

UNIT-III

Data Mining - Frequent Pattern Analysis
Syllabus

Data Mining - Frequent Pattern Analysis: Mining Frequent Patterns, Associations and

Correlations, Mining Methods, Pattern Evaluation Method, Pattern Mining in Multilevel,

Multi- Dimensional Space – Constraint Based Frequent Pattern Mining, Classification

using Frequent Patterns

Association Analysis

Association mining aims to extract interesting correlations, frequent patterns, associations

or casual structures among sets of items or objects in transaction databases, relational

database or other data repositories. Association rules are widely used in various areas

such as telecommunication networks, market and risk management, inventory control,

cross-marketing, catalog design, loss-leader analysis, clustering, classification, etc.

Examples:

Rule Form: Body->Head [Support, confidence]

Buys (X, “Computer”) ->Buys (X, “Software”) [40%, 50%]

Association rule: basic concepts:

 Given: (1) database of transaction, (2) each transaction is a list of items (purchased

by a customer in visit)

 Find: all rules that correlate the presence of one set of items with that of another set

of items.

 E.g., 98% of people who purchase tires and auto accessories also get

 done.

 E.g., Market Basket Analysis

 process analyzes customer buying habits by finding associations between the

different items that customers place in their “Shopping Baskets”. The discovery of such

associations can help retailers develop marketing strategies by gaining insight into which

items are frequently purchased together by customer.

Applications:

 Maintenance agreement (what the store should do to boost maintenance agreement

sales)

 Home Electronics (what other products should the store stocks up?)

 Attached mailing in direct marketing

Association Rule:

An association rule is an implication expression of the form X->Y, where X and Y are

disjoint itemsets, i.e., X ∩ Y = ∅. The strength of an association rule can be measured

in terms of its support and confidence. Support determines how often a rule is applicable

to a given data set, while confidence determines how frequently items in Y appear in

transactions that contain X. The formal definition of these metrics are

Support, s(X->Y) = (𝑋∪Y)
 𝑁

Confidence, c(X->Y) = (𝑋∪Y)
 𝜎(𝑋)

Why Use Support and Confidence? Support is an important measure because a rule

that has very low support may occur simply by chance. A low support rule is also likely to

be uninteresting from a business perspective because it may not be profitable to promote items

that customers seldom buy together. For these reasons, support is often used to eliminate

uninteresting rules.

Confidence, on the other hand, measures the reliability of the inference made by a rule.

For a given rule X Y, the higher the confidence, the more likely it is for Y to be present in

transactions that contain X. Confidence also provides an estimate of the conditional

probability of Y given X.

Therefore, a common strategy adopted by many association rule mining algorithms is to

decompose the problem into two major subtasks:

1. Frequent Itemset Generation, whose objective is to find all the item- sets that satisfy

the minsupthreshold. These itemsets are called frequent itemsets.

2. Rule Generation, whose objective is to extract all the high-confidence rules from the

frequent itemsets found in the previous step. These rules are called strong rules.

Frequent Itemset Generation:

A lattice structure can be used to enumerate the list of all possible itemsets. Above Figure

shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set that contains k items

can potentially generate up to 2k − 1 frequent itemsets, excluding the null set. Because k

can be very large in many practical applications, the search space of itemsets that need to

be explored is exponentially large.

To find frequent itemsets we have two algorithms,

a) Apriori Algorithm

b) FP-Growth

a) Apriori Algorithm:

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for

mining frequent itemsets for Boolean association rules. The name of the algorithm is

based on the fact that the algorithm uses prior knowledge of frequent itemset properties,

as we shall see later. Apriori employs an iterative approach known as a level-wise search,

where k- itemsets are used to explore (k+1)-itemsets.

First, the set of frequent 1-itemsets is found by scanning the database to accumulate the

count for each item, and collecting those items that satisfy minimum support. The

resulting set is denoted by L1. Next, L1 is used to find L2, the set of frequent 2-itemsets,

which is used to find L3, and so on, until no more frequent k-itemsets can be found. The

finding of each Lk requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an important

property called the Apriori property is used to reduce the search space.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.

The Apriori property is based on the following observation. By definition, if an itemset I

does not satisfy the minimum support threshold, min sup, then I is not frequent, that is,

P(I)< min sup. If an item A is added to the itemset I, then the resulting itemset (i.e.,IUA)

cannot occur more frequently than I. Therefore, IUA is not frequent either, that is, P(IUA)

< min sup.

This property belongs to a special category of properties called antimonotonicity in the

sense that if a set cannot pass a test, all of its supersets will fail the same test as well. It is

called antimonotonicity because the property is monotonic in the context of failing a test.

A two-step process is followed, consisting of join and prune actions.

1. The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk-1

with itself. This set of candidates is denoted Ck.

2. The prune step: Ck is a superset of Lk, that is, its members may or may not be

frequent, but all of the frequent k-itemsets are included in Ck. A database scan to

determine the count of each candidate in Ck would result in the determination of Lk.

Example:

1. In the first iteration of the algorithm, each item is a member of the set of candidate

1- itemsets, C1. The algorithm simply scans all of the transactions to count the number of

occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min sup = 2. (Here,

we are referring to absolute support because we are using a support count. The

corresponding relative support is 2/9 = 22%.) The set of frequent 1-itemsets, L1, can then

be determined. It consists of the candidate 1-itemsets satisfying minimum support. In our

example, all of the candidates in C1 satisfy minimum support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 ⋈ L1 to

generate a candidate set of 2-itemsets, C2. C2 consists of 2-itemsets. Note that no

candidates are removed from C2 during the prune step because each subset of the

candidates is also frequent.

4. Next, the transactions in D are scanned and the support count of each candidate

itemset in C2 is accumulated, as shown in the middle table of the second row in Figure

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate

2- itemsets in C2 having minimum support.

6. The generation of the set of the candidate 3-itemsets, C3, is detailed in Figure From

the join step, we first get C3 = L2 ⋈ L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3,

I4}, {I2, I3, I5}, {I2, I4, I5}} Based on the Apriori property that all subsets of a frequent

itemset must also be frequent, we can determine that the four latter candidates cannot

possibly be frequent. We therefore remove them from C3, thereby saving the effort of

unnecessarily obtaining their counts during the subsequent scan of D to determine L3.

7. The transactions in D are scanned to determine L3, consisting of those candidate 3-

itemsets in C3 having minimum support.

8. The algorithm uses L3 ⋈ L3 to generate a candidate set of 4-itemsets, C4. Although

the join results in {I1, I2, I3, I5}, itemset {I1, I2, I3, I5} is pruned because its subset

{I2, I3, I5} is not frequent. Thus, C4 ≠Ø, and the algorithm terminates, having found all of

the frequent itemsets.

b) FP-Growth:

FP-growth (finding frequent itemsets without candidate generation). We reexamine

the mining of transaction database, D, of Table in previous Example using the frequent

pattern growth approach.

The first scan of the database is the same as Apriori, which derives the set of frequent

items (1-itemsets) and their support counts (frequencies). Let the minimum support count

be

2. The set of frequent items is sorted in the order of descending support count. This

resulting set or list is denoted by L. Thus, we have L = {{I2:7}, {I1:6}, {I3:6}, {I4:2},

{I5:2}}

An FP-tree is then constructed as follows. First, create the root of the tree, labeled with

“null.” Scan database D a second time. The items in each transaction are processed in L

order (i.e., sorted according to descending support count), and a branch is created for each

transaction.

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an

initial suffix pattern), construct its conditional pattern base (a “sub-database,”

which consists of the set of prefix paths in the FP-tree co-occurring with the

suffix pattern), then construct its (conditional) FP-tree, and perform mining

recursively on the tree. The pattern growth is achieved by the concatenation of

the suffix pattern with the frequent patterns generated from a conditional FP-

tree.

Finally, we can conclude that frequent itemsets are {I2, I1, I5} and {I2, I1, I3}.

Generating Association Rules from Frequent Itemsets

Once the frequent itemsets from transactions in a database D have been found, it

is straightforward to generate strong association rules from them (where strong

association rules satisfy both minimum support and minimum confidence). This

can be done using Eq. for confidence, which we show again here for

completeness:

{ }

Mining Frequent Itemsets Using the Vertical Data Format

Both the Apriori and FP-growth methods mine frequent patterns from a set of
trans- actions in TID-itemset format (i.e., TID : itemset), where TID is a
transaction ID and itemset is the set of items bought in transaction TID.
This is known as the horizontal data format. Alternatively, data can be
presented in item-TID set format

Algorithm: FP growth. Mine frequent itemsets using an FP-tree by pattern

fragment growth.

Input:

D, a transaction database;

min sup, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

1. The FP-tree is constructed in the following steps:

(a) Scan the transaction database D once. Collect F, the set of frequent items,

=
|

|

{ }

and their support counts. Sort F in support count descending order as L, the list

of frequent items.

(b) Create the root of an FP-tree, and label it as “null.” For each transaction

Trans in D do the following.

Select and sort the frequent items in Trans according to the order of L. Let the

sorted frequent item list in Trans be [p P], where p is the first element and P is

the remaining list. Call insert tree([p P], T), which is performed as follows. If T

has a child N such that N.item-name p.item-name, then increment N ’s count

by 1; else create a new node N , and let its count be 1, its parent link be linked to

T, and its node-link to the nodes with the same item-name via the node-link

structure. If P is nonempty, call insert tree(P, N) recursively.

2. The FP-tree is mined by calling FP growth(FP tree, null), which is

implemented as follows.

procedure FP growth(Tree, α)
(1) if Tree contains a single path P then
(2) for each combination (denoted as β) of the nodes in the path
P
(3) generate pattern β ∪ α with support count = minimum
support count of nodes in β;
(4) else for each ai in the header of Tree {
(5) generate pattern β = ai ∪ α with support count = ai.support
count ;
(6) construct β’s conditional pattern base and then β’s conditional
FP tree Treeβ ;
(7) if Treeβ /= ∅ then
(8) call FP growth(Treeβ , β); }

Figure 6.9 FP-growth algorithm for discovering frequent itemsets without

candidate generation.

(i.e., item : TID set), where item is an item name, and TID set is the set of
transaction identifiers containing the item. This is known as the vertical data

format.
In this subsection, we look at how frequent itemsets can also be mined
effi- ciently using vertical data format, which is the essence of the Eclat

(Equivalence Class Transformation) algorithm.

Example 6.6 Mining frequent itemsets using the vertical data format.

