

UNIT V
Syllabus: Clustering: Clustering Techniques, Cluster analysis, Partitioning Methods, Hierarchical methods,
Density Based Methods, Grid Based Methods, Evaluation of clustering, Clustering high dimensional data,
Clustering with constraints, Outlier analysis, outlier detection methods.

Cluster is a group of objects that belongs to the same class. In other words, similar objects are
grouped in one cluster and dissimilar objects are grouped in another cluster.

What is Clustering?

Clustering is the process of making a group of abstract objects into classes of similar objects.

Points to Remember

 A cluster of data objects can be treated as one group.

 While doing cluster analysis, we first partition the set of data into groups based on data
similarity and then assign the labels to the groups.

 The main advantage of clustering over classification is that, it is adaptable to changes and
helps single out useful features that distinguish different groups.

 Cluster Analysis:

 The process of grouping a set of physical or abstract objects into classes of similar objects is called

clustering.

 A cluster is a collection of data objects that are similar to one another within the same cluster

and are dissimilar to the objects in other clusters.

 A cluster of data objects can be treated collectively as one group and so may be considered as a form

of data compression.

 Cluster analysis tools based on k-means, k-medoids, and several methods have also been built into

many statistical analysis software packages or systems, such as S-Plus, SPSS, and SAS.

 Applications:

 Cluster analysis has been widely used in numerous applications, including market research, pattern

recognition, data analysis, and image processing.

 In business, clustering can help marketers discover distinct groups in their customer bases and

characterize customer groups based on purchasing patterns.

 In biology, it can be used to derive plant and animal taxonomies, categorize genes with similar

functionality, and gain insight into structures inherent in populations.

www.jntufastupdates.com 1

2

 Clustering may also help in the identification of areas of similar land use in an earth observation

database and in the identification of groups of houses in a city according to house type, value, and

geographic location, as well as the identification of groups of automobile insurance policy holders

with a high average claim cost.

 Clustering is also called data segmentation in some applications because clustering

partitions large data sets into groups according to their similarity.

 Clustering can also be used for outlier detection, Applications of outlier detection include the

detection of credit card fraud and the monitoring of criminal activities in electronic commerce.

 Typical Requirements Of Clustering In Data Mining:

 Scalability:

Many clustering algorithms work well on small data sets containing fewer than several hundred

data objects; however, a large database may contain millions of objects. Clustering on a sample of a

given large data set may lead to biased results.

Highly scalable clustering algorithms are needed.

 Ability to deal with different types of attributes:

Many algorithms are designed to cluster interval-based (numerical) data. However, applications

may require clustering other types of data, such as binary, categorical (nominal), and ordinal data,

or mixtures of these data types.

 Discovery of clusters with arbitrary shape:

Many clustering algorithms determine clusters based on Euclidean or Manhattan distance

measures. Algorithms based on such distance measures tend to find spherical clusters with similar

size and density.

However, a cluster could be of any shape. It is important to develop algorithms that can detect

clusters of arbitrary shape.

 Minimal requirements for domain knowledge to determine input parameters:

Many clustering algorithms require users to input certain parameters in cluster analysis (such as

the number of desired clusters). The clustering results can be quite sensitive to input

parameters. Parameters are often difficult to determine, especially for data sets containing high-

dimensional objects. This not only burdens users, but it also makes the quality of clustering

difficult to control.

www.jntufastupdates.com 2

 Ability to deal with noisy data:

Most real-world databases contain outliers or missing, unknown, or erroneous data.

Some clustering algorithms are sensitive to such data and may lead to clusters of poor quality.

 Incremental clustering and insensitivity to the order of input records:

Some clustering algorithms cannot incorporate newly inserted data (i.e., database updates) into

existing clustering structures and, instead, must determine a new clustering from scratch. Some

clustering algorithms are sensitive to the order of input data.

That is, given a set of data objects, such an algorithm may return dramatically different

clusterings depending on the order of presentation of the input objects.

It is important to develop incremental clustering algorithms and algorithms that are insensitive to

the order of input.

 High dimensionality:

A database or a data warehouse can contain several dimensions or attributes. Many clustering

algorithms are good at handling low-dimensional data, involving only two to three dimensions.

Human eyes are good at judging the quality of clustering for up to three dimensions. Finding

clusters of data objects in high dimensional space is challenging, especially considering that such

data can be sparse and highly skewed.

 Constraint-based clustering:

Real-world applications may need to perform clustering under various kinds of constraints. Suppose

that your job is to choose the locations for a given number of new automatic banking machines

(ATMs) in a city. To decide upon this, you may cluster households while considering constraints

such as the city’s rivers and highway networks, and the type and number of customers per cluster. A

challenging task is to find groups of data with good clustering behavior that satisfy specified

constraints.

 Interpretability and usability:

Users expect clustering results to be interpretable, comprehensible, and usable. That is, clustering

may need to be tied to specific semantic interpretations and applications. It is important to study

how an application goal may influence the selection of clustering features and methods.

 Major Clustering Methods:

 Partitioning Methods

www.jntufastupdates.com 3

4

 Hierarchical Methods

 Density-Based Methods

 Grid-Based Methods

 Model-Based Methods

 Partitioning Methods:

A partitioning method constructs k partitions of the data, where each partition represents a cluster

and k <= n. That is, it classifies the data into k groups, which together satisfy the following

requirements:

 Each group must contain at least one object, and

 Each object must belong to exactly one group.

A partitioning method creates an initial partitioning. It then uses an iterative relocation technique

that attempts to improve the partitioning by moving objects from one group to another.

The general criterion of a good partitioning is that objects in the same cluster are close or related to

each other, whereas objects of different clusters are far apart or very different.

 Hierarchical Methods:

A hierarchical method creates a hierarchical decomposition of the given set of data objects. A

hierarchical method can be classified as being either agglomerative or divisive, based on how the

hierarchical decomposition is formed.

 The agglomerative approach, also called the bottom-up approach, starts with

each object forming a separate group. It successively merges the objects or

groups that are close to one another, until all of the groups are merged into one

or until a termination condition holds.

 The divisive approach, also called the top-down approach, starts with all of the

objects in the same cluster. In each successive iteration, a cluster is split up into

smaller clusters, until eventually each object is in one cluster, or until a

www.jntufastupdates.com 4

termination condition holds.

Hierarchical methods suffer from the fact that once a step (merge or split) is done, it can never be

undone. This rigidity is useful in that it leads to smaller computation costs by not having to worry

about a combinatorial number of different choices.

There are two approaches to improving the quality of hierarchical clustering:

 Perform careful analysis of object ―linkages‖ at each hierarchical partitioning,

such as in Chameleon, or

 Integrate hierarchical agglomeration and other approaches by first using a

hierarchical agglomerative algorithm to group objects into micro clusters, and

then performing macro clustering on the micro clusters using another clustering

method such as iterative relocation.

 Density-based methods:

 Most partitioning methods cluster objects based on the distance between

objects. Such methods can find only spherical-shaped clusters and encounter

difficulty at discovering clusters of arbitrary shapes.

 Other clustering methods have been developed based on the notion of density.

Their general idea is to continue growing the given cluster as long as the density

in the neighborhood exceeds some threshold; that is, for each data point within

a given cluster, the neighborhood of a given radius has to contain at least a

minimum number of points. Such a method can be used to filter out noise

(outliers) and discover clusters of arbitrary shape.

 DBSCAN and its extension, OPTICS, are typical density-based methods that

grow clusters according to a density-based connectivity analysis. DENCLUE is a

method that clusters objects based on the analysis of the value distributions of

density functions.

 Grid-Based Methods:

www.jntufastupdates.com 5

6

 Grid-based methods quantize the object space into a finite number of cells that

form a grid structure.

 All of the clustering operations are performed on the grid structure i.e., on the

quantized space. The main advantage of this approach is its fast processing

time, which is typically independent of the number of data objects and

dependent only on the number of cells in each dimension in the quantized

space.

 STING is a typical example of a grid-based method. Wave Cluster applies

wavelet transformation for clustering analysis and is both grid-based and

density-based.

 Model-Based Methods:

 Model-based methods hypothesize a model for each of the clusters and find

the best fit of the data to the given model.

 A model-based algorithm may locate clusters by constructing a density function

that reflects the spatial distribution of the data points.

 It also leads to a way of automatically determining the number of clusters

based on standard statistics, taking ―noise‖ or outliers into account and

thus yielding robust clustering methods.

www.jntufastupdates.com 6

 Tasks in Data Mining:

 Clustering High-Dimensional Data

 Constraint-Based Clustering

 Clustering High-Dimensional Data:

 It is a particularly important task in cluster analysis because many applications require the

analysis of objects containing a large number of features or dimensions.

 For example, text documents may contain thousands of terms or keywords as features, and

DNA micro array data may provide information on the expression levels of thousands of

genes under hundreds of conditions.

