
UNIT IV
Classification: Decision Tree Induction, Bayesian Classification, Rule Based Classification,

Classification by Back Propagation, Support Vector Machines, Lazy Learners, Model Evaluation and

Selection, Techniques to improve Classification Accuracy

Classification is a form of data analysis that extracts models describing important data classes. Such

models, called classifiers, predict categorical (discrete, unordered) class labels. For example, we can build

a classification model to categorize bank loan applications as either safe or risky. Such analysis can help

provide us with a better understanding of the data at large. Many classification methods have been

proposed by researchers in machine learning, pattern recognition, and statistics.

Why Classification?
A bank loans officer needs analysis of her data to learn which loan applicants are “safe” and which

are “risky” for the bank. A marketing manager at AllElectronics needs data analysis to help guess whether

a customer with a given profile will buy a new computer.

A medical researcher wants to analyze breast cancer data to predict which one of three specific

treatments a patient should receive. In each of these examples, the data analysis task is classification,

where a model or classifier is constructed to predict class (categorical) labels, such as “safe” or “risky” for

the loan application data; “yes” or “no” for the marketing data; or “treatment A,” “treatment B,” or

“treatment C” for the medical data.

Suppose that the marketing manager wants to predict how much a given customer will spend

during a sale at AllElectronics. This data analysis task is an example of numeric prediction, where the

model constructed predicts a continuous-valued function, or ordered value, as opposed to a class label.

This model is a predictor.

Regression analysis is a statistical methodology that is most often used for numeric prediction;

hence the two terms tend to be used synonymously, although other methods for numeric prediction exist.

Classification and numeric prediction are the two major types of prediction problems.

General Approach for Classification:
Data classification is a two-step process, consisting of a learning step (where a classification model is

constructed) and a classification step (where the model is used to predict class labels for given data).

 In the first step, a classifier is built describing a predetermined set of data classes or concepts. This is

the learning step (or training phase), where a classification algorithm builds the classifier by

analyzing or “learning from” a training set made up of database tuples and their associated class

labels.

 Each tuple/sample is assumed to belong to a predefined class, as determined by the class label

attribute

 In the second step, the model is used for classification. First, the predictive accuracy of the classifier

is estimated. If we were to use the training set to measure the classifier’s accuracy, this estimate

would likely be optimistic, because the classifier tends to overfit the data.

 Accuracy rate is the percentage of test set samples that are correctly classified by the model

www.jntufastupdates.com 1

Fig: Learning Step

Fig: Classification Step

 Decision Tree Induction:

Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision

tree is a flowchart-like tree structure, where each internal node (non leaf node) denotes a test on an

attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds

a class label. The topmost node in a tree is the root node. Internal nodes are denoted by rectangles,

and leaf nodes are denoted by ovals.

“How are decision trees used for classification?” Given a tuple, X, for which the associated class label

is unknown, the attribute values of the tuple are tested against the decision tree. A path is traced from

the root to a leaf node, which holds the class prediction for that tuple. Decision trees can easily be

converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers does not

require any domain knowledge or parameter setting, and therefore is appropriate for exploratory

knowledge discovery. Decision trees can handle multidimensional data. Their representation of

acquired knowledge in tree form is intuitive and generally easy to assimilate by humans. The learning

and classification steps of decision tree induction are simple and fast.

Decision tree induction algorithms have been used for classification in many application areas such as

medicine, manufacturing and production, financial analysis, astronomy, and molecular biology.

Decision trees are the basis of several commercial rule induction systems.

www.jntufastupdates.com 2

During tree construction, attribute selection measures are used to select the attribute that best partitions

the tuples into distinct classes. When decision trees are built, many of the branches may reflect noise

or outliers in the training data. Tree pruning attempts to identify and remove such branches, with the

goal of improving classification accuracy on unseen data.

 During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning, developed a

decision tree algorithm known as ID3 (Iterative Dichotomiser).
 This work expanded on earlier work on concept learning systems, described by E. B. Hunt, J. Marin,

and P. T. Stone. Quinlan later presented C4.5 (a successor of ID3), which became a benchmark to which
newer supervised learning algorithms are often compared.

 In 1984,a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone) published the book
Classification and Regression Trees (CART), which described the generation of binary decision trees.

 Decision Tree Algorithm:

Algorithm: Generate decision tree. Generate a decision tree from the training tuples of

data partition, D.

 Input:

 Data partition, D, which is a set of training tuples and their associated class labels;

 attribute list, the set of candidate attributes;

 Attribute selection method, a procedure to determine the splitting criterion that “best”

partitions the data tuples into individual classes. This criterion consists of a splitting

attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

 Method:

1) create a node N;

2) if tuples in D are all of the same class, C, then

3) return N as a leaf node labeled with the class C;

4) if attribute list is empty then

5) return N as a leaf node labeled with the majority class in D; // majority voting

6) apply Attribute selection method(D, attribute list) to find the “best” splitting

criterion;

7) label node N with splitting criterion;

8) if splitting attribute is discrete-valued and

multiway splits allowed then // not restricted to binary trees

9) attribute list attribute list - splitting attribute; // remove splitting attribute

10) for each outcome j of splitting criterion

// partition the tuples and grow subtrees for each partition

11) let Dj be the set of data tuples in D satisfying outcome j; // a partition

12) if Dj is empty then

13) attach a leaf labeled with the majority class in D to node N;

14) else attach the node returned by Generate decision tree(Dj , attribute list) to node N;

endfor

15) return N;

www.jntufastupdates.com 3

 Methods for selecting best test conditions
Decision tree induction algorithms must provide a method for expressing an attribute

test condition and its corresponding outcomes for different attribute types.

Binary Attributes: The test condition for a binary attribute generates two potential

outcomes.

Nominal Attributes:These can have many values. These can be represented in two ways.

Ordinal attributes: These can produce binary or multiway splits. The values can be grouped

as long as the grouping does not violate the order property of attribute values.

www.jntufastupdates.com 4

 Attribute Selection Measures
 An attribute selection measure is a heuristic for selecting the splitting criterion that

“best” separates a given data partition, D, of class-labeled training tuples into individual

classes.

 If we were to split D into smaller partitions according to the outcomes of the splitting

criterion, ideally each partition would be pure (i.e., all the tuples that fall into a given

partition would belong to the same class).

 Conceptually, the “best” splitting criterion is the one that most closely results in such a

scenario. Attribute selection measures are also known as splitting rules because they

determine how the tuples at a given node are to be split.

 The attribute selection measure provides a ranking for each attribute describing the given

training tuples. The attribute having the best score for the measure4 is chosen as the

splitting attribute for the given tuples.

 If the splitting attribute is continuous-valued or if we are restricted to binary trees, then,

respectively, either a split point or a splitting subset must also be determined as part of

the splitting criterion.

 The tree node created for partition D is labeled with the splitting criterion, branches are

grown for each outcome of the criterion, and the tuples are partitioned accordingly.

 There are three popular attribute selection measures—information gain, gain ratio, and

Gini index.

 Information Gain

ID3 uses information gain as its attribute selection measure. Let node N represent or

hold the tuples of partition D. The attribute with the highest information gain is chosen as the

splitting attribute for node N. This attribute minimizes the information needed to classify the

tuples in the resulting partitions and reflects the least randomness or “impurity” in these

partitions. Such an approach minimizes the expected number of tests needed to classify a

given tuple and guarantees that a simple (but not necessarily the simplest) tree is found.

The expected information needed to classify a tuple in D is given by

Where piis the nonzero probability that an arbitrary tuple in D belongs to class Ciand is

estimated by |Ci,D|/|D|. A log function to the base 2 is used, because the information is

encoded in bits.Info(D) is also known as the entropy of D.

Information needed after using A to split D into V partitions.

Information gain is defined as the difference between the original information requirement

(i.e., based on just the proportion of classes) and the new requirement (i.e., obtained after

partitioning on A). That is,

www.jntufastupdates.com 5

The attribute A with the highest information gain, Gain(A), is chosen as the

splittingattribute at nodeN. This is equivalent to saying that we want to partition on the

attributeA that would do the “best classification,” so that the amount of information still

requiredto finish classifying the tuples is minimal.

 Gain Ratio

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio,

which attempts to overcome this bias. It applies a kind of normalization to information gain

using a “split information” value defined analogously with Info(D) as

This value represents the potential information generated by splitting the trainingdata set, D,

into v partitions, corresponding to the v outcomes of a test on attribute A. Note that, for each

outcome, it considers the number of tuples having that outcome with respect to the total

number of tuples in D. It differs from information gain, which measures the information with

respect to classification that is acquired based on the same partitioning. The gain ratio is

defined as

 Gini Index

The Gini index is used in CART. Using the notation previously described, the Gini

indexmeasures the impurity of D, a data partition or set of training tuples, as

Where piis the nonzero probability that an arbitrary tuple in D belongs to class Ciand

is estimated by |Ci,D|/|D| over m classes.

Note: The Gini index considers a binary split for each attribute.

When considering a binary split, we compute a weighted sum of the impurity of

eachresulting partition. For example, if a binary split on A partitions D into D1 and D2, the

Gini index of D given that partitioning is

 For each attribute, each of the possible binary splits is considered. For a discrete-valued

attribute, the subset that gives the minimum Gini index for that attribute is selected as its

splitting subset.

 For continuous-valued attributes, each possible split-point must be considered. The

strategy is similar to that described earlier for information gain, where the midpoint

between each pair of (sorted) adjacent values is taken as a possible split-point.

 The reduction in impurity that would be incurred by a binary split on a discrete- or

continuous-valued attribute A is

www.jntufastupdates.com 6

 Tree Pruning:
 When a decision tree is built, many of the branches will reflect anomalies in the training

data due to noise or outliers.

 Tree pruning methods address this problem of overfitting the data. Such methods

typically use statistical measures to remove the least-reliable branches.

 Pruned trees tend to be smaller and less complex and, thus, easier to comprehend.

 They are usually faster and better at correctly classifying independent test data (i.e., of

previously unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning:

prepruning and postpruning.

 In the prepruning approach, a tree is “pruned” by halting its construction early. Upon

halting, the node becomes a leaf. The leaf may hold the most frequent class among the

subset tuples or the probability distribution of those tuples.

 If partitioning the tuples at a node would result in a split that falls below a prespecified

threshold, then further partitioning of the given subset is halted. There are difficulties,

however, in choosing an appropriate threshold.

 In the postpruning, which removes subtrees from a “fully grown” tree. A subtree at a

given node is pruned by removing its branches and replacing it with a leaf. The leaf is

labeled with the most frequent class among the subtree being replaced.

Fig: Unpruned and Pruned Trees

 The cost complexity pruning algorithm used in CART is an example of the

postpruning approach.

 This approach considers the cost complexity of a tree to be a function of the number

of leaves in the tree and the error rate of the tree (where the error rate is the

percentage of tuples misclassified by the tree). It starts from the bottom of the tree.

 For each internal node, N, it computes the cost complexity of the subtree at N, and the

cost complexity of the subtree at N if it were to be pruned (i.e., replaced by a leaf

node).

 The two values are compared. If pruning the subtree at node N would result in a

smaller cost complexity, then the subtree is pruned. Otherwise, it is kept.

 A pruning set of class-labeled tuples is used to estimate cost complexity.

www.jntufastupdates.com 7

 This set is independent of the training set used to build the unpruned tree and of any

test set usedfor accuracy estimation.

 The algorithm generates a set of progressively pruned trees. Ingeneral, the smallest

decision tree that minimizes the cost complexity is preferred.

 C4.5 uses a method called pessimistic pruning, which is similar to the cost

complexity method in that it also uses error rate estimates to make decisions regarding

subtree pruning.

 Scalability of Decision Tree Induction:
“What if D, the disk-resident training set of class-labeled tuples, does not fit in

memory? In other words, how scalable is decision tree induction?” The efficiency of existing

decision tree algorithms, such as ID3, C4.5, and CART, has been well established for

relatively small data sets. Efficiency becomes an issue of concern when these algorithms are

applied to the mining of very large real-world databases. The pioneering decision tree

algorithms that we have discussed so far have the restriction that the training tuples should

reside in memory.

In data mining applications, very large training sets of millions of tuples are common.

Most often, the training data will not fit in memory! Therefore, decision tree construction

becomes inefficient due to swapping of the training tuples in and out of main and cache

memories. More scalable approaches, capable of handling training data that are too large to fit

in memory, are required. Earlier strategies to “save space” included discretizing continuous-

valued attributes and sampling data at each node. These techniques, however, still assume

that the training set can fit in memory.

Several scalable decision tree induction methods have been introduced in recent

studies. Rain Forest, for example, adapts to the amount of main memory available and applies

to any decision tree induction algorithm. The method maintains an AVC-set (where “AVC”

stands for “Attribute-Value, Classlabel”) for each attribute, at each tree node, describing the

training tuples at the node. The AVC-set of an attribute A at node N gives the class label

counts for each value of A for the tuples at N. The set of all AVC-sets at a node N is the

AVC-group of N. The size of an AVC-set for attribute A at node N depends only on the

number of distinct values of A and the number of classes in the set of tuples at N. Typically,

this size should fit in memory, even for real-world data. Rain Forest also has techniques,

however, for handling the case where the AVC-group does not fit in memory. Therefore, the

method has high scalability for decision tree induction in very large data sets.

Fig: AVC Sets for dataset

www.jntufastupdates.com 8

Example for Decision Tree construction and Classification Rules:

Construct Decision Tree for following dataset,

Age income Student credit_rating buys_computer

youth high No fair No

youth high No excellent No

middle_aged high No fair Yes

senior medium No fair Yes

senior low Yes fair Yes

senior low Yes excellent No

middle_aged low Yes excellent Yes

youth medium No fair No

youth low Yes fair Yes

senior medium Yes fair Yes

youth medium Yes excellent Yes

middle_aged medium No excellent Yes

middle_aged high Yes fair Yes

senior medium No excellent No

www.jntufastupdates.com 9

Age P N TOTAL I(P,N)

youth 2 3 5 I(2,3 0.970

middle_aged 4 0 4 I(4,0) 0

senior 3 2 5 I(3,2) 0.970

 Similarly,

Gain(Age) = Info(D) – InfoAge(D)

= 0.940 – 0693 = 0.247

Gain(Income) = 0.029 Gain

(Student) = 0.151

Gain (credit_rating) = 0.048

Finally, age has the highest information gain among the attributes, it is selected as the

splitting attribute. Node N is labeled with age, and branches are grown for each of the

attribute’s values. The tuples are then partitioned accordingly, as

www.jntufastupdates.com 10

The Tree after splitting branches is

The Tree after Tree Pruning,

Finally, The Classification Rules are,

 IF age=Youth AND Student=Yes THEN buys_computer=Yes

 IF age=Middle_aged THEN buys_computer=Yes

 IF age=Senior AND Credit_rating=Fair THEN buys_computer=Yes www.jntufastupdates.com 11

|

|

|

|

|

|

|

|

 Bayes Classification Methods
“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can predict class

membership probabilities such as the probability that a given tuple belongs to a particular class.