Consider the horizontal data format of the transaction database, D, of Table 6.1

{ }
{ }

in Example 6.3. This can be transformed into the vertical data format shown in
Table 6.3 by scanning the data set once.
Mining can be performed on this data set by intersecting the TID sets of every
pair of frequent single items. The minimum support count is 2. Because every
single item is

Table 6.3 The Vertical Data Format of the Transaction Data Set D of Table 6.1

itemset TID set
I1 {T100, T400, T500, T700, T800, T900}

I2 {T100, T200, T300, T400, T600, T800, T900} I3

 {T300, T500, T600, T700, T800, T900}

I4 {T200, T400}

I5 {T100, T800}

Table 6.4 2-Itemsets in Vertical Data Format

itemset TID set
{I1, I2} {T100, T400, T800, T900}

{I1, I3} {T500, T700, T800, T900}

{I1, I4} {T400}

{I1, I5} {T100, T800}

{I2, I3} {T300, T600, T800, T900}

{I2, I4} {T200, T400}

{I2, I5} {T100, T800}

{I3, I5} {T800}

Table 6.5 3-Itemsets in Vertical Data Format

itemset TID set
{I1, I2, I3} {T800, T900}

{I1, I2, I5} {T100, T800}

frequent in Table 6.3, there are 10 intersections performed in total, which lead to
eight nonempty 2-itemsets, as shown in Table 6.4. Notice that because the
itemsets I1, I4 and I3, I5 each contain only one transaction, they do not belong to
the set of frequent 2-itemsets.

{ } { }

+

+ ≥
+

{ } { }
{ } { }
{ }
} = { } { } { } =

{ } = { } {
+

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if
every one of its 2-itemset subsets is frequent. The candidate generation process
here will generate only two 3-itemsets: I1, I2, I3 and I1, I2, I5 . By intersecting
the TID sets of any two corresponding 2-itemsets of these candidate 3-itemsets,
it derives Table 6.5, where there are only two frequent 3-itemsets: {I1, I2, I3: 2}
and {I1, I2, I5: 2}.

Example 6.6 illustrates the process of mining frequent itemsets by exploring the
vertical data format. First, we transform the horizontally formatted data into the
vertical format by scanning the data set once. The support count of an itemset is
simply the length of the TID set of the itemset. Starting with k = 1, the frequent
k-itemsets can be used to construct the candidate (k + 1)-itemsets based on the
Apriori property.

The computation is done by intersection of the TID sets of the frequent k-
itemsets to compute the TID sets of the corresponding (k 1)-itemsets. This
process repeats, with k incremented by 1 each time, until no frequent itemsets or
candidate itemsets can be found.
Besides taking advantage of the Apriori property in the generation of
candidate (k 1)-itemset from frequent k-itemsets, another merit of this method
is that there is no need to scan the database to find the support of (k 1)-
itemsets (for k 1). This is because the TID set of each k-itemset carries the
complete information required for counting such support. However, the TID sets
can be quite long, taking substantial memory space as well as computation time
for intersecting the long sets.
To further reduce the cost of registering long TID sets, as well as the
subsequent costs of intersections, we can use a technique called diffset, which
keeps track of only the differences of the TID sets of a (k 1)-itemset and a
corresponding k-itemset. For instance, in Example 6.6 we have I1
 T100, T400, T500, T700, T800, T900 and I1, I2 T100,
T400, T800, T900 . The diffset between the two is diffset (I1, I2 , I1) T500,
T700 . Thus, rather than recording the four TIDs that make up the intersection of I1
and I2 , we can instead use diffset to record just two TIDs, indicating the difference
between I1 and I1, I2 . Experiments show that in certain situations, such as when
the data set contains many dense and long patterns, this technique can substantially
reduce the total cost of vertical format mining of frequent itemsets.

Mining Closed and Max Patterns

−

∪

=

In Section 6.1.2 we saw how frequent itemset mining may generate a huge
number of frequent itemsets, especially when the min sup threshold is set low or
when there exist long patterns in the data set. Example 6.2 showed that closed
frequent itemsets9 can substantially reduce the number of patterns generated in
frequent itemset mining while preserving the complete information regarding the
set of frequent itemsets. That is, from the set of closed frequent itemsets, we can
easily derive the set of frequent itemsets and their support. Thus, in practice, it is
more desirable to mine the set of closed frequent itemsets rather than the set of
all frequent itemsets in most cases.
“How can we mine closed frequent itemsets?” A naïve approach would be to
first mine the complete set of frequent itemsets and then remove every frequent
itemset that is a proper subset of, and carries the same support as, an existing
frequent itemset. However, this is quite costly. As shown in Example 6.2, this
method would have to first derive 2100 1 frequent itemsets to obtain a length-
100 frequent itemset, all before it could begin to eliminate redundant itemsets.
This is prohibitively expensive. In fact, there exist only a very small number of
closed frequent itemsets in Example 6.2’s data set.
A recommended methodology is to search for closed frequent itemsets directly
dur- ing the mining process. This requires us to prune the search space as
soon as we can identify the case of closed itemsets during mining. Pruning
strategies include the following:

Item merging: If every transaction containing a frequent itemset X also contains
an itemset Y but not any proper superset of Y, then X Y forms a frequent closed
itemset and there is no need to search for any itemset containing X but no Y.
For example, in Table 6.2 of Example 6.5, the projected conditional database for
prefix itemset {I5:2} is {{I2, I1}, {I2, I1, I3}}, from which we can see that each
of its transactions contains itemset {I2, I1} but no proper superset of {I2, I1}.
Itemset {I2, I1} can be merged with {I5} to form the closed itemset, {I5, I2, I1:
2}, and we do not need to mine for closed itemsets that contain I5 but not {I2,
I1}.

Sub-itemset pruning: If a frequent itemset X is a proper subset of an already
found fre- quent closed itemset Y and support count(X) support count(Y), then X
and all of X’s descendants in the set enumeration tree cannot be frequent closed
itemsets and thus can be pruned.

Similar to Example 6.2, suppose a transaction database has only two trans-
actions: {(a1, a2, . . . , a100), (a1, a2, . . . , a50)}, and the minimum support count
is min sup = 2. The projection on the first item, a1, derives the frequent itemset,

∪

{a1, a2, . . . , a50 : 2}, based on the itemset merging optimization. Because
support({a2}) = support({a1, a2, . . . , a50}) = 2, and {a2} is a proper subset of
{a1, a2, . . . , a50}, there is no need to examine a2 and its projected database.
Similar pruning can be done for a3, . . . , a50 as well. Thus, the mining of closed
frequent itemsets in this data set terminates after mining a1’s projected database.

Item skipping: In the depth-first mining of closed itemsets, at each level, there
will be a prefix itemset X associated with a header table and a projected
database. If a local frequent item p has the same support in several header tables
at different levels, we can safely prune p from the header tables at higher levels.
Consider, for example, the previous transaction database having only two trans-
actions: {(a1, a2, . . . , a100), (a1, a2, . . . , a50)}, where min sup = 2. Because a2
in a1’s projected database has the same support as a2 in the global header table,
a2 can be pruned from the global header table. Similar pruning can be done for
a3, . . . , a50. There is no need to mine anything more after mining a1’s projected
database.

Besides pruning the search space in the closed itemset mining process, another
important optimization is to perform efficient checking of each newly derived
frequent itemset to see whether it is closed. This is because the mining process
cannot ensure that every generated frequent itemset is closed.
When a new frequent itemset is derived, it is necessary to perform two kinds of
closure checking: (1) superset checking, which checks if this new frequent
itemset is a superset of some already found closed itemsets with the same
support, and (2) subset checking, which checks whether the newly found itemset
is a subset of an already found closed itemset with the same support.
If we adopt the item merging pruning method under a divide-and-conquer frame-
work, then the superset checking is actually built-in and there is no need to
explicitly perform superset checking. This is because if a frequent itemset X U Y
is found later than itemset X, and carries the same support as X, it must be in X’s
projected database and must have been generated during itemset merging.
To assist in subset checking, a compressed pattern-tree can be constructed to
main- tain the set of closed itemsets mined so far. The pattern-tree is similar in
structure to the FP-tree except that all the closed itemsets found are stored
explicitly in the corresponding tree branches. For efficient subset checking, we
can use the following property: If the current itemset Sc can be subsumed by
another already found closed itemset Sa, then (1) Sc and Sa have the same
support, (2) the length of Sc is smaller than that of Sa, and (3) all of the items in
Sc are contained in Sa.

Based on this property, a two-level hash index structure can be built for fast
access- ing of the pattern-tree: The first level uses the identifier of the last item in
Sc as a hash key (since this identifier must be within the branch of Sc), and the
second level uses the sup- port of Sc as a hash key (since Sc and Sa have the
same support). This will substantially speed up the subset checking process.
This discussion illustrates methods for efficient mining of closed frequent
itemsets. “Can we extend these methods for efficient mining of maximal
frequent itemsets?” Because maximal frequent itemsets share many similarities
with closed frequent itemsets, many of the optimization techniques developed
here can be extended to mining maximal frequent itemsets. However, we leave
this method as an exercise for interested readers.

Which Patterns Are Interesting?—Pattern Evaluation Methods

Most association rule mining algorithms employ a support–confidence
framework. Although minimum support and confidence thresholds help weed
out or exclude the exploration of a good number of uninteresting rules, many of
the rules generated are still not interesting to the users. Unfortunately, this is
especially true when mining at low support thresholds or mining for long
patterns. This has been a major bottleneck for successful application of
association rule mining.
In this section, we first look at how even strong association rules can be
uninteresting and misleading (Section 6.3.1). We then discuss how the support–
confidence frame- work can be supplemented with additional interestingness
measures based on correlation analysis (Section 6.3.2). Section 6.3.3 presents
additional pattern evaluation measures. It then provides an overall comparison of
all the measures discussed here. By the end, you will learn which pattern
evaluation measures are most effective for the discovery of only interesting
rules.

Strong Rules Are Not Necessarily Interesting

Whether or not a rule is interesting can be assessed either subjectively or
objectively. Ultimately, only the user can judge if a given rule is interesting, and
this judgment, being ubjective, may differ from one user to another. However,
objective interestingness mea- sures, based on the statistics “behind” the data,
can be used as one step toward the goal of weeding out uninteresting rules that
would otherwise be presented to the user.
“How can we tell which strong association rules are really interesting?” Let’s
examine the following example.

⇒

10,000 6000

Example 6.7 A misleading “strong” association rule. Suppose we are interested
in analyzing trans- actions at AllElectronics with respect to the purchase of
computer games and videos. Let game refer to the transactions containing
computer games, and video refer to those containing videos. Of the 10,000
transactions analyzed, the data show that 6000 of the customer transactions
included computer games, while 7500 included videos, and 4000 included both
computer games and videos. Suppose that a data mining program for discovering
association rules is run on the data, using a minimum support of, say, 30% and a
minimum confidence of 60%. The following association rule is discovered:

buys(X, “computer games”) ⇒ buys(X, “videos”)

[support = 40%, confidence = 66%]. (6.6)

Rule (6.6) is a strong association rule and would therefore be reported, since its
support value of 4000 = 40% and confidence value of 4000 = 66% satisfy the
minimum support and minimum confidence thresholds, respectively. However,
Rule (6.6) is misleading because the probability of purchasing videos is 75%,
which is even larger than 66%. In fact, computer games and videos are
negatively associated because the purchase of one of these items actually
decreases the likelihood of purchasing the other. Without fully understanding
this phenomenon, we could easily make unwise business decisions based on
Rule (6.6).

Example 6.7 also illustrates that the confidence of a rule A B can be deceiving.
It does not measure the real strength (or lack of strength) of the correlation and
implica- tion between A and B. Hence, alternatives to the support–confidence
framework can be useful in mining interesting data relationships.