 Clustering high-dimensional data is challenging due to the curse of dimensionality.

Many dimensions may not be relevant. As the number of dimensions increases,

The data become increasingly sparse so that the distance measurement between pairs of

points become meaningless and the average density of points anywhere in the data is

likely to be low. Therefore, a different clustering methodology needs to be developed for

high-dimensional data.

 CLIQUE and PROCLUS are two influential subspace clustering methods, which search for

clusters in subspaces of the data, rather than over the entire data space.

 Frequent pattern–based clustering, another clustering methodology, extracts distinct

frequent patterns among subsets of dimensions that occur frequently. It uses such patterns

to group objects and generate meaningful clusters.

 Constraint-Based Clustering:

 It is a clustering approach that performs clustering by incorporation of user-specified or

application-oriented constraints.

 A constraint expresses a user’s expectation or describes properties of the desired clustering

results, and provides an effective means for communicating with the clustering process.

 Various kinds of constraints can be specified, either by a user or as per application

requirements.

 Spatial clustering employs with the existence of obstacles and clustering under user- specified

www.jntufastupdates.com 7

8

constraints. In addition, semi-supervised clustering employs for pair wise constraints in order to

improve the quality of the resulting clustering.

 Classical Partitioning Methods:

The most well-known and commonly used partitioning methods are

 The k-Means Method

 k-Medoids Method

 Centroid-Based Technique: The K-Means Method:

The k-means algorithm takes the input parameter, k, and partitions a set of n objects into k clusters so

that the resulting intracluster similarity is high but the intercluster similarity is low. Cluster

similarity is measured in regard to the mean value of the objects in a cluster, which can be viewed as

the cluster’s centroid or center of gravity.

The k-means algorithm proceeds as follows.

 First, it randomly selects k of the objects, each of which initially represents a cluster mean

or center.

 For each of the remaining objects, an object is assigned to the cluster to which it is the most

similar, based on the distance between the object and the cluster mean.

 It then computes the new mean for each cluster.

This process iterates until the criterion function converges.

Typically, the square-error criterion is used, defined as

Where E is the sum of the square error for all objects in the data set p

is the point in space representing a given object

mi is the mean of cluster Ci

www.jntufastupdates.com 8

 The k-means partitioning algorithm:

The k-means algorithm for partitioning, where each cluster’s center is represented by the mean value of

the objects in the cluster.

Clustering of a set of objects based on the k-means method

Advantages Of K-Means

Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t <<
n.

Each object is distributed to a cluster based on the cluster center to which it is the nearest.
Disadvantages Of K-Means

Applicable only when mean is defined, then what about categorical data?

Need to specify k, the number of clusters, in advance.

www.jntufastupdates.com 9

10

Unable to handle noisy data and outliers.

Not suitable to discover clusters with non-convex shapes.

 The k-Medoids Method:

 The k-means algorithm is sensitive to outliers because an object with an extremely large value may

substantially distort the distribution of data. This effect is particularly exacerbated due to the use of

the square-error function.

 Instead of taking the mean value of the objects in a cluster as a reference point, we can pick actual

objects to represent the clusters, using one representative object per cluster. Each remaining object

is clustered with the representative object to which it is the most similar.

 The partitioning method is then performed based on the principle of minimizing the sum of the

dissimilarities between each object and its corresponding reference point. That is, an absolute-error

criterion is used, defined as

Where E is the sum of the absolute error for all objects in the data set

pis the point in space representing a given object in cluster Cj

oj is the representative object of Cj

 The initial representative objects are chosen arbitrarily. The iterative process of replacing

representative objects by non representative objects continues as long as the quality of the

resulting clustering is improved.

 This quality is estimated using a cost function that measures the average dissimilarity between an

object and the representative object of its cluster.

 To determine whether a non representative object, oj random, is a good replacement for a current

representative object, oj, the following four cases are examined for each of the nonrepresentative

objects.

www.jntufastupdates.com 10

Case 1:

p currently belongs to representative object, oj. If ojis replaced by orandom as a representative object and p is

closest to one of the other representative objects, oi, i≠j, then p is reassigned to oi.

Case 2:

p currently belongs to representative object, oj. If oj is replaced by orandom as a representative object and p

is closest to orandom, then p is reassigned to orandom.

Case 3:

p currently belongs to representative object, oi, i≠j. If oj is replaced by orandom as a representative object

and p is still closest to oi, then the assignment does not change.

Case 4:

p currently belongs to representative object, oi, i≠j. If oj is replaced by orandom as a representative object

and p is closest to orandom, then p is reassigned

toorandom.

Four cases of the cost function for k-medoids clustering

www.jntufastupdates.com 11

12

The k-Medoids Algorithm:
The k-medoids algorithm for partitioning based on medoid or central objects.

The k-medoids method is more robust than k-means in the presence of noise and outliers, because a medoid

is less influenced by outliers or other extreme values than a mean. However, its processing is more costly than

the k-means method.

Which Is More Robust -- K-Means or K-Medoids

The k-medoids method is more robust than k-means in the presence of noise and outliers because a
medoid is less influenced by outliers or other extreme values than a mean.

However, its processing is more costly than the k-means method. Both methods require the user to
specify k, the number of clusters.

Aside from using the mean or the medoid as a measure of cluster center, other alternative measures
are also commonly used in partitioning clustering methods.

The median can be used, resulting in the k-median method, where the median or “middle value” is
taken for each ordered attribute. Alternatively, in the k-modes method, the most frequent value for
each attribute is used.

Hierarchical Methods
While partitioning methods meet the basic clustering requirement of organizing a set of objects into a
number of exclusive groups, in some situations we may want to partition our data into groups at

www.jntufastupdates.com 12

different levels such as in a hierarchy. A hierarchical clustering method works by grouping data objects
into a hierarchy or “tree” of clusters.

Representing data objects in the form of a hierarchy is useful for data summarization and visualization.
For example, as the manager of human resources at AllElectronics,

you may organize your employees into major groups such as executives, managers, and staff. You can
further partition these groups into smaller subgroups. For instance, the general group of staff can be
further divided into subgroups of senior officers, officers, and trainees. All these groups form a
hierarchy. We can easily summarize or characterize the data that are organized into a hierarchy, which
can be used to find, say, the average salary of managers and of officers.

Consider handwritten character recognition as another example. A set of handwrit- ing samples
may be first partitioned into general groups where each group corresponds to a unique character.
Some groups can be further partitioned into subgroups since a character may be written in
multiple substantially different ways. If necessary, the hierarchical partitioning can be continued
recursively until a desired granularity is reached.

In the previous examples, although we partitioned the data hierarchically, we did not assume that
the data have a hierarchical structure (e.g., managers are at the same level in our AllElectronics
hierarchy as staff). Our use of a hierarchy here is just to summarize and represent the underlying data
in a compressed way. Such a hierarchy is particularly useful for data visualization.

Alternatively, in some applications we may believe that the data bear an underly- ing hierarchical
structure that we want to discover. For example, hierarchical clustering may uncover a hierarchy for
AllElectronics employees structured on, say, salary. In the study of evolution, hierarchical clustering
may group animals according to their bio- logical features to uncover evolutionary paths, which are
a hierarchy of species. As another example, grouping configurations of a strategic game (e.g., chess or
checkers) in a hierarchical way may help to develop game strategies that can be used to train players. In
this section, you will study hierarchical clustering methods. Section 10.3.1 begins with a discussion of
agglomerative versus divisive hierarchical clustering, which organize objects into a hierarchy using a
bottom-up or top-down strategy, respectively. Agglo- merative methods start with individual objects as
clusters, which are iteratively merged to form larger clusters. Conversely, divisive methods initially let
all the given objects

form one cluster, which they iteratively split into smaller clusters.
Hierarchical clustering methods can encounter difficulties regarding the selection of merge or

split points. Such a decision is critical, because once a group of objects is merged or split, the process
at the next step will operate on the newly generated clusters. It will neither undo what was done
previously, nor perform object swapping between clusters. Thus, merge or split decisions, if not well
chosen, may lead to low-quality clusters. Moreover, the methods do not scale well because each
decision of merge or split needs to examine and evaluate many objects or clusters.

A promising direction for improving the clustering quality of hierarchical meth- ods is to
integrate hierarchical clustering with other clustering techniques, resulting in multiple-phase (or
multiphase) clustering. We introduce two such methods, namely BIRCH and Chameleon. BIRCH
(Section 10.3.3) begins by partitioning objects hierar- chically using tree structures, where the leaf
or low-level nonleaf nodes can be viewed as “microclusters” depending on the resolution scale. It
then applies other

clustering algorithms to perform macroclustering on the microclusters. Chameleon (Section 10.3.4)
explores dynamic modeling in hierarchical clustering.
There are several orthogonal ways to categorize hierarchical clustering methods. For instance, they may be
categorized into algorithmic methods, probabilistic methods, and Bayesian methods. Agglomerative,
divisive, and multiphase methods are algorithmic, meaning they consider data objects as
deterministic and compute clusters according to the deterministic distances between objects.

www.jntufastupdates.com 13

14

{ }

Probabilistic methods use probabilistic models to capture clusters and measure the quality of clusters
by the fitness of mod- els. We discuss probabilistic hierarchical clustering in Section 10.3.5. Bayesian
methods compute a distribution of possible clusterings. That is, instead of outputting a single
deterministic clustering over a data set, they return a group of clustering structures and their
probabilities, conditional on the given data. Bayesian methods are considered an advanced topic and
are not discussed in this book.