 Bayesian classification is based on Bayes’ theorem, described next. Studies comparing

classification algorithms have found a simple Bayesian classifier known as the naıve Bayesian classifier

to be comparable in performance with decision tree and selected neu- ral network classifiers. Bayesian

classifiers have also exhibited high accuracy and speed when applied to large databases.

Na¨ıve Bayesian classifiers assume that the effect of an attribute value on a given class is independent of

the values of the other attributes. This assumption is called class- conditional independence. It is

made to simplify the computations involved and, in this sense, is considered “na¨ıve.”

Section 8.3.1 reviews basic probability notation and Bayes’ theorem. In Section 8.3.2 you will learn how

to do na¨ıve Bayesian classification.

 Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who did early
work in probability and decision theory during the 18th century. Let X be a data tuple. In
Bayesian terms, X is considered “evidence.” As usual, it is described by measurements made on
a set of n attributes. Let H be some hypothesis such as that the data tuple X belongs to a
specified class C. For classification problems, we want to determine P(H X), the probability that
the hypothesis H holds given the “evidence” or observed data tuple X. In other words, we are
looking for the probability that tuple X belongs to class C, given that we know the attribute
description of X.

P(H X) is the posterior probability, or a posteriori probability, of H conditioned on X. For
example, suppose our world of data tuples is confined to customers described by the attributes age
and income, respectively, and that X is a 35-year-old customer with an income of $40,000.
Suppose that H is the hypothesis that our customer will buy a computer. Then P(H X) reflects
the probability that customer X will buy a computer given that we know the customer’s age and
income.
In contrast, P(H) is the prior probability, or a priori probability, of H. For our exam- ple, this
is the probability that any given customer will buy a computer, regardless of age, income, or any
other information, for that matter. The posterior probability, P(H X), is based on more
information (e.g., customer information) than the prior probability, P(H), which is independent
of X.
Similarly, P(X H) is the posterior probability of X conditioned on H. That is, it is the probability
that a customer, X, is 35 years old and earns $40,000, given that we know the customer will buy a
computer.
P(X) is the prior probability of X. Using our example, it is the probability that a person from
our set of customers is 35 years old and earns $40,000.
“How are these probabilities estimated?” P(H), P(X H), and P(X) may be estimated from the given data, as we
shall see next. Bayes’ theorem is useful in that it provides a way of calculating the posterior probability, P(H X),
from P(H), P(X H), and P(X). Bayes’ theorem is www.jntufastupdates.com 12

Now that we have that out of the way, in the next section, we will look at how Bayes’ theorem is
used in the na¨ıve Bayesian classifier.

www.jntufastupdates.com 13

www.jntufastupdates.com 14

Example 8.4 Predicting a class label using na¨ıve Bayesian classification. We wish to predict
the class label of a tuple using na¨ıve Bayesian classification, given the same training data as in
Example 8.3 for decision tree induction. The training data were shown earlier in Table 8.1.
The data tuples are described by the attributes age, income, student, and credit rating. The
class label attribute, buys computer, has two distinct values (namely,

{yes, no}). Let C1 correspond to the class buys computer = yes and C2 correspond to

buys computer = no. The tuple we wish to classify is

www.jntufastupdates.com 15

www.jntufastupdates.com 16

case of probability values of zero. This technique for probability estimation is known as the
Laplacian correction or Laplace estimator, named after Pierre Laplace, a French
mathematician who lived from 1749 to 1827. If we have, say, q counts to which we each add one,
then we must remember to add q to the corresponding denominator used in the probability
calculation.

 Rule-Based Classification
In this section, we look at rule-based classifiers, where the learned model is represented as a set of
IF-THEN rules. We first examine how such rules are used for classification (Section 8.4.1). We
then study ways in which they can be generated, either from a deci- sion tree (Section 8.4.2) or
directly from the training data using a sequential covering algorithm (Section 8.4.3).

www.jntufastupdates.com 17

|
|

Using IF-THEN Rules for Classification

Rules are a good way of representing information or bits of knowledge. A rule-based classifier

uses a set of IF-THEN rules for classification. An IF-THEN rule is an expres- sion of the form

IF condition THEN conclusion.

An example is rule R1,

R1: IF age = youth AND student = yes THEN buys computer = yes.

The “IF” part (or left side) of a rule is known as the rule antecedent or precondition. The
“THEN” part (or right side) is the rule consequent. In the rule antecedent, the condition
consists of one or more attribute tests (e.g., age = youth and student = yes) that are logically
ANDed. The rule’s consequent contains a class prediction (in this case, we are predicting whether
a customer will buy a computer). R1 can also be written as

R1: (age = youth) ∧ (student = yes) ⇒ (buys computer = yes).

If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a given tuple,
we say that the rule antecedent is satisfied (or simply, that the rule is satisfied) and that
the rule covers the tuple.
A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class-
labeled data set, D, let ncovers be the number of tuples covered by R; ncorrect be the number of
tuples correctly classified by R; and D be the number of tuples in D. We can define the
coverage and accuracy of R as

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., their
attribute values hold true for the rule’s antecedent). For a rule’s accuracy, we look at the
tuples that it covers and see what percentage of them the rule can correctly classify.

Example 8.6 Rule accuracy and coverage. Let’s go back to our data in Table 8.1. These are
class- labeled tuples from the AllElectronics customer database. Our task is to predict
whether a customer will buy a computer. Consider rule R1, which covers 2 of the 14
tuples. It can correctly classify both tuples. Therefore, coverage(R1) = 2/14 = 14.28% and
accuracy(R1) = 2/2 = 100%.

Let’s see how we can use rule-based classification to predict the class label of a given tuple, www.jntufastupdates.com 18

X. If a rule is satisfied by X, the rule is said to be triggered. For example, suppose we have

X= (age = youth, income = medium, student = yes, credit rating = fair).

We would like to classify X according to buys computer. X satisfies R1, which triggers
the rule.
If R1 is the only rule satisfied, then the rule fires by returning the class prediction for X.
Note that triggering does not always mean firing because there may be more than one rule that
is satisfied! If more than one rule is triggered, we have a potential problem. What if they each
specify a different class? Or what if no rule is satisfied by X?

We tackle the first question. If more than one rule is triggered, we need a conflict
resolution strategy to figure out which rule gets to fire and assign its class prediction to
X. There are many possible strategies. We look at two, namely size ordering and rule
ordering.

The size ordering scheme assigns the highest priority to the triggering rule that has the
“toughest” requirements, where toughness is measured by the rule antecedent size. That is, the
triggering rule with the most attribute tests is fired.
The rule ordering scheme prioritizes the rules beforehand. The ordering may be class-based or
rule-based. With class-based ordering, the classes are sorted in order of decreasing “importance”
such as by decreasing order of prevalence. That is, all the rules for the most prevalent (or most
frequent) class come first, the rules for the next prevalent class come next, and so on. Alternatively,
they may be sorted based on the misclassification cost per class. Within each class, the rules are
not ordered—they don’t have to be because they all predict the same class (and so there can be
no class conflict!).
With rule-based ordering, the rules are organized into one long priority list, accord- ing to some
measure of rule quality, such as accuracy, coverage, or size (number of attribute tests in the rule
antecedent), or based on advice from domain experts. When rule ordering is used, the rule set is
known as a decision list. With rule ordering, the triggering rule that appears earliest in the list has
the highest priority, and so it gets to fire its class prediction. Any other rule that satisfies X is
ignored. Most rule-based classification systems use a class-based rule-ordering strategy.
Note that in the first strategy, overall the rules are unordered. They can be applied in any order
when classifying a tuple. That is, a disjunction (logical OR) is implied between each of the rules.
Each rule represents a standalone nugget or piece of knowledge. This is in contrast to the rule
ordering (decision list) scheme for which rules must be applied in the prescribed order so as to
avoid conflicts. Each rule in a decision list implies the negation of the rules that come before it
in the list. Hence, rules in a decision list are more difficult to interpret.
Now that we have seen how we can handle conflicts, let’s go back to the scenario where there is
no rule satisfied by X. How, then, can we determine the class label of X? In this case, a fallback or
default rule can be set up to specify a default class, based on a training set. This may be the
class in majority or the majority class of the tuples that were not covered by any rule. The
default rule is evaluated at the end, if and only if no other rule covers X. The condition in the
default rule is empty. In this way, the rule fires when no other rule is satisfied.
In the following sections, we examine how to build a rule-based classifier.
 www.jntufastupdates.com 19

Rule Extraction from a Decision Tree

In Section 8.2, we learned how to build a decision tree classifier from a set of training data.
Decision tree classifiers are a popular method of classification—it is easy to under- stand how
decision trees work and they are known for their accuracy. Decision trees can become large and
difficult to interpret. In this subsection, we look at how to build a rule- based classifier by
extracting IF-THEN rules from a decision tree. In comparison with a decision tree, the IF-
THEN rules may be easier for humans to understand, particularly if the decision tree is very
large.
To extract rules from a decision tree, one rule is created for each path from the root to a leaf node.
Each splitting criterion along a given path is logically ANDed to form the rule antecedent (“IF”
part). The leaf node holds the class prediction, forming the rule consequent (“THEN” part).

Example 8.7 Extracting classification rules from a decision tree. The decision tree of Figure 8.2 can be
converted to classification IF-THEN rules by tracing the path from the root node to each leaf node in the
tree. The rules extracted from Figure 8.2 are as follows:

R1: IF age = youth AND student = no THEN buys computer = no R2: IF

age = youth AND student = yes THEN buys computer = yes R3: IF

age = middle aged THEN buys computer = yes R4: IF

age = senior AND credit rating = excellent THEN buys computer = yes R5: IF

age = senior AND credit rating = fair THEN buys computer = no

A disjunction (logical OR) is implied between each of the extracted rules. Because the rules
are extracted directly from the tree, they are mutually exclusive and exhaustive. Mutually
exclusive means that we cannot have rule conflicts here because no two rules will be
triggered for the same tuple. (We have one rule per leaf, and any tuple can map to only one
leaf.) Exhaustive means there is one rule for each possible attribute–value combination, so
that this set of rules does not require a default rule. Therefore, the order of the rules does not
matter—they are unordered.
Since we end up with one rule per leaf, the set of extracted rules is not much simpler than the
corresponding decision tree! The extracted rules may be even more difficult to interpret
than the original trees in some cases. As an example, Figure 8.7 showed decision trees
that suffer from subtree repetition and replication. The resulting set of rules extracted can
be large and difficult to follow, because some of the attribute tests may be irrelevant or
redundant. So, the plot thickens. Although it is easy to extract rules from a decision tree, we
may need to do some more work by pruning the resulting rule set.
“How can we prune the rule set?” For a given rule antecedent, any condition that does not
improve the estimated accuracy of the rule can be pruned (i.e., removed), thereby
generalizing the rule. C4.5 extracts rules from an unpruned tree, and then prunes the rules
using a pessimistic approach similar to its tree pruning method. The training tuples and
their associated class labels are used to estimate rule accuracy. However, because this
would result in an optimistic estimate, alternatively, the estimate is adjusted to compen- www.jntufastupdates.com 20

sate for the bias, resulting in a pessimistic estimate. In addition, any rule that does not
contribute to the overall accuracy of the entire rule set can also be pruned.
Other problems arise during rule pruning, however, as the rules will no longer be
mutually exclusive and exhaustive. For conflict resolution, C4.5 adopts a class-based

ordering scheme. It groups together all rules for a single class, and then determines a
ranking of these class rule sets. Within a rule set, the rules are not ordered. C4.5 orders the
class rule sets so as to minimize the number of false-positive errors (i.e., where a rule
predicts a class, C, but the actual class is not C). The class rule set with the least number
of false positives is examined first. Once pruning is complete, a final check is remove
any duplicates. When choosing a default class, C4.5 does not choose the majority class,
because this class will likely have many rules for its tuples. Instead, it selects the class that
contains the most training tuples that were not covered by any rule.

 Classification by Backpropagation:
 Classification by Backpropagation
“What is backpropagation?” Backpropagation is a neural network learning algorithm.
The neural networks field was originally kindled by psychologists and neurobiologists
who sought to develop and test computational analogs of neurons. Roughly speaking, a
neural network is a set of connected input/output units in which each connection has a
weight associated with it. During the learning phase, the network learns by adjusting the
weights so as to be able to predict the correct class label of the input tuples. Neural
network learning is also referred to as connectionist learning due to the connections
between units.
Neural networks involve long training times and are therefore more suitable for appli-
cations where this is feasible. They require a number of parameters that are typically best
determined empirically such as the network topology or “structure.” Neural net- works
have been criticized for their poor interpretability. For example, it is difficult for humans
to interpret the symbolic meaning behind the learned weights and of “hidden units” in the
network. These features initially made neural networks less desirable for data mining.
Advantages of neural networks, however, include their high tolerance of noisy data as well
as their ability to classify patterns on which they have not been trained. They can be used
when you may have little knowledge of the relationships between attributes and classes.
They are well suited for continuous-valued inputs and outputs, unlike most decision tree
algorithms. They have been successful on a wide array of real-world data, including
handwritten character recognition, pathology and laboratory medicine, and training a
computer to pronounce English text. Neural network algorithms are inher- ently parallel;
parallelization techniques can be used to speed up the computation process. In addition,
several techniques have been recently developed for rule extrac- tion from trained neural
networks. These factors contribute to the usefulness of neural networks for classification
and numeric prediction in data mining.
There are many different kinds of neural networks and neural network algorithms. The
most popular neural network algorithm is backpropagation, which gained repute in the
1980s. In Section 9.2.1 you will learn about multilayer feed-forward net- works, the type
of neural network on which the backpropagation algorithm performs. Section 9.2.2 www.jntufastupdates.com 21

discusses defining a network topology. The backpropagation algorithm is described in
Section 9.2.3. Rule extraction from trained neural networks is discussed in Section 9.2.4.

A Multilayer Feed-Forward Neural Network

The backpropagation algorithm performs learning on a multilayer feed-forward neural network. It
iteratively learns a set of weights for prediction of the class label of tuples. A multilayer feed-forward neural
network consists of an input layer, one or more hidden layers, and an output layer. An example of a
multilayer feed-forward network is shown in Figure 9.2.

Figure 9.2 Multilayer feed-forward neural network.