From Association Analysis to Correlation Analysis

As we have seen so far, the support and confidence measures are insufficient at
filtering out uninteresting association rules. To tackle this weakness, a
correlation measure can be used to augment the support–confidence framework
for association rules. This leads to correlation rules of the form

A ⇒ B [support, confidence, correlation]. (6.7)

That is, a correlation rule is measured not only by its support and confidence but
also by the correlation between itemsets A and B. There are many different

∪ =

⇒
| ⇒

⇒

{ } { }

{ } { } × { } = × = { } =
{ } = { } =

correlation mea- sures from which to choose. In this subsection, we study several
correlation measures to determine which would be good for mining large data
sets.

Lift is a simple correlation measure that is given as follows. The occurrence of
itemset A is independent of the occurrence of itemset B if P(A B) P(A)P(B);
otherwise, itemsets A and B are dependent and correlated as events. This
definition can easily be extended to more than two itemsets. The lift between the
occurrence of A and B can be measured by computing

If the resulting value of Eq. (6.8) is less than 1, then the occurrence of A is
negatively correlated with the occurrence of B, meaning that the occurrence of one
likely leads to the absence of the other one. If the resulting value is greater than 1,
then A and B are positively correlated, meaning that the occurrence of one implies
the occurrence of the other. If the resulting value is equal to 1, then A and B are
independent and there is no correlation between them.
Equation (6.8) is equivalent to P(B A)/P(B), or conf(A B)/sup(B), which is also
referred to as the lift of the association (or correlation) rule A B. In other words, it
assesses the degree to which the occurrence of one “lifts” the occurrence of the
other. For example, if A corresponds to the sale of computer games and B
corresponds to the sale of videos, then given the current market conditions, the sale
of games is said to increase or “lift” the likelihood of the sale of videos by a factor of
the value returned by Eq. (6.8).

Example 6.8 Correlation analysis using lift. To help filter out misleading “strong”
associations of the form A B from the data of Example 6.7, we need to study how
the two item- sets, A and B, are correlated. Let game refer to the transactions of
Example 6.7 that do not contain computer games, and video refer to those that do not
contain videos. The transactions can be summarized in a contingency table, as shown
in Table 6.6.
From the table, we can see that the probability of purchasing a computer game is
P(game) 0.60, the probability of purchasing a video is P(video) 0.75, and the
probability of purchasing both is P(game, video) 0.40. By Eq. (6.8), the lift of Rule
(6.6) is P(game, video)/(P(game) P(video)) 0.40/(0.60 0.75) 0.89. Because
this value is less than 1, there is a negative correlation between the occur- rence of

game and video . The numerator is the likelihood of a customer purchasing both,
while the denominator is what the likelihood would have been if the two pur- chases
were completely independent. Such a negative correlation cannot be identified by a
support–confidence framework.

The second correlation measure that we study is the χ2 measure, which was intro-
duced in Chapter 3 (Eq. 3.1). To compute the χ2 value, we take the squared
difference between the observed and expected value for a slot (A and B pair) in the
contin- gency table, divided by the expected value. This amount is summed for all
slots of the contingency table. Let’s perform a χ2 analysis of Example 6.8.

Example 6.9 Correlation analysis using χ 2. To compute the correlation using
χ2 analysis for nominal data, we need the observed value and expected value
(displayed in parenthesis) for each slot of the contingency table, as shown in Table
6.7. From the table, we can compute the χ2 value as follows:

Because the χ2 value is greater than 1, and the observed value of the slot (game, video)

{ }

⇒ ⇒

⇒ ⇒

= = { | | }

4000, which is less than the expected value of 4500, buying game and buying video
are negatively correlated. This is consistent with the conclusion derived from the
analysis of the lift measure in Example 6.8.

A Comparison of Pattern Evaluation Measures

The above discussion shows that instead of using the simple support–confidence frame-
work to evaluate frequent patterns, other measures, such as lift and χ2, often disclose
more intrinsic pattern relationships. How effective are these measures? Should we also
consider other alternatives?
Researchers have studied many pattern evaluation measures even before the start of in-
depth research on scalable methods for mining frequent patterns. Recently, several
other pattern evaluation measures have attracted interest. In this subsection, we present
four such measures: all confidence, max confidence, Kulczynski, and cosine. We’ll
then compare their effectiveness with respect to one another and with respect to the lift
and χ2 measures.
Given two itemsets, A and B, the all confidence measure of A and B is defined as

 all conf(A, B)
 sup(A ∪ B)

min P(A B), P(B A) , (6.9)
max {sup(A), sup(B)}

where max sup(A), sup(B) is the maximum support of the itemsets A and B. Thus,
all conf(A, B) is also the minimum confidence of the two association rules related to
A and B, namely, “A B” and “B A.”
Given two itemsets, A and B, the max confidence measure of A and B is defined as

 max conf(A, B) = max{P(A | B), P(B | A)}. (6.10)

The max conf measure is the maximum confidence of the two association rules,
“A B” and “B A.”
Given two itemsets, A and B, the Kulczynski measure of A and B (abbreviated as
Kulc) is defined as

∪

| |
∪

The cosine measure can be viewed as a harmonized lift measure: The two formulae are
similar except that for cosine, the square root is taken on the product of the probabilities of A
and B. This is an important difference, however, because by taking the square root, the
cosine value is only influenced by the supports of A, B, and A B, and not by the total
number of transactions.
Each of these four measures defined has the following property: Its value is only
influenced by the supports of A, B, and A B, or more exactly, by the conditional prob-
abilities of P(A B) and P(B A), but not by the total number of transactions. Another
common property is that each measure ranges from 0 to 1, and the higher the value, the
closer the relationship between A and B.
Now, together with lift and χ2, we have introduced in total six pattern evaluation
measures. You may wonder, “Which is the best in assessing the discovered pattern rela-
tionships?” To answer this question, we examine their performance on some typical
data sets.

×

= =
= + =

Example 6.10 Comparison of six pattern evaluation measures on typical data sets.
The relationships between the purchases of two items, milk and coffee, can be examined
by summarizing their purchase history in Table 6.8, a 2 2 contingency table, where an
entry such as mc represents the number of transactions containing both milk and
coffee.
Table 6.9 shows a set of transactional data sets with their corresponding contin-
gency tables and the associated values for each of the six evaluation measures. Let’s
first examine the first four data sets, D1 through D4. From the table, we see that m
and c are positively associated in D1 and D2, negatively associated in D3, and
neu- tral in D4. For D1 and D2, m and c are positively associated because mc
(10,000) is considerably greater than mc (1000) and mc (1000). Intuitively, for people
who bought milk (m 10, 000 1000 11, 000), it is very likely that they also bought coffee
(mc/m 10/11 91%), and vice versa.
The results of the four newly introduced measures show that m and c are strongly
positively associated in both data sets by producing a measure value of 0.91.
However, lift and χ2 generate dramatically different measure values for D1 and D2
due to their sensitivity to mc. In fact, in many real-world scenarios, mc is usually huge
and unstable. For example, in a market basket database, the total number of transactions
could fluctu- ate on a daily basis and overwhelmingly exceed the number of
transactions containing any particular itemset. Therefore, a good interestingness measure
should not be affected by transactions that do not contain the itemsets of interest;
otherwise, it would generate unstable results, as illustrated in D1 and D2.

Similarly, in D3, the four new measures correctly show that m and c are
strongly negatively associated because the m to c ratio equals the mc to m
ratio, that is, 100/1100 = 9.1%. However, lift and χ2 both contradict this in an
incorrect way: Their values for D2 are between those for D1 and D3.
For data set D4, both lift and χ2 indicate a highly positive association
between m and c, whereas the others indicate a “neutral” association because the
ratio of mc to mc equals the ratio of mc to mc, which is 1. This means that if a
customer buys coffee (or milk), the probability that he or she will also
purchase milk (or coffee) is exactly 50%.

“Why are lift and χ2 so poor at distinguishing pattern association
relationships in the previous transactional data sets?” To answer this, we
have to consider the null- transactions. A null-transaction is a transaction
that does not contain any of the item- sets being examined. In our example, mc
represents the number of null-transactions. Lift and χ2 have difficulty
distinguishing interesting pattern association relationships because they are
both strongly influenced by mc. Typically, the number of null- transactions
can outweigh the number of individual purchases because, for example, many
people may buy neither milk nor coffee. On the other hand, the other four
measures are good indicators of interesting pattern associations because their
defi- nitions remove the influence of mc (i.e., they are not influenced by the
number of null-transactions).
This discussion shows that it is highly desirable to have a measure that has a
value that is independent of the number of null-transactions. A measure is
null-invariant if its value is free from the influence of null-transactions. Null-
invariance is an impor- tant property for measuring association patterns in large
transaction databases. Among the six discussed measures in this subsection,
only lift and χ2 are not null-invariant measures.
“Among the all confidence, max confidence, Kulczynski, and cosine measures,
which is best at indicating interesting pattern relationships?”
To answer this question, we introduce the imbalance ratio (IR), which
assesses the imbalance of two itemsets, A and B, in rule implications. It is
defined as

=

+ = + +

where the numerator is the absolute value of the difference between the support of
the itemsets A and B, and the denominator is the number of transactions
containing A or
A. If the two directional implications between A and B are the same, then
IR(A, B) will be zero. Otherwise, the larger the difference between the two, the
larger the imbalance ratio. This ratio is independent of the number of null-
transactions and independent of the total number of transactions.
Let’s continue examining the remaining data sets in Example 6.10.

Example 6.11 Comparing null-invariant measures in pattern evaluation.

Although the four mea- sures introduced in this section are null-invariant,
they may present dramatically different values on some subtly different data
sets. Let’s examine data sets D5 and D6, shown earlier in Table 6.9, where the
two events m and c have unbalanced conditional probabilities. That is, the ratio
of mc to c is greater than 0.9. This means that knowing that c occurs should
strongly suggest that m occurs also. The ratio of mc to m is less than 0.1,
indicating that m implies that c is quite unlikely to occur. The all confidence
and cosine measures view both cases as negatively associated and the Kulc
measure views both as neutral. The max confidence measure claims strong
positive associations for these cases. The measures give very diverse results!
“Which measure intuitively reflects the true relationship between the purchase of
milk and coffee?” Due to the “balanced” skewness of the data, it is difficult to
argue whether the two data sets have positive or negative association. From
one point of view, only mc/(mc + mc) = 1000/(1000 + 10, 000) = 9.09% of
milk-related transactions contain coffee in D5 and this percentage is
1000/(1000 + 100, 000) = 0.99% in D6, both indi- cating a negative
association. On the other hand, 90.9% of transactions in D5 (i.e., mc/(mc
mc) 1000/(1000 100)) and 9% in D6 (i.e., 1000/(1000 10)) contain- ing
coffee contain milk as well, which indicates a positive association between
milk and coffee. These draw very different conclusions.