 Agglomerative versus Divisive Hierarchical Clustering

A hierarchical clustering method can be either agglomerative or divisive, depending on whether the
hierarchical decomposition is formed in a bottom-up (merging) or top- down (splitting) fashion. Let’s
have a closer look at these strategies.
An agglomerative hierarchical clustering method uses a bottom-up strategy. It typ- ically starts by
letting each object form its own cluster and iteratively merges clusters into larger and larger clusters,
until all the objects are in a single cluster or certain termi- nation conditions are satisfied. The single
cluster becomes the hierarchy’s root. For the merging step, it finds the two clusters that are closest to
each other (according to some similarity measure), and combines the two to form one cluster. Because
two clusters are merged per iteration, where each cluster contains at least one object, an agglomerative
method requires at most n iterations.
A divisive hierarchical clustering method employs a top-down strategy. It starts by placing all objects in
one cluster, which is the hierarchy’s root. It then divides the root cluster into several smaller
subclusters, and recursively partitions those clusters into smaller ones. The partitioning process
continues until each cluster at the lowest level is coherent enough—either containing only one object,
or the objects within a cluster are sufficiently similar to each other.
In either agglomerative or divisive hierarchical clustering, a user can specify the desired number of
clusters as a termination condition.

Example 10.3 Agglomerative versus divisive hierarchical clustering. Figure 10.6 shows the appli-
cation of AGNES (AGglomerative NESting), an agglomerative hierarchical clustering method, and
DIANA (DIvisive ANAlysis), a divisive hierarchical clustering method, on a data set of five objects, a, b,
c, d, e . Initially, AGNES, the agglomerative method, places each object into a cluster of its own. The clusters
are then merged step-by-step according to some criterion. For example, clusters C1 and C2 may be
merged if an object in C1 and an object in C2 form the minimum Euclidean distance between any two
objects from

www.jntufastupdates.com 14

Agglomerative

(AGNES)

Step 0 Step 1 Step 2 Step 3 Step 4

Step 4 Step 3 Step 2 Step 1 Step 0

Divisive

(DIANA)

Figure 10.6 Agglomerative and divisive hierarchical clustering on data objects {a, b, c, d, e}.

Level

l  0

l  1

l  2

l  3

l  4

a b c d e
1.0

0.8

0.6

0.4

0.2

0.0

Figure 10.7 Dendrogram representation for hierarchical clustering of data objects {a, b, c, d, e}.

different clusters. This is a single-linkage approach in that each cluster is represented by all the
objects in the cluster, and the similarity between two clusters is measured by the similarity of the
closest pair of data points belonging to different clusters. The cluster-merging process repeats until
all the objects are eventually merged to form one cluster.
DIANA, the divisive method, proceeds in the contrasting way. All the objects are used to form one initial
cluster. The cluster is split according to some principle such as the maximum Euclidean distance
between the closest neighboring objects in the cluster. The cluster-splitting process repeats until,
eventually, each new cluster contains only a single object.

A tree structure called a dendrogram is commonly used to represent the process of hierarchical
clustering. It shows how objects are grouped together (in an agglomerative method) or partitioned (in a
divisive method) step-by-step. Figure 10.7 shows a den- drogram for the five objects presented in
Figure 10.6, where l = 0 shows the five objects as singleton clusters at level 0. At l = 1, objects a and b
are grouped together to form the

a
ab

b
abcde

c
cde

d

de

e

S
im

il
ar

it
y
 s

ca
le

www.jntufastupdates.com 15

16

−

{ } { }

first cluster, and they stay together at all subsequent levels. We can also use a vertical axis to show the
similarity scale between clusters. For example, when the similarity of two groups of objects, a, b and
c, d, e , is roughly 0.16, they are merged together to form a single cluster.
A challenge with divisive methods is how to partition a large cluster into several smaller ones. For
example, there are 2n−1 1 possible ways to partition a set of n objects into two exclusive subsets, where n
is the number of objects. When n is large, it is computationally prohibitive to examine all possibilities.
Consequently, a divisive method typically uses heuristics in partitioning, which can lead to
inaccurate results. For the sake of efficiency, divisive methods typically do not backtrack on
partitioning decisions that have been made. Once a cluster is partitioned, any alternative partitioning
of this cluster will not be considered again. Due to the challenges in divisive methods, there are many
more agglomerative methods than divisive methods.

Distance Measures in Algorithmic Methods

minimal spanning tree algorithm, where a spanning tree of a graph is a tree that connects all vertices,
and a minimal spanning tree is the one with the least sum of edge weights.
When an algorithm uses the maximum distance, dmax(Ci, Cj), to measure the distance between clusters, it is
sometimes called a farthest-neighbor clustering algorithm. If the clustering process is terminated when the

www.jntufastupdates.com 16

{ }
{ }

maximum distance between nearest clusters exceeds a user-defined threshold, it is called a complete-linkage

algorithm. By viewing data points as nodes of a graph, with edges linking nodes, we can think of each cluster as
a complete subgraph, that is, with edges connecting all the nodes in the clusters. The distance between two
clusters is determined by the most distant nodes in the two clusters. Farthest-neighbor algorithms tend to
minimize the increase in diameter of the clusters at each iteration. If the true clusters are rather compact
and approximately equal size, the method will produce high-quality clusters. Otherwise, the clusters produced
can be meaningless.
The previous minimum and maximum measures represent two extremes in measuring the distance
between clusters. They tend to be overly sensitive to outliers or noisy data. The use of mean or average
distance is a compromise between the mini- mum and maximum distances and overcomes the outlier
sensitivity problem. Whereas the mean distance is the simplest to compute, the average distance is
advantageous in that it can handle categoric as well as numeric data. The computation of the mean vector for
categoric data can be difficult or impossible to define.

Example 10.4 Single versus complete linkages. Let us apply hierarchical clustering to the data set of Figure
10.8(a). Figure 10.8(b) shows the dendrogram using single linkage. Figure 10.8(c) shows the case using
complete linkage, where the edges between clusters A, B, J , H and C, D, G, F, E are omitted for ease of
presentation. This example shows that by using single linkages we can find hierarchical clusters defined by
local proximity, whereas complete linkage tends to find clusters opting for global closeness.

There are variations of the four essential linkage measures just discussed. For example, we can measure the
distance between two clusters by the distance between the centroids (i.e., the central objects) of the
clusters.

BIRCH: Multiphase Hierarchical Clustering Using
Clustering Feature Trees

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is designed for clustering a large
amount of numeric data by integrating hierarchical clustering (at the initial microclustering stage) and other
clustering methods such as iterative partitioning (at the later macroclustering stage). It overcomes the two
difficulties in agglomerative clustering methods: (1) scalability and (2) the inability to undo what was done
in the previous step.
BIRCH uses the notions of clustering feature to summarize a cluster, and clus- tering feature tree (CF-tree)
to represent a cluster hierarchy. These structures help

www.jntufastupdates.com 17

18

A B C D

 E

J H G F

(a) Data set

A B C D

E

J H G F A B C D E F G H J

(b) Clustering using single linkage

A B C D

E

J H G F A B H J E F G C D

(c) Clustering using complete linkage

Figure 10.8 Hierarchical clustering using single and complete linkages.

the clustering method achieve good speed and scalability in large or even streaming
databases, and also make it effective for incremental and dynamic clustering of incoming
objects.

Consider a cluster of n d-dimensional data objects or points. The clustering feature

(CF) of the cluster is a 3-D vector summarizing information about clusters of objects. It
is defined as

www.jntufastupdates.com 18

www.jntufastupdates.com 19

20

Here, R is the average distance from member objects to the centroid, and D is the aver- age pairwise
distance within a cluster. Both R and D reflect the tightness of the cluster around the centroid.
Summarizing a cluster using the clustering feature can avoid storing the detailed information about
individual objects or points. Instead, we only need a constant size of space to store the clustering
feature. This is the key to BIRCH efficiency in space. Moreover, clustering features are additive. That
is, for two disjoint clusters, C1 and C2, with the clustering features CF1 = (n1, LS1, SS1) and CF2 = (n2,

LS2, SS2), respectively, the clustering feature for the cluster that formed by merging C1 and C2 is simply

CF1 + CF2 = (n1 + n2, LS1 + LS2, SS1 + SS2). (10.11)

Example 10.5 Clustering feature. Suppose there are three points, (2, 5), (3, 2), and (4, 3), in a cluster,
C1. The clustering feature of C1 is

CF1 = (3, (2 + 3 + 4, 5 + 2 + 3), (22 + 32 + 42, 52 + 22 + 32)) = (3, (9, 10), (29, 38)).

