
UNIT IV 
Classification: Decision Tree Induction, Bayesian Classification, Rule Based Classification, 

Classification by Back Propagation, Support Vector Machines, Lazy Learners, Model Evaluation and 

Selection, Techniques to improve Classification Accuracy 

Classification is a form of data analysis that extracts models describing important data classes. Such 

models, called classifiers, predict categorical (discrete, unordered) class labels. For example, we can build 

a classification model to categorize bank loan applications as either safe or risky. Such analysis can help 

provide us with a better understanding of the data at large. Many classification methods have been 

proposed by researchers in machine learning, pattern recognition, and statistics. 

Why Classification? 
A bank loans officer needs analysis of her data to learn which loan applicants are “safe” and which 

are “risky” for the bank. A marketing manager at AllElectronics needs data analysis to help guess whether 

a customer with a given profile will buy a new computer. 

A medical researcher wants to analyze breast cancer data to predict which one of three specific 

treatments a patient should receive. In each of these examples, the data analysis task is classification, 

where a model or classifier is constructed to predict class (categorical) labels, such as “safe” or “risky” for 

the loan application data; “yes” or “no” for the marketing data; or “treatment A,” “treatment B,” or 

“treatment C” for the medical data. 

Suppose that the marketing manager wants to predict how much a given customer will spend 

during a sale at AllElectronics. This data analysis task is an example of numeric prediction, where the 

model constructed predicts a continuous-valued function, or ordered value, as opposed to a class label. 

This model is a predictor. 

Regression analysis is a statistical methodology that is most often used for numeric prediction; 

hence the two terms tend to be used synonymously, although other methods for numeric prediction exist. 

Classification and numeric prediction are the two major types of prediction problems. 

General Approach for Classification: 
Data classification is a two-step process, consisting of a learning step (where a classification model is 

constructed) and a classification step (where the model is used to predict class labels for given data). 

 In the first step, a classifier is built describing a predetermined set of data classes or concepts. This is

the learning step (or training phase), where a classification algorithm builds the classifier by

analyzing or “learning from” a training set made up of database tuples and their associated class

labels.

 Each tuple/sample is assumed to belong to a predefined class, as determined by the class label

attribute

 In the second step, the model is used for classification. First, the predictive accuracy of the classifier

is estimated. If we were to use the training set to measure the classifier’s accuracy, this estimate

would likely be optimistic, because the classifier tends to overfit the data.

 Accuracy rate is the percentage of test set samples that are correctly classified by the model
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Fig: Learning Step 

Fig: Classification Step 

 

 Decision Tree Induction: 

Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision 

tree is a flowchart-like tree structure, where each internal node (non leaf node) denotes a test on an 

attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds 

a class label. The topmost node in a tree is the root node. Internal nodes are denoted by rectangles, 

and leaf nodes are denoted by ovals. 

“How are decision trees used for classification?” Given a tuple, X, for which the associated class label 

is unknown, the attribute values of the tuple are tested against the decision tree. A path is traced from 

the root to a leaf node, which holds the class prediction for that tuple. Decision trees can easily be 

converted to classification rules. 

“Why are decision tree classifiers so popular?” The construction of decision tree classifiers does not 

require any domain knowledge or parameter setting, and therefore is appropriate for exploratory 

knowledge discovery. Decision trees can handle multidimensional data. Their representation of 

acquired knowledge in tree form is intuitive and generally easy to assimilate by humans. The learning 

and classification steps of decision tree induction are simple and fast. 

Decision tree induction algorithms have been used for classification in many application areas such as 

medicine, manufacturing and production, financial analysis, astronomy, and molecular biology. 

Decision trees are the basis of several commercial rule induction systems. 
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During tree construction, attribute selection measures are used to select the attribute that best partitions 

the tuples into distinct classes. When decision trees are built, many of the branches may reflect noise 

or outliers in the training data. Tree pruning attempts to identify and remove such branches, with the 

goal of improving classification accuracy on unseen data. 

 
 During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning, developed a 

decision tree algorithm known as ID3 (Iterative Dichotomiser). 
 This work expanded on earlier work on concept learning systems, described by E. B. Hunt, J. Marin, 

and P. T. Stone. Quinlan later presented C4.5 (a successor of ID3), which became a benchmark to which 
newer supervised learning algorithms are often compared. 

 In 1984,a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone) published the book 
Classification and Regression Trees (CART), which described the generation of binary decision trees. 

 

 Decision Tree Algorithm: 
 

Algorithm: Generate decision tree. Generate a decision tree from the training tuples of 

data partition, D. 

     Input:  

 Data partition, D, which is a set of training tuples and their associated class labels; 

 attribute list, the set of candidate attributes; 

 Attribute selection method, a procedure to determine the splitting criterion that “best” 

partitions the data tuples into individual classes. This criterion consists of a splitting 

attribute and, possibly, either a split-point or splitting subset. 

Output: A decision tree. 

      Method: 

1) create a node N; 

2) if tuples in D are all of the same class, C, then 

3) return N as a leaf node labeled with the class C; 

4) if attribute list is empty then 

5) return N as a leaf node labeled with the majority class in D; // majority voting 

6) apply Attribute selection method(D, attribute list) to find the “best” splitting 

criterion; 

7) label node N with splitting criterion; 

8) if splitting attribute is discrete-valued and 

multiway splits allowed then // not restricted to binary trees 

9) attribute list attribute list - splitting attribute; // remove splitting attribute 

10) for each outcome j of splitting criterion 

// partition the tuples and grow subtrees for each partition 

11) let Dj be the set of data tuples in D satisfying outcome j; // a partition 

12) if Dj is empty then 

13) attach a leaf labeled with the majority class in D to node N; 

14) else attach the node returned by Generate decision tree(Dj , attribute list) to node N; 

endfor 

15) return N; 
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 Methods for selecting best test conditions 
Decision tree induction algorithms must provide a method for expressing an attribute 

test condition and its corresponding outcomes for different attribute types. 

 
Binary Attributes: The test condition for a binary attribute generates two potential 

outcomes. 

 
Nominal Attributes:These can have many values. These can be represented in two ways. 

 
 

Ordinal attributes: These can produce binary or multiway splits. The values can be grouped 

as long as the grouping does not violate the order property of attribute values. 
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 Attribute Selection Measures 
 An attribute selection measure is a heuristic for selecting the splitting criterion that 

“best” separates a given data partition, D, of class-labeled training tuples into individual 

classes. 

 If we were to split D into smaller partitions according to the outcomes of the splitting 

criterion, ideally each partition would be pure (i.e., all the tuples that fall into a given 

partition would belong to the same class). 

 Conceptually, the “best” splitting criterion is the one that most closely results in such a 

scenario. Attribute selection measures are also known as splitting rules because they 

determine how the tuples at a given node are to be split. 

 The attribute selection measure provides a ranking for each attribute describing the given 

training tuples. The attribute having the best score for the measure4 is chosen as the 

splitting attribute for the given tuples. 

 If the splitting attribute is continuous-valued or if we are restricted to binary trees, then, 

respectively, either a split point or a splitting subset must also be determined as part of 

the splitting criterion. 

 The tree node created for partition D is labeled with the splitting criterion, branches are 

grown for each outcome of the criterion, and the tuples are partitioned accordingly. 

 There are three popular attribute selection measures—information gain, gain ratio, and 

Gini index. 

 
 Information Gain 

ID3 uses information gain as its attribute selection measure. Let node N represent or 

hold the tuples of partition D. The attribute with the highest information gain is chosen as the 

splitting attribute for node N. This attribute minimizes the information needed to classify the 

tuples in the resulting partitions and reflects the least randomness or “impurity” in these 

partitions. Such an approach minimizes the expected number of tests needed to classify a 

given tuple and guarantees that a simple (but not necessarily the simplest) tree is found. 

 

The expected information needed to classify a tuple in D is given by 

Where piis the nonzero probability that an arbitrary tuple in D belongs to class Ciand is 

estimated by |Ci,D|/|D|. A log function to the base 2 is used, because the information is 

encoded in bits.Info(D) is also known as the entropy of D. 

 

Information needed after using A to split D into V partitions. 

Information gain is defined as the difference between the original information requirement 

(i.e., based on just the proportion of classes) and the new requirement (i.e., obtained after 

partitioning on A). That is, 
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The attribute A with the highest information gain, Gain(A), is chosen as the 

splittingattribute at nodeN. This is equivalent to saying that we want to partition on the 

attributeA that would do the “best classification,” so that the amount of information still 

requiredto finish classifying the tuples is minimal. 

 Gain Ratio 

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio, 

which attempts to overcome this bias. It applies a kind of normalization to information gain 

using a “split information” value defined analogously with Info(D) as 

This value represents the potential information generated by splitting the trainingdata set, D, 

into v partitions, corresponding to the v outcomes of a test on attribute A. Note that, for each 

outcome, it considers the number of tuples having that outcome with respect to the total 

number of tuples in D. It differs from information gain, which measures the information with 

respect to classification that is acquired based on the same partitioning. The gain ratio is 

defined as 

 

 Gini Index 

The Gini index is used in CART. Using the notation previously described, the Gini 

indexmeasures the impurity of D, a data partition or set of training tuples, as 

Where piis the nonzero probability that an arbitrary tuple in D belongs to class Ciand 

is estimated by |Ci,D|/|D| over m classes. 

Note: The Gini index considers a binary split for each attribute. 

When considering a binary split, we compute a weighted sum of the impurity of 

eachresulting partition. For example, if a binary split on A partitions D into D1 and D2, the 

Gini index of D given that partitioning is 

 For each attribute, each of the possible binary splits is considered. For a discrete-valued 

attribute, the subset that gives the minimum Gini index for that attribute is selected as its 

splitting subset. 

 For continuous-valued attributes, each possible split-point must be considered. The 

strategy is similar to that described earlier for information gain, where the midpoint 

between each pair of (sorted) adjacent values is taken as a possible split-point. 

 The reduction in impurity that would be incurred by a binary split on a discrete- or 

continuous-valued attribute A is 
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 Tree Pruning: 
 When a decision tree is built, many of the branches will reflect anomalies in the training 

data due to noise or outliers. 

 Tree pruning methods address this problem of overfitting the data. Such methods  

typically use statistical measures to remove the least-reliable branches. 

 Pruned trees tend to be smaller and less complex and, thus, easier to comprehend. 

 They are usually faster and better at correctly classifying independent test data (i.e., of 

previously unseen tuples) than unpruned trees. 

“How does tree pruning work?” There are two common approaches to tree pruning: 

prepruning and postpruning. 

 In the prepruning approach, a tree is “pruned” by halting its construction early. Upon 

halting, the node becomes a leaf. The leaf may hold the most frequent class among the 

subset tuples or the probability distribution of those tuples. 

 If partitioning the tuples at a node would result in a split that falls below a prespecified 

threshold, then further partitioning of the given subset is halted. There are difficulties, 

however, in choosing an appropriate threshold. 

 In the postpruning, which removes subtrees from a “fully grown” tree. A subtree at a 

given node is pruned by removing its branches and replacing it with a leaf. The leaf is 

labeled with the most frequent class among the subtree being replaced. 

 

Fig: Unpruned and Pruned Trees 

 The cost complexity pruning algorithm used in CART is an example of the 

postpruning approach. 

 This approach considers the cost complexity of a tree to be a function of the number 

of leaves in the tree and the error rate of the tree (where the error rate is the 

percentage of tuples misclassified by the tree). It starts from the bottom of the tree. 

 For each internal node, N, it computes the cost complexity of the subtree at N, and the 

cost complexity of the subtree at N if it were to be pruned (i.e., replaced by a leaf 

node). 

 The two values are compared. If pruning the subtree at node N would result in a 

smaller cost complexity, then the subtree is pruned. Otherwise, it is kept. 

 A pruning set of class-labeled tuples is used to estimate cost complexity. 
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 This set is independent of the training set used to build the unpruned tree and of any 

test set usedfor accuracy estimation. 

 The algorithm generates a set of progressively pruned trees. Ingeneral, the smallest 

decision tree that minimizes the cost complexity is preferred. 

 C4.5 uses a method called pessimistic pruning, which is similar to the cost 

complexity method in that it also uses error rate estimates to make decisions regarding 

subtree pruning. 

 Scalability of Decision Tree Induction: 
“What if D, the disk-resident training set of class-labeled tuples, does not fit in 

memory? In other words, how scalable is decision tree induction?” The efficiency of existing 

decision tree algorithms, such as ID3, C4.5, and CART, has been well established for 

relatively small data sets. Efficiency becomes an issue of concern when these algorithms are 

applied to the mining of very large real-world databases. The pioneering decision tree 

algorithms that we have discussed so far have the restriction that the training tuples should 

reside in memory. 

In data mining applications, very large training sets of millions of tuples are common. 

Most often, the training data will not fit in memory! Therefore, decision tree construction 

becomes inefficient due to swapping of the training tuples in and out of main and cache 

memories. More scalable approaches, capable of handling training data that are too large to fit 

in memory, are required. Earlier strategies to “save space” included discretizing continuous-

valued attributes and sampling data at each node. These techniques, however, still assume 

that the training set can fit in memory. 

 
Several scalable decision tree induction methods have been introduced in recent 

studies. Rain Forest, for example, adapts to the amount of main memory available and applies 

to any decision tree induction algorithm. The method maintains an AVC-set (where “AVC” 

stands for “Attribute-Value, Classlabel”) for each attribute, at each tree node, describing the 

training tuples at the node. The AVC-set of an attribute A at node N gives the class label 

counts for each value of A for the tuples at N. The set of all AVC-sets at a node N is the 

AVC-group of N. The size of an AVC-set for attribute A at node N depends only on the 

number of distinct values of A and the number of classes in the set of tuples at N. Typically, 

this size should fit in memory, even for real-world data. Rain Forest also has techniques, 

however, for handling the case where the AVC-group does not fit in memory. Therefore, the 

method has high scalability for decision tree induction in very large data sets. 

Fig: AVC Sets for dataset 
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Example for Decision Tree construction and Classification Rules: 

Construct Decision Tree for following dataset, 

Age income Student credit_rating buys_computer 

youth high No fair No 

youth high No excellent No 

middle_aged high No fair Yes 

senior medium No fair Yes 

senior low Yes fair Yes 

senior low Yes excellent No 

middle_aged low Yes excellent Yes 

youth medium No fair No 

youth low Yes fair Yes 

senior medium Yes fair Yes 

youth medium Yes excellent Yes 

middle_aged medium No excellent Yes 

middle_aged high Yes fair Yes 

senior medium No excellent No 
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Age P N TOTAL I(P,N) 

youth 2 3 5 I(2,3 0.970 

middle_aged 4 0 4 I(4,0) 0 

senior 3 2 5 I(3,2) 0.970 
 

 

                                                

 

 

            Similarly, 

Gain(Age) = Info(D) – InfoAge(D) 

= 0.940 – 0693 = 0.247 

 
Gain(Income) = 0.029 Gain 

(Student) = 0.151 

Gain (credit_rating) = 0.048 

 

Finally, age has the highest information gain among the attributes, it is selected as the 

splitting attribute. Node N is labeled with age, and branches are grown for each of the 

attribute’s values. The tuples are then partitioned accordingly, as 
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The Tree after splitting branches is 

 
The Tree after Tree Pruning, 

 

 

Finally, The Classification Rules are, 

 IF age=Youth AND Student=Yes THEN buys_computer=Yes 

 IF age=Middle_aged THEN buys_computer=Yes 

 IF age=Senior AND Credit_rating=Fair THEN buys_computer=Yes www.jntufastupdates.com 11
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 Bayes Classification Methods 
“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can predict class 

membership probabilities such as the probability that a given tuple belongs to a particular class. 