For such “balanced” skewness, it could be fair to treat it as neutral, as Kulc
does, and in the meantime indicate its skewness using the imbalance ratio (IR).
According to Eq. (6.13), for D4 we have IR(m, c) = 0, a perfectly balanced
case; for D5, IR(m, c) = 0.89, a rather imbalanced case; whereas for D6, IR(m, c)
0.99, a very skewed case. Therefore, the two measures, Kulc and IR, work
together, presenting a clear picture for all three data sets, D4 through D6.

.

 Pattern Mining: A Road Map

Chapter 6 introduced the basic concepts, techniques, and applications of
frequent pat- tern mining using market basket analysis as an example. Many
other kinds of data, user requests, and applications have led to the
development of numerous, diverse methods for mining patterns, associations,
and correlation relationships. Given the rich literature in this area, it is
important to lay out a clear road map to help us get an organized picture of
the field and to select the best methods for pattern mining applications.
Figure 7.1 outlines a general road map on pattern mining research. Most
stud- ies mainly address three pattern mining aspects: the kinds of patterns
mined, mining methodologies, and applications. Some studies, however, integrate
multiple aspects; for example, different applications may need to mine different
patterns, which naturally leads to the development of new mining
methodologies.

Figure 7.1 A general road map on pattern mining research.

Based on pattern diversity, pattern mining can be classified using the
following criteria:

Basic patterns: As discussed in Chapter 6, a frequent pattern may have several
alternative forms, including a simple frequent pattern, a closed pattern, or a max-
pattern. To review, a frequent pattern is a pattern (or itemset) that satisfies a
minimum sup- port threshold. A pattern p is a closed pattern if there is no
superpattern pr with the same support as p. Pattern p is a max-pattern if there
exists no frequent superpattern of p. Frequent patterns can also be mapped into
association rules, or other kinds of rules based on interestingness measures.
Sometimes we may also be interested in infrequent or rare patterns (i.e.,
patterns that occur rarely but are of critical impor- tance, or negative patterns
(i.e., patterns that reveal a negative correlation between items).

 Based on the abstraction levels involved in a pattern: Patterns or association
rules may have items or concepts residing at high, low, or multiple abstraction
levels. For example, suppose that a set of association rules mined includes the
following rules where X is a variable representing a customer:

buys(X, “computer”) ⇒ buys(X, “printer ”) (7.1)

buys(X, “laptop computer”) ⇒ buys(X, “color laser printer ”) (7.2)

In Rules (7.1) and (7.2), the items bought are referenced at different abstraction
levels (e.g., “computer” is a higher-level abstraction of “laptop computer,” and
“color laser printer” is a lower-level abstraction of “printer”). We refer to the
rule set mined as consisting of multilevel association rules. If, instead, the
rules within a given set do not reference items or attributes at different abstraction
levels, then the set contains single-level association rules.

 Based on the number of dimensions involved in the rule or pattern: If the
items or attributes in an association rule or pattern reference only one
dimension, it is a single-dimensional association rule/pattern. For example,
Rules (7.1) and (7.2) are single-dimensional association rules because they each
refer to only one dimension, buys.1
If a rule/pattern references two or more dimensions, such as age, income, and buys,
then it is a multidimensional association rule/pattern. The following is an
example of a multidimensional rule:

age(X, “20 . . . 29”) ∧ income(X, “52K . . . 58K ”) ⇒ buys(X, “iPad ”). (7.3)

 Based on the types of values handled in the rule or pattern: If a rule involves
associations between the presence or absence of items, it is a Boolean association

rule. For example, Rules (7.1) and (7.2) are Boolean association rules obtained
from market basket analysis.
If a rule describes associations between quantitative items or attributes, then it
is a quantitative association rule. In these rules, quantitative values for items
or attributes are partitioned into intervals. Rule (7.3) can also be considered a
quantitative association rule where the quantitative attributes age and income have
been discretized.

 Based on the constraints or criteria used to mine selective patterns: The
patterns or rules to be discovered can be constraint-based (i.e., satisfying a set
of user- defined constraints), approximate, compressed, near-match (i.e.,
those that tally the support count of the near or almost matching itemsets), top-k

(i.e., the k most frequent itemsets for a user-specified value, k), redundancy-

aware top-k (i.e., the top-k patterns with similar or redundant patterns
excluded), and so on.

Alternatively, pattern mining can be classified with respect to the kinds of data
and applications involved, using the following criteria:

 Based on kinds of data and features to be mined: Given relational and
data ware- house data, most people are interested in itemsets. Thus, frequent
pattern mining in this context is essentially frequent itemset mining, that is, to
mine frequent sets of items. However, in many other applications, patterns may
involve sequences and structures. For example, by studying the order in which
items are frequently purchased, we may find that customers tend to first buy a
PC, followed by a digital camera, and then a memory card. This leads to
sequential patterns, that is, frequent subsequences (which are often separated by
some other events) in a sequence of ordered events.

We may also mine structural patterns, that is, frequent substructures, in a struc-
tured data set. Note that structure is a general concept that covers many
different kinds of structural forms such as directed graphs, undirected graphs,
lattices, trees, sequences, sets, single items, or combinations of such structures.
Single items are the simplest form of structure. Each element of a general pattern
may contain a subsequence, a subtree, a subgraph, and so on, and such
containment relationships can be defined recursively. Therefore, structural pattern
mining can be considered as the most general form of frequent pattern mining.

 Based on application domain-specific semantics: Both data and applications
can be very diverse, and therefore the patterns to be mined can differ largely based
on their domain-specific semantics. Various kinds of application data include
spatial data, temporal data, spatiotemporal data, multimedia data (e.g., image,
audio, and video data), text data, time-series data, DNA and biological sequences,
software programs, chemical compound structures, web structures, sensor networks,
social and information networks, biological networks, data streams, and so on.
This diversity can lead to dramatically different pattern mining methodologies.

 Based on data analysis usages: Frequent pattern mining often serves as an
intermediate step for improved data understanding and more powerful data
analysis. For example, it can be used as a feature extraction step for
classification, which is often referred to as pattern-based classification.
Similarly, pattern-based clustering has shown its strength at clustering high-
dimensional data. For improved data understanding, patterns can be used for
semantic annotation or contextual analysis. Pattern analysis can also be used in
recommender systems, which recommend information items (e.g., books, movies,
web pages) that are likely to be of interest to the user based on similar users’
patterns. Different analysis tasks may require mining rather different kinds of
patterns as well.

 Pattern Mining in Multilevel, Multidimensional Space

Multilevel associations involve concepts at different abstraction levels.
Multidimensional associations involve more than one dimension or predicate (e.g.,
rules that relate what a customer buys to his or her age). Quantitative association
rules involve numeric attributes that have an implicit ordering among values
(e.g., age). Rare patterns are patterns that suggest interesting although rare item
combinations. Negative patterns show negative correlations between items.

 Mining Multilevel Associations

For many applications, strong associations discovered at high abstraction levels,
though with high support, could be commonsense knowledge. We may want to
drill down to find novel patterns at more detailed levels. On the other hand, there
could be too many scattered patterns at low or primitive abstraction levels,
some of which are just trivial specializations of patterns at higher levels.
Therefore, it is interesting to examine how to develop effective methods for
mining patterns at multiple abstraction levels, with sufficient flexibility for
easy traversal among different abstraction spaces.

Example 7.1 Mining multilevel association rules. Suppose we are given the
task-relevant set of trans- actional data in Table 7.1 for sales in an AllElectronics
store, showing the items purchased for each transaction. The concept hierarchy
for the items is shown in Figure 7.2. A con- cept hierarchy defines a sequence
of mappings from a set of low-level concepts to a higher-level, more general
concept set. Data can be generalized by replacing low-level concepts within the
data by their corresponding higher-level concepts, or ancestors, from a concept
hierarchy.
Figure 7.2’s concept hierarchy has five levels, respectively referred to as
levels 0 through 4, starting with level 0 at the root node for all (the most
general abstraction level). Here, level 1 includes computer, software, printer and
camera, and computer accessory; level 2 includes laptop computer, desktop
computer, office software, antivirus software, etc.; and level 3 includes Dell desktop
computer, . . . , Microsoft office software, etc. Level 4 is the most specific
abstraction level of this hierarchy. It consists of the raw data values.

Concept hierarchies for nominal attributes are often implicit within the
database schema, in which case they may be automatically generated using
methods such. For our example, the concept hierarchy of Figure 7.2 was gene-
rated from data on product specifications. Concept hierarchies for numeric
attributes can be generated using discretization techniques, many of which
were introduced in Chapter 3. Alternatively, concept hierarchies may be specified
by users familiar with the data such as store managers in the case of our
example.
The items in Table 7.1 are at the lowest level of Figure 7.2’s concept
hierarchy. It is difficult to find interesting purchase patterns in such raw or
primitive-level data. For instance, if “Dell Studio XPS 16 Notebook” or
“Logitech VX Nano Cordless Laser Mouse” occurs in a very small fraction of
the transactions, then it can be difficult to find strong associations involving
these specific items. Few people may buy these items together, making it
unlikely that the itemset will satisfy minimum support. However, we would
expect that it is easier to find strong associations between generalized
abstractions of these items, such as between “Dell Notebook” and “Cordless
Mouse.”

Association rules generated from mining data at multiple abstraction levels
are called multiple-level or multilevel association rules. Multilevel association
rules can be mined efficiently using concept hierarchies under a support-
confidence framework. In general, a top-down strategy is employed, where
counts are accumulated for the calcu- lation of frequent itemsets at each concept
level, starting at concept level 1 and working downward in the hierarchy toward
the more specific concept levels, until no more frequent itemsets can be found.
For each level, any algorithm for discovering frequent itemsets may be used,
such as Apriori or its variations.
A number of variations to this approach are described next, where each
variation involves “playing” with the support threshold in a slightly different
way. The variations are illustrated in Figures 7.3 and 7.4, where nodes indicate
an item or itemset that has been examined, and nodes with thick borders indicate
that an examined item or itemset is frequent.

Using uniform minimum support for all levels (referred to as uniform

support): The same minimum support threshold is used when mining at each
abstraction level. For example, in Figure 7.3, a minimum support threshold of
5% is used throughout (e.g., for mining from “computer” downward to “laptop

computer”). Both “computer” and “laptop computer” are found to be frequent,
whereas “desktop computer” is not.
When a uniform minimum support threshold is used, the search procedure is
simplified. The method is also simple in that users are required to specify
only one minimum support threshold.

An Apriori like optimization technique can be adopted, based on the
knowledge that an ancestor is a superset of its descendants: The search avoids
examining itemsets containing any item of which the ancestors do not have
minimum support.
The uniform support approach, however, has some drawbacks. It is unlikely
that items at lower abstraction levels will occur as frequently as those at higher
abstraction levels. If the minimum support threshold is set too high, it could
miss some meaningful associations occurring at low abstraction levels. If the
threshold is set too low, it may generate many uninteresting associations
occurring at high abstraction levels. This provides the motivation for the next
approach.

Using reduced minimum support at lower levels (referred to as reduced

support): Each abstraction level has its own minimum support threshold. The
deeper the abstraction level, the smaller the corresponding threshold. For
example, in Figure 7.4, the minimum support thresholds for levels 1 and 2 are
5% and 3%, respectively. In this way, “computer,” “laptop computer,” and
“desktop computer” are all considered frequent.