Suppose that C1 is disjoint to a second cluster, C2, where CF2 = (3, (35, 36), (417, 440)).
The clustering feature of a new cluster, C3, that is formed by merging C1 and C2, is
derived by adding CF1 and CF2. That is,

CF3 = (3 + 3, (9 + 35, 10 + 36), (29 + 417, 38 + 440)) = (6, (44, 46), (446, 478)).

A CF-tree is a height-balanced tree that stores the clustering features for a hierar- chical clustering.
An example is shown in Figure 10.9. By definition, a nonleaf node in a tree has descendants or
“children.” The nonleaf nodes store sums of the CFs of their children, and thus summarize clustering
information about their children. A CF-tree has two parameters: branching factor, B, and threshold, T.
The branching factor specifies the maximum number of children per nonleaf node. The threshold
parameter specifies the maximum diameter of subclusters stored at the leaf nodes of the tree. These
two parameters implicitly control the resulting tree’s size.
Given a limited amount of main memory, an important consideration in BIRCH is to minimize the
time required for input/output (I/O). BIRCH applies a multiphase clustering technique: A single scan
of the data set yields a basic, good clustering, and

www.jntufastupdates.com 20

+

one or more additional scans can optionally be used to further improve the quality. The primary phases are

Phase 1: BIRCH scans the database to build an initial in-memory CF-tree, which can be viewed as a
multilevel compression of the data that tries to preserve the data’s inherent clustering structure.

Phase 2: BIRCH applies a (selected) clustering algorithm to cluster the leaf nodes of the CF-tree, which
removes sparse clusters as outliers and groups dense clusters into larger ones.

For Phase 1, the CF-tree is built dynamically as objects are inserted. Thus, the method is incremental. An
object is inserted into the closest leaf entry (subcluster). If the dia- meter of the subcluster stored in the
leaf node after insertion is larger than the threshold value, then the leaf node and possibly other nodes
are split. After the insertion of the new object, information about the object is passed toward the root of
the tree. The size of the CF-tree can be changed by modifying the threshold. If the size of the memory
that is needed for storing the CF-tree is larger than the size of the main memory, then a larger threshold
value can be specified and the CF-tree is rebuilt.
The rebuild process is performed by building a new tree from the leaf nodes of the old tree. Thus, the
process of rebuilding the tree is done without the necessity of rereading all the objects or points. This is
similar to the insertion and node split in the construc- tion of B -trees. Therefore, for building the tree,
data has to be read just once. Some heuristics and methods have been introduced to deal with outliers and
improve the qual- ity of CF-trees by additional scans of the data. Once the CF-tree is built, any clustering
algorithm, such as a typical partitioning algorithm, can be used with the CF-tree in Phase 2.
“How effective is BIRCH?” The time complexity of the algorithm is O(n), where n is the number of
objects to be clustered. Experiments have shown the linear scalability of the algorithm with respect to
the number of objects, and good quality of clustering of the data. However, since each node in a CF-tree
can hold only a limited number of entries due to its size, a CF-tree node does not always correspond to
what a user may consider a natural cluster. Moreover, if the clusters are not spherical in shape, BIRCH
does not perform well because it uses the notion of radius or diameter to control the boundary of a
cluster.

The ideas of clustering features and CF-trees have been applied beyond BIRCH. The ideas have
been borrowed by many others to tackle problems of clustering streaming and dynamic data.

 Chameleon: Multiphase Hierarchical Clustering

Using Dynamic Modeling

Chameleon is a hierarchical clustering algorithm that uses dynamic modeling to deter- mine the similarity
between pairs of clusters. In Chameleon, cluster similarity is assessed based on (1) how well connected
objects are within a cluster and (2) the proximity of clusters. That is, two clusters are merged if their

www.jntufastupdates.com 21

22

interconnectivity is high and they are close together. Thus, Chameleon does not depend on a static, user-
supplied model and can automatically adapt to the internal characteristics of the clusters being merged. The
merge process facilitates the discovery of natural and homogeneous clusters and applies to all data types
as long as a similarity function can be specified.
Figure 10.10 illustrates how Chameleon works. Chameleon uses a k-nearest-neighbor graph approach to
construct a sparse graph, where each vertex of the graph represents a data object, and there exists an
edge between two vertices (objects) if one object is among the k-most similar objects to the other. The
edges are weighted to reflect the similarity between objects. Chameleon uses a graph partitioning
algorithm to partition the k-nearest-neighbor graph into a large number of relatively small subclusters
such that it minimizes the edge cut. That is, a cluster C is partitioned into subclusters Ci and Cj so as to
minimize the weight of the edges that would be cut should C be bisected into Ci and Cj. It assesses the
absolute interconnectivity between clusters Ci and Cj.
Chameleon then uses an agglomerative hierarchical clustering algorithm that itera- tively merges
subclusters based on their similarity. To determine the pairs of most similar subclusters, it takes into account
both the interconnectivity and the closeness of the clus- ters. Specifically, Chameleon determines the
similarity between each pair of clusters Ci and Cj according to their relative interconnectivity, RI(Ci, Cj), and
their relative closeness, RC(Ci, Cj).

The relative interconnectivity, RI(Ci, Cj), between two clusters, Ci and Cj, is defined as the absolute
interconnectivity between Ci and Cj, normalized with respect to the

k-nearest-neighbor graph Final clusters

Figure 10.10 Chameleon: hierarchical clustering based on k-nearest neighbors and dynamic modeling.

Source: Based on Karypis, Han, and Kumar [KHK99].

Data set Construct

a sparse

graph

Partition

the graph

Merge

partitions

www.jntufastupdates.com 22

Probabilistic Hierarchical Clustering

Algorithmic hierarchical clustering methods using linkage measures tend to be easy to understand and are
often efficient in clustering. They are commonly used in many clus- tering analysis applications. However,
algorithmic hierarchical clustering methods can suffer from several drawbacks. First, choosing a good
distance measure for hierarchical clustering is often far from trivial. Second, to apply an algorithmic
method, the data objects cannot have any missing attribute values. In the case of data that are partially
observed (i.e., some attribute values of some objects are missing), it is not easy to apply an algorithmic
hierarchical clustering method because the distance computation cannot be conducted. Third, most of the
algorithmic hierarchical clustering methods are heuris- tic, and at each step locally search for a good
merging/splitting decision. Consequently, the optimization goal of the resulting cluster hierarchy can be
unclear.
Probabilistic hierarchical clustering aims to overcome some of these disadvantages by using probabilistic
models to measure distances between clusters.
One way to look at the clustering problem is to regard the set of data objects to be clustered as a sample of
the underlying data generation mechanism to be analyzed or, formally, the generative model. For example,
when we conduct clustering analysis on a set of marketing surveys, we assume that the surveys collected
are a sample of the opinions of all possible customers. Here, the data generation mechanism is a probability

www.jntufastupdates.com 23

24

= { }

distribution of opinions with respect to different customers, which cannot be obtained directly and
completely. The task of clustering is to estimate the generative model as accurately as possible
using the observed data objects to be clustered.
In practice, we can assume that the data generative models adopt common distri- bution
functions, such as Gaussian distribution or Bernoulli distribution, which are governed by
parameters. The task of learning a generative model is then reduced to finding the parameter
values for which the model best fits the observed data set.

Example 10.6 Generative model. Suppose we are given a set of 1-D points X x1, . . . , xn for
clustering analysis. Let us assume that the data points are generated by a Gaussian
distribution,

www.jntufastupdates.com 24

www.jntufastupdates.com 25

26

no Gaussian functions can fit the merged cluster well.
Based on this observation, a probabilistic hierarchical clustering scheme can start

with one cluster per object, and merge two clusters, Ci and Cj, if the distance between
them is negative. In each iteration, we try to find Ci and Cj so as to maximize
log P(Ci∪ Cj) . The iteration continues as long as log P(Ci∪ Cj) > 0, that is, as long as

P(Ci)P(Cj) P(Ci)P(Cj)

there is an improvement in clustering quality. The pseudocode is given in Figure 10.12.
Probabilistic hierarchical clustering methods are easy to understand, and generally have the same efficiency as
algorithmic agglomerative hierarchical clustering methods; in fact, they share the same framework. Probabilistic
models are more interpretable, but sometimes less flexible than distance metrics. Probabilistic models can
handle partially observed data. For example, given a multidimensional data set where some objects have missing
values on some dimensions, we can learn a Gaussian model on each dimen- sion independently using the
observed values on the dimension. The resulting cluster hierarchy accomplishes the optimization goal of fitting
data to the selected probabilistic models.
A drawback of using probabilistic hierarchical clustering is that it outputs only one hierarchy with respect to a
chosen probabilistic model. It cannot handle the uncer- tainty of cluster hierarchies. Given a data set, there
may exist multiple hierarchies that

www.jntufastupdates.com 26

Figure 10.11 Merging clusters in probabilistic hierarchical clustering: (a) Merging clusters C1 and C2 leads

to an increase in overall cluster quality, but merging clusters (b) C3 and (c) C4 does not.