 Bayesian classification is based on Bayes’ theorem, described next. Studies comparing 

classification algorithms have found a simple Bayesian classifier known as the naıve Bayesian classifier 

to be comparable in performance with decision tree and selected neu- ral network classifiers. Bayesian 

classifiers have also exhibited high accuracy and speed when applied to large databases. 

Na¨ıve Bayesian classifiers assume that the effect of an attribute value on a given class is independent of 

the values of the other attributes. This assumption is called class- conditional independence. It is 

made to simplify the computations involved and, in this sense, is considered “na¨ıve.” 

Section 8.3.1 reviews basic probability notation and Bayes’ theorem. In Section 8.3.2 you will learn how 

to do na¨ıve Bayesian classification. 

 

 Bayes’ Theorem 

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who did early 
work in probability and decision theory during the 18th century. Let X be a data tuple. In 
Bayesian terms, X is considered “evidence.” As usual, it is described by measurements made on 
a set of n attributes. Let H be some hypothesis such as that the data tuple X belongs to a 
specified class C. For classification problems, we want to determine P(H X), the probability that 
the hypothesis H holds given the “evidence” or observed data tuple X. In other words, we are 
looking for the probability that tuple X belongs to class C, given that we know the attribute 
description of X. 
  

P(H X) is the posterior probability, or a posteriori probability, of H conditioned on X. For 
example, suppose our world of data tuples is confined to customers described by the attributes age 
and income, respectively, and that X is a 35-year-old customer with an income of $40,000. 
Suppose that H is the hypothesis that our customer will buy a computer. Then P(H X) reflects 
the probability that customer X will buy a computer given that we know the customer’s age and 
income. 
In contrast, P(H) is the prior probability, or a priori probability, of H. For our exam- ple, this 
is the probability that any given customer will buy a computer, regardless of age, income, or any 
other information, for that matter. The posterior probability, P(H X), is based on more 
information (e.g., customer information) than the prior probability, P(H), which is independent 
of X. 
Similarly, P(X H) is the posterior probability of X conditioned on H. That is, it is the probability 
that a customer, X, is 35 years old and earns $40,000, given that we know the customer will buy a 
computer. 
P(X) is the prior probability of X. Using our example, it is the probability that a person from 
our set of customers is 35 years old and earns $40,000. 
“How are these probabilities estimated?” P(H), P(X H), and P(X) may be estimated from the given data, as we 
shall see next. Bayes’ theorem is useful in that it provides a way of calculating the posterior probability, P(H X), 
from P(H), P(X H), and P(X). Bayes’ theorem is www.jntufastupdates.com 12



 

 

 

Now that we have that out of the way, in the next section, we will look at how Bayes’ theorem is 
used in the na¨ıve Bayesian classifier. 
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Example 8.4 Predicting a class label using na¨ıve Bayesian classification. We wish to predict 
the class label of a tuple using na¨ıve Bayesian classification, given the same training data as in 
Example 8.3 for decision tree induction. The training data were shown earlier in Table 8.1. 
The data tuples are described by the attributes age, income, student, and credit rating. The 
class label attribute, buys computer, has two distinct values (namely, 

{yes, no}). Let C1 correspond to the class buys computer = yes and C2 correspond to 

buys computer = no. The tuple we wish to classify is 
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case of probability values of zero. This technique for probability estimation is known as the 
Laplacian correction or Laplace estimator, named after Pierre Laplace, a French 
mathematician who lived from 1749 to 1827. If we have, say, q counts to which we each add one, 
then we must remember to add q to the corresponding denominator used in the probability 
calculation.  

 

 Rule-Based Classification 
In this section, we look at rule-based classifiers, where the learned model is represented as a set of 
IF-THEN rules. We first examine how such rules are used for classification (Section 8.4.1). We 
then study ways in which they can be generated, either from a deci- sion tree (Section 8.4.2) or 
directly from the training data using a sequential covering algorithm (Section 8.4.3). 
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Using IF-THEN Rules for Classification 

Rules are a good way of representing information or bits of knowledge. A rule-based classifier 

uses a set of IF-THEN rules for classification. An IF-THEN rule is an expres- sion of the form 
 

IF condition THEN conclusion. 

An example is rule R1, 

R1: IF age = youth AND student = yes THEN buys computer = yes. 

The “IF” part (or left side) of a rule is known as the rule antecedent or precondition. The 
“THEN” part (or right side) is the rule consequent. In the rule antecedent, the condition 
consists of one or more attribute tests (e.g., age = youth and student = yes) that are logically 
ANDed. The rule’s consequent contains a class prediction (in this case, we are predicting whether 
a customer will buy a computer). R1 can also be written as 

 

R1: (age = youth) ∧  (student = yes) ⇒  (buys computer = yes). 

If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a given tuple, 
we say that the rule antecedent is satisfied (or simply, that the rule is satisfied) and that 
the rule covers the tuple. 
A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class- 
labeled data set, D, let ncovers be the number of tuples covered by R; ncorrect be the number of 
tuples correctly classified by R; and D be the number of tuples in D. We can define the 
coverage and accuracy of R as

 

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., their 
attribute values hold true for the rule’s antecedent). For a rule’s accuracy, we look at the 
tuples that it covers and see what percentage of them the rule can correctly classify. 

 
Example 8.6 Rule accuracy and coverage. Let’s go back to our data in Table 8.1. These are 
class- labeled tuples from the AllElectronics customer database. Our task is to predict 
whether a customer will buy a computer. Consider rule R1, which covers 2 of the 14 
tuples. It can correctly classify both tuples. Therefore, coverage(R1) = 2/14 = 14.28% and 
accuracy(R1) = 2/2 = 100%. 

 

Let’s see how we can use rule-based classification to predict the class label of a given tuple, www.jntufastupdates.com 18



 

 

X. If a rule is satisfied by X, the rule is said to be triggered. For example, suppose we have 

X= (age = youth, income = medium, student = yes, credit rating = fair). 

We would like to classify X according to buys computer. X satisfies R1, which triggers 
the rule. 
If R1 is the only rule satisfied, then the rule fires by returning the class prediction for X. 
Note that triggering does not always mean firing because there may be more than one rule that 
is satisfied! If more than one rule is triggered, we have a potential problem. What if they each 
specify a different class? Or what if no rule is satisfied by X? 

We tackle the first question. If more than one rule is triggered, we need a conflict 
resolution strategy to figure out which rule gets to fire and assign its class prediction to 
X. There are many possible strategies. We look at two, namely size ordering and rule 
ordering. 

The size ordering scheme assigns the highest priority to the triggering rule that has the 
“toughest” requirements, where toughness is measured by the rule antecedent size. That is, the 
triggering rule with the most attribute tests is fired. 
The rule ordering scheme prioritizes the rules beforehand. The ordering may be class-based or 
rule-based. With class-based ordering, the classes are sorted in order of decreasing “importance” 
such as by decreasing order of prevalence. That is, all the rules for the most prevalent (or most 
frequent) class come first, the rules for the next prevalent class come next, and so on. Alternatively, 
they may be sorted based on the misclassification cost per class. Within each class, the rules are 
not ordered—they don’t have to be because they all predict the same class (and so there can be 
no class conflict!). 
With rule-based ordering, the rules are organized into one long priority list, accord- ing to some 
measure of rule quality, such as accuracy, coverage, or size (number of attribute tests in the rule 
antecedent), or based on advice from domain experts. When rule ordering is used, the rule set is 
known as a decision list. With rule ordering, the triggering rule that appears earliest in the list has 
the highest priority, and so it gets to fire its class prediction. Any other rule that satisfies X is 
ignored. Most rule-based classification systems use a class-based rule-ordering strategy. 
Note that in the first strategy, overall the rules are unordered. They can be applied in any order 
when classifying a tuple. That is, a disjunction (logical OR) is implied between each of the rules. 
Each rule represents a standalone nugget or piece of knowledge. This is in contrast to the rule 
ordering (decision list) scheme for which rules must be applied in the prescribed order so as to 
avoid conflicts. Each rule in a decision list implies the negation of the rules that come before it 
in the list. Hence, rules in a decision list are more difficult to interpret. 
Now that we have seen how we can handle conflicts, let’s go back to the scenario where there is 
no rule satisfied by X. How, then, can we determine the class label of X? In this case, a fallback or 
default rule can be set up to specify a default class, based on a training set. This may be the 
class in majority or the majority class of the tuples that were not covered by any rule. The 
default rule is evaluated at the end, if and only if no other rule covers X. The condition in the 
default rule is empty. In this way, the rule fires when no other rule is satisfied. 
In the following sections, we examine how to build a rule-based classifier. 
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Rule Extraction from a Decision Tree 

In Section 8.2, we learned how to build a decision tree classifier from a set of training data. 
Decision tree classifiers are a popular method of classification—it is easy to under- stand how 
decision trees work and they are known for their accuracy. Decision trees can become large and 
difficult to interpret. In this subsection, we look at how to build a rule- based classifier by 
extracting IF-THEN rules from a decision tree. In comparison with a decision tree, the IF-
THEN rules may be easier for humans to understand, particularly if the decision tree is very 
large. 
To extract rules from a decision tree, one rule is created for each path from the root to a leaf node. 
Each splitting criterion along a given path is logically ANDed to form the rule antecedent (“IF” 
part). The leaf node holds the class prediction, forming the rule consequent (“THEN” part). 
 

Example 8.7 Extracting classification rules from a decision tree. The decision tree of Figure 8.2 can be 
converted to classification IF-THEN rules by tracing the path from the root node to each leaf node in the 
tree. The rules extracted from Figure 8.2 are as follows: 

R1: IF age = youth AND student = no THEN buys computer = no R2: IF 

age = youth AND student = yes THEN buys computer = yes R3: IF 

age = middle aged  THEN buys computer = yes R4: IF 

age = senior AND credit rating = excellent THEN buys computer = yes R5: IF 

age = senior AND credit rating = fair THEN buys computer = no 

 

A disjunction (logical OR) is implied between each of the extracted rules. Because the rules 
are extracted directly from the tree, they are mutually exclusive and exhaustive. Mutually 
exclusive means that we cannot have rule conflicts here because no two rules will be 
triggered for the same tuple. (We have one rule per leaf, and any tuple can map to only one 
leaf.) Exhaustive means there is one rule for each possible attribute–value combination, so 
that this set of rules does not require a default rule. Therefore, the order of the rules does not 
matter—they are unordered. 
Since we end up with one rule per leaf, the set of extracted rules is not much simpler than the 
corresponding decision tree! The extracted rules may be even more difficult to interpret 
than the original trees in some cases. As an example, Figure 8.7 showed decision trees 
that suffer from subtree repetition and replication. The resulting set of rules extracted can 
be large and difficult to follow, because some of the attribute tests may be irrelevant or 
redundant. So, the plot thickens. Although it is easy to extract rules from a decision tree, we 
may need to do some more work by pruning the resulting rule set. 
“How can we prune the rule set?” For a given rule antecedent, any condition that does not 
improve the estimated accuracy of the rule can be pruned (i.e., removed), thereby 
generalizing the rule. C4.5 extracts rules from an unpruned tree, and then prunes the rules 
using a pessimistic approach similar to its tree pruning method. The training tuples and 
their associated class labels are used to estimate rule accuracy. However, because this 
would result in an optimistic estimate, alternatively, the estimate is adjusted to compen- www.jntufastupdates.com 20



 

 

sate for the bias, resulting in a pessimistic estimate. In addition, any rule that does not 
contribute to the overall accuracy of the entire rule set can also be pruned. 
Other problems arise during rule pruning, however, as the rules will no longer be 
mutually exclusive and exhaustive. For conflict resolution, C4.5 adopts a class-based 

ordering scheme. It groups together all rules for a single class, and then determines a 
ranking of these class rule sets. Within a rule set, the rules are not ordered. C4.5 orders the 
class rule sets so as to minimize the number of false-positive errors (i.e., where a rule 
predicts a class, C, but the actual class is not C). The class rule set with the least number 
of false positives is examined first. Once pruning is complete, a final check is remove 
any duplicates. When choosing a default class, C4.5 does not choose the majority class, 
because this class will likely have many rules for its tuples. Instead, it selects the class that 
contains the most training tuples that were not covered by any rule. 

 Classification by Backpropagation: 
 Classification by Backpropagation 
“What is backpropagation?” Backpropagation is a neural network learning algorithm. 
The neural networks field was originally kindled by psychologists and neurobiologists 
who sought to develop and test computational analogs of neurons. Roughly speaking, a 
neural network is a set of connected input/output units in which each connection has a 
weight associated with it. During the learning phase, the network learns by adjusting the 
weights so as to be able to predict the correct class label of the input tuples. Neural 
network learning is also referred to as connectionist learning due to the connections 
between units. 
Neural networks involve long training times and are therefore more suitable for appli- 
cations where this is feasible. They require a number of parameters that are typically best 
determined empirically such as the network topology or “structure.” Neural net- works 
have been criticized for their poor interpretability. For example, it is difficult for humans 
to interpret the symbolic meaning behind the learned weights and of “hidden units” in the 
network. These features initially made neural networks less desirable for data mining. 
Advantages of neural networks, however, include their high tolerance of noisy data as well 
as their ability to classify patterns on which they have not been trained. They can be used 
when you may have little knowledge of the relationships between attributes and classes. 
They are well suited for continuous-valued inputs and outputs, unlike most decision tree 
algorithms. They have been successful on a wide array of real-world data, including 
handwritten character recognition, pathology and laboratory medicine, and training a 
computer to pronounce English text. Neural network algorithms are inher- ently parallel; 
parallelization techniques can be used to speed up the computation process. In addition, 
several techniques have been recently developed for rule extrac- tion from trained neural 
networks. These factors contribute to the usefulness of neural networks for classification 
and numeric prediction in data mining. 
There are many different kinds of neural networks and neural network algorithms. The 
most popular neural network algorithm is backpropagation, which gained repute in the 
1980s. In Section 9.2.1 you will learn about multilayer feed-forward net- works, the type 
of neural network on which the backpropagation algorithm performs. Section 9.2.2 www.jntufastupdates.com 21



 

 

discusses defining a network topology. The backpropagation algorithm is described in 
Section 9.2.3. Rule extraction from trained neural networks is discussed in Section 9.2.4. 
 

A Multilayer Feed-Forward Neural Network 

The backpropagation algorithm performs learning on a multilayer feed-forward neural network. It 
iteratively learns a set of weights for prediction of the class label of tuples. A multilayer feed-forward neural 
network consists of an input layer, one or more hidden layers, and an output layer. An example of a 
multilayer feed-forward network is shown in Figure 9.2. 