Using item or group-based minimum support (referred to as group-based

sup- port): Because users or experts often have insight as to which groups are
more important than others, it is sometimes more desirable to set up user-specific,
item, or group-based minimal support thresholds when mining multilevel rules.
For example, a user could set up the minimum support thresholds based on
product price or on items of interest, such as by setting particularly low support
thresholds for “camera with price over $1000” or “Tablet PC,” to pay
particular attention to the association patterns containing items in these
categories.
For mining patterns with mixed items from groups with different support
thresh- olds, usually the lowest support threshold among all the participating
groups is taken as the support threshold in mining. This will avoid filtering
out valuable patterns containing items from the group with the lowest support
threshold. In the meantime, the minimal support threshold for each individual
group should be kept to avoid generating uninteresting itemsets from each
group. Other interestingness measures can be used after the itemset mining to
extract truly interesting rules.

Notice that the Apriori property may not always hold uniformly across all of
the items when mining under reduced support and group-based support. However,
efficient methods can be developed based on the extension of the property. The
details are left as an exercise for interested readers.
A serious side effect of mining multilevel association rules is its generation of
many redundant rules across multiple abstraction levels due to the “ancestor”
relationships among items. For example, consider the following rules where
“laptop computer” is an ancestor of “Dell laptop computer” based on the
concept hierarchy of Figure 7.2, and

where X is a variable representing customers who purchased items in
AllElectronics
transactions.

4 ×

buys(X, “laptop computer”) ⇒ buys(X, “HP printer”)

[support = 8%, confidence = 70%] (7.4)

buys(X, “Dell laptop computer”) ⇒ buys(X, “HP printer”)

[support = 2%, confidence = 72%] (7.5)

“If Rules (7.4) and (7.5) are both mined, then how useful is Rule (7.5)? Does it
really provide any novel information?” If the latter, less general rule does not
provide new infor- mation, then it should be removed. Let’s look at how this may
be determined. A rule R1 is an ancestor of a rule R2, if R1 can be obtained by
replacing the items in R2 by their ancestors in a concept hierarchy. For
example, Rule (7.4) is an ancestor of Rule (7.5) because “laptop computer” is
an ancestor of “Dell laptop computer.” Based on this defini- tion, a rule can be
considered redundant if its support and confidence are close to their “expected”
values, based on an ancestor of the rule.

Example 7.2 Checking redundancy among multilevel association rules.
Suppose that Rule (7.4) has a 70% confidence and 8% support, and that about
one-quarter of all “laptop computer” sales are for “Dell laptop computers.” We
may expect Rule (7.5) to have a confidence of around 70% (since all data samples
of “Dell laptop computer” are also samples of “laptop computer”) and a support of
around 2% (i.e., 8% 1). If this is indeed the case, then Rule (7.5) is not
interesting because it does not offer any additional information and is less
general than Rule (7.4).

 Mining Multidimensional Associations

So far, we have studied association rules that imply a single predicate, that is,
the predicate buys. For instance, in mining our AllElectronics database, we
may discover the Boolean association rule

buys(X, “digital camera”) ⇒ buys(X, “HP printer”). (7.6)

Following the terminology used in multidimensional databases, we refer to each
distinct predicate in a rule as a dimension. Hence, we can refer to Rule (7.6) as
a single- dimensional or intradimensional association rule because it
contains a single distinct predicate (e.g., buys) with multiple occurrences (i.e.,
the predicate occurs more than once within the rule). Such rules are commonly
mined from transactional data.

Instead of considering transactional data only, sales and related information are
often linked with relational data or integrated into a data warehouse. Such data
stores are multidimensional in nature. For instance, in addition to keeping track
of the items pur- chased in sales transactions, a relational database may record
other attributes associated with the items and/or transactions such as the item
description or the branch location of the sale. Additional relational information
regarding the customers who purchased the items (e.g., customer age,
occupation, credit rating, income, and address) may also be stored. Considering
each database attribute or warehouse dimension as a predicate, we can therefore
mine association rules containing multiple predicates such as

age(X, “20 . . . 29”) ∧ occupation(X, “student”) ⇒ buys(X, “laptop”). (7.7)

Association rules that involve two or more dimensions or predicates can be
referred to as multidimensional association rules. Rule (7.7) contains three
predicates (age, occupation, and buys), each of which occurs only once in the
rule. Hence, we say that it has no repeated predicates. Multidimensional
association rules with no repeated predicates are called interdimensional

association rules. We can also mine multidimensional association rules with
repeated predicates, which contain multiple occurrences of some predicates. These
rules are called hybrid-dimensional association rules. An example of such a
rule is the following, where the predicate buys is repeated:

age(X, “20 . . . 29”) ∧ buys(X, “laptop”) ⇒ buys(X, “HP printer”). (7.8)

Database attributes can be nominal or quantitative. The values of nominal (or
categorical) attributes are “names of things.” Nominal attributes have a finite
number of possible values, with no ordering among the values (e.g.,
occupation, brand, color). Quantitative attributes are numeric and have an
implicit ordering among values (e.g., age, income, price). Techniques for
mining multidimensional association rules can be categorized into two basic
approaches regarding the treatment of quantitative attributes. In the first approach,
quantitative attributes are discretized using predefined concept hierarchies. This
discretization occurs before mining. For instance, a concept hierarchy for
income may be used to replace the original numeric values of this attribute by
inter- val labels such as “0..20K,” “21K..30K,” “31K..40K,” and so on. Here,
discretization is static and predetermined. Chapter 3 on data preprocessing gave
several techniques for discretizing numeric attributes. The discretized numeric
attributes, with their interval labels, can then be treated as nominal attributes

(where each interval is considered a category). We refer to this as mining

multidimensional association rules using static discretization of

quantitative attributes.

In the second approach, quantitative attributes are discretized or clustered into
“bins” based on the data distribution. These bins may be further combined
during the mining process. The discretization process is dynamic and established
so as to satisfy some mining criteria such as maximizing the confidence of the
rules mined. Because this strategy treats the numeric attribute values as quantities
rather than as predefined ranges or categories, association rules mined from this
approach are also referred to as (dynamic) quantitative association rules.
Let’s study each of these approaches for mining multidimensional association
rules. For simplicity, we confine our discussion to interdimensional
association rules. Note that rather than searching for frequent itemsets (as is
done for single-dimensional association rule mining), in multidimensional
association rule mining we search for frequent predicate sets. A k-predicate

set is a set containing k conjunctive predicates. For instance, the set of predicates
{age, occupation, buys} from Rule (7.7) is a 3-predicate set. Similar to the notation
used for itemsets in Chapter 6, we use the notation Lk to refer to the set of
frequent k-predicate sets.

 Mining Quantitative Association Rules

As discussed earlier, relational and data warehouse data often involve
quantitative attributes or measures. We can discretize quantitative attributes
into multiple intervals and then treat them as nominal data in association
mining. However, such simple discretization may lead to the generation of an
enormous number of rules, many of which may not be useful. Here we
introduce three methods that can help overcome this difficulty to discover
novel association relationships: (1) a data cube method, (2) a clustering-based
method, and (3) a statistical analysis method to uncover exceptional behaviors.

 Data Cube–Based Mining of Quantitative Associations

In many cases quantitative attributes can be discretized before mining using
predefined concept hierarchies or data discretization techniques, where
numeric values are replaced by interval labels. Nominal attributes may also be
generalized to higher conceptual levels if desired. If the resulting task-relevant
data are stored in a relational table, then any of the frequent itemset mining
algorithms we have discussed can easily be modified so as to find all frequent

predicate sets. In particular, instead of searching on only one attribute like buys,
we need to search through all of the relevant attributes, treating each attribute–
value pair as an itemset.
Alternatively, the transformed multidimensional data may be used to construct
a data cube. Data cubes are well suited for the mining of multidimensional
association rules: They store aggregates (e.g., counts) in multidimensional
space, which is essential for computing the support and confidence of
multidimensional association rules. An overview of data cube technology was
presented in Chapter 4. Detailed algorithms for data cube computation were
given in Chapter 5. Figure 7.5 shows the lattice of cuboids defining a data
cube for the dimensions age, income, and buys. The cells of an n-dimensional
cuboid can be used to store the support counts of the corresponding n-predicate
sets. The base cuboid aggregates the task-relevant data by age, income, and buys;
the 2-D cuboid, (age, income), aggregates by age and income, and so on; the 0-
D (apex) cuboid contains the total number of transactions in the task-relevant
data.
Due to the ever-increasing use of data warehouse and OLAP technology, it is
possible that a data cube containing the dimensions that are of interest to the
user may already exist, fully or partially materialized. If this is the case, we
can simply fetch the corresponding aggregate values or compute them using
lower-level materialized aggregates, and return the rules needed using a rule
generation algorithm. Notice that even in this case, the Apriori property can
still be used to prune the search space. If a given k-predicate set has support
sup, which does not satisfy minimum support, then further

Figure 7.5 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different

group-by.

The base cuboid contains the three predicates age, income, and buys. The exploration of this set

should be terminated. This is because any more-specialized ver- sion of the k-itemset will have

support no greater than sup and, therefore, will not satisfy minimum support either. In cases where

no relevant data cube exists for the mining task, we must create one on-the-fly. This becomes

an iceberg cube computation problem, where the minimum support threshold is taken as the

iceberg condition (Chapter 5).

Mining Clustering-Based Quantitative Associations

Besides using discretization-based or data cube–based data sets to generate quantita- tive
association rules, we can also generate quantitative association rules by clustering data in the
quantitative dimensions. (Recall that objects within a cluster are similar to one another and
dissimilar to those in other clusters.) The general assumption is that interesting frequent
patterns or association rules are in general found at relatively dense clusters of quantitative
attributes. Here, we describe a top-down approach and a bottom-up approach to clustering that
finds quantitative associations.
A typical top-down approach for finding clustering-based quantitative frequent pat- terns is as
follows. For each quantitative dimension, a standard clustering algorithm (e.g., k-means or a
density-based clustering algorithm, as described in Chapter 10) can be applied to find clusters
in this dimension that satisfy the minimum support thresh- old. For each cluster, we then
examine the 2-D spaces generated by combining the cluster with a cluster or nominal value of
another dimension to see if such a combination passes the minimum support threshold. If it
does, we continue to search for clusters in this 2-D region and progress to even higher-
dimensional combinations. The Apriori prun- ing still applies in this process: If, at any point,
the support of a combination does not have minimum support, its further partitioning or
combination with other dimensions cannot have minimum support either.

A bottom-up approach for finding clustering-based frequent patterns works by first clustering
in high-dimensional space to form clusters with support that satisfies the minimum support
threshold, and then projecting and merging those clusters in the space containing fewer
dimensional combinations. However, for high-dimensional data sets, finding high-dimensional
clustering itself is a tough problem. Thus, this approach is less realistic.