Each layer is made up of units. The inputs to the network correspond to the attributes measured for
each training tuple. The inputs are fed simultaneously into the units making up the input layer.
These inputs pass through the input layer and are then weighted and fed simultaneously to a
second layer of “neuronlike” units, known as a hidden layer. The outputs of the hidden layer
units can be input to another hidden layer, and so on. The number of hidden layers is arbitrary,
although in practice, usually only one is used. The weighted outputs of the last hidden layer are
input to units making up the output layer, which emits the network’s prediction for given tuples.
The units in the input layer are called input units. The units in the hidden layers and output layer
are sometimes referred to as neurodes, due to their symbolic biological basis, or as output

units. The multilayer neural network shown in Figure 9.2 has two layers of output units.
Therefore, we say that it is a two-layer neural network. (The input layer is not counted because
it serves only to pass the input values to the next layer.) Similarly, a network containing two
hidden layers is called a three-layer neural network, and so on. It is a feed-forward network
since none of the weights cycles back to an input unit or to a previous layer’s output unit. It is
fully connected in that each unit provides input to each unit in the next forward layer.
Each output unit takes, as input, a weighted sum of the outputs from units in the previous layer (see Figure 9.4
later). It applies a nonlinear (activation) function to the weighted input. Multilayer feed-forward neural networks
are able to model the class pre- diction as a nonlinear combination of the inputs. From a statistical point of view,
they perform nonlinear regression. Multilayer feed-forward networks, given enough hidden units and enough training
samples, can closely approximate any function.

1

1j

2

2j

www.jntufastupdates.com 22

=

Defining a Network Topology

“How can I design the neural network’s topology?” Before training can begin, the user
must decide on the network topology by specifying the number of units in the input layer,
the number of hidden layers (if more than one), the number of units in each hidden layer,
and the number of units in the output layer.
Normalizing the input values for each attribute measured in the training tuples will help
speed up the learning phase. Typically, input values are normalized so as to fall between
0.0 and 1.0. Discrete-valued attributes may be encoded such that there is one input unit per
domain value. For example, if an attribute A has three possible or known values, namely

{a0, a1, a2}, then we may assign three input units to represent A. That is, we may have,

say, I0, I1, I2 as input units. Each unit is initialized to 0. If A = a0, then I0 is set to 1 and

the rest are 0. If A a1, then I1 is set to 1 and the rest are 0, and so on.
Neural networks can be used for both classification (to predict the class label of a given
tuple) and numeric prediction (to predict a continuous-valued output). For clas- sification,
one output unit may be used to represent two classes (where the value 1 represents one
class, and the value 0 represents the other). If there are more than two classes, then one
output unit per class is used. (See Section 9.7.1 for more strategies on multiclass
classification.)
There are no clear rules as to the “best” number of hidden layer units. Network design is a
trial-and-error process and may affect the accuracy of the resulting trained net- work. The
initial values of the weights may also affect the resulting accuracy. Once a network has
been trained and its accuracy is not considered acceptable, it is common to repeat the training
process with a different network topology or a different set of initial weights. Cross-
validation techniques for accuracy estimation (described in Chapter 8) can be used to help
decide when an acceptable network has been found. A number of automated techniques
have been proposed that search for a “good” network structure. These typically use a hill-
climbing approach that starts with an initial structure that is selectively modified.

www.jntufastupdates.com 23

{

+

Σ
= −

1+
− Ije

= − −

(8) Ij = i wij Oi θj ; //compute the net input of unit j with respect to
the previous layer, i

Backpropagation

“How does backpropagation work?” Backpropagation learns by iteratively processing a data set of
training tuples, comparing the network’s prediction for each tuple with the actual known target
value. The target value may be the known class label of the training tuple (for classification
problems) or a continuous value (for numeric prediction). For each training tuple, the weights are
modified so as to minimize the mean-squared error between the network’s prediction and the
actual target value. These modifications are made in the “backwards” direction (i.e., from the
output layer) through each hidden layer down to the first hidden layer (hence the name
backpropagation). Although it is not guaranteed, in general the weights will eventually converge,
and the learning process stops. The algorithm is summarized in Figure 9.3. The steps involved
are expressed in terms of inputs, outputs, and errors, and may seem awkward if this is your first
look at neural network learning. However, once you become familiar with the process, you will see
that each step is inherently simple. The steps are described next.

Algorithm: Backpropagation. Neural network learning for classification or numeric prediction, using the

backpropagation algorithm.

Input:

D, a data set consisting of the training tuples and their associated target values;

l, the learning rate;

network, a multilayer feed-forward network.

Output: A trained neural network.
Method:

(1) Initialize all weights and biases in network;

(2) while terminating condition is not satisfied

(3) for each training tuple X in D

(4) // Propagate the inputs forward:

(5) for each input layer unit j {

(6) Oj = Ij ; // output of an input unit is its actual input value

(7) for each hidΣden or output layer unit j {

(9) Oj = 1 ; } // compute the output of each unit j

(10) // Backpropagate the errors:

(11) for each unit j in the output layer

(12) Errj Oj(1 Oj)(Tj Oj); // compute the error

(13) for each unit j in the hidden layers, from the last to the first hidden layer

(14) Errj Oj(1 Oj) k Errkwjk ; // compute the error with respect to the
next higher layer, k

(15) for each weight wij in network {
(16) ∆wij = (l)Errj Oi; // weight increment

(17) wij = wij + ∆wij ; } // weight update

(18) for each bias θj in network {
(19) ∆θj = (l)Errj ; // bias increment

(20) θj = θj + ∆θj ; } // bias update

(21) } }

{

www.jntufastupdates.com 24

— −

Figure 9.3 Backpropagation algorithm.

Initialize the weights: The weights in the network are initialized to small random num- bers
(e.g., ranging from 1.0 to 1.0, or 0.5 to 0.5). Each unit has a bias associated with it, as explained
later. The biases are similarly initialized to small random numbers.

Each training tuple, X, is processed by the following steps.

Propagate the inputs forward: First, the training tuple is fed to the network’s input layer. The
inputs pass through the input units, unchanged. That is, for an input unit, j,

Output

Inputs (outputs from previous

layer)

Weighted sum Activation

function

y1

Weights

w1j Bias

j

y2

w2j

 f

yn

wnj

.
.

.

www.jntufastupdates.com 25

Figure 9.4 Hidden or output layer unit j: The inputs to unit j are outputs from the previous layer. These are

multiplied by their corresponding weights to form a weighted sum, which is added to the bias associated with

unit j. A nonlinear activation function is applied to the net input. (For ease of explanation, the inputs to unit

j are labeled y1, y2, . . . , yn. If unit j were in the first hidden layer, then these inputs would correspond to the

input tuple (x1, x2, . . . , xn).)

its output, Oj, is equal to its input value, Ij. Next, the net input and output of each
unit in the hidden and output layers are computed. The net input to a unit in the
hidden or output layers is computed as a linear combination of its inputs. To help
illustrate this point, a hidden layer or output layer unit is shown in Figure 9.4. Each
such unit has a number of inputs to it that are, in fact, the outputs of the units
connected to it in the previous layer. Each connection has a weight. To compute the net
input to the unit, each input connected to the unit is multiplied by its corresponding
weight, and this is summed. Given a unit, j in a hidden or output layer, the net input,
Ij, to unit j is

where wij is the weight of the connection from unit i in the previous layer to unit j; Oi
is the output of unit i from the previous layer; and θj is the bias of the unit. The bias
acts as a threshold in that it serves to vary the activity of the unit.
Each unit in the hidden and output layers takes its net input and then applies an acti-

vation function to it, as illustrated in Figure 9.4. The function symbolizes the
activation of the neuron represented by the unit. The logistic, or sigmoid, function is
used. Given the net input Ij to unit j, then Oj, the output of unit j, is computed as

This function is also referred to as a squashing function, because it maps a large input domain
onto the smaller range of 0 to 1. The logistic function is nonlinear and differentiable,
allowing the backpropagation algorithm to model classification problems that are linearly
inseparable.

We compute the output values, Oj, for each hidden layer, up to and including the output
layer, which gives the network’s prediction. In practice, it is a good idea to cache (i.e.,
save) the intermediate output values at each unit as they are required again later when
backpropagating the error. This trick can substantially reduce the amount of computation
required.

www.jntufastupdates.com 26

−

Σ

Backpropagate the error: The error is propagated backward by updating the weights and
biases to reflect the error of the network’s prediction. For a unit j in the output layer, the
error Errj is computed by

Errj = Oj(1 − Oj)(Tj − Oj), (9.6)

where Oj is the actual output of unit j, and Tj is the known target value of the given training
tuple. Note that Oj(1 Oj) is the derivative of the logistic function.
To compute the error of a hidden layer unit j, the weighted sum of the errors of the units
connected to unit j in the next layer are considered. The error of a hidden layer unit j is

Errj = Oj(1 − Oj) Errkwjk, (9.7)

k

where wjk is the weight of the connection from unit j to a unit k in the next higher layer, and
Errk is the error of unit k.
The weights and biases are updated to reflect the propagated errors. Weights are updated
by the following equations, where ∆wij is the change in weight wij:

∆wij = (l)ErrjOi. (9.8)

wij = wij + ∆wij. (9.9)

“What is l in Eq. (9.8)?” The variable l is the learning rate, a constant typically having a
value between 0.0 and 1.0. Backpropagation learns using a gradient descent method to
search for a set of weights that fits the training data so as to minimize the mean- squared
distance between the network’s class prediction and the known target value of the tuples.1 The
learning rate helps avoid getting stuck at a local minimum in decision space (i.e., where the
weights appear to converge, but are not the optimum solution) and encourages finding the
global minimum. If the learning rate is too small, then learning will occur at a very slow
pace. If the learning rate is too large, then oscillation between inadequate solutions may
occur. A rule of thumb is to set the learning rate to 1/t , where
t is the number of iterations through the training set so far.
Biases are updated by the following equations, where ∆θj is the change in bias θj:

∆θj = (l)Errj. (9.10)

θj = θj + ∆θj. (9.11)

Note that here we are updating the weights and biases after the presentation of each
tuple. This is referred to as case updating. Alternatively, the weight and bias incre-
ments could be accumulated in variables, so that the weights and biases are updated
after all the tuples in the training set have been presented. This latter strategy is called
epoch updating, where one iteration through the training set is an epoch. In the- www.jntufastupdates.com 27

| |
×

|
|

ory, the mathematical derivation of backpropagation employs epoch updating, yet
in practice, case updating is more common because it tends to yield more accurate
results.

Terminating condition: Training stops when

All ∆wij in the previous epoch are so small as to be below some specified
threshold, or

The percentage of tuples misclassified in the previous epoch is below some thresh-
old, or

A prespecified number of epochs has expired.

In practice, several hundreds of thousands of epochs may be required before the weights
will converge.
“How efficient is backpropagation?” The computational efficiency depends on the
time spent training the network. Given D tuples and w weights, each epoch requires
O(D w) time. However, in the worst-case scenario, the number of epochs can be
exponential in n, the number of inputs. In practice, the time required for the networks
to converge is highly variable. A number of techniques exist that help speed up the train-
ing time. For example, a technique known as simulated annealing can be used,
which also ensures convergence to a global optimum.

Example 9.1 Sample calculations for learning by the backpropagation algorithm. Figure 9.5 shows
a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight and bias values
of the network are given in Table 9.1, along with the first training tuple, X= (1, 0, 1), with a class label
of 1.

This example shows the calculations for backpropagation, given the first training
tuple, X. The tuple is fed into the network, and the net input and output of each unit

is computed. These values are shown in Table 9.2. The error of each unit is computed and
propagated backward. The error values are shown in Table 9.3. The weight and bias updates
are shown in Table 9.4.

www.jntufastupdates.com 28

x1

x2

x3

Figure 9.5 Example of a multilayer feed-forward neural network.

1 w14

w15 4
w46

w24

2 6

w25

w56

w34 5

3 w35

www.jntufastupdates.com 29

“How can we classify an unknown tuple using a trained network?” To classify an
unknown tuple, X, the tuple is input to the trained network, and the net input and
output of each unit are computed. (There is no need for computation and/or backpro-
pagation of the error.) If there is one output node per class, then the output node with
the highest value determines the predicted class label for X. If there is only one output
node, then output values greater than or equal to 0.5 may be considered as belonging to
the positive class, while values less than 0.5 may be considered negative.
Several variations and alternatives to the backpropagation algorithm have been pro-
posed for classification in neural networks. These may involve the dynamic
adjustment of the network topology and of the learning rate or other parameters, or
the use of different error functions.

Inside the Black Box: Backpropagation and Interpretability

“Neural networks are like a black box. How can I ‘understand’ what the backpropagation network has
learned?” A major disadvantage of neural networks lies in their knowledge representation. Acquired
knowledge in the form of a network of units connected by weighted links is difficult for humans to
interpret. This factor has motivated research in extracting the knowledge embedded in trained neural
networks and in representing that knowledge symbolically. Methods include extracting rules from
networks and sensitivity analysis.

Various algorithms for rule extraction have been proposed. The methods typically
impose restrictions regarding procedures used in training the given neural network, the
network topology, and the discretization of input values.
Fully connected networks are difficult to articulate. Hence, often the first step in
extracting rules from neural networks is network pruning. This consists of
simplifying the network structure by removing weighted links that have the least effect
on the trained network. For example, a weighted link may be deleted if such removal www.jntufastupdates.com 30

O1 O2

H1 H2 H3

I1 I2 I3 I4 I5 I6 I7

does not result in a decrease in the classification accuracy of the network.
 Once the trained network has been pruned, some approaches will then perform link, unit, or
activation value clustering. In one method, for example, clustering is used to find the set of
common activation values for each hidden unit in a given trained two- layer neural network
(Figure 9.6). The combinations of these activation values for each hidden unit are analyzed.
Rules are derived relating combinations of activation values

Identify sets of common activation values for
each hidden node, Hi:

for H1: (–1,0,1)
for H2: (0,1)
for H3: (–1,0.24,1)

Derive rules relating common activation values
with output nodes, Oj:

IF (H2 0 AND H3 –1) OR

(H1 –1 AND H2 1 AND H3 –1) OR

(H1 –1 AND H2 0 AND H3 0.24)
THEN O1 1, O2 0

ELSE O1 0, O2 1

Derive rules relating input nodes, Ij, to
output nodes, Oj:

IF (I2 0 AND I7 0) THEN H2 0

IF (I4 1 AND I6 1) THEN H3 –1
IF (I5 0) THEN H3 –1

Obtain rules relating inputs and output classes:

IF (I2 0 AND I7 0 AND I4 1 AND
I6 1) THEN class 1

IF (I2 0 AND I7 0 AND I5 0) THEN
class 1

Figure 9.6 Rules can be extracted from training neural networks. Source: Adapted from Lu, Setiono, and Liu [LSL95].

www.jntufastupdates.com 31

with corresponding output unit values. Similarly, the sets of input values and
activation values are studied to derive rules describing the relationship between the
input layer and the hidden “layer units”? Finally, the two sets of rules may be
combined to form IF-THEN rules. Other algorithms may derive rules of other forms,
including M-of-N rules (where M out of a given N conditions in the rule antecedent
must be true for the rule consequent to be applied), decision trees with M-of-N tests,
fuzzy rules, and finite automata.
Sensitivity analysis is used to assess the impact that a given input variable has on a
network output. The input to the variable is varied while the remaining input
variables are fixed at some value. Meanwhile, changes in the network output are
monitored. The knowledge gained from this analysis form can be represented in rules
such as “IF X decreases 5% THEN Y increases 8%.”