 

 
 

Figure 9.2 Multilayer feed-forward neural network. 

Each layer is made up of units. The inputs to the network correspond to the attributes measured for 
each training tuple. The inputs are fed simultaneously into the units making up the input layer. 
These inputs pass through the input layer and are then weighted and fed simultaneously to a 
second layer of “neuronlike” units, known as a hidden layer. The outputs of the hidden layer 
units can be input to another hidden layer, and so on. The number of hidden layers is arbitrary, 
although in practice, usually only one is used. The weighted outputs of the last hidden layer are 
input to units making up the output layer, which emits the network’s prediction for given tuples. 
The units in the input layer are called input units. The units in the hidden layers and output layer 
are sometimes referred to as neurodes, due to their symbolic biological basis, or as output 

units. The multilayer neural network shown in Figure 9.2 has two layers of output units. 
Therefore, we say that it is a two-layer neural network. (The input layer is not counted because 
it serves only to pass the input values to the next layer.) Similarly, a network containing two 
hidden layers is called a three-layer neural network, and so on. It is a feed-forward network 
since none of the weights cycles back to an input unit or to a previous layer’s output unit. It is 
fully connected in that each unit provides input to each unit in the next forward layer. 
Each output unit takes, as input, a weighted sum of the outputs from units in the previous layer (see Figure 9.4 
later). It applies a nonlinear (activation) function to the weighted input. Multilayer feed-forward neural networks 
are able to model the class pre- diction as a nonlinear combination of the inputs. From a statistical point of view, 
they perform nonlinear regression. Multilayer feed-forward networks, given enough hidden units and enough training 
samples, can closely approximate any function. 

1 

1j 

2 

2j 
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Defining a Network Topology 

“How can I design the neural network’s topology?” Before training can begin, the user 
must decide on the network topology by specifying the number of units in the input layer, 
the number of hidden layers (if more than one), the number of units in each hidden layer, 
and the number of units in the output layer. 
Normalizing the input values for each attribute measured in the training tuples will help 
speed up the learning phase. Typically, input values are normalized so as to fall between 
0.0 and 1.0. Discrete-valued attributes may be encoded such that there is one input unit per 
domain value. For example, if an attribute A has three possible or known values, namely 

{a0, a1, a2}, then we may assign three input units to represent A. That is, we may have, 

say, I0, I1, I2 as input units. Each unit is initialized to 0. If A = a0, then I0 is set to 1 and 

the rest are 0. If A a1, then I1 is set to 1 and the rest are 0, and so on. 
Neural networks can be used for both classification (to predict the class label of a given 
tuple) and numeric prediction (to predict a continuous-valued output). For clas- sification, 
one output unit may be used to represent two classes (where the value 1 represents one 
class, and the value 0 represents the other). If there are more than two classes, then one 
output unit per class is used. (See Section 9.7.1 for more strategies on multiclass 
classification.) 
There are no clear rules as to the “best” number of hidden layer units. Network design is a 
trial-and-error process and may affect the accuracy of the resulting trained net- work. The 
initial values of the weights may also affect the resulting accuracy. Once a network has 
been trained and its accuracy is not considered acceptable, it is common to repeat the training 
process with a different network topology or a different set of initial weights. Cross-
validation techniques for accuracy estimation (described in Chapter 8) can be used to help 
decide when an acceptable network has been found. A number of automated techniques 
have been proposed that search for a “good” network structure. These typically use a hill-
climbing approach that starts with an initial structure that is selectively modified. 
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(8) Ij = i wij Oi θj ; //compute the net input of unit j with respect to 
the previous layer, i 

Backpropagation 

“How does backpropagation work?” Backpropagation learns by iteratively processing a data set of 
training tuples, comparing the network’s prediction for each tuple with the actual known target 
value. The target value may be the known class label of the training tuple (for classification 
problems) or a continuous value (for numeric prediction). For each training tuple, the weights are 
modified so as to minimize the mean-squared error between the network’s prediction and the 
actual target value. These modifications are made in the “backwards” direction (i.e., from the 
output layer) through each hidden layer down to the first hidden layer (hence the name 
backpropagation). Although it is not guaranteed, in general the weights will eventually converge, 
and the learning process stops. The algorithm is summarized in Figure 9.3. The steps involved 
are expressed in terms of inputs, outputs, and errors, and may seem awkward if this is your first 
look at neural network learning. However, once you become familiar with the process, you will see 
that each step is inherently simple. The steps are described next. 
 

Algorithm: Backpropagation. Neural network learning for classification or numeric prediction, using the 

backpropagation algorithm. 

Input: 

D, a data set consisting of the training tuples and their associated target values; 

l, the learning rate; 

network, a multilayer feed-forward network. 

Output: A trained neural network. 
Method: 

(1) Initialize all weights and biases in network; 

(2) while terminating condition is not satisfied 

(3) for each training tuple X in D 

(4) // Propagate the inputs forward: 

(5) for each input layer unit j { 

(6) Oj = Ij ; // output of an input unit is its actual input value 

(7) for each hidΣden or output layer unit j { 

 

(9) Oj   =  1   ; } // compute the output of each unit j 

(10) // Backpropagate the errors: 

(11) for each unit j in the output layer 

(12) Errj Oj(1     Oj)(Tj Oj); // compute the error 

(13) for each unit j in the hidden layers, from the last to the first hidden layer 

(14) Errj Oj(1     Oj) k Errkwjk ; // compute the error with respect to the 
next higher layer, k 

(15) for each weight wij in network { 
(16) ∆wij = (l)Errj Oi; // weight increment 

(17) wij = wij + ∆wij ; } // weight update 

(18) for each bias θj in network { 
(19) ∆θj = (l)Errj ; // bias increment 

(20) θj = θj + ∆θj ; } // bias update 

(21) } } 

{ 
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Figure 9.3 Backpropagation algorithm. 

 

Initialize the weights: The weights in the network are initialized to small random num- bers 
(e.g., ranging from 1.0 to 1.0, or 0.5 to 0.5). Each unit has a bias associated with it, as explained 
later. The biases are similarly initialized to small random numbers. 

Each training tuple, X, is processed by the following steps. 

Propagate the inputs forward: First, the training tuple is fed to the network’s input layer. The 
inputs pass through the input units, unchanged. That is, for an input unit, j, 
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Figure 9.4 Hidden or output layer unit j: The inputs to unit j are outputs from the previous layer. These are 

multiplied by their corresponding weights to form a weighted sum, which is added to the bias associated with 

unit j. A nonlinear activation function is applied to the net input. (For ease of explanation, the inputs to unit 

j are labeled y1, y2, . . . , yn. If unit j were in the first hidden layer, then these inputs would correspond to the 

input tuple (x1, x2, . . . , xn).) 

its output, Oj, is equal to its input value, Ij. Next, the net input and output of each 
unit in the hidden and output layers are computed. The net input to a unit in the 
hidden or output layers is computed as a linear combination of its inputs. To help 
illustrate this point, a hidden layer or output layer unit is shown in Figure 9.4. Each 
such unit has a number of inputs to it that are, in fact, the outputs of the units 
connected to it in the previous layer. Each connection has a weight. To compute the net 
input to the unit, each input connected to the unit is multiplied by its corresponding 
weight, and this is summed. Given a unit, j in a hidden or output layer, the net input, 
Ij, to unit j is 

 

 

where wij is the weight of the connection from unit i in the previous layer to unit j; Oi 
is the output of unit i from the previous layer; and θj is the bias of the unit. The bias 
acts as a threshold in that it serves to vary the activity of the unit. 
Each unit in the hidden and output layers takes its net input and then applies an acti- 

vation function to it, as illustrated in Figure 9.4. The function symbolizes the 
activation of the neuron represented by the unit. The logistic, or sigmoid, function is 
used. Given the net input Ij to unit j, then Oj, the output of unit j, is computed as  

                                                       

This function is also referred to as a squashing function, because it maps a large input   domain 
onto the smaller range of 0 to 1. The logistic function is nonlinear and differentiable, 
allowing the backpropagation algorithm to model classification problems that are linearly 
inseparable. 

We compute the output values, Oj, for each hidden layer, up to and including the output 
layer, which gives the network’s prediction. In practice, it is a good idea to cache (i.e., 
save) the intermediate output values at each unit as they are required again later when 
backpropagating the error. This trick can substantially reduce the amount of computation 
required. 
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Backpropagate the error: The error is propagated backward by updating the weights and 
biases to reflect the error of the network’s prediction. For a unit j in the output layer, the 
error Errj is computed by 

Errj = Oj(1 −  Oj)(Tj −  Oj), (9.6) 

where Oj is the actual output of unit j, and Tj is the known target value of the given training 
tuple. Note that Oj(1 Oj) is the derivative of the logistic function. 
To compute the error of a hidden layer unit j, the weighted sum of the errors of the units 
connected to unit j in the next layer are considered. The error of a hidden layer unit j is 
 

Errj = Oj(1 −  Oj) Errkwjk, (9.7) 

k 

where wjk is the weight of the connection from unit j to a unit k in the next higher layer, and 
Errk is the error of unit k. 
The weights and biases are updated to reflect the propagated errors. Weights are updated 
by the following equations, where ∆wij is the change in weight wij: 
 

∆wij = (l )ErrjOi. (9.8) 

wij = wij + ∆wij. (9.9) 

“What is l in Eq. (9.8)?” The variable l is the learning rate, a constant typically having a 
value between 0.0 and 1.0. Backpropagation learns using a gradient descent method to 
search for a set of weights that fits the training data so as to minimize the mean- squared 
distance between the network’s class prediction and the known target value of the tuples.1 The 
learning rate helps avoid getting stuck at a local minimum in decision space (i.e., where the 
weights appear to converge, but are not the optimum solution) and encourages finding the 
global minimum. If the learning rate is too small, then learning will occur at a very slow 
pace. If the learning rate is too large, then oscillation between inadequate solutions may 
occur. A rule of thumb is to set the learning rate to 1/t , where 
t is the number of iterations through the training set so far. 
Biases are updated by the following equations, where ∆θj is the change in bias θj: 

 
∆θj = (l)Errj. (9.10) 

θj = θj + ∆θj. (9.11) 

 
Note that here we are updating the weights and biases after the presentation of each 
tuple. This is referred to as case updating. Alternatively, the weight and bias incre- 
ments could be accumulated in variables, so that the weights and biases are updated 
after all the tuples in the training set have been presented. This latter strategy is called 
epoch updating, where one iteration through the training set is an epoch. In the- www.jntufastupdates.com 27
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ory, the mathematical derivation of backpropagation employs epoch updating, yet 
in practice, case updating is more common because it tends to yield more accurate 
results. 

Terminating condition: Training stops when 

 

All ∆wij in the previous epoch are so small as to be below some specified 
threshold, or 

The percentage of tuples misclassified in the previous epoch is below some thresh- 
old, or 

A prespecified number of epochs has expired. 
 

In practice, several hundreds of thousands of epochs may be required before the weights 
will converge. 
“How efficient is backpropagation?” The computational efficiency depends on the 
time spent training the network. Given D tuples and w weights, each epoch requires 
O( D w) time. However, in the worst-case scenario, the number of epochs can be 
exponential in n, the number of inputs. In practice, the time required for the networks 
to converge is highly variable. A number of techniques exist that help speed up the train- 
ing time. For example, a technique known as simulated annealing can be used, 
which also ensures convergence to a global optimum. 

Example 9.1 Sample calculations for learning by the backpropagation algorithm. Figure 9.5 shows 
a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight and bias values 
of the network are given in Table 9.1, along with the first training tuple, X= (1, 0, 1), with a class label 
of 1. 

This example shows the calculations for backpropagation, given the first training 
tuple, X. The tuple is fed into the network, and the net input and output of each unit 

is computed. These values are shown in Table 9.2. The error of each unit is computed and 
propagated backward. The error values are shown in Table 9.3. The weight and bias updates 
are shown in Table 9.4. 
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Figure 9.5 Example of a multilayer feed-forward neural network. 
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“How can we classify an unknown tuple using a trained network?” To classify an 
unknown tuple, X, the tuple is input to the trained network, and the net input and 
output of each unit are computed. (There is no need for computation and/or backpro- 
pagation of the error.) If there is one output node per class, then the output node with 
the highest value determines the predicted class label for X. If there is only one output 
node, then output values greater than or equal to 0.5 may be considered as belonging to 
the positive class, while values less than 0.5 may be considered negative. 
Several variations and alternatives to the backpropagation algorithm have been pro- 
posed for classification in neural networks. These may involve the dynamic 
adjustment of the network topology and of the learning rate or other parameters, or 
the use of different error functions. 
 

Inside the Black Box: Backpropagation and Interpretability 

“Neural networks are like a black box. How can I ‘understand’ what the backpropagation network has 
learned?” A major disadvantage of neural networks lies in their knowledge representation. Acquired 
knowledge in the form of a network of units connected by weighted links is difficult for humans to 
interpret. This factor has motivated research in extracting the knowledge embedded in trained neural 
networks and in representing that knowledge symbolically. Methods include extracting rules from 
networks and sensitivity analysis. 

Various algorithms for rule extraction have been proposed. The methods typically 
impose restrictions regarding procedures used in training the given neural network, the 
network topology, and the discretization of input values. 
Fully connected networks are difficult to articulate. Hence, often the first step in 
extracting rules from neural networks is network pruning. This consists of 
simplifying the network structure by removing weighted links that have the least effect 
on the trained network. For example, a weighted link may be deleted if such removal www.jntufastupdates.com 30
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does not result in a decrease in the classification accuracy of the network. 
 Once the trained network has been pruned, some approaches will then perform link, unit, or 
activation value clustering. In one method, for example, clustering is used to find the set of 
common activation values for each hidden unit in a given trained two- layer neural network 
(Figure 9.6). The combinations of these activation values for each hidden unit are analyzed. 
Rules are derived relating combinations of activation values 

 
 

 

Identify sets of common activation values for 
each hidden node, Hi: 

for H1: (–1,0,1) 
for H2: (0,1) 
for H3: (–1,0.24,1) 

Derive rules relating common activation values 
with output nodes, Oj: 

IF (H2  0 AND H3  –1) OR 

(H1  –1 AND H2  1 AND H3  –1) OR 

(H1  –1 AND H2  0 AND H3  0.24) 
THEN O1  1, O2  0 

ELSE O1  0, O2  1 

Derive rules relating input nodes, Ij, to 
output nodes, Oj: 

IF (I2  0 AND I7  0) THEN H2  0 

IF (I4  1 AND I6  1) THEN H3  –1 
IF (I5  0) THEN H3  –1 

Obtain rules relating inputs and output classes: 

IF (I2  0 AND I7  0 AND I4  1 AND 
I6  1) THEN class  1 

IF (I2  0 AND I7  0 AND I5  0) THEN 
class  1 

 

Figure 9.6 Rules can be extracted from training neural networks. Source: Adapted from Lu, Setiono, and Liu [LSL95]. 
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with corresponding output unit values. Similarly, the sets of input values and 
activation values are studied to derive rules describing the relationship between the 
input layer and the hidden “layer units”? Finally, the two sets of rules may be 
combined to form IF-THEN rules. Other algorithms may derive rules of other forms, 
including M-of-N rules (where M out of a given N conditions in the rule antecedent 
must be true for the rule consequent to be applied), decision trees with M-of-N tests, 
fuzzy rules, and finite automata. 
Sensitivity analysis is used to assess the impact that a given input variable has on a 
network output. The input to the variable is varied while the remaining input 
variables are fixed at some value. Meanwhile, changes in the network output are 
monitored. The knowledge gained from this analysis form can be represented in rules 
such as “IF X decreases 5% THEN Y increases 8%.” 