Using Statistical Theory to Disclose Exceptional Behavior

It is possible to discover quantitative association rules that disclose exceptional behavior, where
“exceptional” is defined based on a statistical theory. For example, the following association
rule may indicate exceptional behavior:

sex = female ⇒ meanwage = $7.90/hr (overall mean wage = $9.02/hr). (7.9)

This rule states that the average wage for females is only $7.90/hr. This rule is (subjec- tively)
interesting because it reveals a group of people earning a significantly lower wage than the
average wage of $9.02/hr. (If the average wage was close to $7.90/hr, then the fact that females
also earn $7.90/hr would be “uninteresting.”)
An integral aspect of our definition involves applying statistical tests to confirm the validity of

our rules. That is, Rule (7.9) is only accepted if a statistical test (in this case, a Z-test)
confirms that with high confidence it can be inferred that the mean wage of the female
population is indeed lower than the mean wage of the rest of the population. (The above rule was
mined from a real database based on a 1985 U.S. census.)
An association rule under the new definition is a rule of the form:

population subset ⇒ mean of values for the subset , (7.10)

where the mean of the subset is significantly different from the mean of its complement in the
database (and this is validated by an appropriate statistical test).

 Mining Rare Patterns and Negative Patterns

All the methods presented so far in this chapter have been for mining frequent patterns.
Sometimes, however, it is interesting to find patterns that are rare instead of frequent, or patterns
that reflect a negative correlation between items. These patterns are respectively referred to as rare
patterns and negative patterns. In this subsection, we consider various ways of defining rare
patterns and negative patterns, which are also useful to mine.

Example 7.3 Rare patterns and negative patterns. In jewelry sales data, sales of diamond
watches are rare; however, patterns involving the selling of diamond watches could be interest-
ing. In supermarket data, if we find that customers frequently buy Coca-Cola Classic or Diet
Coke but not both, then buying Coca-Cola Classic and buying Diet Coke together is
considered a negative (correlated) pattern. In car sales data, a dealer sells a few fuel- thirsty
vehicles (e.g., SUVs) to a given customer, and then later sells hybrid mini-cars to the same
customer. Even though buying SUVs and buying hybrid mini-cars may be neg- atively
correlated events, it can be interesting to discover and examine such exceptional cases.

An infrequent (or rare) pattern is a pattern with a frequency support that is below (or far
below) a user-specified minimum support threshold. However, since the occur- rence
frequencies of the majority of itemsets are usually below or even far below the minimum
support threshold, it is desirable in practice for users to specify other con- ditions for rare
patterns. For example, if we want to find patterns containing at least one item with a value
that is over $500, we should specify such a constraint explic- itly. Efficient mining of such
itemsets is discussed under mining multidimensional associations (Section 7.2.1), where the
strategy is to adopt multiple (e.g., item- or group-based) minimum support thresholds. Other
applicable methods are discussed under constraint-based pattern mining (Section 7.3), where
user-specified constraints are pushed deep into the iterative mining process.
There are various ways we could define a negative pattern. We will consider three such
definitions.

Definition 7.1: If itemsets X and Y are both frequent but rarely occur together (i.e., sup(X ∪

Y) < sup(X) × sup(Y)), then itemsets X and Y are negatively correlated, and the pattern X ∪ Y is

a negatively correlated pattern. If sup(X ∪ Y) sup(X) × sup(Y), then X and Y are strongly

negatively correlated, and the pattern X ∪ Y is a strongly negatively correlated pattern.
 Q

This definition can easily be extended for patterns containing k-itemsets for k > 2.
A problem with the definition, however, is that it is not null-invariant. That is, its value can

= ∪ ×
∪ = = × = ×

∪ ×

be misleadingly influenced by null transactions, where a null-transaction is a transaction that
does not contain any of the itemsets being examined (Section 6.3.3). This is illustrated in
Example 7.4.

Example 7.4 Null-transaction problem with Definition 7.1. If there are a lot of null-
transactions in the data set, then the number of null-transactions rather than the patterns observed
may strongly influence a measure’s assessment as to whether a pattern is negatively correlated. For
example, suppose a sewing store sells needle packages A and B. The store sold 100 packages
each of A and B, but only one transaction contains both A and B. Intuitively, A is negatively
correlated with B since the purchase of one does not seem to encourage the purchase of the
other.
Let’s see how the above Definition 7.1 handles this scenario. If there are 200
transactions, we have sup(A B) 1/200 0.005 and sup(A) sup(B)
 100/200 100/200 0.25. Thus, sup(A B) sup(A)
 sup(B), and so Definition 7.1 indi- cates that A and B are strongly
negatively correlated. What if, instead of only 200 transactions in the database, there are
106? In this case, there are many null- transactions, that is, many contain neither A nor B.

How does the definition hold up? It computes sup(A ∪ B) = 1/106 and sup(X) × sup(Y) =

100/106 × 100/106 = 1/108.

Thus, sup(A B) sup(X) sup(Y), which contradicts the earlier finding even though the
number of occurrences of A and B has not changed. The measure in Definition 7.1 is not null-
invariant, where null-invariance is essential for quality interestingness measures as discussed in
Section 6.3.3.

Definition 7.2: If X and Y are strongly negatively correlated, then

sup(X ∪ Y) × sup(X ∪ Y) sup(X ∪ Y) × sup(X ∪ Y).

Is this measure null-invariant?

Example 7.5 Null-transaction problem with Definition 7.2. Given our needle package
example, when there are in total 200 transactions in the database, we have

sup(A ∪ B) × sup(A ∪ B) = 99/200 × 99/200 = 0.245

 sup(A ∪ B) × sup(A ∪ B) = 199/200 × 1/200 ≈ 0.005,

which, according to Definition 7.2, indicates that A and B are strongly negatively correlated.
What if there are 106 transactions in the database? The measure would compute

sup(A ∪ B) × sup(A ∪ B) = 99/106 × 99/106 = 9.8 × 10−9

 sup(A ∪ B) × sup(A ∪ B) = 199/106 × (106 − 199)/106 ≈ 1.99 × 10−4.

This time, the measure indicates that A and B are positively correlated, hence, a
contradiction. The measure is not null-invariant.

As a third alternative, consider Definition 7.3, which is based on the Kulczynski mea- sure (i.e.,
the average of conditional probabilities). It follows the spirit of interestingness measures

| + | = +
= = =

=

≥ | + | = +

| + | = + =

introduced in Section 6.3.3.

Definition 7.3: Suppose that itemsets X and Y are both frequent, that is, sup(X) ≥ min sup and
sup(Y) ≥ min sup, where min sup is the minimum support threshold. If (P(X |Y) + P(Y |X))/2 <

‹, where ‹ is a negative pattern threshold, then pattern X ∪ Y is a negatively correlated pattern.

 Q

Example 7.6 Negatively correlated patterns using Definition 7.3, based on the Kulczynski
measure. Let’s reexamine our needle package example. Let min sup be 0.01% and ‹ 0.02. When
there are 200 transactions in the database, we have sup(A) sup(B) 100/200 0.5 > 0.01% and
(P(B A) P(A B))/2 (0.01 0.01)/2 < 0.02; thus A and B are
negatively correlated. Does this still hold true if we have many more transactions? When there
are 106 transactions in the database, the measure computes sup(A) sup(B) 100/106
0.01% 0.01% and (P(B A) P(A B))/2 (0.01 0.01)/2 < 0.02,
again indicating that A and B are negatively correlated. This matches our intuition. The
measure does not have the null-invariance problem of the first two definitions considered.
Let’s examine another case: Suppose that among 100,000 transactions, the store sold 1000 needle
packages of A but only 10 packages of B; however, every time package B is sold, package A is
also sold (i.e., they appear in the same transaction). In this case, the measure computes (P(B
A) P(A B))/2 (0.01 1)/2 0.505 0.02, which indi- cates that A and B are positively
correlated instead of negatively correlated. This also matches our intuition.

With this new definition of negative correlation, efficient methods can easily be derived for
mining negative patterns in large databases. This is left as an exercise for interested readers.

 Constraint-Based Frequent Pattern Mining

A data mining process may uncover thousands of rules from a given data set, most of which
end up being unrelated or uninteresting to users. Often, users have a good sense of which
“direction” of mining may lead to interesting patterns and the “form” of the pat- terns or rules
they want to find. They may also have a sense of “conditions” for the rules, which would
eliminate the discovery of certain rules that they know would not be of interest. Thus, a good
heuristic is to have the users specify such intuition or expectations as constraints to confine the
search space. This strategy is known as constraint-based mining. The constraints can
include the following:

Knowledge type constraints: These specify the type of knowledge to be mined, such as
association, correlation, classification, or clustering.

Data constraints: These specify the set of task-relevant data.

Dimension/level constraints: These specify the desired dimensions (or attributes) of the data,
the abstraction levels, or the level of the concept hierarchies to be used in mining.

Interestingness constraints: These specify thresholds on statistical measures of rule
interestingness such as support, confidence, and correlation.

Rule constraints: These specify the form of, or conditions on, the rules to be mined. Such
constraints may be expressed as metarules (rule templates), as the maximum or minimum number
of predicates that can occur in the rule antecedent or consequent, or as relationships among
attributes, attribute values, and/or aggregates.

These constraints can be specified using a high-level declarative data mining query language
and user interface.
The first four constraint types have already been addressed in earlier sections of this book and
this chapter. In this section, we discuss the use of rule constraints to focus the mining task. This
form of constraint-based mining allows users to describe the rules that they would like to
uncover, thereby making the data mining process more effective. In addition, a sophisticated
mining query optimizer can be used to exploit the constraints specified by the user, thereby
making the mining process more efficient.

Constraint-based mining encourages interactive exploratory mining and analysis. In Section
7.3.1, you will study metaruleguided mining, where syntactic rule constraints are specified in
the form of rule templates. Section 7.3.2 discusses the use of pattern space pruning (which prunes
patterns being mined) and data space pruning (which prunes pieces of the data space for which
further exploration cannot contribute to the discovery of patterns satisfying the constraints).
For pattern space pruning, we introduce three classes of properties that facilitate constraint-
based search space pruning: antimonotonicity, monotonicity, and succinct- ness. We also discuss a
special class of constraints, called convertible constraints, where by proper data ordering, the
constraints can be pushed deep into the iterative mining process and have the same pruning
power as monotonic or antimonotonic constraints. For data space pruning, we introduce two
classes of properties—data succinctness and data antimonotonicty—and study how they can be
integrated within a data mining process.
For ease of discussion, we assume that the user is searching for association rules. The procedures
presented can be easily extended to the mining of correlation rules by adding a correlation
measure of interestingness to the support-confidence framework.

 Metarule-Guided Mining of Association Rules

“How are metarules useful?” Metarules allow users to specify the syntactic form of rules that
they are interested in mining. The rule forms can be used as constraints to help improve the
efficiency of the mining process. Metarules may be based on the analyst’s experience,
expectations, or intuition regarding the data or may be automatically generated based on the
database schema.

