APPLICATION - SINGLE SOURCE SHORTEST PATH PROBLEM

For a given source node in the graph, the algorithm finds the shortest path between

that node and every other. It also used for finding the shortest paths from a single node to a

single destination node by stopping the algorithm once the shortest path to the destination node

has been determined.

Algorithm Steps:

 Set all vertices distances = infinity except for the source vertex, set the source

distance = 0.

 Push the source vertex in a min-priority queue in the form (distance , vertex), as the

comparison in the min-priority queue will be according to vertices distances.

 Pop the vertex with the minimum distance from the priority queue (at first the popped

vertex = source).

 Update the distances of the connected vertices to the popped vertex in case of "current

vertex distance + edge weight < next vertex distance", then push the vertex

with the new distance to the priority queue.

 If the popped vertex is visited before, just continue without using it.

 Apply the same algorithm again until the priority queue is empty.

UNIT-II1 GREEDY METHOD

blog: anilkumarprathipati.wordpress.com 16

Example:

Algorithm:

Time Complexity = O (n2)

GREEDY APPROACH DIVIDE AND CONQUER

1.Many decisions and sequences areguaranteed

 and all the overlapping subinstancesare consid

ered.

1.Divide the given problem into many subprobl

ems.Find the individual solutions andcombine t

hem to get the solution for themain problem

2. Follows Bottom-up technique 2. Follows top down technique

3.Split the input at every possible pointsrather

than at a particular point

3.Split the input only at specific points (midpoi

nt), each problem is independent.

4. Sub problems are dependent on the main

Problem

4. Sub problems are independent on the main

Problem

5. Time taken by this approach is not that

much efficient when compared with DAC.

5. Time taken by this approach efficient when

compared with GA.

6.Space requirement is less when compared

DAC approach.

6.Space requirement is very much high when

compared GA approach.

	Points to remember:
	Example: Consider the following 5 jobs and their associated deadline and profit.
	Sort the jobs according to their profit in descending order.
	Note! If two or more jobs are having the same profit then sorts them as per their entry in the job list.
	Find the maximum deadline value
	Looking at the jobs we can say the max deadline value is 3. So, dmax = 3
	As dmax = 3 so we will have THREE slots to keep track of free time slots. Set the time slot status to EMPTY
	Total number of jobs is 5. So we can write n = 5.
	Note!
	If we look at job j2, it has a deadline 1. This means we have to complete job j2 in time slot 1 if we want to earn its profit.
	Similarly, if we look at job j1 it has a deadline 2. This means we have to complete job j1 on or before time slot 2 in order to earn its profit.
	Similarly, if we look at job j3 it has a deadline 3. This means we have to complete job j3 on or before time slot 3 in order to earn its profit.
	Our objective is to select jobs that will give us higher profit.
	Total Profit is 180
	Pseudo Code:
	for i = 1 to n do
	Set k = min(dmax, DEADLINE(i)) //where DEADLINE(i) denotes deadline of ith job
	while k >= 1 do
	if timeslot[k] is EMPTY then
	timeslot[k] = job(i)
	break
	endif
	Set k = k - 1
	endwhile
	endfor
	Algorithm:
	Time Complexity = O (n2)
	In this problem the objective is to fill the knapsack with items to get maximum benefit (value or profit) without crossing the weight capacity of the knapsack. And we are also allowed to take an item in fractional part.
	Points to remember: (1)
	In this problem we have a Knapsack that has a weight limit W
	There are items i1, i2, ..., in each having weight w1, w2, … wn and some benefit (value or profit) associated with it v1, v2, ..., vn
	Our objective is to maximise the benefit such that the total weight inside the knapsack is at most W. And we are also allowed to take an item in fractional part.
	Example: Assume that we have a knapsack with max weight capacity, W = 16. Our objective is to fill the knapsack with items such that the benefit (value or profit) is maximum.
	Consider the following items and their associated weight and value
	Steps
	1. Calculate value per weight for each item (we can call this value density)
	2. Sort the items as per the value density in descending order
	3. Take as much item as possible not already taken in the knapsack
	Compute density = (value/weight)
	Sort the items as per density in descending order
	Now we will pick items such that our benefit is maximum and total weight of the selected items is at most W.
	Our objective is to fill the knapsack with items to get maximum benefit without crossing the weight limit W = 16.
	Time Complexity = O (n2) (1)
	A spanning tree is a subset of Graph G, which has all the vertices covered with minimum possible number of edges. Hence, a spanning tree does not have cycles and it cannot be disconnected.
	Note: Every connected and undirected Graph G has at least one spanning tree. A disconnected graph does not have any spanning tree.
	We found three spanning trees off one complete graph. A complete undirected graph can have maximum nn-2 number of spanning trees, where n is the number of nodes. In the above addressed example, 33−2 = 3 spanning trees are possible.
	General Properties of Spanning Tree
	 A connected graph G can have more than one spanning tree.
	 All possible spanning trees of graph G, have the same number of edges and vertices.
	 The spanning tree does not have any cycle (loops).
	 Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning tree is minimally connected.
	 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree is maximally acyclic.
	Mathematical Properties of Spanning Tree
	 Spanning tree has n-1 edges, where n is the number of nodes (vertices).
	 From a complete graph, by removing maximum e - n + 1 edges, we can construct a spanning tree.
	 A complete graph can have maximum nn-2 number of spanning trees.
	Thus, we can conclude that spanning trees are a subset of connected Graph G and disconnected graphs do not have spanning tree.
	Application of Spanning Tree
	Spanning tree is basically used to find a minimum path to connect all nodes in a graph. Common applications of spanning trees are
	 Civil Network Planning
	 Computer Network Routing Protocol
	 Cluster Analysis
	Let us understand this through a small example. Consider, city network as a huge graph and now plans to deploy telephone lines in such a way that in minimum lines we can connect to all city nodes. This is where the spanning tree comes into picture.
	Minimum Spanning Tree (MST)
	In a weighted graph, a minimum spanning tree is a spanning tree that has minimum weight than all other spanning trees of the same graph. In real-world situations, this weight can be measured as distance, congestion, traffic load or any arbitrary value...
	Minimum Spanning-Tree Algorithm
	We shall learn about two most important spanning tree algorithms(greedy algorithms):
	1. Kruskal's Algorithm
	2. Prim's Algorithm
	i. Kruskal's Algorithm
	Step 1 - Remove all loops and Parallel Edges
	Step 2 - Arrange all edges in their increasing order of weight
	Step 3 - Add the edge which has the least weightage
	Time Complexity = O (|E| log |E|)
	ii. Prim’s Algorithm
	Step 1 - Remove all loops and parallel edges
	Step 2 - Choose any arbitrary node as root node
	Step 3 - Check outgoing edges and select the one with less cost
	Time Complexity = O (n2) (2)
	Time Complexity = O (n2) (3)