 Support Vector Machines 
In this section, we study support vector machines (SVMs), a method for the 
classifi- cation of both linear and nonlinear data. In a nutshell, an SVM is an 
algorithm that works as follows. It uses a nonlinear mapping to transform the 
original training data into a higher dimension. Within this new dimension, it 
searches for the linear opti- mal separating hyperplane (i.e., a “decision boundary” 
separating the tuples of one class from another). With an appropriate nonlinear 
mapping to a sufficiently high dimen- sion, data from two classes can always be 
separated by a hyperplane. The SVM finds this hyperplane using support vectors 
(“essential” training tuples) and margins (defined by the support vectors). We will 
delve more into these new concepts later. 
“I’ve heard that SVMs have attracted a great deal of attention lately. Why?” The first 
paper on support vector machines was presented in 1992 by Vladimir Vapnik and 
col- leagues Bernhard Boser and Isabelle Guyon, although the groundwork for 
SVMs has been around since the 1960s (including early work by Vapnik and Alexei 
Chervonenkis on statistical learning theory). Although the training time of even the 
fastest SVMs can be extremely slow, they are highly accurate, owing to their ability 
to model com- plex nonlinear decision boundaries. They are much less prone to 
overfitting than other methods. The support vectors found also provide a compact 
description of the learned model. SVMs can be used for numeric prediction as well as 
classification. They have been applied to a number of areas, including handwritten 
digit recognition, object recognition, and speaker identification, as well as 
benchmark time-series prediction tests. 
 

The Case When the Data Are Linearly Separable 

To explain the mystery of SVMs, let’s first look at the simplest case—a two-class 
prob- lem where the classes are linearly separable. Let the data set D be given as (X1, 

y1), (X2, y2), . . . , (X|D|, y|D|), where Xi is the set of training tuples with associated class 

labels, yi. Each yi can take one of two values, either +1 or − 1 (i.e., yi ∈  {+1, −  1}), www.jntufastupdates.com 32
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Figure 9.7 The 2-D training data are linearly separable. There are an infinite number of possible separating 

hyperplanes or “decision boundaries,” some of which are shown here as dashed  lines. Which one is best? 

corresponding to the classes buys computer = yes and buys computer = no, respectively. To aid 

in visualization, let’s consider an example based on two input attributes, A1 and A2, as shown 
in Figure 9.7. From the graph, we see that the 2-D data are linearly separa- ble (or “linear,” for 
short), because a straight line can be drawn to separate all the tuples of class 1 from all the 
tuples of class 1. 
There are an infinite number of separating lines that could be drawn. We want to find the “best” 
one, that is, one that (we hope) will have the minimum classification error on previously unseen 
tuples. How can we find this best line? Note that if our data were 3-D (i.e., with three 
attributes), we would want to find the best separating plane. Generalizing to n dimensions, we 
want to find the best hyperplane. We will use “hyperplane” to refer to the decision boundary that 
we are seeking, regardless of the number of input attributes. So, in other words, how can we 
find the best hyperplane? 
An SVM approaches this problem by searching for the maximum marginal hyper- plane. 
Consider Figure 9.8, which shows two possible separating hyperplanes and their associated 
margins. Before we get into the definition of margins, let’s take an intuitive look at this 
figure. Both hyperplanes can correctly classify all the given data tuples. Intuitively, however, 
we expect the hyperplane with the larger margin to be more accurate at classifying future 
data tuples than the hyperplane with the smaller margin. This is why (during the learning 
or training phase) the SVM searches for the hyperplane with the largest margin, that is, the 
maximum marginal hyperplane (MMH). The associated margin gives the largest separation 
between classes. 
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Figure 9.8 Here we see just two possible separating hyperplanes and their associated margins. Which one 

is better? The one with the larger margin (b) should have greater generalization accuracy. 

 
Getting to an informal definition of margin, we can say that the shortest distance 
from a hyperplane to one side of its margin is equal to the shortest distance from the 
hyperplane to the other side of its margin, where the “sides” of the margin are parallel 
to the hyperplane. When dealing with the MMH, this distance is, in fact, the shortest 
distance from the MMH to the closest training tuple of either class. 
A separating hyperplane can be written as 

W · X + b = 0, (9.12) 

where W is a weight vector, namely, W w1, w2, . . . , wn ; n is the number of attributes; 
and b is a scalar, often referred to as a bias. To aid in visualization, let’s consider two 

input attributes, A1 and A2, as in Figure 9.8(b). Training tuples are 2-D (e.g., X = (x1, 

x2)), where x1 and x2 are the values of attributes A1 and A2, respectively, for X. If we 
think of b as an additional weight, w0, we can rewrite Eq. (9.12) as 

w0 + w1x1 + w2x2 = 0. (9.13) 

Thus, any point that lies above the separating hyperplane satisfies 

w0 + w1x1 + w2x2 > 0. (9.14) 

Similarly, any point that lies below the separating hyperplane satisfies 

w0 + w1x1 + w2x2 < 0. (9.15) 
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The weights can be adjusted so that the hyperplanes defining the “sides” of the margin can 
be written as 
 

H1 : w0 + w1x1 + w2x2 ≥ 1    for yi = +1,                                        (9.16) 

H2 : w0 + w1x1 + w2x2 ≤ − 1    for yi = − 1.                                          (9.17) 

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple that falls  on 

or below H2 belongs to class 1. Combining the two inequalities of Eqs. (9.16) and (9.17), 
we get 
 

yi(w0 + w1x1 + w2x2) ≥ 1,  ∀ i.                                                                      (9.18) 

Any training tuples that fall on hyperplanes H1 or H2 (i.e., the “sides” defining the margin) 
satisfy Eq. (9.18) and are called support vectors. That is, they are equally close to the 
(separating) MMH. In Figure 9.9, the support vectors are shown encircled with a thicker 
border. Essentially, the support vectors are the most difficult tuples to classify and give the 
most information regarding classification. 

www.jntufastupdates.com 35



 

 

= 
− 

+
 
= 

 
 

“So, how does an SVM find the MMH and the support vectors?” Using some “fancy 
math tricks,” we can rewrite Eq. (9.18) so that it becomes what is known as a constrained 
(convex) quadratic optimization problem. Such fancy math tricks are beyond the 
scope of this book. Advanced readers may be interested to note that the tricks involve 
rewriting Eq. (9.18) using a Lagrangian formulation and then solving for the 
solution using Karush-Kuhn-Tucker (KKT) conditions. Details can be found in the 
bibliographic notes at the end of this chapter (Section 9.10). 
If the data are small (say, less than 2000 training tuples), any optimization software 
package for solving constrained convex quadratic problems can then be used to find 
the support vectors and MMH. For larger data, special and more efficient algorithms 
for training SVMs can be used instead, the details of which exceed the scope of this 
book. Once we’ve found the support vectors and MMH (note that the support vectors 
define the MMH!), we have a trained support vector machine. The MMH is a linear class 
boundary, and so the corresponding SVM can be used to classify linearly separable data. 
We refer to such a trained SVM as a linear SVM. 
“Once I’ve got a trained support vector machine, how do I use it to classify test (i.e., new) tuples?” Based 
on the Lagrangian formulation mentioned before, the MMH can be rewritten as the decision boundary 

 

where yi is the class label of support vector Xi; XT is a test tuple; αi and b0 are 
numeric parameters that were determined automatically by the optimization or SVM 
algorithm noted before; and l is the number of support vectors. 
Interested readers may note that the αi are Lagrangian multipliers. For linearly sepa- 
rable data, the support vectors are a subset of the actual training tuples (although there 
will be a slight twist regarding this when dealing with nonlinearly separable data, as 
we shall see in the following). 
Given a test tuple, XT , we plug it into Eq. (9.19), and then check to see the sign of the 
result. This tells us on which side of the hyperplane the test tuple falls. If the sign is posi- 
tive, then XT falls on or above the MMH, and so the SVM predicts that XT 
belongs to class 1 (representing buys computer yes, in our case). If the sign is 
negative, then XT falls on or below the MMH and the class prediction is 1 
(representing buys computer no). 
Notice that the Lagrangian formulation of our problem (Eq. 9.19) contains a dot 
product between support vector Xi and test tuple XT . This will prove very useful for 
finding the MMH and support vectors for the case when the given data are 
nonlinearly separable, as described further in the next section. 
Before we move on to the nonlinear case, there are two more important things to 
note. The complexity of the learned classifier is characterized by the number of support 
vectors rather than the dimensionality of the data. Hence, SVMs tend to be less prone www.jntufastupdates.com 36



 

 

to overfitting than some other methods. The support vectors are the essential or critical 
training tuples—they lie closest to the decision boundary (MMH). If all other 
training tuples were removed and training were repeated, the same separating hyperplane 
would be found. Furthermore, the number of support vectors found can be used to 
compute an (upper) bound on the expected error rate of the SVM classifier, which is 
independent of the data dimensionality. An SVM with a small number of support 
vectors can have good generalization, even when the dimensionality of the data is 
high. 
The Case When the Data Are Linearly Inseparable 

In Section 9.3.1 we learned about linear SVMs for classifying linearly separable data, but what 
if the data are not linearly separable, as in Figure 9.10? In such cases, no straight line can be 
found that would separate the classes. The linear SVMs we studied would not be able to 
find a feasible solution here. Now what? 
The good news is that the approach described for linear SVMs can be extended to create nonlinear SVMs for 
the classification of linearly inseparable data (also called non- linearly separable data, or nonlinear data for 
short). Such SVMs are capable of finding nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in 
input space. 

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear SVM by 
extending the approach for linear SVMs as follows. There are two main steps. In the first 
step, we transform the original input data into a higher dimensional space using a nonlinear 
mapping. Several common nonlinear mappings can be used in this step, as we will further 
describe next. Once the data have been transformed into the new higher space, the second 
step searches for a linear separating hyperplane in the new space. We again end up with a 
quadratic optimization problem that can be solved using the linear SVM formulation. The 
maximal marginal hyperplane found in the new space  corresponds to a nonlinear separating 
hypersurface in the original space. 
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Example 9.2 Nonlinear transformation of original input data into a higher dimensional space. 
Consider the following example. A 3-D input vector X = (x1, x2, x3) is mapped into a 6-D space, 
Z, using the mappings φ1(X) x1,   φ2(X) x2,   φ3(X) x3, φ4(X) (x1)2,     φ5(X)  x1x2, 
and φ6(X) x1x3. A decision hyperplane in the new space is d(Z) WZ b, 
where W and Z are vectors. This is linear. We solve for W and b and then substitute back so 
that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear second-
order polynomial in the original 3-D input space: 

 

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)2 + w5x1x2 + w6x1x3 + b 

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b. 

But there are some problems. First, how do we choose the nonlinear mapping to a 
higher dimensional space? Second, the computation involved will be costly. Refer to 
Eq. (9.19) for the classification of a test tuple, XT. Given the test tuple, we have to 
com- pute its dot product with every one of the support vectors.3 In training, we have 
to compute a similar dot product several times in order to find the MMH. This is 
espe- cially expensive. Hence, the dot product computation required is very heavy and 
costly. We need another trick! 
Luckily, we can use another math trick. It so happens that in solving the quadratic 
optimization problem of the linear SVM (i.e., when searching for a linear SVM in 
the new higher dimensional space), the training tuples appear only in the form of dot 
prod- ucts, φ(Xi) φ(Xj), where φ(X) is simply the nonlinear mapping function applied 
to transform the training tuples. Instead of computing the dot product on the transformed 
data tuples, it turns out that it is mathematically equivalent to instead apply a kernel 
function, K(Xi, Xj), to the original input data. That is, 

 
K(Xi, Xj) = φ(Xi) · φ(Xj). (9.20) 

In other words, everywhere that φ(Xi) φ(Xj) appears in the training algorithm, we can 
replace it with K(Xi, Xj). In this way, all calculations are made in the original input space, 
which is of potentially much lower dimensionality! We can safely avoid the mapping—it 
turns out that we don’t even have to know what the mapping is! We will talk more later 
about what kinds of functions can be used as kernel functions for this problem. 
After applying this trick, we can then proceed to find a maximal separating hyper- 
plane. The procedure is similar to that described in Section 9.3.1, although it 
involves placing a user-specified upper bound, C, on the Lagrange multipliers, αi. 
This upper bound is best determined experimentally. 
“What are some of the kernel functions that could be used?” Properties of the kinds of kernel functions 

that could be used to replace the dot product scenario just described have been studied. Three 
admissible kernel functions are                                                            
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        Polynomial kernel of degree h:    K(Xi, Xj) = (Xi · Xj + 1)h 

Gaussian radial basis function kernel:    K(X , X ) = e− ǁXi −Xj ǁ
2/2σ 2

 

         Sigmoid kernel:    K(Xi, Xj) = tanh(κXi · Xj −  δ) 

Each of these results in a different nonlinear classifier in (the original) input space. Neural 
network aficionados will be interested to note that the resulting decision hyper- planes found 
for nonlinear SVMs are the same type as those found by other well-known neural network 
classifiers. For instance, an SVM with a Gaussian radial basis func- tion (RBF) gives the 
same decision hyper plane as a type of neural network known as a radial basis function 
network. An SVM with a sigmoid kernel is equivalent to a simple two-layer neural network 
known as a multilayer perceptron (with no hidden layers). 
There are no golden rules for determining which admissible kernel will result in the most 
accurate SVM. In practice, the kernel chosen does not generally make a large difference in 
resulting accuracy. SVM training always finds a global solution, unlike neural networks, 
such as backpropagation, where many local minima usually exist (Section 9.2.3). 
So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) clas- 
sification. SVM classifiers can be combined for the multiclass case. See Section 9.7.1 for 
some strategies, such as training one classifier per class and the use of error-correcting 
codes. 
A major research goal regarding SVMs is to improve the speed in training and testing so that 
SVMs may become a more feasible option for very large data sets (e.g., millions of support 
vectors). Other issues include determining the best kernel for a given data set and finding more 
efficient methods for the multiclass case. 
 