Figure 10.12 A probabilistic hierarchical clustering algorithm.

fit the observed data. Neither algorithmic approaches nor probabilistic approaches can
find the distribution of such hierarchies. Recently, Bayesian tree-structured models have
been developed to handle such problems. Bayesian and other sophisticated probabilistic
clustering methods are considered advanced topics and are not covered in this book.

www.jntufastupdates.com 27

www.jntufastupdates.com 28

 Density-Based Methods
Partitioning and hierarchical methods are designed to find spherical-shaped clusters. They have difficulty
finding clusters of arbitrary shape such as the “S” shape and oval clusters in Figure 10.13. Given such data,
they would likely inaccurately identify convex regions, where noise or outliers are included in the clusters.
To find clusters of arbitrary shape, alternatively, we can model clusters as dense regions in the data space,
separated by sparse regions. This is the main strategy behind density-based clustering methods, which can
discover clusters of nonspherical shape. In this section, you will learn the basic techniques of density-based
clustering by studying three representative methods, namely, DBSCAN (Section 10.4.1), OPTICS (Section
10.4.2), and DENCLUE (Section 10.4.3).

 DBSCAN: Density-Based Clustering Based on Connected

Regions with High Density

“How can we find dense regions in density-based clustering?” The density of an object o can be measured by the
number of objects close to o. DBSCAN (Density-Based Spatial Clustering of Applications with Noise) finds core
objects, that is, objects that have dense neighborhoods. It connects core objects and their neighborhoods to form
dense regions as clusters.
“How does DBSCAN quantify the neighborhood of an object?” A user-specified para- meter ‹ > 0 is used to
specify the radius of a neighborhood we consider for every object. The ‹-neighborhood of an object o is the space
within a radius ‹ centered at o.
Due to the fixed neighborhood size parameterized by ‹, the density of a neighbor- hood can be measured
simply by the number of objects in the neighborhood. To deter- mine whether a neighborhood is dense or not,
DBSCAN uses another user-specified

Figure 10.13 Clusters of arbitrary shape.

www.jntufastupdates.com 29

∈

=

∈ ∈ −
∈

parameter, MinPts, which specifies the density threshold of dense regions. An object is a core object if
the ‹-neighborhood of the object contains at least MinPts objects. Core objects are the pillars of dense
regions.
Given a set, D, of objects, we can identify all core objects with respect to the given parameters, ‹ and
MinPts. The clustering task is therein reduced to using core objects and their neighborhoods to form
dense regions, where the dense regions are clusters. For a core object q and an object p, we say that p is
directly density-reachable from q (with respect to ‹ and MinPts) if p is within the ‹-neighborhood of q.
Clearly, an object p is directly density-reachable from another object q if and only if q is a core object and
p is in the ‹-neighborhood of q. Using the directly density-reachable relation, a core object can
“bring” all objects from its ‹-neighborhood into a dense region.
“How can we assemble a large dense region using small dense regions centered by core objects?” In
DBSCAN, p is density-reachable from q (with respect to ‹ and MinPts in
D) if there is a chain of objects p1, . . . , pn, such that p1 = q, pn = p, and pi+1 is directly density-reachable

from pi with respect to ‹ and MinPts, for 1 ≤ i ≤ n, pi ∈ D. Note that density-reachability is not an
equivalence relation because it is not symmetric. If both o1

and o2 are core objects and o1 is density-reachable from o2, then o2 is density-reachable from o1. However,
if o2 is a core object but o1 is not, then o1 may be density-reachable from o2, but not vice versa.
To connect core objects as well as their neighbors in a dense region, DBSCAN uses the notion of density-
connectedness. Two objects p1, p2 ∈ D are density-connected with respect to ‹ and MinPts if there is an
object q D such that both p1 and p2 are density- reachable from q with respect to ‹ and MinPts. Unlike
density-reachability, density- connectedness is an equivalence relation. It is easy to show that, for
objects o1, o2, and o3, if o1 and o2 are density-connected, and o2 and o3 are density-connected, then so
are o1 and o3.

Example 10.7 Density-reachability and density-connectivity. Consider Figure 10.14 for a given ‹
represented by the radius of the circles, and, say, let MinPts 3.
Of the labeled points, m, p, o, r are core objects because each is in an ‹-neighborhood containing at least
three points. Object q is directly density-reachable from m. Object m is directly density-reachable from p
and vice versa.
Object q is (indirectly) density-reachable from p because q is directly density- reachable from m and m
is directly density-reachable from p. However, p is not density- reachable from q because q is not a core
object. Similarly, r and s are density-reachable from o and o is density-reachable from r. Thus, o, r, and s
are all density-connected.

We can use the closure of density-connectedness to find connected dense regions as clusters. Each closed
set is a density-based cluster. A subset C ⊆ D is a cluster if (1) for any two objects o1, o2 C, o1 and o2

are density-connected; and (2) there does not exist an object o C and another object or (D C) such that

o and or are density- connected.

www.jntufastupdates.com 30

Figure 10.14 Density-reachability and density-connectivity in density-based clustering. Source: Based on

Ester, Kriegel, Sander, and Xu [EKSX96].

“How does DBSCAN find clusters?” Initially, all objects in a given data set D are marked as “unvisited.”

DBSCAN randomly selects an unvisited object p, marks p as “visited,” and checks whether the ‹-neighborhood
of p contains at least MinPts objects. If not, p is marked as a noise point. Otherwise, a new cluster C is created
for p, and all the objects in the ‹-neighborhood of p are added to a candidate set, N . DBSCAN iter- atively adds to

C those objects in N that do not belong to any cluster. In this process, for an object pr in N that carries the
label “unvisited,” DBSCAN marks it as “visited” and
checks its ‹-neighborhood. If the ‹-neighborhood of pr has at least MinPts objects, those

objects in the ‹-neighborhood of pr are added to N . DBSCAN continues adding objects to C until C can no
longer be expanded, that is, N is empty. At this time, cluster C is
completed, and thus is output.

To find the next cluster, DBSCAN randomly selects an unvisited object from the remaining ones. The
clustering process continues until all objects are visited. The pseudocode of the DBSCAN algorithm is given in
Figure 10.15.

If a spatial index is used, the computational complexity of DBSCAN is O(n log n), where n is the number of
database objects. Otherwise, the complexity is O(n2). With appropriate settings of the user-defined
parameters, ‹ and MinPts, the algorithm is effective in finding arbitrary-shaped clusters.

 OPTICS: Ordering Points to Identify the Clustering

Structure

Although DBSCAN can cluster objects given input parameters such as ‹ (the maxi- mum radius of a
neighborhood) and MinPts (the minimum number of points required in the neighborhood of a core object), it
encumbers users with the responsibility of selecting parameter values that will lead to the discovery of
acceptable clusters. This is a problem associated with many other clustering algorithms. Such parameter
settings

q

m

p
r

s

o

www.jntufastupdates.com 31

Algorithm: DBSCAN: a density-based clustering algorithm.

Input:

D: a data set containing n objects,

‹: the radius parameter, and

MinPts: the neighborhood density threshold.

Output: A set of density-based clusters.