Example 7.7 Metarule-guided mining. Suppose that as a market analyst for AllElectronics you
have access to the data describing customers (e.g., customer age, address, and credit rating) as
well as the list of customer transactions. You are interested in finding associations between
customer traits and the items that customers buy. However, rather than finding all of the
association rules reflecting these relationships, you are interested only in deter- mining which
pairs of customer traits promote the sale of office software. A metarule can be used to specify
this information describing the form of rules you are interested in finding. An example of such a
metarule is

P1(X, Y) ∧ P2(X, W) ⇒ buys(X, “office software”), (7.11)

where P1 and P2 are predicate variables that are instantiated to attributes from the given database
during the mining process, X is a variable representing a customer, and Y and W take on
values of the attributes assigned to P1 and P2, respectively. Typically, a user will specify a
list of attributes to be considered for instantiation with P1 and P2. Otherwise, a default set

= +
= =

may be used.
In general, a metarule forms a hypothesis regarding the relationships that the user is interested
in probing or confirming. The data mining system can then search for rules that match the
given metarule. For instance, Rule (7.12) matches or complies with
Metarule (7.11):

age(X, “30..39”) ∧ income(X, “41K ..60K ”) ⇒ buys(X, “office software”). (7.12)

“How can metarules be used to guide the mining process?” Let’s examine this prob- lem closely.
Suppose that we wish to mine interdimensional association rules such as in Example 7.7. A
metarule is a rule template of the form

P1 ∧ P2 ∧ · · · ∧ Pl ⇒ Q1 ∧ Q2 ∧ · · · ∧ Qr, (7.13)

where Pi (i 1, . . . , l) and Qj (j 1, . . . , r) are either instantiated predicates or predicate
variables. Let the number of predicates in the metarule be p l r. To find interdimensional
association rules satisfying the template,

We need to find all frequent p-predicate sets, Lp.

We must also have the support or count of the l-predicate subsets of Lp to compute the
confidence of rules derived from Lp.

This is a typical case of mining multidimensional association rules. By extending such
methods using the constraint-pushing techniques described in the following section, we can
derive efficient methods for metaruleguided mining.

 Constraint-Based Pattern Generation: Pruning Pattern Space and Pruning Data
Space

Rule constraints specify expected set/subset relationships of the variables in the mined rules,
constant initiation of variables, and constraints on aggregate functions and other forms of
constraints. Users typically employ their knowledge of the application or data to specify rule
constraints for the mining task. These rule constraints may be used together with, or as an
alternative to, metarule-guided mining. In this section, we examine rule constraints as to
how they can be used to make the mining process more efficient. Let’s study an example
where rule constraints are used to mine hybrid-dimensional association rules.

Example 7.8 Constraints for mining association rules. Suppose that AllElectronics has a
sales multidimensional database with the following interrelated relations:

item(item ID, item name, description, category, price)

sales(transaction ID, day, month, year, store ID, city)

trans item(item ID, transaction ID)

Here, the item table contains attributes item ID, item name, description, category, and price; the

= =
≥

≤

sales table contains attributes transaction ID day, month, year, store ID, and city; and the
two tables are linked via the foreign key attributes, item ID and transaction ID, in the table
trans item.
Suppose our association mining query is “Find the patterns or rules about the sales of which
cheap items (where the sum of the prices is less than $10) may promote (i.e., appear in the
same transaction) the sales of which expensive items (where the minimum price is $50),
shown in the sales in Chicago in 2010.”
This query contains the following four constraints: (1) sum(I.price) < $10, where I represents
the item ID of a cheap item; (2) min(J .price) $50), where J represents the item ID of an
expensive item; (3) T.city Chicago; and (4) T.year 2010, where T represents a transaction ID.
For conciseness, we do not show the mining query explicitly here; however, the constraints’
context is clear from the mining query semantics.

Dimension/level constraints and interestingness constraints can be applied after mining to
filter out discovered rules, although it is generally more efficient and less expensive to use
them during mining to help prune the search space. Dimension/level constraints were
discussed in Section 7.2, and interestingness constraints, such as sup- port, confidence, and
correlation measures, were discussed in Chapter 6. Let’s focus now on rule constraints.

In general, an efficient frequent pattern mining processor can prune its search space during
mining in two major ways: pruning pattern search space and pruning data search space. The
former checks candidate patterns and decides whether a pattern can be pruned. Applying the
Apriori property, it prunes a pattern if no superpattern of it can be generated in the remaining
mining process. The latter checks the data set to determine whether the particular data piece will
be able to contribute to the subsequent generation of satisfiable patterns (for a particular pattern)
in the remaining mining process. If not, the data piece is pruned from further exploration. A
constraint that may facilitate pat- tern space pruning is called a pattern pruning constraint,
whereas one that can be used for data space pruning is called a data pruning constraint.

Pruning Pattern Space with Pattern Pruning Constraints

Based on how a constraint may interact with the pattern mining process, there are five
categories of pattern mining constraints: (1) antimonotonic, (2) monotonic, (3) succinct, (4)
convertible, and (5) inconvertible. For each category, we use an example to show its
characteristics and explain how such kinds of constraints can be used in the mining process.

The first category of constraints is antimonotonic. Consider the rule constraint “sum(I.price)
$100” of Example 7.8. Suppose we are using the Apriori framework, which explores itemsets
of size k at the kth iteration. If the price summation of the items in a candidate itemset is no
less than $100, this itemset can be pruned from the search space, since adding more items into
the set (assuming price is no less than zero) will only make it more expensive and thus will
never satisfy the constraint. In other words, if an itemset does not satisfy this rule constraint,
none of its supersets can satisfy the constraint. If a rule constraint obeys this property, it is
antimonotonic. Pruning by antimonotonic constraints can be applied at each iteration of
Apriori-style algo- rithms to help improve the efficiency of the overall mining process while
guaranteeing completeness of the data mining task.

≤
≥

≤

≥

≥

≤ ⊆

≤ ≥

= ∈ /= ∈

The Apriori property, which states that all nonempty subsets of a frequent itemset must also
be frequent, is antimonotonic. If a given itemset does not satisfy minimum support, none of
its supersets can. This property is used at each iteration of the Apriori algorithm to reduce the
number of candidate itemsets examined, thereby reducing the search space for association
rules.
Other examples of antimonotonic constraints include “min(J .price) $50,” “count(I) 10,” and
so on. Any itemset that violates either of these constraints can be discarded since adding more
items to such itemsets can never satisfy the constraints. Note that a constraint such as
“avg(I.price) $10” is not antimonotonic. For a given itemset that does not satisfy this
constraint, a superset created by adding some (cheap) items may result in satisfying the
constraint. Hence, pushing this constraint inside the mining process will not guarantee
completeness of the data mining task. A list of SQL primitives–based constraints is given in
the first column of Table 7.2. The antimonotonicity of the constraints is indicated in the second
column. To simplify our discussion, only existence operators (e.g., , , but not , /) and
comparison (or containment) operators with equality (e.g., ,) are given.
The second category of constraints is monotonic. If the rule constraint in Example 7.8 were
“sum(I.price) $100,” the constraint-based processing method would be quite different. If an
itemset I satisfies the constraint, that is, the sum of the prices in the set is no less than $100,
further addition of more items to I will increase cost and will always satisfy the constraint.
Therefore, further testing of this constraint on itemset I becomes redundant. In other words, if
an itemset satisfies this rule con- straint, so do all of its supersets. If a rule constraint obeys this
property, it is monotonic. Similar rule monotonic constraints include “min(I.price) $10,”
“count(I) 10,” and so on. The monotonicity of the list of SQL primitives–based constraints
is indicated in the third column of Table 7.2.
The third category is succinct constraints. For this constraints category, we can enumerate
all and only those sets that are guaranteed to satisfy the constraint. That is, if a rule constraint
is succinct, we can directly generate precisely the sets that satisfy it, even before support
counting begins. This avoids the substantial overhead of the generate-and-test paradigm. In
other words, such constraints are precounting prunable. For example, the constraint
“min(J.price) $50” in Example 7.8 is succinct because we can explicitly and precisely
generate all the itemsets that satisfy the constraint.

≤

/= ∅

{ | ⊆ ∧ | | ≤ }
≤ ≥

≥ ≥
≤ ≥

∈ {≤ ≥}

Specifically, such a set must consist of a nonempty set of items that have a price no less than $50.
It is of the form S, where S is a subset of the set of all items with prices no less than $50.
Because there is a precise “formula” for generating all the sets satisfying a succinct constraint,
there is no need to iteratively check the rule constraint during the mining process. The
succinctness of the list of SQL primitives–based constraints is indicated in the fourth column
of Table 7.2.2
The fourth category is convertible constraints. Some constraints belong to none of the
previous three categories. However, if the items in the itemset are arranged in a particular order,
the constraint may become monotonic or antimonotonic with regard to the frequent itemset
mining process. For example, the constraint “avg(I.price) $10” is neither antimonotonic nor
monotonic. However, if items in a transaction are added to an itemset in price-ascending order,
the constraint becomes antimonotonic, because if an itemset I violates the constraint (i.e., with
an average price greater than $10), then further addition of more expensive items into the
itemset will never make it

satisfy the constraint. Similarly, if items in a transaction are added to an itemset in price-
descending order, it becomes monotonic, because if the itemset satisfies the con- straint (i.e., with
an average price no greater than $10), then adding cheaper items into the current itemset will
still make the average price no greater than $10. Aside from “avg(S) v” and “avg(S) v,” given
in Table 7.2, there are many other convertible constraints such as “variance(S) v” “standard
deviation(S) v,” and so on.
Note that the previous discussion does not imply that every constraint is convertible. For example,

≥

≤

“sum(S) θv,” where θ , and each element in S could be of any real
value, is not convertible. Therefore, there is yet a fifth category of constraints, called
inconvertible constraints. The good news is that although there still exist some tough
constraints that are not convertible, most simple SQL expressions with built-in SQL
aggregates belong to one of the first four categories to which efficient constraint mining methods
can be applied.

Pruning Data Space with Data Pruning Constraints

The second way of search space pruning in constraint-based frequent pattern mining is
pruning data space. This strategy prunes pieces of data if they will not contribute to the
subsequent generation of satisfiable patterns in the mining process. We consider two properties:
data succinctness and data antimonotonicity.
Constraints are data-succinct if they can be used at the beginning of a pattern mining process to
prune the data subsets that cannot satisfy the constraints. For example, if a mining query
requires that the mined pattern must contain digital camera, then any transaction that does
not contain digital camera can be pruned at the beginning of the mining process, which
effectively reduces the data set to be examined.
Interestingly, many constraints are data-antimonotonic in the sense that during the mining
process, if a data entry cannot satisfy a data-antimonotonic constraint based on the current
pattern, then it can be pruned. We prune it because it will not be able to contribute to the
generation of any superpattern of the current pattern in the remaining mining process.

Example 7.9 Data antimonotonicity. A mining query requires that C1 : sum(I.price) $100,
that is, the sum of the prices of the items in the mined pattern must be no less than $100. Sup-
pose that the current frequent itemset, S, does not satisfy constraint C1 (say, because the sum of
the prices of the items in S is $50). If the remaining frequent items in a transac- tion Ti are
such that, say, {i2.price = $5, i5.price = $10, i8.price = $20}, then Ti will not be able to make S
satisfy the constraint. Thus, Ti cannot contribute to the patterns to be mined from S, and thus
can be pruned.
Note that such pruning cannot be done at the beginning of the mining because at that time,
we do not know yet if the total sum of the prices of all the items in Ti will be over $100 (e.g.,
we may have i3.price = $80). However, during the iterative mining process, we may find some
items (e.g., i3) that are not frequent with S in the transaction data set, and thus they would be
pruned. Therefore, such checking and pruning should be enforced at each iteration to reduce
the data search space.