 Lazy Learners (or Learning from Your Neighbors) 
The classification methods discussed so far in this book—decision tree induction, 
Bayesian classification, rule-based classification, classification by backpropagation, 
support vector machines, and classification based on association rule mining—are 
all examples of eager learners. Eager learners, when given a set of training tuples, 
will construct a generalization (i.e., classification) model before receiving new (e.g., 
test) tuples to classify. We can think of the learned model as being ready and eager to 
classify previously unseen tuples. 
Imagine a contrasting lazy approach, in which the learner instead waits until the last minute 
before doing any model construction to classify a given test tuple. That is, when given a 
training tuple, a lazy learner simply stores it (or does only a little minor processing) and 
waits until it is given a test tuple. Only when it sees the test tuple does it perform 
generalization to classify the tuple based on its similarity to the stored train- ing tuples. 
Unlike eager learning methods, lazy learners do less work when a training tuple is 
presented and more work when making a classification or numeric prediction. Because lazy 
learners store the training tuples or “instances,” they are also referred to as instance-based 

learners, even though all learning is essentially based on instances. 
When making a classification or numeric prediction, lazy learners can be computationally www.jntufastupdates.com 39



 

 

expensive. They require efficient storage techniques and are well suited to implementation 
on parallel hardware. They offer little explanation or insight into the data’s structure. Lazy 
learners, however, naturally support incremental learning. They are able to model complex 
decision spaces having hyperpolygonal shapes that may not be as easily describable by 
other learning algorithms (such as hyperrectangular shapes modeled by decision trees). In 
this section, we look at two examples of lazy learners: k-nearest-neighbor classifiers (Section 
9.5.1) and case-based reasoning classifiers (Section 9.5.2). 

 
k-Nearest-Neighbor Classifiers 

The k-nearest-neighbor method was first described in the early 1950s. The method is labor 
intensive when given large training sets, and did not gain popularity until the 1960s when 
increased computing power became available. It has since been widely used in the area of 
pattern recognition. 
Nearest-neighbor classifiers are based on learning by analogy, that is, by comparing a 
given test tuple with training tuples that are similar to it. The training tuples are described 
by n attributes. Each tuple represents a point in an n-dimensional space. In this way, all the 
training tuples are stored in an n-dimensional pattern space. When given an unknown tuple, a k-

nearest-neighbor classifier searches the pattern space for the k training tuples that are closest 
to the unknown tuple. These k training tuples are the k “nearest neighbors” of the unknown 
tuple. 
“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The 

Euclidean distance between two points or tuples, say, X1 = (x11, x12, . . . , x1n) and X2 = (x21, 

x22, . . . , x2n), is 

 

 
 

In other words, for each numeric attribute, we take the difference between the corre- 
sponding values of that attribute in tuple X1 and in tuple X2, square this difference, 
and accumulate it. The square root is taken of the total accumulated distance count. 
Typically, we normalize the values of each attribute before using Eq. (9.22). This 
helps prevent attributes with initially large ranges (e.g., income) from outweighing 
attributes with initially smaller ranges (e.g., binary attributes). Min-max 
normalization, for exam- ple, can be used to transform a value v of a numeric attribute A 

to v 
r in the range [0, 1] by computing 
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where minA and maxA are the minimum and maximum values of attribute A. Chapter 
3 describes other methods for data normalization as a form of data transformation. 
For k-nearest-neighbor classification, the unknown tuple is assigned the most com- 
mon class among its k-nearest neighbors. When k 1, the unknown tuple is assigned 
the class of the training tuple that is closest to it in pattern space. Nearest-neighbor clas- 
sifiers can also be used for numeric prediction, that is, to return a real-valued prediction 
for a given unknown tuple. In this case, the classifier returns the average value of the 
real-valued labels associated with the k-nearest neighbors of the unknown tuple. 
“But how can distance be computed for attributes that are not numeric, but nominal (or 
categorical) such as color?” The previous discussion assumes that the attributes used to 
describe the tuples are all numeric. For nominal attributes, a simple method is to 
compare the corresponding value of the attribute in tuple X1 with that in tuple X2. If the 
two are identical (e.g., tuples X1 and X2 both have the color blue), then the difference between 
the two is taken as 0. If the two are different (e.g., tuple X1 is blue but tuple X2 is red), then 
the difference is considered to be 1. Other methods may incorporate more sophisticated 
schemes for differential grading (e.g., where a larger difference score is assigned, say, for 
blue and white than for blue and black). 
“What about missing values?” In general, if the value of a given attribute A is missing in 
tuple X1 and/or in tuple X2, we assume the maximum possible difference. Suppose that 
each of the attributes has been mapped to the range [0, 1]. For nominal attributes, we take 
the difference value to be 1 if either one or both of the corresponding values of A are missing.  

 
“How can I determine a good value for k, the number of neighbors?” This can be deter- 
mined experimentally. Starting with k 1, we use a test set to estimate the error rate of the 
classifier. This process can be repeated each time by incrementing k to allow for one more 
neighbor. The k value that gives the minimum error rate may be selected. In general, the 
larger the number of training tuples, the larger the value of k will be (so that 
classification and numeric prediction decisions can be based on a larger portion of the 

stored tuples). As the number of training tuples approaches infinity and k = 1, the error 

rate can be no worse than twice the Bayes error rate (the latter being the theoretical 
minimum). If k also approaches infinity, the error rate approaches the Bayes error rate. 
Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign 
equal weight to each attribute. They therefore can suffer from poor accuracy when given 
noisy or irrelevant attributes. The method, however, has been modified to incorporate www.jntufastupdates.com 41
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attribute weighting and the pruning of noisy data tuples. The choice of a distance metric can 
be critical. The Manhattan (city block) distance (Section 2.4.4), or other distance 
measurements, may also be used. 
Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D is a 
training database of D tuples and k 1, then O( D ) comparisons are required to classify a 
given test tuple. By presorting and arranging the stored tuples into search trees, the number of 
comparisons can be reduced to O(log( D ). Parallel implementation can reduce the running 
time to a constant, that is, O(1), which is independent of D . 
Other techniques to speed up classification time include the use of partial distance 
calculations and editing the stored tuples. In the partial distance method, we compute the 
distance based on a subset of the n attributes. If this distance exceeds a threshold, then 
further computation for the given stored tuple is halted, and the process moves on to the next 
stored tuple. The editing method removes training tuples that prove useless. This method is 
also referred to as pruning or condensing because it reduces the total number of tuples 
stored. 
 
Case-Based Reasoning 

Case-based reasoning (CBR) classifiers use a database of problem solutions to solve new 
problems. Unlike nearest-neighbor classifiers, which store training tuples as points in 
Euclidean space, CBR stores the tuples or “cases” for problem solving as complex 
symbolic descriptions. Business applications of CBR include problem resolution for 
customer service help desks, where cases describe product-related diagnostic problems. CBR 
has also been applied to areas such as engineering and law, where cases are either technical 
designs or legal rulings, respectively. Medical education is another area for CBR, where 
patient case histories and treatments are used to help diagnose and treat new patients. 
When given a new case to classify, a case-based reasoner will first check if an identical 
training case exists. If one is found, then the accompanying solution to that case is 
returned. If no identical case is found, then the case-based reasoner will search for training 
cases having components that are similar to those of the new case. Conceptually, these 
training cases may be considered as neighbors of the new case. If cases are represented as 
graphs, this involves searching for subgraphs that are similar to sub- graphs within the new 
case. The case-based reasoner tries to combine the solutions of the neighboring training 
cases to propose a solution for the new case. If incompatibilities arise with the individual 
solutions, then backtracking to search for other solutions may be necessary. The case-based 
reasoner may employ background knowledge and problem-solving strategies to propose a 
feasible combined solution. 
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Challenges in case-based reasoning include finding a good similarity metric (e.g., for 
matching subgraphs) and suitable methods for combining solutions. Other 
challenges include the selection of salient features for indexing training cases and the 
development of efficient indexing techniques. A trade-off between accuracy and 
efficiency evolves as the number of stored cases becomes very large. As this number 
increases, the case-based reasoner becomes more intelligent. After a certain point, 
however, the system’s efficiency will suffer as the time required to search for and process 
relevant cases increases. As with nearest-neighbor classifiers, one solution is to edit the 
training database. Cases that are redundant or that have not proved useful may be 
discarded for the sake of improved performance. These decisions, however, are not 
clear-cut and their automation remains an active area of research. 
 

 Other Classification Methods 
In this section, we give a brief description of several other classification methods, includ- 
ing genetic algorithms (Section 9.6.1), rough set approach (Section 9.6.2), and fuzzy 
set approaches (Section 9.6.3). In general, these methods are less commonly used for 
classification in commercial data mining systems than the methods described earlier 
in this book. However, these methods show their strength in certain applications, and 
hence it is worthwhile to include them here. 

 
Genetic Algorithms 

Genetic algorithms attempt to incorporate ideas of natural evolution. In general, 
genetic learning starts as follows. An initial population is created consisting of randomly 
generated rules. Each rule can be represented by a string of bits. As a simple 
example, suppose that samples in a given training set are described by two Boolean 
attributes, A1 and A2, and that there are two classes, C1 and C2. The rule “IF A1 AND 
NOT A2 THEN C2” can be encoded as the bit string “100,” where the two leftmost bits 
represent attributes A1 and A2, respectively, and the rightmost bit represents the class. 
Similarly, the rule “IF NOT A1 AND NOT A2 THEN C1” can be encoded as “001.” If 
an attribute has k values, where k > 2, then k bits may be used to encode the 
attribute’s values. Classes can be encoded in a similar fashion. 
Based on the notion of survival of the fittest, a new population is formed to consist of 
the fittest rules in the current population, as well as offspring of these rules. Typically, 
the fitness of a rule is assessed by its classification accuracy on a set of training 
samples. Offspring are created by applying genetic operators such as crossover and 
mutation. 
In crossover, substrings from pairs of rules are swapped to form new pairs of rules. In 
mutation, randomly selected bits in a rule’s string are inverted. 
The process of generating new populations based on prior populations of rules con- 
tinues until a population, P, evolves where each rule in P satisfies a prespecified 
fitness threshold. 
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Genetic algorithms are easily parallelizable and have been used for classification as well as 
other optimization problems. In data mining, they may be used to evaluate the fitness of 
other algorithms. 
 

Rough Set Approach 

Rough set theory can be used for classification to discover structural relationships within 
imprecise or noisy data. It applies to discrete-valued attributes. Continuous-valued 
attributes must therefore be discretized before its use. 
Rough set theory is based on the establishment of equivalence classes within the given 
training data. All the data tuples forming an equivalence class are indiscernible, that is, the 
samples are identical with respect to the attributes describing the data. Given real-world data, it 
is common that some classes cannot be distinguished in terms of the available attributes. 
Rough sets can be used to approximately or “roughly” define such classes. A rough set 
definition for a given class, C, is approximated by two sets—a lower approximation of C 
and an upper approximation of C. The lower approximation of C consists of all the data 
tuples that, based on the knowledge of the attributes, are certain to belong to C without 
ambiguity. The upper approximation of C consists of all the tuples that, based on the 
knowledge of the attributes, cannot be described as not belonging to 
C. The lower and upper approximations for a class C are shown in Figure 9.14, where each 
rectangular region represents an equivalence class. Decision rules can be generated for each 
class. Typically, a decision table is used to represent the rules. 
Rough sets can also be used for attribute subset selection (or feature reduction, where attributes 
that do not contribute to the classification of the given training data can be identified and 
removed) and relevance analysis (where the contribution or significance of each attribute is 
assessed with respect to the classification task). The problem of find- ing the minimal subsets 
(reducts) of attributes that can describe all the concepts in the given data set is NP-hard. 
However, algorithms to reduce the computation intensity have been proposed. In one method, 
for example, a discernibility matrix is used that stores the differences between attribute 
values for each pair of data tuples. Rather than 
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Figure 9.14 A rough set approximation of class C’s set of tuples using lower and upper approximation sets of C. 

The rectangular regions represent equivalence classes. 

searching on the entire training set, the matrix is instead searched to detect redundant 
attributes. 
 

Fuzzy Set Approaches 

Rule-based systems for classification have the disadvantage that they involve sharp cut- 
offs for continuous attributes. For example, consider the following rule for customer 
credit application approval. The rule essentially says that applications for customers 
who have had a job for two or more years and who have a high income (i.e., of at 
least 
$50,000) are approved: 

IF (years employed ≥ 2) AND (income ≥ 50,000) THEN credit = approved.  (9.24) 

By Rule (9.24), a customer who has had a job for at least two years will receive 
credit if her income is, say, $50,000, but not if it is $49,000. Such harsh thresholding 
may seem unfair. 
Instead, we can discretize income into categories (e.g., low income, medium income, high 
income ) and then apply fuzzy logic to allow “fuzzy” thresholds or boundaries to be 
defined for each category (Figure 9.15). Rather than having a precise cutoff between 
categories, fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of 
membership that a certain value has in a given category. Each category then represents a 
fuzzy set. Hence, with fuzzy logic, we can capture the notion that an income of 
$49,000 is, more or less, high, although not as high as an income of $50,000. Fuzzy 
logic systems typically provide graphical tools to assist users in converting attribute 
values to fuzzy truth values. 
Fuzzy set theory is also known as possibility theory. It was proposed by Lotfi Zadeh 
in 1965 as an alternative to traditional two-value logic and probability theory. It lets 
us work at a high abstraction level and offers a means for dealing with imprecise 
data 
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Figure 9.15 Fuzzy truth values for income, representing the degree of membership of income values with respect to the 

categories {low, medium, high}. Each category represents a fuzzy set. Note that a given income value, x, can have 

membership in more than one fuzzy set. The membership values of x in each fuzzy set do not have to total to 1. 

 

measurement. Most important, fuzzy set theory allows us to deal with vague or inexact facts. 
For example, being a member of a set of high incomes is inexact (e.g., if $50,000 is high, 
then what about $49,000? or $48,000?) Unlike the notion of traditional “crisp” sets where 
an element belongs to either a set S or its complement, in fuzzy set theory, elements can 
belong to more than one fuzzy set. For example, the income value $49,000 belongs to both the 
medium and high fuzzy sets, but to differing degrees. Using fuzzy set notation and following 
Figure 9.15, this can be shown as 

mmedium income($49,000) = 0.15 and mhigh income($49,000) = 0.96, 

where m denotes the membership function, that is operating on the fuzzy sets of medium 
income and high income, respectively. In fuzzy set theory, membership val- ues for a given 
element, x (e.g., for $49,000), do not have to sum to 1. This is unlike traditional probability 
theory, which is constrained by a summation axiom. 
Fuzzy set theory is useful for data mining systems performing rule-based classification. It 
provides operations for combining fuzzy measurements. Suppose that in addition to the 
fuzzy sets for income, we defined the fuzzy sets junior employee and senior employee for 
the attribute years employed. Suppose also that we have a rule that, say, tests high income and 
senior employee in the rule antecedent (IF part) for a given employee, x. If these two fuzzy 
measures are ANDed together, the minimum of their measure is taken as the measure of 
the rule. In other words, 

m(high income AND senior employee)(x) = min(mhigh income(x), msenior employee(x)). 