Method:

(1) mark all objects as unvisited;
(2) do

(3) randomly select an unvisited object p;
(4) mark p as visited;
(5) if the ‹-neighborhood of p has at least MinPts objects
(6) create a new cluster C, and add p to C;
(7) let N be the set of objects in the ‹-neighborhood of p;
(8) for each point pr in N
(9) if pr is unvisited

(10) mark pr as visited;

(11) if the ‹-neighborhood of pr has at least MinPts points,
add those points to N ;

(12) if pr is not yet a member of any cluster, add pr to C;
(13) end for

(14) output C;
(15) else mark p as noise;
(16) until no object is unvisited;

Figure 10.15 DBSCAN algorithm.

are usually empirically set and difficult to determine, especially for real-world, high- dimensional data
sets. Most algorithms are sensitive to these parameter values: Slightly different settings may lead to very
different clusterings of the data. Moreover, real-world, high-dimensional data sets often have very
skewed distributions such that their intrin- sic clustering structure may not be well characterized by a
single set of global density parameters.
Note that density-based clusters are monotonic with respect to the neighborhood threshold. That is,
in DBSCAN, for a fixed MinPts value and two neighborhood thresh- olds, ‹1 < ‹2, a cluster C with
respect to ‹1 and MinPts must be a subset of a cluster Cr with respect to ‹2 and MinPts. This means that
if two objects are in a density-based cluster, they must also be in a cluster with a lower density
requirement.
To overcome the difficulty in using one set of global parameters in clustering analy- sis, a cluster
analysis method called OPTICS was proposed. OPTICS does not explicitly produce a data set clustering.
Instead, it outputs a cluster ordering. This is a linear list

www.jntufastupdates.com 32

{ }

= =

of all objects under analysis and represents the density-based clustering structure of the data. Objects in a
denser cluster are listed closer to each other in the cluster ordering. This ordering is equivalent to density-
based clustering obtained from a wide range of parameter settings. Thus, OPTICS does not require the user to
provide a specific density threshold. The cluster ordering can be used to extract basic clustering information (e.g.,
cluster centers, or arbitrary-shaped clusters), derive the intrinsic clustering structure, as well as provide a
visualization of the clustering.
To construct the different clusterings simultaneously, the objects are processed in a specific order. This order
selects an object that is density-reachable with respect to the lowest ‹ value so that clusters with higher
density (lower ‹) will be finished first. Based on this idea, OPTICS needs two important pieces of information
per object:

The core-distance of an object p is the smallest value ‹
r such that the

‹
r-neighborhood of p has at least MinPts objects. That is, ‹

r is the minimum dis- tance threshold that
makes p a core object. If p is not a core object with respect to ‹ and MinPts, the core-distance of p is
undefined.

The reachability-distance to object p from q is the minimum radius value that makes p density-reachable from
q. According to the definition of density-reachability, q has to be a core object and p must be in the
neighborhood of q. Therefore, the reachability-distance from q to p is max core-distance(q), dist (p, q) . If q
is not a core object with respect to ‹ and MinPts, the reachability-distance to p from q is undefined.
An object p may be directly reachable from multiple core objects. Therefore, p may have multiple
reachability-distances with respect to different core objects. The smallest reachability-distance of p is of
particular interest because it gives the shortest path for which p is connected to a dense cluster.

Example 10.8 Core-distance and reachability-distance. Figure 10.16 illustrates the concepts of core- distance
and reachability-distance. Suppose that ‹ 6 mm and MinPts 5. The core- distance of p is the distance, ‹r,
between p and the fourth closest data object from p. The reachability-distance of q1 from p is the core-distance
of p (i.e., ‹r = 3 mm) because this is greater than the Euclidean distance from p to q1. The reachability-
distance of q2 with respect to p is the Euclidean distance from p to q2 because this is greater than the core-
distance of p.

OPTICS computes an ordering of all objects in a given database and, for each object in the database, stores
the core-distance and a suitable reachability-distance. OPTICS maintains a list called OrderSeeds to generate
the output ordering. Objects in Order- Seeds are sorted by the reachability-distance from their respective
closest core objects, that is, by the smallest reachability-distance of each object.
OPTICS begins with an arbitrary object from the input database as the current object, p. It retrieves the ‹-
neighborhood of p, determines the core-distance, and sets the reachability-distance to undefined. The
current object, p, is then written to output.

www.jntufastupdates.com 33

Core-distance of p Reachability-distance (p, q1)  ' 3 mm

Reachability-distance (p, q2)  dist (p, q2)

Figure 10.16 OPTICS terminology. Source: Based on Ankerst, Breunig, Kriegel, and Sander [ABKS99].

If p is not a core object, OPTICS simply moves on to the next object in the OrderSeeds list (or the input
database if OrderSeeds is empty). If p is a core object, then for each object, q, in the ‹-neighborhood
of p, OPTICS updates its reachability-distance from p and inserts q into OrderSeeds if q has not yet
been processed. The iteration continues until the input is fully consumed and OrderSeeds is empty.
A data set’s cluster ordering can be represented graphically, which helps to visual- ize and understand
the clustering structure in a data set. For example, Figure 10.17 is the reachability plot for a simple 2-D
data set, which presents a general overview of how the data are structured and clustered. The data
objects are plotted in the cluster- ing order (horizontal axis) together with their respective reachability-
distances (vertical axis). The three Gaussian “bumps” in the plot reflect three clusters in the data set.
Meth- ods have also been developed for viewing clustering structures of high-dimensional data at various
levels of detail.
The structure of the OPTICS algorithm is very similar to that of DBSCAN. Conse- quently, the two
algorithms have the same time complexity. The complexity is O(n log n) if a spatial index is used, and
O(n2) otherwise, where n is the number of objects.

 DENCLUE: Clustering Based on Density

Distribution Functions

Density estimation is a core issue in density-based clustering methods. DENCLUE (DENsity-based
CLUstEring) is a clustering method based on a set of density distribu- tion functions. We first give some
background on density estimation, and then describe the DENCLUE algorithm.
In probability and statistics, density estimation is the estimation of an unobservable underlying
probability density function based on a set of observed data. In the context of density-based clustering,
the unobservable underlying probability density function is the true distribution of the population of
all possible objects to be analyzed. The observed data set is regarded as a random sample from that
population.

 6 mm

'

p q1

q2

 6 mm

p
' 3 mm

www.jntufastupdates.com 34

1

2

Reachability-distance

Undefined

Cluster order of objects

Figure 10.17 Cluster ordering in OPTICS. Source: Adapted from Ankerst, Breunig, Kriegel, and Sander

[ABKS99].

Figure 10.18 The subtlety in density estimation in DBSCAN and OPTICS: Increasing the neighborhood

radius slightly from ‹1 to ‹2 results in a much higher density.

In DBSCAN and OPTICS, density is calculated by counting the number of objects in

a neighborhood defined by a radius parameter, ‹. Such density estimates can be highly
sensitive to the radius value used. For example, in Figure 10.18, the density changes
significantly as the radius increases by a small amount.

To overcome this problem, kernel density estimation can be used, which is a
nonparametric density estimation approach from statistics. The general idea behind
kernel density estimation is simple. We treat an observed object as an indicator of

www.jntufastupdates.com 35

Σ 1̂
f (x) =

h

¸
() = (−) = ()

h
— −

≥

high-probability density in the surrounding region. The probability density at a point
depends on the distances from this point to the observed objects.

Formally, let x1, . . . , xn be an independent and identically distributed sample of a
random variable f . The kernel density approximation of the probability density function is

n

h nh
i=1

K

x − xi

, (10.21)

where K() is a kernel and h is the bandwidth serving as a smoothing parameter. A ker-

nel can be regarded as a function modeling the influence of a sample point within its
neighborhood. Technically, a kernel K() is a non-negative real-valued integrable func-
tion that should satisfy two requirements: +∞ K u du 1 and K u K u for all

values of u. A frequently used kernel is a sta
−
n
∞
dard Gaussian function with a mean of 0

and a variance of 1:

K

x − xi

 1 (x xi)2

 e 2h2 . (10.22)
2π

DENCLUE uses a Gaussian kernel to estimate density based on the given set of objects

to be clustered. A point x∗ is called a density attractor if it is a local maximum of the
estimated density function. To avoid trivial local maximum points, DENCLUE uses a

noise threshold, ξ , and only considers those density attractors x∗ such that f̂(x∗) ξ .
These nontrivial density attractors are the centers of clusters.

Objects under analysis are assigned to clusters through density attractors using a step-
wise hill-climbing procedure. For an object, x, the hill-climbing procedure starts from
x and is guided by the gradient of the estimated density function. That is, the density
attractor for x is computed as

x0 = x

j+1 j ∇ f̂(xj)

x = x + δ
|∇ f̂(xj)|

, (10.23)

where δ is a parameter to control the speed of convergence, and

f̂(x) =
1

. (10.24)

∇
hd+2n

Σn
K

x −
h

xi

(xi − x)

The hill-climbing procedure stops at step k > 0 if f̂(xk+1) < f̂(xk), and assigns x to the

density attractor x∗ = xk. An object x is an outlier or noise if it converges in the hill-

climbing procedure to a local maximum x∗ with f̂(x∗) < ξ .
A cluster in DENCLUE is a set of density attractors X and a set of input objects C

such that each object in C is assigned to a density attractor in X, and there exists a path
between every pair of density attractors where the density is above ξ . By using multiple
density attractors connected by paths, DENCLUE can find clusters of arbitrary shape.

= √

i=1

www.jntufastupdates.com 36

DENCLUE has several advantages. It can be regarded as a generalization of several
well-known clustering methods such as single-linkage approaches and DBSCAN. More-
over, DENCLUE is invariant against noise. The kernel density estimation can effectively
reduce the influence of noise by uniformly distributing noise into the input data.

 Grid-Based Methods
The clustering methods discussed so far are data-driven—they partition the set of
objects and adapt to the distribution of the objects in the embedding space. Alterna-
tively, a grid-based clustering method takes a space-driven approach by partitioning
the embedding space into cells independent of the distribution of the input objects.