 Support Vector Machines
In this section, we study support vector machines (SVMs), a method for the
classifi- cation of both linear and nonlinear data. In a nutshell, an SVM is an
algorithm that works as follows. It uses a nonlinear mapping to transform the
original training data into a higher dimension. Within this new dimension, it
searches for the linear opti- mal separating hyperplane (i.e., a “decision boundary”
separating the tuples of one class from another). With an appropriate nonlinear
mapping to a sufficiently high dimen- sion, data from two classes can always be
separated by a hyperplane. The SVM finds this hyperplane using support vectors
(“essential” training tuples) and margins (defined by the support vectors). We will
delve more into these new concepts later.
“I’ve heard that SVMs have attracted a great deal of attention lately. Why?” The first
paper on support vector machines was presented in 1992 by Vladimir Vapnik and
col- leagues Bernhard Boser and Isabelle Guyon, although the groundwork for
SVMs has been around since the 1960s (including early work by Vapnik and Alexei
Chervonenkis on statistical learning theory). Although the training time of even the
fastest SVMs can be extremely slow, they are highly accurate, owing to their ability
to model com- plex nonlinear decision boundaries. They are much less prone to
overfitting than other methods. The support vectors found also provide a compact
description of the learned model. SVMs can be used for numeric prediction as well as
classification. They have been applied to a number of areas, including handwritten
digit recognition, object recognition, and speaker identification, as well as
benchmark time-series prediction tests.

The Case When the Data Are Linearly Separable

To explain the mystery of SVMs, let’s first look at the simplest case—a two-class
prob- lem where the classes are linearly separable. Let the data set D be given as (X1,

y1), (X2, y2), . . . , (X|D|, y|D|), where Xi is the set of training tuples with associated class

labels, yi. Each yi can take one of two values, either +1 or − 1 (i.e., yi ∈ {+1, − 1}), www.jntufastupdates.com 32

+ −

Figure 9.7 The 2-D training data are linearly separable. There are an infinite number of possible separating

hyperplanes or “decision boundaries,” some of which are shown here as dashed lines. Which one is best?

corresponding to the classes buys computer = yes and buys computer = no, respectively. To aid

in visualization, let’s consider an example based on two input attributes, A1 and A2, as shown
in Figure 9.7. From the graph, we see that the 2-D data are linearly separa- ble (or “linear,” for
short), because a straight line can be drawn to separate all the tuples of class 1 from all the
tuples of class 1.
There are an infinite number of separating lines that could be drawn. We want to find the “best”
one, that is, one that (we hope) will have the minimum classification error on previously unseen
tuples. How can we find this best line? Note that if our data were 3-D (i.e., with three
attributes), we would want to find the best separating plane. Generalizing to n dimensions, we
want to find the best hyperplane. We will use “hyperplane” to refer to the decision boundary that
we are seeking, regardless of the number of input attributes. So, in other words, how can we
find the best hyperplane?
An SVM approaches this problem by searching for the maximum marginal hyper- plane.
Consider Figure 9.8, which shows two possible separating hyperplanes and their associated
margins. Before we get into the definition of margins, let’s take an intuitive look at this
figure. Both hyperplanes can correctly classify all the given data tuples. Intuitively, however,
we expect the hyperplane with the larger margin to be more accurate at classifying future
data tuples than the hyperplane with the smaller margin. This is why (during the learning
or training phase) the SVM searches for the hyperplane with the largest margin, that is, the
maximum marginal hyperplane (MMH). The associated margin gives the largest separation
between classes.

www.jntufastupdates.com 33

= {

}

Figure 9.8 Here we see just two possible separating hyperplanes and their associated margins. Which one

is better? The one with the larger margin (b) should have greater generalization accuracy.

Getting to an informal definition of margin, we can say that the shortest distance
from a hyperplane to one side of its margin is equal to the shortest distance from the
hyperplane to the other side of its margin, where the “sides” of the margin are parallel
to the hyperplane. When dealing with the MMH, this distance is, in fact, the shortest
distance from the MMH to the closest training tuple of either class.
A separating hyperplane can be written as

W · X + b = 0, (9.12)

where W is a weight vector, namely, W w1, w2, . . . , wn ; n is the number of attributes;
and b is a scalar, often referred to as a bias. To aid in visualization, let’s consider two

input attributes, A1 and A2, as in Figure 9.8(b). Training tuples are 2-D (e.g., X = (x1,

x2)), where x1 and x2 are the values of attributes A1 and A2, respectively, for X. If we
think of b as an additional weight, w0, we can rewrite Eq. (9.12) as

w0 + w1x1 + w2x2 = 0. (9.13)

Thus, any point that lies above the separating hyperplane satisfies

w0 + w1x1 + w2x2 > 0. (9.14)

Similarly, any point that lies below the separating hyperplane satisfies

w0 + w1x1 + w2x2 < 0. (9.15)

www.jntufastupdates.com 34

−

The weights can be adjusted so that the hyperplanes defining the “sides” of the margin can
be written as

H1 : w0 + w1x1 + w2x2 ≥ 1 for yi = +1, (9.16)

H2 : w0 + w1x1 + w2x2 ≤ − 1 for yi = − 1. (9.17)

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple that falls on

or below H2 belongs to class 1. Combining the two inequalities of Eqs. (9.16) and (9.17),
we get

yi(w0 + w1x1 + w2x2) ≥ 1, ∀ i. (9.18)

Any training tuples that fall on hyperplanes H1 or H2 (i.e., the “sides” defining the margin)
satisfy Eq. (9.18) and are called support vectors. That is, they are equally close to the
(separating) MMH. In Figure 9.9, the support vectors are shown encircled with a thicker
border. Essentially, the support vectors are the most difficult tuples to classify and give the
most information regarding classification.

www.jntufastupdates.com 35

=
−

+

=

“So, how does an SVM find the MMH and the support vectors?” Using some “fancy
math tricks,” we can rewrite Eq. (9.18) so that it becomes what is known as a constrained
(convex) quadratic optimization problem. Such fancy math tricks are beyond the
scope of this book. Advanced readers may be interested to note that the tricks involve
rewriting Eq. (9.18) using a Lagrangian formulation and then solving for the
solution using Karush-Kuhn-Tucker (KKT) conditions. Details can be found in the
bibliographic notes at the end of this chapter (Section 9.10).
If the data are small (say, less than 2000 training tuples), any optimization software
package for solving constrained convex quadratic problems can then be used to find
the support vectors and MMH. For larger data, special and more efficient algorithms
for training SVMs can be used instead, the details of which exceed the scope of this
book. Once we’ve found the support vectors and MMH (note that the support vectors
define the MMH!), we have a trained support vector machine. The MMH is a linear class
boundary, and so the corresponding SVM can be used to classify linearly separable data.
We refer to such a trained SVM as a linear SVM.
“Once I’ve got a trained support vector machine, how do I use it to classify test (i.e., new) tuples?” Based
on the Lagrangian formulation mentioned before, the MMH can be rewritten as the decision boundary

where yi is the class label of support vector Xi; XT is a test tuple; αi and b0 are
numeric parameters that were determined automatically by the optimization or SVM
algorithm noted before; and l is the number of support vectors.
Interested readers may note that the αi are Lagrangian multipliers. For linearly sepa-
rable data, the support vectors are a subset of the actual training tuples (although there
will be a slight twist regarding this when dealing with nonlinearly separable data, as
we shall see in the following).
Given a test tuple, XT , we plug it into Eq. (9.19), and then check to see the sign of the
result. This tells us on which side of the hyperplane the test tuple falls. If the sign is posi-
tive, then XT falls on or above the MMH, and so the SVM predicts that XT
belongs to class 1 (representing buys computer yes, in our case). If the sign is
negative, then XT falls on or below the MMH and the class prediction is 1
(representing buys computer no).
Notice that the Lagrangian formulation of our problem (Eq. 9.19) contains a dot
product between support vector Xi and test tuple XT . This will prove very useful for
finding the MMH and support vectors for the case when the given data are
nonlinearly separable, as described further in the next section.
Before we move on to the nonlinear case, there are two more important things to
note. The complexity of the learned classifier is characterized by the number of support
vectors rather than the dimensionality of the data. Hence, SVMs tend to be less prone www.jntufastupdates.com 36

to overfitting than some other methods. The support vectors are the essential or critical
training tuples—they lie closest to the decision boundary (MMH). If all other
training tuples were removed and training were repeated, the same separating hyperplane
would be found. Furthermore, the number of support vectors found can be used to
compute an (upper) bound on the expected error rate of the SVM classifier, which is
independent of the data dimensionality. An SVM with a small number of support
vectors can have good generalization, even when the dimensionality of the data is
high.
The Case When the Data Are Linearly Inseparable

In Section 9.3.1 we learned about linear SVMs for classifying linearly separable data, but what
if the data are not linearly separable, as in Figure 9.10? In such cases, no straight line can be
found that would separate the classes. The linear SVMs we studied would not be able to
find a feasible solution here. Now what?
The good news is that the approach described for linear SVMs can be extended to create nonlinear SVMs for
the classification of linearly inseparable data (also called non- linearly separable data, or nonlinear data for
short). Such SVMs are capable of finding nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in
input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear SVM by
extending the approach for linear SVMs as follows. There are two main steps. In the first
step, we transform the original input data into a higher dimensional space using a nonlinear
mapping. Several common nonlinear mappings can be used in this step, as we will further
describe next. Once the data have been transformed into the new higher space, the second
step searches for a linear separating hyperplane in the new space. We again end up with a
quadratic optimization problem that can be solved using the linear SVM formulation. The
maximal marginal hyperplane found in the new space corresponds to a nonlinear separating
hypersurface in the original space.

www.jntufastupdates.com 37

=

+

=

=

= = =
 =

·

·

Example 9.2 Nonlinear transformation of original input data into a higher dimensional space.
Consider the following example. A 3-D input vector X = (x1, x2, x3) is mapped into a 6-D space,
Z, using the mappings φ1(X) x1, φ2(X) x2, φ3(X) x3, φ4(X) (x1)2, φ5(X) x1x2,
and φ6(X) x1x3. A decision hyperplane in the new space is d(Z) WZ b,
where W and Z are vectors. This is linear. We solve for W and b and then substitute back so
that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear second-
order polynomial in the original 3-D input space:

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)2 + w5x1x2 + w6x1x3 + b

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b.

But there are some problems. First, how do we choose the nonlinear mapping to a
higher dimensional space? Second, the computation involved will be costly. Refer to
Eq. (9.19) for the classification of a test tuple, XT. Given the test tuple, we have to
com- pute its dot product with every one of the support vectors.3 In training, we have
to compute a similar dot product several times in order to find the MMH. This is
espe- cially expensive. Hence, the dot product computation required is very heavy and
costly. We need another trick!
Luckily, we can use another math trick. It so happens that in solving the quadratic
optimization problem of the linear SVM (i.e., when searching for a linear SVM in
the new higher dimensional space), the training tuples appear only in the form of dot
prod- ucts, φ(Xi) φ(Xj), where φ(X) is simply the nonlinear mapping function applied
to transform the training tuples. Instead of computing the dot product on the transformed
data tuples, it turns out that it is mathematically equivalent to instead apply a kernel
function, K(Xi, Xj), to the original input data. That is,

K(Xi, Xj) = φ(Xi) · φ(Xj). (9.20)

In other words, everywhere that φ(Xi) φ(Xj) appears in the training algorithm, we can
replace it with K(Xi, Xj). In this way, all calculations are made in the original input space,
which is of potentially much lower dimensionality! We can safely avoid the mapping—it
turns out that we don’t even have to know what the mapping is! We will talk more later
about what kinds of functions can be used as kernel functions for this problem.
After applying this trick, we can then proceed to find a maximal separating hyper-
plane. The procedure is similar to that described in Section 9.3.1, although it
involves placing a user-specified upper bound, C, on the Lagrange multipliers, αi.
This upper bound is best determined experimentally.
“What are some of the kernel functions that could be used?” Properties of the kinds of kernel functions

that could be used to replace the dot product scenario just described have been studied. Three
admissible kernel functions are

 www.jntufastupdates.com 38

i j

 Polynomial kernel of degree h: K(Xi, Xj) = (Xi · Xj + 1)h

Gaussian radial basis function kernel: K(X , X) = e− ǁXi −Xj ǁ
2/2σ 2

 Sigmoid kernel: K(Xi, Xj) = tanh(κXi · Xj − δ)

Each of these results in a different nonlinear classifier in (the original) input space. Neural
network aficionados will be interested to note that the resulting decision hyper- planes found
for nonlinear SVMs are the same type as those found by other well-known neural network
classifiers. For instance, an SVM with a Gaussian radial basis func- tion (RBF) gives the
same decision hyper plane as a type of neural network known as a radial basis function
network. An SVM with a sigmoid kernel is equivalent to a simple two-layer neural network
known as a multilayer perceptron (with no hidden layers).
There are no golden rules for determining which admissible kernel will result in the most
accurate SVM. In practice, the kernel chosen does not generally make a large difference in
resulting accuracy. SVM training always finds a global solution, unlike neural networks,
such as backpropagation, where many local minima usually exist (Section 9.2.3).
So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) clas-
sification. SVM classifiers can be combined for the multiclass case. See Section 9.7.1 for
some strategies, such as training one classifier per class and the use of error-correcting
codes.
A major research goal regarding SVMs is to improve the speed in training and testing so that
SVMs may become a more feasible option for very large data sets (e.g., millions of support
vectors). Other issues include determining the best kernel for a given data set and finding more
efficient methods for the multiclass case.