This is akin to saying that a chain is as strong as its weakest link. If the two measures are 
ORed, the maximum of their measure is taken as the measure of the rule. In other words, 

m(high income OR senior employee)(x) = max(mhigh income(x), msenior employee(x)). www.jntufastupdates.com 46



 

 

Intuitively, this is like saying that a rope is as strong as its strongest strand. 
Given a tuple to classify, more than one fuzzy rule may apply. Each applicable rule 
contributes a vote for membership in the categories. Typically, the truth values for each 
predicted category are summed, and these sums are combined. Several procedures exist for 
translating the resulting fuzzy output into a defuzzified or crisp value that is returned by the 
system. 
Fuzzy logic systems have been used in numerous areas for classification, including market 
research, finance, health care, and environmental engineering. 

 

 Model Evaluation and Selection 
Now that you may have built a classification model, there may be many questions going 
through your mind. For example, suppose you used data from previous sales to build a 
classifier to predict customer purchasing behavior. You would like an estimate of how 
accurately the classifier can predict the purchasing behavior of future customers, that is, 
future customer data on which the classifier has not been trained. You may even have tried 
different methods to build more than one classifier and now wish to compare their accuracy. 
But what is accuracy? How can we estimate it? Are some measures of a classifier’s accuracy 
more appropriate than others? How can we obtain a reliable accuracy estimate? These 
questions are addressed in this section. 
Section 8.5.1 describes various evaluation metrics for the predictive accuracy of a 
classifier. Holdout and random subsampling (Section 8.5.2), cross-validation (Section 8.5.3), 
and bootstrap methods (Section 8.5.4) are common techniques for assessing accuracy, based 
on randomly sampled partitions of the given data. What if we have more than one classifier 
and want to choose the “best” one? This is referred to as model selection (i.e., choosing one 
classifier over another). The last two sections address this issue. Section 8.5.5 discusses how 
to use tests of statistical significance to assess whether the difference in accuracy between 
two classifiers is due to chance. Section 8.5.6 presents how to compare classifiers based on 
cost–benefit and receiver operating characteristic (ROC) curves. 

 
Metrics for Evaluating Classifier Performance 

This section presents measures for assessing how good or how “accurate” your classifier is at 
predicting the class label of tuples. We will consider the case of where the class tuples are more or 
less evenly distributed, as well as the case where classes are unbalanced (e.g., where an important 
class of interest is rare such as in medical tests). The classifier evaluation measures presented 
in this section are summarized in Figure 8.13. They include accuracy (also known as 
recognition rate), sensitivity (or recall), specificity, precision, F1, and Fβ . Note that although 
accuracy is a specific measure, the word “accuracy” is also used as a general term to refer to a 
classifier’s predictive abilities. 
Using training data to derive a classifier and then estimate the accuracy of the resulting 
learned model can result in misleading overoptimistic estimates due to over- specialization 
of the learning algorithm to the data. (We will say more on this in a moment!) Instead, it is 
better to measure the classifier’s accuracy on a test set consisting of class-labeled tuples that 
were not used to train the model. www.jntufastupdates.com 47
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Before we discuss the various measures, we need to become comfortable with some 
terminology. Recall that we can talk in terms of positive tuples (tuples of the main class of 
interest) and negative tuples (all other tuples).6 Given two classes, for example, the positive 

tuples may be buys computer = yes while the negative tuples are 

 

Figure 8.13 Evaluation measures. Note that some measures are known by more than one name. TP, TN , FP, P, 

N refer to the number of true positive, true negative, false positive, positive, and negative samples, respectively (see 

text). 

 

buys computer no. Suppose we use our classifier on a test set of labeled tuples. P is the number 
of positive tuples and N is the number of negative tuples. For each tuple, we compare the 
classifier’s class label prediction with the tuple’s known class label. 
There are four additional terms we need to know that are the “building blocks” used in 
computing many evaluation measures. Understanding them will make it easy to grasp the 
meaning of the various measures. 
 

True positives (TP): These refer to the positive tuples that were correctly labeled by the 
classifier. Let TP be the number of true positives. 

True negatives (TN): These are the negative tuples that were correctly labeled by the classifier. 
Let TN be the number of true negatives. 

False positives (FP): These are the negative tuples that were incorrectly labeled as positive 
(e.g., tuples of class buys computer = no for which the classifier predicted buys computer = yes). 
Let FP be the number of false positives. 
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False negatives (FN): These are the positive tuples that were mislabeled as neg- ative (e.g., 
tuples of class buys computer = yes for which the classifier predicted buys computer = no). Let 
FN be the number of false negatives. 

These terms are summarized in the confusion matrix of Figure 8.14. 

The confusion matrix is a useful tool for analyzing how well your classifier can recognize 
tuples of different classes. TP and TN tell us when the classifier is getting things right, 
while FP and FN tell us when the classifier is getting things wrong (i.e., 
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Figure 8.14 Confusion matrix, shown with totals for positive and negative tuples. 
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Figure 8.15 Confusion matrix for the classes buys computer = yes and buys computer = no, where an entry in row i 

and column j shows the number of tuples of class i that were labeled by the classifier as class j. Ideally, the 

nondiagonal entries should be zero or close to zero. 

mislabeling). Given m classes (where m ≥ 2), a confusion matrix is a table of at least size m 

by m. An entry, CMi,j in the first m rows and m columns indicates the number of tuples of 
class i that were labeled by the classifier as class j. For a classifier to have good accuracy, 
ideally most of the tuples would be represented along the diagonal of the confusion matrix, 
from entry CM1,1 to entry CMm,m, with the rest of the entries being zero or close to zero. 
That is, ideally, FP and FN are around zero. 
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The table may have additional rows or columns to provide totals. For example, in the 

confusion matrix of Figure 8.14, P and N are shown. In addition, P
r is the number of tuples 

that were labeled as positive (TP  FP) and N 
r is the number of tuples that were labeled as 

negative (TN    FN). The total number of tuples is TP    TN    FP     TN , or P N , or P
r N 

r
. 

Note that although the confusion matrix shown is for a binary classification problem, 
confusion matrices can be easily drawn for multiple classes in a similar manner. 
Now let’s look at the evaluation measures, starting with accuracy. The accuracy of a 
classifier on a given test set is the percentage of test set tuples that are correctly classified by the 
classifier. That is, 

 

In the pattern recognition literature, this is also referred to as the overall recognition rate of 
the classifier, that is, it reflects how well the classifier recognizes tuples of the various classes. 

An example of a confusion matrix for the two classes buys computer = yes (positive) and buys 

computer = no (negative) is given in Figure 8.15. Totals are shown, 
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as well as the recognition rates per class and overall. By glancing at a confusion matrix, it is easy 
to see if the corresponding classifier is confusing two classes. 

For example, we see that it mislabeled 412 “no” tuples as “yes.” Accuracy is most 
effective when the class distribution is relatively balanced. 
We can also speak of the error rate or misclassification rate of a classifier, M, which is simply 1 accuracy(M), 
where accuracy(M) is the accuracy of M. This also can be computed as 

 

If we were to use the training set (instead of a test set) to estimate the error rate of a model, 
this quantity is known as the resubstitution error. This error estimate is optimistic of the 
true error rate (and similarly, the corresponding accuracy estimate is optimistic) because the 
model is not tested on any samples that it has not already seen. 
We now consider the class imbalance problem, where the main class of interest is rare. 
That is, the data set distribution reflects a significant majority of the negative class and a 
minority positive class. For example, in fraud detection applications, the class of interest (or 
positive class) is “fraud,” which occurs much less frequently than the negative “nonfraudulant” 
class. In medical data, there may be a rare class, such as “cancer.” Suppose that you have 
trained a classifier to classify medical data tuples, where the class label attribute is “cancer” 
and the possible class values are “yes” and “no.” An accuracy rate of, say, 97% may make 
the classifier seem quite accurate, but what if only, say, 3% of the training tuples are 
actually cancer? Clearly, an accuracy rate of 97% may not be acceptable—the classifier could 
be correctly labeling only the noncancer tuples, for instance, and misclassifying all the cancer 
tuples. Instead, we need other measures, which access how well the classifier can recognize 
the positive tuples (cancer yes) and how well it can recognize the negative tuples (cancer 
no). 
The sensitivity and specificity measures can be used, respectively, for this purpose. 
Sensitivity is also referred to as the true positive (recognition) rate (i.e., the proportion of 
positive tuples that are correctly identified), while specificity is the true negative rate (i.e., the 
proportion of negative tuples that are correctly identified). These measures are defined as 

Example 8.9 Sensitivity and specificity. Figure 8.16 shows a confusion matrix for medical data where the 
class values are yes and no for a class label attribute, cancer. The sensitivity www.jntufastupdates.com 51



 

 

 
 

 

The precision and recall measures are also widely used in classification. Precision can be 
thought of as a measure of exactness (i.e., what percentage of tuples labeled as positive are 
actually such), whereas recall is a measure of completeness (what percentage of positive tuples 
are labeled as such). If recall seems familiar, that’s because it is the same as sensitivity (or the 
true positive rate). These measures can be computed as 

 

A perfect precision score of 1.0 for a class C means that every tuple that the classifier labeled as 
belonging to class C does indeed belong to class C. However, it does not tell us anything 
about the number of class C tuples that the classifier mislabeled. A perfect  recall score of 1.0 
for C means that every item from class C was labeled as such, but it does not tell us how 
many other tuples were incorrectly labeled as belonging to class C. There tends to be an 
inverse relationship between precision and recall, where it is possible to increase one at the cost 
of reducing the other. For example, our medical classifier may achieve high precision by 
labeling all cancer tuples that present a certain way as cancer, but may have low recall if it 
mislabels many other instances of cancer tuples. Precision and recall scores are typically used 
together, where precision values are compared for a fixed value of recall, or vice versa. For 
example, we may compare precision values at a recall value of, say, 0.75. 
An alternative way to use precision and recall is to combine them into a single mea- sure. 
This is the approach of the F measure (also known as the F1 score or F-score) and www.jntufastupdates.com 52



 

 

the Fβ measure. They are defined as 

 
where β is a non-negative real number. The F measure is the harmonic mean of precision 

and recall (the proof of which is left as an exercise). It gives equal weight to precision and 
recall. The Fβ measure is a weighted measure of precision and recall. It assigns β times as 
much weight to recall as to precision. Commonly used Fβ measures are F2 (which weights 
recall twice as much as precision) and F0.5 (which weights precision twice as much as 
recall). 
“Are there other cases where accuracy may not be appropriate?” In classification problems, it 
is commonly assumed that all tuples are uniquely classifiable, that is, that each training tuple 
can belong to only one class. Yet, owing to the wide diversity of data in large databases, it is 
not always reasonable to assume that all tuples are uniquely classifiable. Rather, it is more 
probable to assume that each tuple may belong to more than one class. How then can the 
accuracy of classifiers on large databases be measured? The accuracy measure is not 
appropriate, because it does not take into account the possibility of tuples belonging to more 
than one class. 
Rather than returning a class label, it is useful to return a probability class distribution. 
Accuracy measures may then use a second guess heuristic, whereby a class prediction is 
judged as correct if it agrees with the first or second most probable class. Although this does 
take into consideration, to some degree, the nonunique classification of tuples, it is not a 
complete solution. 
In addition to accuracy-based measures, classifiers can also be compared with respect to the 
following additional aspects: 
 

Speed: This refers to the computational costs involved in generating and using the given 
classifier. 

Robustness: This is the ability of the classifier to make correct predictions given noisy data or 
data with missing values. Robustness is typically assessed with a series of synthetic data sets 
representing increasing degrees of noise and missing values. 

Scalability: This refers to the ability to construct the classifier efficiently given large 
amounts of data. Scalability is typically assessed with a series of data sets of increasing size. 

Interpretability: This refers to the level of understanding and insight that is provided by the 
classifier or predictor. Interpretability is subjective and therefore more difficult to assess. 
Decision trees and classification rules can be easy to interpret, yet their interpretability may 
diminish the more they become complex. We discuss some work in this area, such as the 
extraction of classification rules from a “black box” neural network classifier called 
backpropagation, in Chapter 9. www.jntufastupdates.com 53



 

 

 

 
Figure 8.17 Estimating accuracy with the holdout method. 

 

In summary, we have presented several evaluation measures. The accuracy measure works best 
when the data classes are fairly evenly distributed. Other measures, such as sensitivity (or 
recall), specificity, precision, F, and Fβ , are better suited to the class imbalance problem, where 
the main class of interest is rare. The remaining subsections focus on obtaining reliable 
classifier accuracy estimates. 

 
Holdout Method and Random Subsampling 

The holdout method is what we have alluded to so far in our discussions about accuracy. In this 
method, the given data are randomly partitioned into two independent sets, a training set 
and a test set. Typically, two-thirds of the data are allocated to the training set, and the 
remaining one-third is allocated to the test set. The training set is used to derive the model. 
The model’s accuracy is then estimated with the test set (Figure 8.17). The estimate is 
pessimistic because only a portion of the initial data is used to derive the model. 
Random subsampling is a variation of the holdout method in which the holdout method is 
repeated k times. The overall accuracy estimate is taken as the average of the accuracies 
obtained from each iteration. 
 

Cross-Validation 

In k-fold cross-validation, the initial data are randomly partitioned into k mutually 
exclusive subsets or “folds,” D1, D2, . . . , Dk, each of approximately equal size. Training and 
testing is performed k times. In iteration i, partition Di is reserved as the test set, and the 
remaining partitions are collectively used to train the model. That is, in the first iteration, 
subsets D2, . . . , Dk collectively serve as the training set to obtain a first model, which is tested 
on D1; the second iteration is trained on subsets D1, D3, . . . , Dk and tested on D2; and so on. 
Unlike the holdout and random subsampling methods, here each sample is used the same 
number of times for training and once for testing. For classification, the accuracy estimate is the 
overall number of correct classifications from the k iterations, divided by the total number of 
tuples in the initial data. 
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Leave-one-out is a special case of k-fold cross-validation where k is set to the number of initial 
tuples. That is, only one sample is “left out” at a time for the test set. In stratified cross-

validation, the folds are stratified so that the class distribution of the tuples in each fold is 
approximately the same as that in the initial data. 
In general, stratified 10-fold cross-validation is recommended for estimating accuracy (even 
if computation power allows using more folds) due to its relatively low bias and variance. 
 