The grid-based clustering approach uses a multiresolution grid data structure. It
quantizes the object space into a finite number of cells that form a grid structure on
which all of the operations for clustering are performed. The main advantage of the
approach is its fast processing time, which is typically independent of the number of data
objects, yet dependent on only the number of cells in each dimension in the quantized
space.

In this section, we illustrate grid-based clustering using two typical examples. STING
(Section 10.5.1) explores statistical information stored in the grid cells. CLIQUE
(Section 10.5.2) represents a grid- and density-based approach for subspace clustering
in a high-dimensional data space.

 STING: STatistical INformation Grid

STING is a grid-based multiresolution clustering technique in which the embedding
spatial area of the input objects is divided into rectangular cells. The space can be divided
in a hierarchical and recursive way. Several levels of such rectangular cells correspond to
different levels of resolution and form a hierarchical structure: Each cell at a high level
is partitioned to form a number of cells at the next lower level. Statistical information
regarding the attributes in each grid cell, such as the mean, maximum, and minimum
values, is precomputed and stored as statistical parameters. These statistical parameters
are useful for query processing and for other data analysis tasks.

Figure 10.19 shows a hierarchical structure for STING clustering. The statistical
parameters of higher-level cells can easily be computed from the parameters of the
lower-level cells. These parameters include the following: the attribute-independent
parameter, count ; and the attribute-dependent parameters, mean, stdev (standard devia-
tion), min (minimum), max (maximum), and the type of distribution that the attribute
value in the cell follows such as normal, uniform, exponential, or none (if the distribu-
tion is unknown). Here, the attribute is a selected measure for analysis such as price for
house objects. When the data are loaded into the database, the parameters count, mean,
stdev, min, and max of the bottom-level cells are calculated directly from the data. The
value of distribution may either be assigned by the user if the distribution type is known

www.jntufastupdates.com 37

First layer

Figure 10.19 Hierarchical structure for STING clustering.

beforehand or obtained by hypothesis tests such as the χ 2 test. The type of distribution
of a higher-level cell can be computed based on the majority of distribution types of its
corresponding lower-level cells in conjunction with a threshold filtering process. If the
distributions of the lower-level cells disagree with each other and fail the threshold test,
the distribution type of the high-level cell is set to none.

“How is this statistical information useful for query answering?” The statistical para-
meters can be used in a top-down, grid-based manner as follows. First, a layer within the
hierarchical structure is determined from which the query-answering process is to start.
This layer typically contains a small number of cells. For each cell in the current layer,
we compute the confidence interval (or estimated probability range) reflecting the cell’s
relevancy to the given query. The irrelevant cells are removed from further considera-
tion. Processing of the next lower level examines only the remaining relevant cells. This
process is repeated until the bottom layer is reached. At this time, if the query specifica-
tion is met, the regions of relevant cells that satisfy the query are returned. Otherwise,
the data that fall into the relevant cells are retrieved and further processed until they
meet the query’s requirements.

An interesting property of STING is that it approaches the clustering result of
DBSCAN if the granularity approaches 0 (i.e., toward very low-level data). In other
words, using the count and cell size information, dense clusters can be identified
approximately using STING. Therefore, STING can also be regarded as a density-based
clustering method.

“What advantages does STING offer over other clustering methods?” STING offers
several advantages: (1) the grid-based computation is query-independent because the
statistical information stored in each cell represents the summary information of the
data in the grid cell, independent of the query; (2) the grid structure facilitates parallel
processing and incremental updating; and (3) the method’s efficiency is a major advan-
tage: STING goes through the database once to compute the statistical parameters of the
cells, and hence the time complexity of generating clusters is O(n), where n is the total
number of objects. After generating the hierarchical structure, the query processing time

(i – 1)st layer

ith layer

www.jntufastupdates.com 38

−
−

is O(g), where g is the total number of grid cells at the lowest level, which is usually much
smaller than n.

Because STING uses a multiresolution approach to cluster analysis, the quality of
STING clustering depends on the granularity of the lowest level of the grid structure. If
the granularity is very fine, the cost of processing will increase substantially; however, if
the bottom level of the grid structure is too coarse, it may reduce the quality of cluster
analysis. Moreover, STING does not consider the spatial relationship between the child-
ren and their neighboring cells for construction of a parent cell. As a result, the shapes
of the resulting clusters are isothetic, that is, all the cluster boundaries are either hori-
zontal or vertical, and no diagonal boundary is detected. This may lower the quality and
accuracy of the clusters despite the fast processing time of the technique.

 CLIQUE: An Apriori-like Subspace Clustering Method

A data object often has tens of attributes, many of which may be irrelevant. The val-
ues of attributes may vary considerably. These factors can make it difficult to locate
clusters that span the entire data space. It may be more meaningful to instead search
for clusters within different subspaces of the data. For example, consider a health-
informatics application where patient records contain extensive attributes describing
personal information, numerous symptoms, conditions, and family history.

Finding a nontrivial group of patients for which all or even most of the attributes
strongly agree is unlikely. In bird flu patients, for instance, the age, gender, and job
attributes may vary dramatically within a wide range of values. Thus, it can be difficult
to find such a cluster within the entire data space. Instead, by searching in subspaces, we
may find a cluster of similar patients in a lower-dimensional space (e.g., patients who
are similar to one other with respect to symptoms like high fever, cough but no runny
nose, and aged between 3 and 16).

CLIQUE (CLustering In QUEst) is a simple grid-based method for finding density-
based clusters in subspaces. CLIQUE partitions each dimension into nonoverlapping
intervals, thereby partitioning the entire embedding space of the data objects into cells.
It uses a density threshold to identify dense cells and sparse ones. A cell is dense if the
number of objects mapped to it exceeds the density threshold.

The main strategy behind CLIQUE for identifying a candidate search space uses the
monotonicity of dense cells with respect to dimensionality. This is based on the Apriori
property used in frequent pattern and association rule mining (Chapter 6). In the con-
text of clusters in subspaces, the monotonicity says the following. A k-dimensional cell c
(k > 1) can have at least l points only if every (k 1)-dimensional projection of c, which
is a cell in a (k 1)-dimensional subspace, has at least l points. Consider Figure 10.20,
where the embedding data space contains three dimensions: age, salary, and vacation.
A 2-D cell, say in the subspace formed by age and salary, contains l points only if the
projection of this cell in every dimension, that is, age and salary, respectively, contains
at least l points.

CLIQUE performs clustering in two steps. In the first step, CLIQUE partitions
the d-dimensional data space into nonoverlapping rectangular units, identifying the
dense units among these. CLIQUE finds dense cells in all of the subspaces. To do so,

www.jntufastupdates.com 39

7

6

5

4

3

2

1

0
20 30 40

50 60 age

7

6

5

4

3

2

1

0
20 30 40

50 60 age

age

Figure 10.20 Dense units found with respect to age for the dimensions salary and vacation are intersected

to provide a candidate search space for dense units of higher dimensionality.

50 30

va
ca

ti
o

n
 (

w
ee

k
)

sa
la

ry
 (

$
1

0
,0

0
0
)

va
ca

ti
o

n

www.jntufastupdates.com 40

CLIQUE partitions every dimension into intervals, and identifies intervals containing
at least l points, where l is the density threshold. CLIQUE then iteratively joins two k-
dimensional dense cells, c1 and c2, in subspaces (Di1 , . . . , Dik) and (Dj1 , . . . , Djk),

respectively, if Di1 = Dj1 , . . . , Dik− 1 = Djk− 1 , and c1 and c2 share the same intervals in

those dimensions. The join operation generates a new (k + 1)-dimensional candidate
cell c in space (Di1 , . . . , Dik− 1 , Dik , Djk). CLIQUE checks whether the number of points
in c passes the density threshold. The iteration terminates when no candidates can be
generated or no candidate cells are dense.

In the second step, CLIQUE uses the dense cells in each subspace to assemble clusters,
which can be of arbitrary shape. The idea is to apply the Minimum Description Length
(MDL) principle (Chapter 8) to use the maximal regions to cover connected dense cells,
where a maximal region is a hyperrectangle where every cell falling into this region is
dense, and the region cannot be extended further in any dimension in the subspace.
Finding the best description of a cluster in general is NP-Hard. Thus, CLIQUE adopts
a simple greedy approach. It starts with an arbitrary dense cell, finds a maximal region
covering the cell, and then works on the remaining dense cells that have not yet been
covered. The greedy method terminates when all dense cells are covered.

“How effective is CLIQUE?” CLIQUE automatically finds subspaces of the highest
dimensionality such that high-density clusters exist in those subspaces. It is insensitive
to the order of input objects and does not presume any canonical data distribution. It
scales linearly with the size of the input and has good scalability as the number of dimen-
sions in the data is increased. However, obtaining a meaningful clustering is dependent
on proper tuning of the grid size (which is a stable structure here) and the density
threshold. This can be difficult in practice because the grid size and density threshold
are used across all combinations of dimensions in the data set. Thus, the accuracy of the
clustering results may be degraded at the expense of the method’s simplicity. Moreover,
for a given dense region, all projections of the region onto lower-dimensionality sub-
spaces will also be dense. This can result in a large overlap among the reported dense
regions. Furthermore, it is difficult to find clusters of rather different densities within
different dimensional subspaces.