 Lazy Learners (or Learning from Your Neighbors)
The classification methods discussed so far in this book—decision tree induction,
Bayesian classification, rule-based classification, classification by backpropagation,
support vector machines, and classification based on association rule mining—are
all examples of eager learners. Eager learners, when given a set of training tuples,
will construct a generalization (i.e., classification) model before receiving new (e.g.,
test) tuples to classify. We can think of the learned model as being ready and eager to
classify previously unseen tuples.
Imagine a contrasting lazy approach, in which the learner instead waits until the last minute
before doing any model construction to classify a given test tuple. That is, when given a
training tuple, a lazy learner simply stores it (or does only a little minor processing) and
waits until it is given a test tuple. Only when it sees the test tuple does it perform
generalization to classify the tuple based on its similarity to the stored train- ing tuples.
Unlike eager learning methods, lazy learners do less work when a training tuple is
presented and more work when making a classification or numeric prediction. Because lazy
learners store the training tuples or “instances,” they are also referred to as instance-based

learners, even though all learning is essentially based on instances.
When making a classification or numeric prediction, lazy learners can be computationally www.jntufastupdates.com 39

expensive. They require efficient storage techniques and are well suited to implementation
on parallel hardware. They offer little explanation or insight into the data’s structure. Lazy
learners, however, naturally support incremental learning. They are able to model complex
decision spaces having hyperpolygonal shapes that may not be as easily describable by
other learning algorithms (such as hyperrectangular shapes modeled by decision trees). In
this section, we look at two examples of lazy learners: k-nearest-neighbor classifiers (Section
9.5.1) and case-based reasoning classifiers (Section 9.5.2).

k-Nearest-Neighbor Classifiers

The k-nearest-neighbor method was first described in the early 1950s. The method is labor
intensive when given large training sets, and did not gain popularity until the 1960s when
increased computing power became available. It has since been widely used in the area of
pattern recognition.
Nearest-neighbor classifiers are based on learning by analogy, that is, by comparing a
given test tuple with training tuples that are similar to it. The training tuples are described
by n attributes. Each tuple represents a point in an n-dimensional space. In this way, all the
training tuples are stored in an n-dimensional pattern space. When given an unknown tuple, a k-

nearest-neighbor classifier searches the pattern space for the k training tuples that are closest
to the unknown tuple. These k training tuples are the k “nearest neighbors” of the unknown
tuple.
“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The

Euclidean distance between two points or tuples, say, X1 = (x11, x12, . . . , x1n) and X2 = (x21,

x22, . . . , x2n), is

In other words, for each numeric attribute, we take the difference between the corre-
sponding values of that attribute in tuple X1 and in tuple X2, square this difference,
and accumulate it. The square root is taken of the total accumulated distance count.
Typically, we normalize the values of each attribute before using Eq. (9.22). This
helps prevent attributes with initially large ranges (e.g., income) from outweighing
attributes with initially smaller ranges (e.g., binary attributes). Min-max
normalization, for exam- ple, can be used to transform a value v of a numeric attribute A

to v
r in the range [0, 1] by computing

www.jntufastupdates.com 40

=

−

=

| − | | −
|

where minA and maxA are the minimum and maximum values of attribute A. Chapter
3 describes other methods for data normalization as a form of data transformation.
For k-nearest-neighbor classification, the unknown tuple is assigned the most com-
mon class among its k-nearest neighbors. When k 1, the unknown tuple is assigned
the class of the training tuple that is closest to it in pattern space. Nearest-neighbor clas-
sifiers can also be used for numeric prediction, that is, to return a real-valued prediction
for a given unknown tuple. In this case, the classifier returns the average value of the
real-valued labels associated with the k-nearest neighbors of the unknown tuple.
“But how can distance be computed for attributes that are not numeric, but nominal (or
categorical) such as color?” The previous discussion assumes that the attributes used to
describe the tuples are all numeric. For nominal attributes, a simple method is to
compare the corresponding value of the attribute in tuple X1 with that in tuple X2. If the
two are identical (e.g., tuples X1 and X2 both have the color blue), then the difference between
the two is taken as 0. If the two are different (e.g., tuple X1 is blue but tuple X2 is red), then
the difference is considered to be 1. Other methods may incorporate more sophisticated
schemes for differential grading (e.g., where a larger difference score is assigned, say, for
blue and white than for blue and black).
“What about missing values?” In general, if the value of a given attribute A is missing in
tuple X1 and/or in tuple X2, we assume the maximum possible difference. Suppose that
each of the attributes has been mapped to the range [0, 1]. For nominal attributes, we take
the difference value to be 1 if either one or both of the corresponding values of A are missing.

“How can I determine a good value for k, the number of neighbors?” This can be deter-
mined experimentally. Starting with k 1, we use a test set to estimate the error rate of the
classifier. This process can be repeated each time by incrementing k to allow for one more
neighbor. The k value that gives the minimum error rate may be selected. In general, the
larger the number of training tuples, the larger the value of k will be (so that
classification and numeric prediction decisions can be based on a larger portion of the

stored tuples). As the number of training tuples approaches infinity and k = 1, the error

rate can be no worse than twice the Bayes error rate (the latter being the theoretical
minimum). If k also approaches infinity, the error rate approaches the Bayes error rate.
Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign
equal weight to each attribute. They therefore can suffer from poor accuracy when given
noisy or irrelevant attributes. The method, however, has been modified to incorporate www.jntufastupdates.com 41

|
|

|
|

| | = |
|

attribute weighting and the pruning of noisy data tuples. The choice of a distance metric can
be critical. The Manhattan (city block) distance (Section 2.4.4), or other distance
measurements, may also be used.
Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D is a
training database of D tuples and k 1, then O(D) comparisons are required to classify a
given test tuple. By presorting and arranging the stored tuples into search trees, the number of
comparisons can be reduced to O(log(D). Parallel implementation can reduce the running
time to a constant, that is, O(1), which is independent of D .
Other techniques to speed up classification time include the use of partial distance
calculations and editing the stored tuples. In the partial distance method, we compute the
distance based on a subset of the n attributes. If this distance exceeds a threshold, then
further computation for the given stored tuple is halted, and the process moves on to the next
stored tuple. The editing method removes training tuples that prove useless. This method is
also referred to as pruning or condensing because it reduces the total number of tuples
stored.

Case-Based Reasoning

Case-based reasoning (CBR) classifiers use a database of problem solutions to solve new
problems. Unlike nearest-neighbor classifiers, which store training tuples as points in
Euclidean space, CBR stores the tuples or “cases” for problem solving as complex
symbolic descriptions. Business applications of CBR include problem resolution for
customer service help desks, where cases describe product-related diagnostic problems. CBR
has also been applied to areas such as engineering and law, where cases are either technical
designs or legal rulings, respectively. Medical education is another area for CBR, where
patient case histories and treatments are used to help diagnose and treat new patients.
When given a new case to classify, a case-based reasoner will first check if an identical
training case exists. If one is found, then the accompanying solution to that case is
returned. If no identical case is found, then the case-based reasoner will search for training
cases having components that are similar to those of the new case. Conceptually, these
training cases may be considered as neighbors of the new case. If cases are represented as
graphs, this involves searching for subgraphs that are similar to sub- graphs within the new
case. The case-based reasoner tries to combine the solutions of the neighboring training
cases to propose a solution for the new case. If incompatibilities arise with the individual
solutions, then backtracking to search for other solutions may be necessary. The case-based
reasoner may employ background knowledge and problem-solving strategies to propose a
feasible combined solution.

www.jntufastupdates.com 42

Challenges in case-based reasoning include finding a good similarity metric (e.g., for
matching subgraphs) and suitable methods for combining solutions. Other
challenges include the selection of salient features for indexing training cases and the
development of efficient indexing techniques. A trade-off between accuracy and
efficiency evolves as the number of stored cases becomes very large. As this number
increases, the case-based reasoner becomes more intelligent. After a certain point,
however, the system’s efficiency will suffer as the time required to search for and process
relevant cases increases. As with nearest-neighbor classifiers, one solution is to edit the
training database. Cases that are redundant or that have not proved useful may be
discarded for the sake of improved performance. These decisions, however, are not
clear-cut and their automation remains an active area of research.

 Other Classification Methods
In this section, we give a brief description of several other classification methods, includ-
ing genetic algorithms (Section 9.6.1), rough set approach (Section 9.6.2), and fuzzy
set approaches (Section 9.6.3). In general, these methods are less commonly used for
classification in commercial data mining systems than the methods described earlier
in this book. However, these methods show their strength in certain applications, and
hence it is worthwhile to include them here.

Genetic Algorithms

Genetic algorithms attempt to incorporate ideas of natural evolution. In general,
genetic learning starts as follows. An initial population is created consisting of randomly
generated rules. Each rule can be represented by a string of bits. As a simple
example, suppose that samples in a given training set are described by two Boolean
attributes, A1 and A2, and that there are two classes, C1 and C2. The rule “IF A1 AND
NOT A2 THEN C2” can be encoded as the bit string “100,” where the two leftmost bits
represent attributes A1 and A2, respectively, and the rightmost bit represents the class.
Similarly, the rule “IF NOT A1 AND NOT A2 THEN C1” can be encoded as “001.” If
an attribute has k values, where k > 2, then k bits may be used to encode the
attribute’s values. Classes can be encoded in a similar fashion.
Based on the notion of survival of the fittest, a new population is formed to consist of
the fittest rules in the current population, as well as offspring of these rules. Typically,
the fitness of a rule is assessed by its classification accuracy on a set of training
samples. Offspring are created by applying genetic operators such as crossover and
mutation.
In crossover, substrings from pairs of rules are swapped to form new pairs of rules. In
mutation, randomly selected bits in a rule’s string are inverted.
The process of generating new populations based on prior populations of rules con-
tinues until a population, P, evolves where each rule in P satisfies a prespecified
fitness threshold.

www.jntufastupdates.com 43

Genetic algorithms are easily parallelizable and have been used for classification as well as
other optimization problems. In data mining, they may be used to evaluate the fitness of
other algorithms.

Rough Set Approach

Rough set theory can be used for classification to discover structural relationships within
imprecise or noisy data. It applies to discrete-valued attributes. Continuous-valued
attributes must therefore be discretized before its use.
Rough set theory is based on the establishment of equivalence classes within the given
training data. All the data tuples forming an equivalence class are indiscernible, that is, the
samples are identical with respect to the attributes describing the data. Given real-world data, it
is common that some classes cannot be distinguished in terms of the available attributes.
Rough sets can be used to approximately or “roughly” define such classes. A rough set
definition for a given class, C, is approximated by two sets—a lower approximation of C
and an upper approximation of C. The lower approximation of C consists of all the data
tuples that, based on the knowledge of the attributes, are certain to belong to C without
ambiguity. The upper approximation of C consists of all the tuples that, based on the
knowledge of the attributes, cannot be described as not belonging to
C. The lower and upper approximations for a class C are shown in Figure 9.14, where each
rectangular region represents an equivalence class. Decision rules can be generated for each
class. Typically, a decision table is used to represent the rules.
Rough sets can also be used for attribute subset selection (or feature reduction, where attributes
that do not contribute to the classification of the given training data can be identified and
removed) and relevance analysis (where the contribution or significance of each attribute is
assessed with respect to the classification task). The problem of find- ing the minimal subsets
(reducts) of attributes that can describe all the concepts in the given data set is NP-hard.
However, algorithms to reduce the computation intensity have been proposed. In one method,
for example, a discernibility matrix is used that stores the differences between attribute
values for each pair of data tuples. Rather than

www.jntufastupdates.com 44

}
{

C

Upper approximation of C

Lower approximation of C

Figure 9.14 A rough set approximation of class C’s set of tuples using lower and upper approximation sets of C.

The rectangular regions represent equivalence classes.

searching on the entire training set, the matrix is instead searched to detect redundant
attributes.

Fuzzy Set Approaches

Rule-based systems for classification have the disadvantage that they involve sharp cut-
offs for continuous attributes. For example, consider the following rule for customer
credit application approval. The rule essentially says that applications for customers
who have had a job for two or more years and who have a high income (i.e., of at
least
$50,000) are approved:

IF (years employed ≥ 2) AND (income ≥ 50,000) THEN credit = approved. (9.24)

By Rule (9.24), a customer who has had a job for at least two years will receive
credit if her income is, say, $50,000, but not if it is $49,000. Such harsh thresholding
may seem unfair.
Instead, we can discretize income into categories (e.g., low income, medium income, high
income) and then apply fuzzy logic to allow “fuzzy” thresholds or boundaries to be
defined for each category (Figure 9.15). Rather than having a precise cutoff between
categories, fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of
membership that a certain value has in a given category. Each category then represents a
fuzzy set. Hence, with fuzzy logic, we can capture the notion that an income of
$49,000 is, more or less, high, although not as high as an income of $50,000. Fuzzy
logic systems typically provide graphical tools to assist users in converting attribute
values to fuzzy truth values.
Fuzzy set theory is also known as possibility theory. It was proposed by Lotfi Zadeh
in 1965 as an alternative to traditional two-value logic and probability theory. It lets
us work at a high abstraction level and offers a means for dealing with imprecise
data

 www.jntufastupdates.com 45

Figure 9.15 Fuzzy truth values for income, representing the degree of membership of income values with respect to the

categories {low, medium, high}. Each category represents a fuzzy set. Note that a given income value, x, can have

membership in more than one fuzzy set. The membership values of x in each fuzzy set do not have to total to 1.

measurement. Most important, fuzzy set theory allows us to deal with vague or inexact facts.
For example, being a member of a set of high incomes is inexact (e.g., if $50,000 is high,
then what about $49,000? or $48,000?) Unlike the notion of traditional “crisp” sets where
an element belongs to either a set S or its complement, in fuzzy set theory, elements can
belong to more than one fuzzy set. For example, the income value $49,000 belongs to both the
medium and high fuzzy sets, but to differing degrees. Using fuzzy set notation and following
Figure 9.15, this can be shown as

mmedium income($49,000) = 0.15 and mhigh income($49,000) = 0.96,

where m denotes the membership function, that is operating on the fuzzy sets of medium
income and high income, respectively. In fuzzy set theory, membership val- ues for a given
element, x (e.g., for $49,000), do not have to sum to 1. This is unlike traditional probability
theory, which is constrained by a summation axiom.
Fuzzy set theory is useful for data mining systems performing rule-based classification. It
provides operations for combining fuzzy measurements. Suppose that in addition to the
fuzzy sets for income, we defined the fuzzy sets junior employee and senior employee for
the attribute years employed. Suppose also that we have a rule that, say, tests high income and
senior employee in the rule antecedent (IF part) for a given employee, x. If these two fuzzy
measures are ANDed together, the minimum of their measure is taken as the measure of
the rule. In other words,

m(high income AND senior employee)(x) = min(mhigh income(x), msenior employee(x)).

This is akin to saying that a chain is as strong as its weakest link. If the two measures are
ORed, the maximum of their measure is taken as the measure of the rule. In other words,

m(high income OR senior employee)(x) = max(mhigh income(x), msenior employee(x)). www.jntufastupdates.com 46

Intuitively, this is like saying that a rope is as strong as its strongest strand.
Given a tuple to classify, more than one fuzzy rule may apply. Each applicable rule
contributes a vote for membership in the categories. Typically, the truth values for each
predicted category are summed, and these sums are combined. Several procedures exist for
translating the resulting fuzzy output into a defuzzified or crisp value that is returned by the
system.
Fuzzy logic systems have been used in numerous areas for classification, including market
research, finance, health care, and environmental engineering.