Bootstrap 

Unlike the accuracy estimation methods just mentioned, the bootstrap method samples the 
given training tuples uniformly with replacement. That is, each time a tuple is selected, it is 
equally likely to be selected again and re-added to the training set. For instance, imagine a 
machine that randomly selects tuples for our training set. In sampling with replacement, the 
machine is allowed to select the same tuple more than once. There are several bootstrap 
methods. A commonly used one is the .632 bootstrap, which works as follows. Suppose 
we are given a data set of d tuples. The data set is sampled d times, with replacement, 
resulting in a bootstrap sample or training set of d samples. It is very likely that some of the 
original data tuples will occur more than once in this sample. The data tuples that did not 
make it into the training set end up forming the test set. Suppose we were to try this out 
several times. As it turns out, on average, 63.2% of the original data tuples will end up in the 
bootstrap sample, and the remaining 36.8% will form the test set (hence, the name, .632 
bootstrap). 
“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of being 
selected, so the probability of not being chosen is (1 1/d). We have to select d times, so 
the probability that a tuple will not be chosen during this whole time is (1 1/d)d. If d is 

large, the probability approaches e
−1 0.368.7 Thus, 36.8% of tuples will not be selected for 

training and thereby end up in the test set, and the remaining 63.2% will form the training 
set. 
We can repeat the sampling procedure k times, where in each iteration, we use the current test 
set to obtain an accuracy estimate of the model obtained from the current bootstrap sample. 
The overall accuracy of the model, M, is then estimated as 

 
where Acc(Mi)test set is the accuracy of the model obtained with bootstrap sample i when it is 
applied to test set i. Acc(Mi)train set is the accuracy of the model obtained with boot- strap 
sample i when it is applied to the original set of data tuples. Bootstrapping tends to be overly 
optimistic. It works best with small data sets. 
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Model Selection Using Statistical Tests of Significance 

Suppose that we have generated two classification models, M1 and M2, from our data. We 
have performed 10-fold cross-validation to obtain a mean error rate8 for each. How can we 
determine which model is best? It may seem intuitive to select the model with the lowest error 
rate; however, the mean error rates are just estimates of error on the true population of future data 
cases. There can be considerable variance between error rates within any given 10-fold cross-
validation experiment. Although the mean error rates obtained for M1 and M2 may appear 
different, that difference may not be statistically significant. What if any difference between 
the two may just be attributed to chance? This section addresses these questions. 
To determine if there is any “real” difference in the mean error rates of two models, we need to employ a test of 
statistical significance. In addition, we want to obtain some confidence limits for our mean error rates so that 
we can make statements like, “Any observed mean will not vary by two standard errors 95% of the time for 
future samples” or “One model is better than the other by a margin of error of 4%.” 

What do we need to perform the statistical test? Suppose that for each model, we did 10-fold 
cross-validation, say, 10 times, each time using a different 10-fold data partitioning. Each 
partitioning is independently drawn. We can average the 10 error rates obtained each for M1 
and M2, respectively, to obtain the mean error rate for each model. For a given model, the 
individual error rates calculated in the cross-validations may be considered as different, 
independent samples from a probability distribution. In gen- eral, they follow a t-distribution 
with k 1 degrees of freedom where, here, k 10. (This distribution looks very similar to a 
normal, or Gaussian, distribution even though the functions defining the two are quite 
different. Both are unimodal, symmetric, and bell- shaped.) This allows us to do hypothesis 
testing where the significance test used is the t-test, or Student’s t-test. Our hypothesis is that 
the two models are the same, or in other words, that the difference in mean error rate between the 
two is zero. If we can reject this hypothesis (referred to as the null hypothesis), then we can 
conclude that the difference between the two models is statistically significant, in which case we 
can select the model with the lower error rate. 
In data mining practice, we may often employ a single test set, that is, the same test set can 
be used for both M1 and M2. In such cases, we do a pairwise comparison of the two models 
for each 10-fold cross-validation round. That is, for the ith round of 10-fold cross-validation, 
the same cross-validation partitioning is used to obtain an error rate for M1 and for M2. Let 
err(M1)i (or err(M2)i) be the error rate of model M1 (or M2) on round i. The error rates for 
M1 are averaged to obtain a mean error rate for M1, denoted err(M1). Similarly, we can 
obtain err(M2). The variance of the difference between the two models is denoted var(M1  
M2). The t -test computes the t-statistic with k 1 degrees of freedom for k samples. In our 
example we have k 10 since, here, the k samples are our error rates obtained from ten 10-
fold cross-validations for each 
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To determine whether M1 and M2 are significantly different, we compute t and select a 
significance level, sig. In practice, a significance level of 5% or 1% is typically used. We then 
consult a table for the t -distribution, available in standard textbooks on statistics. This table is 
usually shown arranged by degrees of freedom as rows and significance levels as columns. 
Suppose we want to ascertain whether the difference between M1 and M2 is significantly 
different for 95% of the population, that is, sig 5% or 0.05. We need to find the t -
distribution value corresponding to k 1 degrees of freedom (or 9 degrees of freedom for our 
example) from the table. However, because the t -distribution is symmetric, typically only the 
upper percentage points of the distribution are shown. Therefore, we look up the table value 
for z     sig/2, which in this case is 0.025, where z is also referred to as a confidence limit. 
If t > z or t < z, then our value of t lies in the rejection region, within the distribution’s 
tails. This means that we can reject the null hypothesis that the means of M1 and M2 are the 
same and conclude that there is a statistically significant difference between the two models. 
Otherwise, if we cannot reject the null hypothesis, we conclude that any difference between 
M1 and M2 can be attributed to chance. 
If two test sets are available instead of a single test set, then a nonpaired version of the 
t -test is used, where the variance between the means of the two models is estimated as 

 

and k1 and k2 are the number of cross-validation samples (in our case, 10-fold cross- 
validation rounds) used for M1 and M2, respectively. This is also known as the two sample 

t-test.9 When consulting the table of t -distribution, the number of degrees of freedom used is 
taken as the minimum number of degrees of the two models. 

 
Comparing Classifiers Based on Cost–Benefit  and ROC Curves 

The true positives, true negatives, false positives, and false negatives are also useful in 
assessing the costs and benefits (or risks and gains) associated with a classification 

 
9This test was used in sampling cubes for OLAP-based mining in Chapter 5. www.jntufastupdates.com 57



 

 

 
 

model. The cost associated with a false negative (such as incorrectly predicting that a 
cancerous patient is not cancerous) is far greater than those of a false positive (incorrectly 
yet conservatively labeling a noncancerous patient as cancerous). In such cases, we can 
outweigh one type of error over another by assigning a different cost to each. These costs 
may consider the danger to the patient, financial costs of resulting therapies, and other 
hospital costs. Similarly, the benefits associated with a true positive decision may be different 
than those of a true negative. Up to now, to compute classifier accuracy, we have assumed equal 
costs and essentially divided the sum of true positives and true negatives by the total number 
of test tuples. 
Alternatively, we can incorporate costs and benefits by instead computing the average cost (or 
benefit) per decision. Other applications involving cost–benefit analysis include loan 
application decisions and target marketing mailouts. For example, the cost of loan- ing to a 
defaulter greatly exceeds that of the lost business incurred by denying a loan to a nondefaulter. 
Similarly, in an application that tries to identify households that are likely to respond to 
mailouts of certain promotional material, the cost of mailouts to numerous households that 
do not respond may outweigh the cost of lost business from not mailing to households that 
would have responded. Other costs to consider in the overall analysis include the costs to 
collect the data and to develop the classification tool. 

Receiver operating characteristic curves are a useful visual tool for comparing two 
classification models. ROC curves come from signal detection theory that was deve- 
loped during World War II for the analysis of radar images. An ROC curve for a given 
model shows the trade-off between the true positive rate (TPR) and the false positive rate 
(FPR).10 Given a test set and a model, TPR is the proportion of positive (or “yes”) tuples 
that are correctly labeled by the model; FPR is the proportion of negative (or “no”) 
tuples that are mislabeled as positive. Given that TP, FP, P, and N are the number of 
true positive, false positive, positive, and negative tuples, respectively, from Section 8.5.1 

 

 
For a two-class problem, an ROC curve allows us to visualize the trade-off between the rate 
at which the model can accurately recognize positive cases versus the rate at which it 
mistakenly identifies negative cases as positive for different portions of the test set. Any 
increase in TPR occurs at the cost of an increase in FPR. The area under the ROC curve is a 
measure of the accuracy of the model. 
To plot an ROC curve for a given classification model, M, the model must be able to return a 
probability of the predicted class for each test tuple. With this information, we rank and sort 
the tuples so that the tuple that is most likely to belong to the positive or “yes” class appears at 
the top of the list, and the tuple that is least likely to belong to the positive class lands at the 
bottom of the list. Na¨ıve Bayesian (Section 8.3) and backpropagation (Section 9.2) classifiers 
return a class probability distribution for each prediction and, therefore, are appropriate, 
although other classifiers, such as decision tree classifiers (Section 8.2), can easily be modified www.jntufastupdates.com 58
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to return class probability predictions. Let the value that a probabilistic classifier returns for a 
given tuple X be f (X) [0, 1]. For a binary problem, a threshold t is typically selected so that 
tuples where f (X) t are considered positive and all the other tuples are considered negative. 
Note that the number of true positives and the number of false positives are both functions of t , 
so that we could write TP(t) and FP(t). Both are monotonic descending functions. 
We first describe the general idea behind plotting an ROC curve, and then follow up with an 
example. The vertical axis of an ROC curve represents TPR. The horizontal axis represents 
FPR. To plot an ROC curve for M, we begin as follows. Starting at the bottom left corner 
(where TPR FPR 0), we check the tuple’s actual class label at the top of the list. If we have 
a true positive (i.e., a positive tuple that was correctly classified), then TP and thus TPR 
increase. On the graph, we move up and plot a point. If, instead, the model classifies a 
negative tuple as positive, we have a false positive, and so both FP and FPR increase. On the 
graph, we move right and plot a point. This process is repeated for each of the test tuples in 
ranked order, each time moving up on the graph for a true positive or toward the right for a 
false positive. 
 

Example 8.11 Plotting an ROC curve. Figure 8.18 shows the probability value (column 

3) returned by a probabilistic classifier for each of the 10 tuples in a test set, sorted by 
decreasing probability order. Column 1 is merely a tuple identification number, which aids 
in our explanation. Column 2 is the actual class label of the tuple. There are five positive tuples 
and five negative tuples, thus P     5 and N     5. As we examine the known class label of 
each tuple, we can determine the values of the remaining columns, TP, FP, TN , FN , TPR, and 
FPR. We start with tuple 1, which has the highest probability score, and take that score as 
our threshold, that is, t 0.9. Thus, the classifier considers tuple 1 to be positive, and all the 
other tuples are considered negative. Since the actual class label of tuple 1 is positive, we 

have a true positive, hence TP = 1 and FP = 0. Among the 

 

Figure 8.18 Tuples sorted by decreasing score, where the score is the value returned by a probabilistic classifier. 
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Figure 8.19 ROC curve for the data in Figure 8.18. 

 

remaining nine tuples, which are all classified as negative, five actually are negative (thus, TN = 
5). The remaining four are all actually positive, thus, FN = 4. We can therefore compute 
TPR = TP = 1 = 0.2, while FPR = 0. Thus, we have the point (0.2, 0) for the 
P 5 

ROC curve. 
Next, threshold t is set to 0.8, the probability value for tuple 2, so this tuple is now also 
considered positive, while tuples 3 through 10 are considered negative. The actual class label 
of tuple 2 is positive, thus now TP 2. The rest of the row can easily be computed, resulting in 
the point (0.4, 0). Next, we examine the class label of tuple 3 and let t be 0.7, the probability 
value returned by the classifier for that tuple. Thus, tuple 3 is considered positive, yet its actual 
label is negative, and so it is a false positive. Thus, TP stays the same and FP increments so 
that FP 1. The rest of the values in the row can also be easily computed, yielding the point 
(0.4, 0.2). The resulting ROC graph, from examining each tuple, is the jagged line shown in 
Figure 8.19. 
There are many methods to obtain a curve out of these points, the most common of which is 
to use a convex hull. The plot also shows a diagonal line where for every true positive of 
such a model, we are just as likely to encounter a false positive. For comparison, this line 
represents random guessing. 

Figure 8.20 shows the ROC curves of two classification models. The diagonal line 
representing random guessing is also shown. Thus, the closer the ROC curve of a model is to 
the diagonal line, the less accurate the model. If the model is really good, initially we are 
more likely to encounter true positives as we move down the ranked list. Thus, 
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Figure 8.20 ROC curves of two classification models, M1 and M2. The diagonal shows where, for every true 

positive, we are equally likely to encounter a false positive. The closer an ROC curve is to the diagonal line, the less 

accurate the model is. Thus, M1 is more accurate here.  

the curve moves steeply up from zero. Later, as we start to encounter fewer and fewer true 
positives, and more and more false positives, the curve eases off and becomes more horizontal. 
To assess the accuracy of a model, we can measure the area under the curve. Several software 
packages are able to perform such calculation. The closer the area is to 0.5, the less accurate the 
corresponding model is. A model with perfect accuracy will have an area of 1.0. 
 

 Techniques to Improve Classification Accuracy 
In this section, you will learn some tricks for increasing classification accuracy. We focus on 
ensemble methods. An ensemble for classification is a composite model, made up of a 
combination of classifiers. The individual classifiers vote, and a class label prediction is 
returned by the ensemble based on the collection of votes. Ensembles tend to be more accurate 
than their component classifiers. We start off in Section 8.6.1 by introducing ensemble 
methods in general. Bagging (Section 8.6.2), boosting (Section 8.6.3), and random forests 
(Section 8.6.4) are popular ensemble methods. 
Traditional learning models assume that the data classes are well distributed. In many real-
world data domains, however, the data are class-imbalanced, where the main class of 
interest is represented by only a few tuples. This is known as the class 
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imbalance problem. We also study techniques for improving the classification accuracy of 
class-imbalanced data. These are presented in Section 8.6.5. 
 

Introducing Ensemble Methods 

Bagging, boosting , and random forests are examples of ensemble methods (Figure 8.21). An 
ensemble combines a series of k learned models (or base classifiers), M1, M2, . . . , Mk, with the 

aim of creating an improved composite classification model, M∗. A given data set, D, is used to 

create k training sets, D1, D2, . . . , Dk, where Di (1 ≤ i ≤ k −  1) is used to generate classifier Mi. 

Given a new data tuple to classify, the base classifiers each vote by returning a class 
prediction. The ensemble returns a class prediction based on the votes of the base 
classifiers. 

An ensemble tends to be more accurate than its base classifiers. For example, con- sider an 
ensemble that performs majority voting. That is, given a tuple X to classify, it collects the 
class label predictions returned from the base classifiers and outputs the class in majority. The 
base classifiers may make mistakes, but the ensemble will misclassify X only if over half of the 
base classifiers are in error. Ensembles yield better results when there is significant diversity 
among the models. That is, ideally, there is little correlation among classifiers. The classifiers 
should also perform better than random guessing. Each base classifier can be allocated to a 
different CPU and so ensemble methods are parallelizable. 
To help illustrate the power of an ensemble, consider a simple two-class problem described 
by two attributes, x1 and x2. The problem has a linear decision boundary. Figure 8.22(a) 
shows the decision boundary of a decision tree classifier on the problem. Figure 8.22(b) 
shows the decision boundary of an ensemble of decision tree classifiers on the same 
problem. Although the ensemble’s decision boundary is still piecewise constant, it has a 
finer resolution and is better than that of a single tree. 

 

 

Figure 8.21 Increasing classifier accuracy: Ensemble methods generate a set of classification models, M1, M2, . . . , 

Mk. Given a new data tuple to classify, each classifier “votes” for the class label of that tuple. The ensemble 

combines the votes to return a class prediction. 
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Figure 8.22 Decision boundary by (a) a single decision tree and (b) an ensemble of decision trees for a linearly 
separable problem (i.e., where the actual decision boundary is a straight line). The decision tree struggles with 
approximating a linear boundary. The decision boundary of the ensemble is closer to the true boundary. Source: From 

Seni and Elder [SE10]. Ⓧc  2010 Morgan & Claypool Publishers; used with permission. 