Notice that constraint C1 is a monotonic constraint with respect to pattern space pruning. As
we have seen, this constraint has very limited power for reducing the search space in pattern
pruning. However, the same constraint can be used for effective reduction of the data search
space.
For an antimonotonic constraint, such as C2 : sum(I.price) $100, we can prune both pattern
and data search spaces at the same time. Based on our study of pattern pruning, we already
know that the current itemset can be pruned if the sum of the prices in it is over $100 (since its
further expansion can never satisfy C2). At the same time, we can also prune any remaining
items in a transaction Ti that cannot make the constraint C2 valid. For example, if the sum of
the prices of items in the current itemset S is $90, any patterns over $10 in the remaining
frequent items in Ti can be pruned. If none of the remaining items in Ti can make the

= =

constraint valid, the entire transaction Ti should be pruned.
Consider pattern constraints that are neither antimonotonic nor monotonic such as “C3 :
avg(I.price) ≤ 10.” These can be data-antimonotonic because if the remaining items in a
transaction Ti cannot make the constraint valid, then Ti can be pruned as well. Therefore, data-
antimonotonic constraints can be quite useful for constraint-based data space pruning.
Notice that search space pruning by data antimonotonicity is confined only to a pat- tern
growth–based mining algorithm because the pruning of a data entry is determined based on
whether it can contribute to a specific pattern. Data antimonotonicity cannot be used for
pruning the data space if the Apriori algorithm is used because the data are associated with all
of the currently active patterns. At any iteration, there are usu- ally many active patterns. A
data entry that cannot contribute to the formation of the superpatterns of a given pattern may
still be able to contribute to the superpattern of other active patterns. Thus, the power of data
space pruning can be very limited for nonpattern growth–based algorithms.

 Classification Using Frequent Patterns
Frequent patterns show interesting relationships between attribute–value pairs that occur
frequently in a given data set. For example, we may find that the attribute–value pairs age
youth and credit OK occur in 20% of data tuples describing AllElectronics customers who
buy a computer. We can think of each attribute–value pair as an item, so the search for these
frequent patterns is known as frequent pattern mining or frequent itemset mining. In Chapters 6
and 7, we saw how association rules are derived from frequent patterns, where the
associations are commonly used to analyze the purchas- ing patterns of customers in a store.
Such analysis is useful in many decision-making processes such as product placement,
catalog design, and cross-marketing.
In this section, we examine how frequent patterns can be used for classification. Section 9.4.1
explores associative classification, where association rules are generated from frequent patterns
and used for classification. The general idea is that we can search for strong associations
between frequent patterns (conjunctions of attribute–valuepairs) and class labels. Section
9.4.2 explores discriminative frequent pattern–based classification, where frequent patterns
serve as combined features, which are considered in addition to single features when building a
classification model. Because frequent patterns explore highly confident associations among
multiple attributes, frequent pattern–based classification may overcome some constraints
introduced by decision tree induction, which considers only one attribute at a time. Studies
have shown many frequent pattern–based classification methods to have greater accuracy and
scalability than some traditional classification methods such as C4.5.

Associative Classification

In this section, you will learn about associative classification. The methods discussed are CBA,
CMAR, and CPAR.
Before we begin, however, let’s look at association rule mining in general. Association rules are
mined in a two-step process consisting of frequent itemset mining followed by rule generation.
The first step searches for patterns of attribute–value pairs that occur repeatedly in a data set,
where each attribute–value pair is considered an item. The resulting attribute–value pairs form
frequent itemsets (also referred to as frequent pat- terns). The second step analyzes the frequent
itemsets to generate association rules. All association rules must satisfy certain criteria regarding
their “accuracy” (or confidence) and the proportion of the data set that they actually represent

∧

≤

= = =

=

(referred to as support). For example, the following is an association rule mined from a data
set, D, shown with its confidence and support:

age = youth ∧ credit = OK ⇒ buys computer

= yes [support = 20%, confidence = 93%], (9.21)

where represents a logical “AND.” We will say more about confidence and support later.
More formally, let D be a data set of tuples. Each tuple in D is described by n attributes, A1,
A2, . . . , An, and a class label attribute, Aclass. All continuous attributes are discretized and treated
as categorical (or nominal) attributes. An item, p, is an attribute– value pair of the form (Ai, v),
where Ai is an attribute taking a value, v. A data tuple X (x1, x2, . . . , xn) satisfies an item, p
(Ai, v), if and only if xi v, where xi is the value of the ith attribute of X. Association rules
can have any number of items in the rule antecedent (left side) and any number of items in the
rule consequent (right side). However, when mining association rules for use in classification,

we are only interested in association rules of the form p1 ∧ p2 ∧ . . . pl ⇒ Aclass = C, where the rule
antecedent is a conjunction of items, p1, p2, . . . , pl (l n), associated with a class label, C. For a
given rule, R, the percentage of tuples in D satisfying the rule antecedent that also have the
class label C is called the confidence of R.
From a classification point of view, this is akin to rule accuracy. For example, a confidence of
93% for Rule (9.21) means that 93% of the customers in D who are young and have an OK
credit rating belong to the class buys computer = yes. The percentage of tuples in D satisfying
the rule antecedent and having class label C is called the support of R. A support of 20% for
Rule (9.21) means that 20% of the customers in D are young, have an OK credit rating, and
belong to the class buys computer yes.
In general, associative classification consists of the following steps:

1. Mine the data for frequent itemsets, that is, find commonly occurring attribute–value pairs in
the data.

2. Analyze the frequent itemsets to generate association rules per class, which satisfy
confidence and support criteria.

3. Organize the rules to form a rule-based classifier.

Methods of associative classification differ primarily in the approach used for frequent itemset
mining and in how the derived rules are analyzed and used for classification. We now look at
some of the various methods for associative classification.
One of the earliest and simplest algorithms for associative classification is CBA (Clas-
sification Based on Associations). CBA uses an iterative approach to frequent itemset
mining, similar to that described for Apriori in Section 6.2.1, where multiple passes are made
over the data and the derived frequent itemsets are used to generate and test longer itemsets. In
general, the number of passes made is equal to the length of the longest rule found. The complete
set of rules satisfying minimum confidence and minimum sup- port thresholds are found and
then analyzed for inclusion in the classifier. CBA uses a heuristic method to construct the
classifier, where the rules are ordered according to decreasing precedence based on their
confidence and support. If a set of rules has the same antecedent, then the rule with the highest
confidence is selected to represent the set. When classifying a new tuple, the first rule satisfying
the tuple is used to classify it. The classifier also contains a default rule, having lowest
precedence, which specifies a default class for any new tuple that is not satisfied by any other
rule in the classifier. In this way, the set of rules making up the classifier form a decision list. In

≥

=
=

general, CBA was empirically found to be more accurate than C4.5 on a good number of data
sets.
CMAR (Classification based on Multiple Association Rules) differs from CBA in its strategy
for frequent itemset mining and its construction of the classifier. It also employs several rule
pruning strategies with the help of a tree structure for efficient storage and retrieval of rules.
CMAR adopts a variant of the FP-growth algorithm to find the complete set of rules satisfying
the minimum confidence and minimum support thresholds. FP-growth was described in Section
6.2.4. FP-growth uses a tree structure, called an FP-tree, to register all the frequent itemset
information contained in the given data set, D. This requires only two scans of D. The frequent
itemsets are then mined from the FP-tree. CMAR uses an enhanced FP-tree that maintains the
distribution of class labels among tuples satisfying each frequent itemset. In this way, it is
able to combine rule generation together with frequent itemset mining in a single step.
CMAR employs another tree structure to store and retrieve rules efficiently and to prune
rules based on confidence, correlation, and database coverage. Rule pruning strategies are
triggered whenever a rule is inserted into the tree. For example, given two rules, R1 and R2,
if the antecedent of R1 is more general than that of R2 and conf(R1) conf(R2), then R2 is
pruned. The rationale is that highly specialized rules with low confidence can be pruned if a
more generalized version with higher confidence exists. CMAR also prunes rules for which the
rule antecedent and class are not positively correlated, based on an χ2 test of statistical
significance.
“If more than one rule applies, which one do we use?” As a classifier, CMAR operates
differently than CBA. Suppose that we are given a tuple X to classify and that only one rule
satisfies or matches X.4 This case is trivial—we simply assign the rule’s class label. Suppose,
instead, that more than one rule satisfies X. These rules form a set, S. Which rule would we
use to determine the class label of X? CBA would assign the class label of the most confident
rule among the rule set, S. CMAR instead considers multiple rules when making its class
prediction. It divides the rules into groups according to class labels. All rules within a group
share the same class label and each group has a distinct class label.
CMAR uses a weighted χ2 measure to find the “strongest” group of rules, based on the
statistical correlation of rules within a group. It then assigns X the class label of the strongest
group. In this way it considers multiple rules, rather than a single rule with highest confidence,
when predicting the class label of a new tuple. In experiments, CMAR had slightly higher
average accuracy in comparison with CBA. Its runtime, scalability, and use of memory were
found to be more efficient.
“Is there a way to cut down on the number of rules generated?” CBA and CMAR adopt
methods of frequent itemset mining to generate candidate association rules, which include all
conjunctions of attribute–value pairs (items) satisfying minimum support. These rules are
then examined, and a subset is chosen to represent the classifier. How- ever, such methods
generate quite a large number of rules. CPAR (Classification based on Predictive Association
Rules) takes a different approach to rule generation, based on a rule generation algorithm for
classification known as FOIL (Section 8.4.3). FOIL builds rules to distinguish positive tuples
(e.g., buys computer yes) from negative tuples (e.g., buys computer no). For multiclass
problems, FOIL is applied to each class. That is, for a class, C, all tuples of class C are
considered positive tuples, while the rest are considered negative tuples. Rules are generated
to distinguish C tuples from all others. Each time a rule is generated, the positive samples it
satisfies (or covers) are removed until all the positive tuples in the data set are covered. In this
way, fewer rules are generated. CPAR relaxes this step by allowing the covered tuples to

remain under consideration, but reducing their weight. The process is repeated for each class.
The resulting rules are merged to form the classifier rule set.
During classification, CPAR employs a somewhat different multiple rule strategy than
CMAR. If more than one rule satisfies a new tuple, X, the rules are divided into groups
according to class, similar to CMAR. However, CPAR uses the best k rules of each group to
predict the class label of X, based on expected accuracy. By considering the best k rules rather
than all of a group’s rules, it avoids the influence of lower-ranked rules. CPAR’s accuracy on
numerous data sets was shown to be close to that of CMAR. However, since CPAR generates
far fewer rules than CMAR, it shows much better efficiency with large sets of training data.
In summary, associative classification offers an alternative classification scheme by building
rules based on conjunctions of attribute–value pairs that occur frequently in data.