 Model Evaluation and Selection
Now that you may have built a classification model, there may be many questions going
through your mind. For example, suppose you used data from previous sales to build a
classifier to predict customer purchasing behavior. You would like an estimate of how
accurately the classifier can predict the purchasing behavior of future customers, that is,
future customer data on which the classifier has not been trained. You may even have tried
different methods to build more than one classifier and now wish to compare their accuracy.
But what is accuracy? How can we estimate it? Are some measures of a classifier’s accuracy
more appropriate than others? How can we obtain a reliable accuracy estimate? These
questions are addressed in this section.
Section 8.5.1 describes various evaluation metrics for the predictive accuracy of a
classifier. Holdout and random subsampling (Section 8.5.2), cross-validation (Section 8.5.3),
and bootstrap methods (Section 8.5.4) are common techniques for assessing accuracy, based
on randomly sampled partitions of the given data. What if we have more than one classifier
and want to choose the “best” one? This is referred to as model selection (i.e., choosing one
classifier over another). The last two sections address this issue. Section 8.5.5 discusses how
to use tests of statistical significance to assess whether the difference in accuracy between
two classifiers is due to chance. Section 8.5.6 presents how to compare classifiers based on
cost–benefit and receiver operating characteristic (ROC) curves.

Metrics for Evaluating Classifier Performance

This section presents measures for assessing how good or how “accurate” your classifier is at
predicting the class label of tuples. We will consider the case of where the class tuples are more or
less evenly distributed, as well as the case where classes are unbalanced (e.g., where an important
class of interest is rare such as in medical tests). The classifier evaluation measures presented
in this section are summarized in Figure 8.13. They include accuracy (also known as
recognition rate), sensitivity (or recall), specificity, precision, F1, and Fβ . Note that although
accuracy is a specific measure, the word “accuracy” is also used as a general term to refer to a
classifier’s predictive abilities.
Using training data to derive a classifier and then estimate the accuracy of the resulting
learned model can result in misleading overoptimistic estimates due to over- specialization
of the learning algorithm to the data. (We will say more on this in a moment!) Instead, it is
better to measure the classifier’s accuracy on a test set consisting of class-labeled tuples that
were not used to train the model. www.jntufastupdates.com 47

=

Before we discuss the various measures, we need to become comfortable with some
terminology. Recall that we can talk in terms of positive tuples (tuples of the main class of
interest) and negative tuples (all other tuples).6 Given two classes, for example, the positive

tuples may be buys computer = yes while the negative tuples are

Figure 8.13 Evaluation measures. Note that some measures are known by more than one name. TP, TN , FP, P,

N refer to the number of true positive, true negative, false positive, positive, and negative samples, respectively (see

text).

buys computer no. Suppose we use our classifier on a test set of labeled tuples. P is the number
of positive tuples and N is the number of negative tuples. For each tuple, we compare the
classifier’s class label prediction with the tuple’s known class label.
There are four additional terms we need to know that are the “building blocks” used in
computing many evaluation measures. Understanding them will make it easy to grasp the
meaning of the various measures.

True positives (TP): These refer to the positive tuples that were correctly labeled by the
classifier. Let TP be the number of true positives.

True negatives (TN): These are the negative tuples that were correctly labeled by the classifier.
Let TN be the number of true negatives.

False positives (FP): These are the negative tuples that were incorrectly labeled as positive
(e.g., tuples of class buys computer = no for which the classifier predicted buys computer = yes).
Let FP be the number of false positives.

www.jntufastupdates.com 48

False negatives (FN): These are the positive tuples that were mislabeled as neg- ative (e.g.,
tuples of class buys computer = yes for which the classifier predicted buys computer = no). Let
FN be the number of false negatives.

These terms are summarized in the confusion matrix of Figure 8.14.

The confusion matrix is a useful tool for analyzing how well your classifier can recognize
tuples of different classes. TP and TN tell us when the classifier is getting things right,
while FP and FN tell us when the classifier is getting things wrong (i.e.,

Actual class

Predicted

class

Total

P N

P + N

Figure 8.14 Confusion matrix, shown with totals for positive and negative tuples.

Classes buys computer

= yes

buys computer

= no

Total Recognitio
n (%)

buys computer

= yes

buys computer

= no

6954

412

46

2588

7
0
0
0

3
0
0
0

99.34

86.27

Total 7366 2634 1
0,
0
0
0

95.42

Figure 8.15 Confusion matrix for the classes buys computer = yes and buys computer = no, where an entry in row i

and column j shows the number of tuples of class i that were labeled by the classifier as class j. Ideally, the

nondiagonal entries should be zero or close to zero.

mislabeling). Given m classes (where m ≥ 2), a confusion matrix is a table of at least size m

by m. An entry, CMi,j in the first m rows and m columns indicates the number of tuples of
class i that were labeled by the classifier as class j. For a classifier to have good accuracy,
ideally most of the tuples would be represented along the diagonal of the confusion matrix,
from entry CM1,1 to entry CMm,m, with the rest of the entries being zero or close to zero.
That is, ideally, FP and FN are around zero.

 yes no

yes

no

TP

FP

FN

TN

Total Pr N r

www.jntufastupdates.com 49

+

+

+ + +
 +

+

The table may have additional rows or columns to provide totals. For example, in the

confusion matrix of Figure 8.14, P and N are shown. In addition, P
r is the number of tuples

that were labeled as positive (TP FP) and N
r is the number of tuples that were labeled as

negative (TN FN). The total number of tuples is TP TN FP TN , or P N , or P
r N

r
.

Note that although the confusion matrix shown is for a binary classification problem,
confusion matrices can be easily drawn for multiple classes in a similar manner.
Now let’s look at the evaluation measures, starting with accuracy. The accuracy of a
classifier on a given test set is the percentage of test set tuples that are correctly classified by the
classifier. That is,

In the pattern recognition literature, this is also referred to as the overall recognition rate of
the classifier, that is, it reflects how well the classifier recognizes tuples of the various classes.

An example of a confusion matrix for the two classes buys computer = yes (positive) and buys

computer = no (negative) is given in Figure 8.15. Totals are shown,

www.jntufastupdates.com 50

−

=
=

as well as the recognition rates per class and overall. By glancing at a confusion matrix, it is easy
to see if the corresponding classifier is confusing two classes.

For example, we see that it mislabeled 412 “no” tuples as “yes.” Accuracy is most
effective when the class distribution is relatively balanced.
We can also speak of the error rate or misclassification rate of a classifier, M, which is simply 1 accuracy(M),
where accuracy(M) is the accuracy of M. This also can be computed as

If we were to use the training set (instead of a test set) to estimate the error rate of a model,
this quantity is known as the resubstitution error. This error estimate is optimistic of the
true error rate (and similarly, the corresponding accuracy estimate is optimistic) because the
model is not tested on any samples that it has not already seen.
We now consider the class imbalance problem, where the main class of interest is rare.
That is, the data set distribution reflects a significant majority of the negative class and a
minority positive class. For example, in fraud detection applications, the class of interest (or
positive class) is “fraud,” which occurs much less frequently than the negative “nonfraudulant”
class. In medical data, there may be a rare class, such as “cancer.” Suppose that you have
trained a classifier to classify medical data tuples, where the class label attribute is “cancer”
and the possible class values are “yes” and “no.” An accuracy rate of, say, 97% may make
the classifier seem quite accurate, but what if only, say, 3% of the training tuples are
actually cancer? Clearly, an accuracy rate of 97% may not be acceptable—the classifier could
be correctly labeling only the noncancer tuples, for instance, and misclassifying all the cancer
tuples. Instead, we need other measures, which access how well the classifier can recognize
the positive tuples (cancer yes) and how well it can recognize the negative tuples (cancer
no).
The sensitivity and specificity measures can be used, respectively, for this purpose.
Sensitivity is also referred to as the true positive (recognition) rate (i.e., the proportion of
positive tuples that are correctly identified), while specificity is the true negative rate (i.e., the
proportion of negative tuples that are correctly identified). These measures are defined as

Example 8.9 Sensitivity and specificity. Figure 8.16 shows a confusion matrix for medical data where the
class values are yes and no for a class label attribute, cancer. The sensitivity www.jntufastupdates.com 51

The precision and recall measures are also widely used in classification. Precision can be
thought of as a measure of exactness (i.e., what percentage of tuples labeled as positive are
actually such), whereas recall is a measure of completeness (what percentage of positive tuples
are labeled as such). If recall seems familiar, that’s because it is the same as sensitivity (or the
true positive rate). These measures can be computed as

A perfect precision score of 1.0 for a class C means that every tuple that the classifier labeled as
belonging to class C does indeed belong to class C. However, it does not tell us anything
about the number of class C tuples that the classifier mislabeled. A perfect recall score of 1.0
for C means that every item from class C was labeled as such, but it does not tell us how
many other tuples were incorrectly labeled as belonging to class C. There tends to be an
inverse relationship between precision and recall, where it is possible to increase one at the cost
of reducing the other. For example, our medical classifier may achieve high precision by
labeling all cancer tuples that present a certain way as cancer, but may have low recall if it
mislabels many other instances of cancer tuples. Precision and recall scores are typically used
together, where precision values are compared for a fixed value of recall, or vice versa. For
example, we may compare precision values at a recall value of, say, 0.75.
An alternative way to use precision and recall is to combine them into a single mea- sure.
This is the approach of the F measure (also known as the F1 score or F-score) and www.jntufastupdates.com 52

the Fβ measure. They are defined as

where β is a non-negative real number. The F measure is the harmonic mean of precision

and recall (the proof of which is left as an exercise). It gives equal weight to precision and
recall. The Fβ measure is a weighted measure of precision and recall. It assigns β times as
much weight to recall as to precision. Commonly used Fβ measures are F2 (which weights
recall twice as much as precision) and F0.5 (which weights precision twice as much as
recall).
“Are there other cases where accuracy may not be appropriate?” In classification problems, it
is commonly assumed that all tuples are uniquely classifiable, that is, that each training tuple
can belong to only one class. Yet, owing to the wide diversity of data in large databases, it is
not always reasonable to assume that all tuples are uniquely classifiable. Rather, it is more
probable to assume that each tuple may belong to more than one class. How then can the
accuracy of classifiers on large databases be measured? The accuracy measure is not
appropriate, because it does not take into account the possibility of tuples belonging to more
than one class.
Rather than returning a class label, it is useful to return a probability class distribution.
Accuracy measures may then use a second guess heuristic, whereby a class prediction is
judged as correct if it agrees with the first or second most probable class. Although this does
take into consideration, to some degree, the nonunique classification of tuples, it is not a
complete solution.
In addition to accuracy-based measures, classifiers can also be compared with respect to the
following additional aspects:

Speed: This refers to the computational costs involved in generating and using the given
classifier.

Robustness: This is the ability of the classifier to make correct predictions given noisy data or
data with missing values. Robustness is typically assessed with a series of synthetic data sets
representing increasing degrees of noise and missing values.

Scalability: This refers to the ability to construct the classifier efficiently given large
amounts of data. Scalability is typically assessed with a series of data sets of increasing size.

Interpretability: This refers to the level of understanding and insight that is provided by the
classifier or predictor. Interpretability is subjective and therefore more difficult to assess.
Decision trees and classification rules can be easy to interpret, yet their interpretability may
diminish the more they become complex. We discuss some work in this area, such as the
extraction of classification rules from a “black box” neural network classifier called
backpropagation, in Chapter 9. www.jntufastupdates.com 53

Figure 8.17 Estimating accuracy with the holdout method.

In summary, we have presented several evaluation measures. The accuracy measure works best
when the data classes are fairly evenly distributed. Other measures, such as sensitivity (or
recall), specificity, precision, F, and Fβ , are better suited to the class imbalance problem, where
the main class of interest is rare. The remaining subsections focus on obtaining reliable
classifier accuracy estimates.

Holdout Method and Random Subsampling

The holdout method is what we have alluded to so far in our discussions about accuracy. In this
method, the given data are randomly partitioned into two independent sets, a training set
and a test set. Typically, two-thirds of the data are allocated to the training set, and the
remaining one-third is allocated to the test set. The training set is used to derive the model.
The model’s accuracy is then estimated with the test set (Figure 8.17). The estimate is
pessimistic because only a portion of the initial data is used to derive the model.
Random subsampling is a variation of the holdout method in which the holdout method is
repeated k times. The overall accuracy estimate is taken as the average of the accuracies
obtained from each iteration.

Cross-Validation

In k-fold cross-validation, the initial data are randomly partitioned into k mutually
exclusive subsets or “folds,” D1, D2, . . . , Dk, each of approximately equal size. Training and
testing is performed k times. In iteration i, partition Di is reserved as the test set, and the
remaining partitions are collectively used to train the model. That is, in the first iteration,
subsets D2, . . . , Dk collectively serve as the training set to obtain a first model, which is tested
on D1; the second iteration is trained on subsets D1, D3, . . . , Dk and tested on D2; and so on.
Unlike the holdout and random subsampling methods, here each sample is used the same
number of times for training and once for testing. For classification, the accuracy estimate is the
overall number of correct classifications from the k iterations, divided by the total number of
tuples in the initial data.

Training

set

Derive

model

Estimate

accuracy

Data

Test set

www.jntufastupdates.com 54

−

−

=

Leave-one-out is a special case of k-fold cross-validation where k is set to the number of initial
tuples. That is, only one sample is “left out” at a time for the test set. In stratified cross-

validation, the folds are stratified so that the class distribution of the tuples in each fold is
approximately the same as that in the initial data.
In general, stratified 10-fold cross-validation is recommended for estimating accuracy (even
if computation power allows using more folds) due to its relatively low bias and variance.