 Bagging 

We now take an intuitive look at how bagging works as a method of increasing accuracy. 
Suppose that you are a patient and would like to have a diagnosis made based on your 
symptoms. Instead of asking one doctor, you may choose to ask several. If a certain 
diagnosis occurs more than any other, you may choose this as the final or best diagnosis. That is, 
the final diagnosis is made based on a majority vote, where each doctor gets an equal vote. 
Now replace each doctor by a classifier, and you have the basic idea behind bagging. 
Intuitively, a majority vote made by a large group of doctors may be more reliable than a 
majority vote made by a small group. 

Given a set, D, of d tuples, bagging works as follows. For iteration i (i = 1, 2, . . . , k), a 

training set, Di, of d tuples is sampled with replacement from the original set of tuples, D. 
Note that the term bagging  stands for bootstrap aggregation. Each training set is a bootstrap 
sample, as described in Section 8.5.4. Because sampling with replacement is used, some of 
the original tuples of D may not be included in Di, whereas others may occur more than once. 
A classifier model, Mi, is learned for each training set, Di. To classify an unknown tuple, X, 
each classifier, Mi, returns its class prediction, which counts as one vote. The bagged 
classifier, M , counts the votes and assigns the class with the most votes to X. Bagging can be 
applied to the prediction of continuous values by taking the average value of each prediction 
for a given test tuple. The algorithm is summarized in Figure 8.23. 
The bagged classifier often has significantly greater accuracy than a single classifier derived 
from D, the original training data. It will not be considerably worse and is more 
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Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models for a learning scheme where 
each model gives an equally weighted prediction. 

Input: 

D, a set of d training tuples; 

k, the number of models in the ensemble; 

a classification learning scheme (decision tree algorithm, na¨ıve Bayesian, etc.). 

Output: The ensemble—a composite model, M∗. 

Method: 

(1) for i = 1 to k do // create k models: 

(2) create bootstrap sample, Di, by sampling D with replacement; 

(3) use Di and the learning scheme to derive a model, Mi; 

(4) endfor 

 

To use the ensemble to classify a tuple, X: 

 

let each of the k models classify X and return the majority vote; 

Figure 8.23 Bagging. 

robust to the effects of noisy data and overfitting. The increased accuracy occurs because the 
composite model reduces the variance of the individual classifiers. 
 

 Boosting and AdaBoost 

We now look at the ensemble method of boosting. As in the previous section, suppose that as a 
patient, you have certain symptoms. Instead of consulting one doctor, you choose to consult 
several. Suppose you assign weights to the value or worth of each doc- tor’s diagnosis, based on 
the accuracies of previous diagnoses they have made. The final diagnosis is then a combination 
of the weighted diagnoses. This is the essence behind boosting. 
In boosting, weights are also assigned to each training tuple. A series of k classifiers is 
iteratively learned. After a classifier, Mi, is learned, the weights are updated to allow the 

subsequent classifier, Mi+1, to “pay more attention” to the training tuples that were mis- 

classified by Mi. The final boosted classifier, M , combines the votes of each individual 
classifier, where the weight of each classifier’s vote is a function of its accuracy. 
AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. Suppose we want 
to boost the accuracy of a learning method. We are given D, a data set of d class-labeled 
tuples, (X1, y1), (X2, y2), . . . , (Xd, yd), where yi is the class label of tuple Xi. Initially, 
AdaBoost assigns each training tuple an equal weight of 1/d. Generating k classifiers for 
the ensemble requires k rounds through the rest of the algorithm. In round i, the tuples from 
D are sampled to form a training set, Di, of size d. Sampling 

www.jntufastupdates.com 64



 

 

− 

 
 

with replacement is used—the same tuple may be selected more than once. Each tuple’s chance 
of being selected is based on its weight. A classifier model, Mi, is derived from the training 
tuples of Di. Its error is then calculated using Di as a test set. The weights of the training 
tuples are then adjusted according to how they were classified. 
If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly 
classified, its weight is decreased. A tuple’s weight reflects how difficult it is to classify— the 
higher the weight, the more often it has been misclassified. These weights will be used to 
generate the training samples for the classifier of the next round. The basic idea is that when we 
build a classifier, we want it to focus more on the misclassified tuples of the previous round. 
Some classifiers may be better at classifying some “difficult” tuples than others. In this way, 
we build a series of classifiers that complement each other. The algorithm is summarized in 
Figure 8.24. 
Now, let’s look at some of the math that’s involved in the algorithm. To compute the error 
rate of model Mi, we sum the weights of each of the tuples in Di that Mi misclassified. That 
is, 
 

       

where err(Xj) is the misclassification error of tuple Xj: If the tuple was misclassified, then 
err(Xj) is 1; otherwise, it is 0. If the performance of classifier Mi is so poor that its error 
exceeds 0.5, then we abandon it. Instead, we try again by generating a new Di training set, 
from which we derive a new Mi. 
The error rate of Mi affects how the weights of the training tuples are updated. If a tuple 
in round i was correctly classified, its weight is multiplied by error(Mi)/ (1 error(Mi)). 
Once the weights of all the correctly classified tuples are updated, the weights for all tuples 
(including the misclassified ones) are normalized so that their sum remains the same as it was 
before. To normalize a weight, we multiply it by the sum of the old weights, divided by the 
sum of the new weights. As a result, the weights of mis- classified tuples are increased and the 
weights of correctly classified tuples are decreased, as described before. 
“Once boosting is complete, how is the ensemble of classifiers used to predict the class label of a tuple, X?” Unlike 
bagging, where each classifier was assigned an equal vote, boosting assigns a weight to each classifier’s vote, based 
on how well the classifier performed. The lower a classifier’s error rate, the more accurate it is, and therefore, the 
higher its weight for voting should be. The weight of classifier Mi’s vote is 

 

For each class, c, we sum the weights of each classifier that assigned class c to X. The class with 
the highest sum is the “winner” and is returned as the class prediction for tuple X. “How does 

boosting compare with bagging?” Because of the way boosting focuses on the misclassified 
tuples, it risks overfitting the resulting composite model to such data. www.jntufastupdates.com 65
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Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one gives a weighted vote. 

Input: 

D, a set of d class-labeled training tuples; 

k, the number of rounds (one classifier is generated per round); a classification learning scheme. 

Output: A composite model. 

Method: 

(1) initialize the weight of each tuple in D to 1/d; 

(2) for i = 1 to k do // for each round: 

(3) sample D with replacement according to the tuple weights to obtain Di; 

(4) use training set Di to derive a model, Mi; 

(5) compute error(Mi), the error rate of Mi (Eq. 8.34) 

(6) if error(Mi) > 0.5 then 

(7) go back to step 3 and try again; 

(8) endif 

(9) for each tuple in Di that was correctly classified do 

(10) multiply the weight of the tuple by error(Mi)/(1 −  error(Mi)); // update weights 

(11) normalize the weight of each tuple; 

(12) endfor 

 

To use the ensemble to classify tuple, X: 

 
(1) initialize weight of each class to 0; 

(2) for i = 1 to k do // for each classifier: 

(3) wi = log ; // weight of the classifier’s vote 

(4) c = Mi(X); // get class prediction for X from Mi 

(5) add wi to weight for class c 

(6) endfor 

(7) return the class with the largest weight; 

 

Figure 8.24 AdaBoost, a boosting algorithm. 

Therefore, sometimes the resulting “boosted” model may be less accurate than a single model 
derived from the same data. Bagging is less susceptible to model overfitting. While both can 
significantly improve accuracy in comparison to a single model, boosting tends to achieve 
greater accuracy. 

 Random Forests 

We now present another ensemble method called random forests. Imagine that each of the 
classifiers in the ensemble is a decision tree classifier so that the collection of classifiers 
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is a “forest.” The individual decision trees are generated using a random selection of 
attributes at each node to determine the split. More formally, each tree depends on the values of 
a random vector sampled independently and with the same distribution for all trees in the 
forest. During classification, each tree votes and the most popular class is returned. 
Random forests can be built using bagging (Section 8.6.2) in tandem with random attribute 
selection. A training set, D, of d tuples is given. The general procedure to generate k decision 

trees for the ensemble is as follows. For each iteration, i (i = 1, 2, . . . , k), a training set, Di, of 

d tuples is sampled with replacement from D. That is, each Di is a bootstrap sample of D 
(Section 8.5.4), so that some tuples may occur more than once in Di, while others may be 
excluded. Let F be the number of attributes to be used to determine the split at each node, 
where F is much smaller than the number of avail- able attributes. To construct a decision 
tree classifier, Mi, randomly select, at each node, F attributes as candidates for the split at the 
node. The CART methodology is used to grow the trees. The trees are grown to maximum 
size and are not pruned. Random forests formed this way, with random input selection, are 
called Forest-RI. 

Another form of random forest, called Forest-RC, uses random linear combinations of the 
input attributes. Instead of randomly selecting a subset of the attributes, it creates new 
attributes (or features) that are a linear combination of the existing attributes. That is, an attribute 
is generated by specifying L, the number of original attributes to be combined. At a given node, 
L attributes are randomly selected and added together with coefficients that are uniform random 
numbers on [ 1, 1]. F linear combinations are generated, and a search is made over these for the 
best split. This form of random forest is useful when there are only a few attributes available, 
so as to reduce the correlation between individual classifiers. 
Random forests are comparable in accuracy to AdaBoost, yet are more robust to errors and 
outliers. The generalization error for a forest converges as long as the num- ber of trees in the 
forest is large. Thus, overfitting is not a problem. The accuracy of a random forest depends 
on the strength of the individual classifiers and a measure of the dependence between them. The 
ideal is to maintain the strength of individual classifiers without increasing their correlation. 
Random forests are insensitive to the number of attributes selected for consideration at each 
split. Typically, up to log2d 1 are chosen. (An interesting empirical observation was that 
using a single random input attribute may result in good accuracy that is often higher than 
when using several attributes.) Because random forests consider many fewer attributes for each 
split, they are efficient on very large databases. They can be faster than either bagging or 
boosting. Random forests give internal estimates of variable importance. 
 

Improving Classification Accuracy of Class-Imbalanced Data 

In this section, we revisit the class imbalance problem. In particular, we study approaches to 
improving the classification accuracy of class-imbalanced data. 
Given two-class data, the data are class-imbalanced if the main class of interest (the positive 
class) is represented by only a few tuples, while the majority of tuples represent the negative 
class. For multiclass-imbalanced data, the data distribution of each class 
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differs substantially where, again, the main class or classes of interest are rare. The class 
imbalance problem is closely related to cost-sensitive learning, wherein the costs of errors, per 
class, are not equal. In medical diagnosis, for example, it is much more costly to falsely 
diagnose a cancerous patient as healthy (a false negative) than to misdiagnose a healthy patient 
as having cancer (a false positive). A false negative error could lead to the loss of life and 
therefore is much more expensive than a false positive error. Other applications involving 
class-imbalanced data include fraud detection, the detection of oil spills from satellite radar 
images, and fault monitoring. 
Traditional classification algorithms aim to minimize the number of errors made during 
classification. They assume that the costs of false positive and false negative errors are equal. 
By assuming a balanced distribution of classes and equal error costs, they are therefore not 
suitable for class-imbalanced data. Earlier parts of this chapter presented ways of addressing 
the class imbalance problem. Although the accuracy measure assumes that the cost of classes are 
equal, alternative evaluation metrics can be used that consider the different types of 
classifications. Section 8.5.1, for example, presented senstivity or recall (the true positive rate) 
and specificity (the true negative rate), which help to assess how well a classifier can predict 
the class label of imbalanced data. Additional relevant measures discussed include F1 and Fβ . 
Section 8.5.6 showed how ROC curves plot sensitivity versus 1 specificity (i.e., the false positive 
rate). Such curves can provide insight when studying the performance of classifiers on class-
imbalanced data. 
In this section, we look at general approaches for improving the classification accuracy of 
class-imbalanced data. These approaches include (1) oversampling, (2) under- sampling, (3) 
threshold moving, and (4) ensemble techniques. The first three do not involve any changes 
to the construction of the classification model. That is, over sampling and under sampling 
change the distribution of tuples in the training set; threshold moving affects how the model 
makes decisions when classifying new data. Ensemble methods follow the techniques 
described in Sections 8.6.2 through 8.6.4. For ease of explanation, we describe these general 
approaches with respect to the two-class imbalance data problem, where the higher-cost classes 
are rarer than the lower-cost classes. 
Both oversampling and undersampling change the training data distribution so that the rare 
(positive) class is well represented. Oversampling works by resampling the positive tuples so 
that the resulting training set contains an equal number of positive and negative tuples. 
Undersampling works by decreasing the number of negative tuples. It randomly eliminates 
tuples from the majority (negative) class until there are an equal number of positive and 
negative tuples. 
Example 8.12 Oversampling and undersampling. Suppose the original training set contains 

100 pos- itive and 1000 negative tuples. In oversampling, we replicate tuples of the rarer 
class to form a new training set containing 1000 positive tuples and 1000 negative tuples. In 
undersampling, we randomly eliminate negative tuples so that the new training set contains 
100 positive tuples and 100 negative tuples. 

Several variations to oversampling and undersampling exist. They may vary, for instance, 
in how tuples are added or eliminated. For example, the SMOTE algorithm www.jntufastupdates.com 68
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uses oversampling where synthetic tuples are added, which are “close to” the given positive 
tuples in tuple space. 
The threshold-moving approach to the class imbalance problem does not involve any 
sampling. It applies to classifiers that, given an input tuple, return a continuous output value 
(just like in Section 8.5.6, where we discussed how to construct ROC curves). That is, for 
an input tuple, X, such a classifier returns as output a mapping, f (X) [0, 1]. Rather than 
manipulating the training tuples, this method returns a clas- sification decision based on the 
output values. In the simplest approach, tuples for which f (X) t , for some threshold, t , are 
considered positive, while all other tuples are con- sidered negative. Other approaches may 
involve manipulating the outputs by weighting. In general, threshold moving moves the 
threshold, t , so that the rare class tuples are eas- ier to classify (and hence, there is less chance of 
costly false negative errors). Examples of such classifiers include na¨ıve Bayesian classifiers 
(Section 8.3) and neural network clas- sifiers like backpropagation (Section 9.2). The 
threshold-moving method, although not as popular as over- and undersampling, is simple and 
has shown some success for the two-class-imbalanced data. 
Ensemble methods (Sections 8.6.2 through 8.6.4) have also been applied to the class imbalance 
problem. The individual classifiers making up the ensemble may include versions of the 
approaches described here such as oversampling and threshold moving. These methods work 
relatively well for the class imbalance problem on two-class tasks. Threshold-moving and 
ensemble methods were empirically observed to outper- form oversampling and 
undersampling. Threshold moving works well even on data sets that are extremely 
imbalanced. The class imbalance problem on multiclass tasks is much more difficult, where 
oversampling and threshold moving are less effective. 
Although threshold-moving and ensemble methods show promise, finding a solution for the 
multiclass imbalance problem remains an area of future work. 
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