Bootstrap

Unlike the accuracy estimation methods just mentioned, the bootstrap method samples the
given training tuples uniformly with replacement. That is, each time a tuple is selected, it is
equally likely to be selected again and re-added to the training set. For instance, imagine a
machine that randomly selects tuples for our training set. In sampling with replacement, the
machine is allowed to select the same tuple more than once. There are several bootstrap
methods. A commonly used one is the .632 bootstrap, which works as follows. Suppose
we are given a data set of d tuples. The data set is sampled d times, with replacement,
resulting in a bootstrap sample or training set of d samples. It is very likely that some of the
original data tuples will occur more than once in this sample. The data tuples that did not
make it into the training set end up forming the test set. Suppose we were to try this out
several times. As it turns out, on average, 63.2% of the original data tuples will end up in the
bootstrap sample, and the remaining 36.8% will form the test set (hence, the name, .632
bootstrap).
“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of being
selected, so the probability of not being chosen is (1 1/d). We have to select d times, so
the probability that a tuple will not be chosen during this whole time is (1 1/d)d. If d is

large, the probability approaches e
−1 0.368.7 Thus, 36.8% of tuples will not be selected for

training and thereby end up in the test set, and the remaining 63.2% will form the training
set.
We can repeat the sampling procedure k times, where in each iteration, we use the current test
set to obtain an accuracy estimate of the model obtained from the current bootstrap sample.
The overall accuracy of the model, M, is then estimated as

where Acc(Mi)test set is the accuracy of the model obtained with bootstrap sample i when it is
applied to test set i. Acc(Mi)train set is the accuracy of the model obtained with boot- strap
sample i when it is applied to the original set of data tuples. Bootstrapping tends to be overly
optimistic. It works best with small data sets.

www.jntufastupdates.com 55

±
±

−

=

−

=

−

Model Selection Using Statistical Tests of Significance

Suppose that we have generated two classification models, M1 and M2, from our data. We
have performed 10-fold cross-validation to obtain a mean error rate8 for each. How can we
determine which model is best? It may seem intuitive to select the model with the lowest error
rate; however, the mean error rates are just estimates of error on the true population of future data
cases. There can be considerable variance between error rates within any given 10-fold cross-
validation experiment. Although the mean error rates obtained for M1 and M2 may appear
different, that difference may not be statistically significant. What if any difference between
the two may just be attributed to chance? This section addresses these questions.
To determine if there is any “real” difference in the mean error rates of two models, we need to employ a test of
statistical significance. In addition, we want to obtain some confidence limits for our mean error rates so that
we can make statements like, “Any observed mean will not vary by two standard errors 95% of the time for
future samples” or “One model is better than the other by a margin of error of 4%.”

What do we need to perform the statistical test? Suppose that for each model, we did 10-fold
cross-validation, say, 10 times, each time using a different 10-fold data partitioning. Each
partitioning is independently drawn. We can average the 10 error rates obtained each for M1
and M2, respectively, to obtain the mean error rate for each model. For a given model, the
individual error rates calculated in the cross-validations may be considered as different,
independent samples from a probability distribution. In gen- eral, they follow a t-distribution
with k 1 degrees of freedom where, here, k 10. (This distribution looks very similar to a
normal, or Gaussian, distribution even though the functions defining the two are quite
different. Both are unimodal, symmetric, and bell- shaped.) This allows us to do hypothesis
testing where the significance test used is the t-test, or Student’s t-test. Our hypothesis is that
the two models are the same, or in other words, that the difference in mean error rate between the
two is zero. If we can reject this hypothesis (referred to as the null hypothesis), then we can
conclude that the difference between the two models is statistically significant, in which case we
can select the model with the lower error rate.
In data mining practice, we may often employ a single test set, that is, the same test set can
be used for both M1 and M2. In such cases, we do a pairwise comparison of the two models
for each 10-fold cross-validation round. That is, for the ith round of 10-fold cross-validation,
the same cross-validation partitioning is used to obtain an error rate for M1 and for M2. Let
err(M1)i (or err(M2)i) be the error rate of model M1 (or M2) on round i. The error rates for
M1 are averaged to obtain a mean error rate for M1, denoted err(M1). Similarly, we can
obtain err(M2). The variance of the difference between the two models is denoted var(M1
M2). The t -test computes the t-statistic with k 1 degrees of freedom for k samples. In our
example we have k 10 since, here, the k samples are our error rates obtained from ten 10-
fold cross-validations for each

www.jntufastupdates.com 56

−
=

−
=

To determine whether M1 and M2 are significantly different, we compute t and select a
significance level, sig. In practice, a significance level of 5% or 1% is typically used. We then
consult a table for the t -distribution, available in standard textbooks on statistics. This table is
usually shown arranged by degrees of freedom as rows and significance levels as columns.
Suppose we want to ascertain whether the difference between M1 and M2 is significantly
different for 95% of the population, that is, sig 5% or 0.05. We need to find the t -
distribution value corresponding to k 1 degrees of freedom (or 9 degrees of freedom for our
example) from the table. However, because the t -distribution is symmetric, typically only the
upper percentage points of the distribution are shown. Therefore, we look up the table value
for z sig/2, which in this case is 0.025, where z is also referred to as a confidence limit.
If t > z or t < z, then our value of t lies in the rejection region, within the distribution’s
tails. This means that we can reject the null hypothesis that the means of M1 and M2 are the
same and conclude that there is a statistically significant difference between the two models.
Otherwise, if we cannot reject the null hypothesis, we conclude that any difference between
M1 and M2 can be attributed to chance.
If two test sets are available instead of a single test set, then a nonpaired version of the
t -test is used, where the variance between the means of the two models is estimated as

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold cross-
validation rounds) used for M1 and M2, respectively. This is also known as the two sample

t-test.9 When consulting the table of t -distribution, the number of degrees of freedom used is
taken as the minimum number of degrees of the two models.

Comparing Classifiers Based on Cost–Benefit and ROC Curves

The true positives, true negatives, false positives, and false negatives are also useful in
assessing the costs and benefits (or risks and gains) associated with a classification

9This test was used in sampling cubes for OLAP-based mining in Chapter 5. www.jntufastupdates.com 57

model. The cost associated with a false negative (such as incorrectly predicting that a
cancerous patient is not cancerous) is far greater than those of a false positive (incorrectly
yet conservatively labeling a noncancerous patient as cancerous). In such cases, we can
outweigh one type of error over another by assigning a different cost to each. These costs
may consider the danger to the patient, financial costs of resulting therapies, and other
hospital costs. Similarly, the benefits associated with a true positive decision may be different
than those of a true negative. Up to now, to compute classifier accuracy, we have assumed equal
costs and essentially divided the sum of true positives and true negatives by the total number
of test tuples.
Alternatively, we can incorporate costs and benefits by instead computing the average cost (or
benefit) per decision. Other applications involving cost–benefit analysis include loan
application decisions and target marketing mailouts. For example, the cost of loan- ing to a
defaulter greatly exceeds that of the lost business incurred by denying a loan to a nondefaulter.
Similarly, in an application that tries to identify households that are likely to respond to
mailouts of certain promotional material, the cost of mailouts to numerous households that
do not respond may outweigh the cost of lost business from not mailing to households that
would have responded. Other costs to consider in the overall analysis include the costs to
collect the data and to develop the classification tool.

Receiver operating characteristic curves are a useful visual tool for comparing two
classification models. ROC curves come from signal detection theory that was deve-
loped during World War II for the analysis of radar images. An ROC curve for a given
model shows the trade-off between the true positive rate (TPR) and the false positive rate
(FPR).10 Given a test set and a model, TPR is the proportion of positive (or “yes”) tuples
that are correctly labeled by the model; FPR is the proportion of negative (or “no”)
tuples that are mislabeled as positive. Given that TP, FP, P, and N are the number of
true positive, false positive, positive, and negative tuples, respectively, from Section 8.5.1

For a two-class problem, an ROC curve allows us to visualize the trade-off between the rate
at which the model can accurately recognize positive cases versus the rate at which it
mistakenly identifies negative cases as positive for different portions of the test set. Any
increase in TPR occurs at the cost of an increase in FPR. The area under the ROC curve is a
measure of the accuracy of the model.
To plot an ROC curve for a given classification model, M, the model must be able to return a
probability of the predicted class for each test tuple. With this information, we rank and sort
the tuples so that the tuple that is most likely to belong to the positive or “yes” class appears at
the top of the list, and the tuple that is least likely to belong to the positive class lands at the
bottom of the list. Na¨ıve Bayesian (Section 8.3) and backpropagation (Section 9.2) classifiers
return a class probability distribution for each prediction and, therefore, are appropriate,
although other classifiers, such as decision tree classifiers (Section 8.2), can easily be modified www.jntufastupdates.com 58

≥
→

=

=

=

=

=

to return class probability predictions. Let the value that a probabilistic classifier returns for a
given tuple X be f (X) [0, 1]. For a binary problem, a threshold t is typically selected so that
tuples where f (X) t are considered positive and all the other tuples are considered negative.
Note that the number of true positives and the number of false positives are both functions of t ,
so that we could write TP(t) and FP(t). Both are monotonic descending functions.
We first describe the general idea behind plotting an ROC curve, and then follow up with an
example. The vertical axis of an ROC curve represents TPR. The horizontal axis represents
FPR. To plot an ROC curve for M, we begin as follows. Starting at the bottom left corner
(where TPR FPR 0), we check the tuple’s actual class label at the top of the list. If we have
a true positive (i.e., a positive tuple that was correctly classified), then TP and thus TPR
increase. On the graph, we move up and plot a point. If, instead, the model classifies a
negative tuple as positive, we have a false positive, and so both FP and FPR increase. On the
graph, we move right and plot a point. This process is repeated for each of the test tuples in
ranked order, each time moving up on the graph for a true positive or toward the right for a
false positive.

Example 8.11 Plotting an ROC curve. Figure 8.18 shows the probability value (column

3) returned by a probabilistic classifier for each of the 10 tuples in a test set, sorted by
decreasing probability order. Column 1 is merely a tuple identification number, which aids
in our explanation. Column 2 is the actual class label of the tuple. There are five positive tuples
and five negative tuples, thus P 5 and N 5. As we examine the known class label of
each tuple, we can determine the values of the remaining columns, TP, FP, TN , FN , TPR, and
FPR. We start with tuple 1, which has the highest probability score, and take that score as
our threshold, that is, t 0.9. Thus, the classifier considers tuple 1 to be positive, and all the
other tuples are considered negative. Since the actual class label of tuple 1 is positive, we

have a true positive, hence TP = 1 and FP = 0. Among the

Figure 8.18 Tuples sorted by decreasing score, where the score is the value returned by a probabilistic classifier.

www.jntufastupdates.com 59

=

=

Figure 8.19 ROC curve for the data in Figure 8.18.

remaining nine tuples, which are all classified as negative, five actually are negative (thus, TN =
5). The remaining four are all actually positive, thus, FN = 4. We can therefore compute
TPR = TP = 1 = 0.2, while FPR = 0. Thus, we have the point (0.2, 0) for the
P 5

ROC curve.
Next, threshold t is set to 0.8, the probability value for tuple 2, so this tuple is now also
considered positive, while tuples 3 through 10 are considered negative. The actual class label
of tuple 2 is positive, thus now TP 2. The rest of the row can easily be computed, resulting in
the point (0.4, 0). Next, we examine the class label of tuple 3 and let t be 0.7, the probability
value returned by the classifier for that tuple. Thus, tuple 3 is considered positive, yet its actual
label is negative, and so it is a false positive. Thus, TP stays the same and FP increments so
that FP 1. The rest of the values in the row can also be easily computed, yielding the point
(0.4, 0.2). The resulting ROC graph, from examining each tuple, is the jagged line shown in
Figure 8.19.
There are many methods to obtain a curve out of these points, the most common of which is
to use a convex hull. The plot also shows a diagonal line where for every true positive of
such a model, we are just as likely to encounter a false positive. For comparison, this line
represents random guessing.

Figure 8.20 shows the ROC curves of two classification models. The diagonal line
representing random guessing is also shown. Thus, the closer the ROC curve of a model is to
the diagonal line, the less accurate the model. If the model is really good, initially we are
more likely to encounter true positives as we move down the ranked list. Thus,

 www.jntufastupdates.com 60

Figure 8.20 ROC curves of two classification models, M1 and M2. The diagonal shows where, for every true

positive, we are equally likely to encounter a false positive. The closer an ROC curve is to the diagonal line, the less

accurate the model is. Thus, M1 is more accurate here.

the curve moves steeply up from zero. Later, as we start to encounter fewer and fewer true
positives, and more and more false positives, the curve eases off and becomes more horizontal.
To assess the accuracy of a model, we can measure the area under the curve. Several software
packages are able to perform such calculation. The closer the area is to 0.5, the less accurate the
corresponding model is. A model with perfect accuracy will have an area of 1.0.

 Techniques to Improve Classification Accuracy
In this section, you will learn some tricks for increasing classification accuracy. We focus on
ensemble methods. An ensemble for classification is a composite model, made up of a
combination of classifiers. The individual classifiers vote, and a class label prediction is
returned by the ensemble based on the collection of votes. Ensembles tend to be more accurate
than their component classifiers. We start off in Section 8.6.1 by introducing ensemble
methods in general. Bagging (Section 8.6.2), boosting (Section 8.6.3), and random forests
(Section 8.6.4) are popular ensemble methods.
Traditional learning models assume that the data classes are well distributed. In many real-
world data domains, however, the data are class-imbalanced, where the main class of
interest is represented by only a few tuples. This is known as the class

www.jntufastupdates.com 61

M1

D1
New data

tuple

D2
M2

•
Data, D

Combine

votes
Prediction

Dk
•

Mk

imbalance problem. We also study techniques for improving the classification accuracy of
class-imbalanced data. These are presented in Section 8.6.5.

Introducing Ensemble Methods

Bagging, boosting , and random forests are examples of ensemble methods (Figure 8.21). An
ensemble combines a series of k learned models (or base classifiers), M1, M2, . . . , Mk, with the

aim of creating an improved composite classification model, M∗. A given data set, D, is used to

create k training sets, D1, D2, . . . , Dk, where Di (1 ≤ i ≤ k − 1) is used to generate classifier Mi.

Given a new data tuple to classify, the base classifiers each vote by returning a class
prediction. The ensemble returns a class prediction based on the votes of the base
classifiers.

An ensemble tends to be more accurate than its base classifiers. For example, con- sider an
ensemble that performs majority voting. That is, given a tuple X to classify, it collects the
class label predictions returned from the base classifiers and outputs the class in majority. The
base classifiers may make mistakes, but the ensemble will misclassify X only if over half of the
base classifiers are in error. Ensembles yield better results when there is significant diversity
among the models. That is, ideally, there is little correlation among classifiers. The classifiers
should also perform better than random guessing. Each base classifier can be allocated to a
different CPU and so ensemble methods are parallelizable.
To help illustrate the power of an ensemble, consider a simple two-class problem described
by two attributes, x1 and x2. The problem has a linear decision boundary. Figure 8.22(a)
shows the decision boundary of a decision tree classifier on the problem. Figure 8.22(b)
shows the decision boundary of an ensemble of decision tree classifiers on the same
problem. Although the ensemble’s decision boundary is still piecewise constant, it has a
finer resolution and is better than that of a single tree.

Figure 8.21 Increasing classifier accuracy: Ensemble methods generate a set of classification models, M1, M2, . . . ,

Mk. Given a new data tuple to classify, each classifier “votes” for the class label of that tuple. The ensemble

combines the votes to return a class prediction.

 www.jntufastupdates.com 62

∗

Figure 8.22 Decision boundary by (a) a single decision tree and (b) an ensemble of decision trees for a linearly
separable problem (i.e., where the actual decision boundary is a straight line). The decision tree struggles with
approximating a linear boundary. The decision boundary of the ensemble is closer to the true boundary. Source: From

Seni and Elder [SE10]. Ⓧc 2010 Morgan & Claypool Publishers; used with permission.

 Bagging

We now take an intuitive look at how bagging works as a method of increasing accuracy.
Suppose that you are a patient and would like to have a diagnosis made based on your
symptoms. Instead of asking one doctor, you may choose to ask several. If a certain
diagnosis occurs more than any other, you may choose this as the final or best diagnosis. That is,
the final diagnosis is made based on a majority vote, where each doctor gets an equal vote.
Now replace each doctor by a classifier, and you have the basic idea behind bagging.
Intuitively, a majority vote made by a large group of doctors may be more reliable than a
majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i (i = 1, 2, . . . , k), a

training set, Di, of d tuples is sampled with replacement from the original set of tuples, D.
Note that the term bagging stands for bootstrap aggregation. Each training set is a bootstrap
sample, as described in Section 8.5.4. Because sampling with replacement is used, some of
the original tuples of D may not be included in Di, whereas others may occur more than once.
A classifier model, Mi, is learned for each training set, Di. To classify an unknown tuple, X,
each classifier, Mi, returns its class prediction, which counts as one vote. The bagged
classifier, M , counts the votes and assigns the class with the most votes to X. Bagging can be
applied to the prediction of continuous values by taking the average value of each prediction
for a given test tuple. The algorithm is summarized in Figure 8.23.
The bagged classifier often has significantly greater accuracy than a single classifier derived
from D, the original training data. It will not be considerably worse and is more

www.jntufastupdates.com 63

∗

Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models for a learning scheme where
each model gives an equally weighted prediction.

Input:

D, a set of d training tuples;

k, the number of models in the ensemble;

a classification learning scheme (decision tree algorithm, na¨ıve Bayesian, etc.).

Output: The ensemble—a composite model, M∗.

Method:

(1) for i = 1 to k do // create k models:

(2) create bootstrap sample, Di, by sampling D with replacement;

(3) use Di and the learning scheme to derive a model, Mi;

(4) endfor

To use the ensemble to classify a tuple, X:

let each of the k models classify X and return the majority vote;

Figure 8.23 Bagging.

robust to the effects of noisy data and overfitting. The increased accuracy occurs because the
composite model reduces the variance of the individual classifiers.

 Boosting and AdaBoost

We now look at the ensemble method of boosting. As in the previous section, suppose that as a
patient, you have certain symptoms. Instead of consulting one doctor, you choose to consult
several. Suppose you assign weights to the value or worth of each doc- tor’s diagnosis, based on
the accuracies of previous diagnoses they have made. The final diagnosis is then a combination
of the weighted diagnoses. This is the essence behind boosting.
In boosting, weights are also assigned to each training tuple. A series of k classifiers is
iteratively learned. After a classifier, Mi, is learned, the weights are updated to allow the

subsequent classifier, Mi+1, to “pay more attention” to the training tuples that were mis-

classified by Mi. The final boosted classifier, M , combines the votes of each individual
classifier, where the weight of each classifier’s vote is a function of its accuracy.
AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. Suppose we want
to boost the accuracy of a learning method. We are given D, a data set of d class-labeled
tuples, (X1, y1), (X2, y2), . . . , (Xd, yd), where yi is the class label of tuple Xi. Initially,
AdaBoost assigns each training tuple an equal weight of 1/d. Generating k classifiers for
the ensemble requires k rounds through the rest of the algorithm. In round i, the tuples from
D are sampled to form a training set, Di, of size d. Sampling

www.jntufastupdates.com 64

−

with replacement is used—the same tuple may be selected more than once. Each tuple’s chance
of being selected is based on its weight. A classifier model, Mi, is derived from the training
tuples of Di. Its error is then calculated using Di as a test set. The weights of the training
tuples are then adjusted according to how they were classified.
If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly
classified, its weight is decreased. A tuple’s weight reflects how difficult it is to classify— the
higher the weight, the more often it has been misclassified. These weights will be used to
generate the training samples for the classifier of the next round. The basic idea is that when we
build a classifier, we want it to focus more on the misclassified tuples of the previous round.
Some classifiers may be better at classifying some “difficult” tuples than others. In this way,
we build a series of classifiers that complement each other. The algorithm is summarized in
Figure 8.24.
Now, let’s look at some of the math that’s involved in the algorithm. To compute the error
rate of model Mi, we sum the weights of each of the tuples in Di that Mi misclassified. That
is,

where err(Xj) is the misclassification error of tuple Xj: If the tuple was misclassified, then
err(Xj) is 1; otherwise, it is 0. If the performance of classifier Mi is so poor that its error
exceeds 0.5, then we abandon it. Instead, we try again by generating a new Di training set,
from which we derive a new Mi.
The error rate of Mi affects how the weights of the training tuples are updated. If a tuple
in round i was correctly classified, its weight is multiplied by error(Mi)/ (1 error(Mi)).
Once the weights of all the correctly classified tuples are updated, the weights for all tuples
(including the misclassified ones) are normalized so that their sum remains the same as it was
before. To normalize a weight, we multiply it by the sum of the old weights, divided by the
sum of the new weights. As a result, the weights of mis- classified tuples are increased and the
weights of correctly classified tuples are decreased, as described before.
“Once boosting is complete, how is the ensemble of classifiers used to predict the class label of a tuple, X?” Unlike
bagging, where each classifier was assigned an equal vote, boosting assigns a weight to each classifier’s vote, based
on how well the classifier performed. The lower a classifier’s error rate, the more accurate it is, and therefore, the
higher its weight for voting should be. The weight of classifier Mi’s vote is

For each class, c, we sum the weights of each classifier that assigned class c to X. The class with
the highest sum is the “winner” and is returned as the class prediction for tuple X. “How does

boosting compare with bagging?” Because of the way boosting focuses on the misclassified
tuples, it risks overfitting the resulting composite model to such data. www.jntufastupdates.com 65

error(Mi)
1− error(Mi)

Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one gives a weighted vote.

Input:

D, a set of d class-labeled training tuples;

k, the number of rounds (one classifier is generated per round); a classification learning scheme.

Output: A composite model.

Method:

(1) initialize the weight of each tuple in D to 1/d;

(2) for i = 1 to k do // for each round:

(3) sample D with replacement according to the tuple weights to obtain Di;

(4) use training set Di to derive a model, Mi;

(5) compute error(Mi), the error rate of Mi (Eq. 8.34)

(6) if error(Mi) > 0.5 then

(7) go back to step 3 and try again;

(8) endif

(9) for each tuple in Di that was correctly classified do

(10) multiply the weight of the tuple by error(Mi)/(1 − error(Mi)); // update weights

(11) normalize the weight of each tuple;

(12) endfor

To use the ensemble to classify tuple, X:

(1) initialize weight of each class to 0;

(2) for i = 1 to k do // for each classifier:

(3) wi = log ; // weight of the classifier’s vote

(4) c = Mi(X); // get class prediction for X from Mi

(5) add wi to weight for class c

(6) endfor

(7) return the class with the largest weight;

Figure 8.24 AdaBoost, a boosting algorithm.

Therefore, sometimes the resulting “boosted” model may be less accurate than a single model
derived from the same data. Bagging is less susceptible to model overfitting. While both can
significantly improve accuracy in comparison to a single model, boosting tends to achieve
greater accuracy.

 Random Forests

We now present another ensemble method called random forests. Imagine that each of the
classifiers in the ensemble is a decision tree classifier so that the collection of classifiers

www.jntufastupdates.com 66

−

+

is a “forest.” The individual decision trees are generated using a random selection of
attributes at each node to determine the split. More formally, each tree depends on the values of
a random vector sampled independently and with the same distribution for all trees in the
forest. During classification, each tree votes and the most popular class is returned.
Random forests can be built using bagging (Section 8.6.2) in tandem with random attribute
selection. A training set, D, of d tuples is given. The general procedure to generate k decision

trees for the ensemble is as follows. For each iteration, i (i = 1, 2, . . . , k), a training set, Di, of

d tuples is sampled with replacement from D. That is, each Di is a bootstrap sample of D
(Section 8.5.4), so that some tuples may occur more than once in Di, while others may be
excluded. Let F be the number of attributes to be used to determine the split at each node,
where F is much smaller than the number of avail- able attributes. To construct a decision
tree classifier, Mi, randomly select, at each node, F attributes as candidates for the split at the
node. The CART methodology is used to grow the trees. The trees are grown to maximum
size and are not pruned. Random forests formed this way, with random input selection, are
called Forest-RI.

Another form of random forest, called Forest-RC, uses random linear combinations of the
input attributes. Instead of randomly selecting a subset of the attributes, it creates new
attributes (or features) that are a linear combination of the existing attributes. That is, an attribute
is generated by specifying L, the number of original attributes to be combined. At a given node,
L attributes are randomly selected and added together with coefficients that are uniform random
numbers on [1, 1]. F linear combinations are generated, and a search is made over these for the
best split. This form of random forest is useful when there are only a few attributes available,
so as to reduce the correlation between individual classifiers.
Random forests are comparable in accuracy to AdaBoost, yet are more robust to errors and
outliers. The generalization error for a forest converges as long as the num- ber of trees in the
forest is large. Thus, overfitting is not a problem. The accuracy of a random forest depends
on the strength of the individual classifiers and a measure of the dependence between them. The
ideal is to maintain the strength of individual classifiers without increasing their correlation.
Random forests are insensitive to the number of attributes selected for consideration at each
split. Typically, up to log2d 1 are chosen. (An interesting empirical observation was that
using a single random input attribute may result in good accuracy that is often higher than
when using several attributes.) Because random forests consider many fewer attributes for each
split, they are efficient on very large databases. They can be faster than either bagging or
boosting. Random forests give internal estimates of variable importance.

Improving Classification Accuracy of Class-Imbalanced Data

In this section, we revisit the class imbalance problem. In particular, we study approaches to
improving the classification accuracy of class-imbalanced data.
Given two-class data, the data are class-imbalanced if the main class of interest (the positive
class) is represented by only a few tuples, while the majority of tuples represent the negative
class. For multiclass-imbalanced data, the data distribution of each class

www.jntufastupdates.com 67

−

differs substantially where, again, the main class or classes of interest are rare. The class
imbalance problem is closely related to cost-sensitive learning, wherein the costs of errors, per
class, are not equal. In medical diagnosis, for example, it is much more costly to falsely
diagnose a cancerous patient as healthy (a false negative) than to misdiagnose a healthy patient
as having cancer (a false positive). A false negative error could lead to the loss of life and
therefore is much more expensive than a false positive error. Other applications involving
class-imbalanced data include fraud detection, the detection of oil spills from satellite radar
images, and fault monitoring.
Traditional classification algorithms aim to minimize the number of errors made during
classification. They assume that the costs of false positive and false negative errors are equal.
By assuming a balanced distribution of classes and equal error costs, they are therefore not
suitable for class-imbalanced data. Earlier parts of this chapter presented ways of addressing
the class imbalance problem. Although the accuracy measure assumes that the cost of classes are
equal, alternative evaluation metrics can be used that consider the different types of
classifications. Section 8.5.1, for example, presented senstivity or recall (the true positive rate)
and specificity (the true negative rate), which help to assess how well a classifier can predict
the class label of imbalanced data. Additional relevant measures discussed include F1 and Fβ .
Section 8.5.6 showed how ROC curves plot sensitivity versus 1 specificity (i.e., the false positive
rate). Such curves can provide insight when studying the performance of classifiers on class-
imbalanced data.
In this section, we look at general approaches for improving the classification accuracy of
class-imbalanced data. These approaches include (1) oversampling, (2) under- sampling, (3)
threshold moving, and (4) ensemble techniques. The first three do not involve any changes
to the construction of the classification model. That is, over sampling and under sampling
change the distribution of tuples in the training set; threshold moving affects how the model
makes decisions when classifying new data. Ensemble methods follow the techniques
described in Sections 8.6.2 through 8.6.4. For ease of explanation, we describe these general
approaches with respect to the two-class imbalance data problem, where the higher-cost classes
are rarer than the lower-cost classes.
Both oversampling and undersampling change the training data distribution so that the rare
(positive) class is well represented. Oversampling works by resampling the positive tuples so
that the resulting training set contains an equal number of positive and negative tuples.
Undersampling works by decreasing the number of negative tuples. It randomly eliminates
tuples from the majority (negative) class until there are an equal number of positive and
negative tuples.
Example 8.12 Oversampling and undersampling. Suppose the original training set contains

100 pos- itive and 1000 negative tuples. In oversampling, we replicate tuples of the rarer
class to form a new training set containing 1000 positive tuples and 1000 negative tuples. In
undersampling, we randomly eliminate negative tuples so that the new training set contains
100 positive tuples and 100 negative tuples.

Several variations to oversampling and undersampling exist. They may vary, for instance,
in how tuples are added or eliminated. For example, the SMOTE algorithm www.jntufastupdates.com 68

→

≥

uses oversampling where synthetic tuples are added, which are “close to” the given positive
tuples in tuple space.
The threshold-moving approach to the class imbalance problem does not involve any
sampling. It applies to classifiers that, given an input tuple, return a continuous output value
(just like in Section 8.5.6, where we discussed how to construct ROC curves). That is, for
an input tuple, X, such a classifier returns as output a mapping, f (X) [0, 1]. Rather than
manipulating the training tuples, this method returns a clas- sification decision based on the
output values. In the simplest approach, tuples for which f (X) t , for some threshold, t , are
considered positive, while all other tuples are con- sidered negative. Other approaches may
involve manipulating the outputs by weighting. In general, threshold moving moves the
threshold, t , so that the rare class tuples are eas- ier to classify (and hence, there is less chance of
costly false negative errors). Examples of such classifiers include na¨ıve Bayesian classifiers
(Section 8.3) and neural network clas- sifiers like backpropagation (Section 9.2). The
threshold-moving method, although not as popular as over- and undersampling, is simple and
has shown some success for the two-class-imbalanced data.
Ensemble methods (Sections 8.6.2 through 8.6.4) have also been applied to the class imbalance
problem. The individual classifiers making up the ensemble may include versions of the
approaches described here such as oversampling and threshold moving. These methods work
relatively well for the class imbalance problem on two-class tasks. Threshold-moving and
ensemble methods were empirically observed to outper- form oversampling and
undersampling. Threshold moving works well even on data sets that are extremely
imbalanced. The class imbalance problem on multiclass tasks is much more difficult, where
oversampling and threshold moving are less effective.
Although threshold-moving and ensemble methods show promise, finding a solution for the
multiclass imbalance problem remains an area of future work.

www.jntufastupdates.com 69