Several extensions to this approach follow a similar philosophy. For example, we can
think of a grid as a set of fixed bins. Instead of using fixed bins for each of the dimensions,
we can use an adaptive, data-driven strategy to dynamically determine the bins for each
dimension based on data distribution statistics. Alternatively, instead of using a den-
sity threshold, we may use entropy (Chapter 8) as a measure of the quality of subspace
clusters.

 Evaluation of Clustering

By now you have learned what clustering is and know several popular clustering meth-
ods. You may ask, “When I try out a clustering method on a data set, how can I
evaluate whether the clustering results are good?” In general, cluster evaluation assesses

www.jntufastupdates.com 41

the feasibility of clustering analysis on a data set and the quality of the results generated
by a clustering method. The major tasks of clustering evaluation include the following:

Assessing clustering tendency. In this task, for a given data set, we assess whether a
nonrandom structure exists in the data. Blindly applying a clustering method on a
data set will return clusters; however, the clusters mined may be misleading. Cluster-
ing analysis on a data set is meaningful only when there is a nonrandom structure in
the data.

Determining the number of clusters in a data set. A few algorithms, such as k-means,
require the number of clusters in a data set as the parameter. Moreover, the number
of clusters can be regarded as an interesting and important summary statistic of a
data set. Therefore, it is desirable to estimate this number even before a clustering
algorithm is used to derive detailed clusters.

Measuring clustering quality. After applying a clustering method on a data set, we
want to assess how good the resulting clusters are. A number of measures can be used.
Some methods measure how well the clusters fit the data set, while others measure
how well the clusters match the ground truth, if such truth is available. There are also
measures that score clusterings and thus can compare two sets of clustering results
on the same data set.

In the rest of this section, we discuss each of these three topics.

 Assessing Clustering Tendency

Clustering tendency assessment determines whether a given data set has a non-random
structure, which may lead to meaningful clusters. Consider a data set that does not have
any non-random structure, such as a set of uniformly distributed points in a data space.
Even though a clustering algorithm may return clusters for the data, those clusters are
random and are not meaningful.

Example 10.9 Clustering requires nonuniform distribution of data. Figure 10.21 shows a data set
that is uniformly distributed in 2-D data space. Although a clustering algorithm may
still artificially partition the points into groups, the groups will unlikely mean anything
significant to the application due to the uniform distribution of the data.

“How can we assess the clustering tendency of a data set?” Intuitively, we can try to
measure the probability that the data set is generated by a uniform data distribution.
This can be achieved using statistical tests for spatial randomness. To illustrate this idea,
let’s look at a simple yet effective statistic called the Hopkins Statistic.

The Hopkins Statistic is a spatial statistic that tests the spatial randomness of a vari-
able as distributed in a space. Given a data set, D, which is regarded as a sample of

www.jntufastupdates.com 42

≤ ≤

v∈ D

i =
v∈

Σ

Σ Σ

n
=

highly skewed, then n
i=1 yi would be substantially smaller than

n
i=1 xi in expectation,

Figure 10.21 A data set that is uniformly distributed in the data space.

a random variable, o, we want to determine how far away o is from being uniformly
distributed in the data space. We calculate the Hopkins Statistic as follows:

1. Sample n points, p1, . . . , pn, uniformly from D. That is, each point in D has the same

probability of being included in this sample. For each point, pi, we find the nearest
neighbor of pi (1 i n) in D, and let xi be the distance between pi and its nearest
neighbor in D. That is,

xi = min{dist(pi, v)}. (10.25)

2. Sample n points, q1, . . . , qn, uniformly from D. For each qi (1 ≤ i ≤ n), we find the

nearest neighbor of qi in D − {qi}, and let yi be the distance between qi and its nearest
neighbor in D − {qi}. That is,

y min
D,v/=qi

3. Calculate the Hopkins Statistic, H, as

{dist(qi, v)}. (10.26)

H = n i 1 yi
n

. (10.27)

i=1 xi + i=1 yi

“What does the Hopkins Statistic tell us about how likely data set D follows a uni-
form distribution in the data space?” If D were uniformly distributed, then

Σn yi and
Σn

i=1

i=1 xi would be cloΣse to each other, and thus H would be aboutΣ0.5. However, if D were
 and thus H would be close to 0.

www.jntufastupdates.com 43

2

,

Our null hypothesis is the homogeneous hypothesis—that D is uniformly distributed
and thus contains no meaningful clusters. The nonhomogeneous hypothesis (i.e., that D
is not uniformly distributed and thus contains clusters) is the alternative hypothesis.
We can conduct the Hopkins Statistic test iteratively, using 0.5 as the threshold to reject
the alternative hypothesis. That is, if H > 0.5, then it is unlikely that D has statistically
significant clusters.

 Determining the Number of Clusters

Determining the “right” number of clusters in a data set is important, not only because
some clustering algorithms like k-means require such a parameter, but also because the
appropriate number of clusters controls the proper granularity of cluster analysis. It can
be regarded as finding a good balance between compressibility and accuracy in cluster
analysis. Consider two extreme cases. What if you were to treat the entire data set as a
cluster? This would maximize the compression of the data, but such a cluster analysis
has no value. On the other hand, treating each object in a data set as a cluster gives
the finest clustering resolution (i.e., most accurate due to the zero distance between an
object and the corresponding cluster center). In some methods like k-means, this even
achieves the best cost. However, having one object per cluster does not enable any data
summarization.

Determining the number of clusters is far from easy, often because the “right” num-
ber is ambiguous. Figuring out what the right number of clusters should be often
depends on the distribution’s shape and scale in the data set, as well as the cluster-
ing resolution required by the user. There are many possible ways to estimate the
number of clusters. Here, we briefly introduce a few simple yet popular and effective
methods.

A simple method is to set the number of clusters to about n for a data set of n

points. In expectation, each cluster has
√

2n points.

The elbow method is based on the observation that increasing the number of clusters
can help to reduce the sum of within-cluster variance of each cluster. This is because
having more clusters allows one to capture finer groups of data objects that are more
similar to each other. However, the marginal effect of reducing the sum of within-cluster
variances may drop if too many clusters are formed, because splitting a cohesive cluster
into two gives only a small reduction. Consequently, a heuristic for selecting the right
number of clusters is to use the turning point in the curve of the sum of within-cluster
variances with respect to the number of clusters.

Technically, given a number, k > 0, we can form k clusters on the data set in ques-
tion using a clustering algorithm like k-means, and calculate the sum of within-cluster
variances, var(k). We can then plot the curve of var with respect to k. The first (or most
significant) turning point of the curve suggests the “right” number.

More advanced methods can determine the number of clusters using information
criteria or information theoretic approaches. Please refer to the bibliographic notes for
further information (Section 10.9).

www.jntufastupdates.com 44

−

C C

The “right” number of clusters in a data set can also be determined by cross-

validation, a technique often used in classification (Chapter 8). First, divide the given
data set, D, into m parts. Next, use m 1 parts to build a clustering model, and use
the remaining part to test the quality of the clustering. For example, for each point in
the test set, we can find the closest centroid. Consequently, we can use the sum of the
squared distances between all points in the test set and the closest centroids to measure
how well the clustering model fits the test set. For any integer k > 0, we repeat this pro-
cess m times to derive clusterings of k clusters by using each part in turn as the test set.
The average of the quality measure is taken as the overall quality measure. We can then
compare the overall quality measure with respect to different values of k, and find the
number of clusters that best fits the data.

 Measuring Clustering Quality

Suppose you have assessed the clustering tendency of a given data set. You may have
also tried to predetermine the number of clusters in the set. You can now apply one
or multiple clustering methods to obtain clusterings of the data set. “How good is the
clustering generated by a method, and how can we compare the clusterings generated by
different methods?”

We have a few methods to choose from for measuring the quality of a clustering.
In general, these methods can be categorized into two groups according to whether
ground truth is available. Here, ground truth is the ideal clustering that is often built
using human experts.

If ground truth is available, it can be used by extrinsic methods, which compare the
clustering against the group truth and measure. If the ground truth is unavailable, we
can use intrinsic methods, which evaluate the goodness of a clustering by considering
how well the clusters are separated. Ground truth can be considered as supervision in the
form of “cluster labels.” Hence, extrinsic methods are also known as supervised methods,
while intrinsic methods are unsupervised methods.

Let’s have a look at simple methods from each category.

Extrinsic Methods

When the ground truth is available, we can compare it with a clustering to assess the
clustering. Thus, the core task in extrinsic methods is to assign a score, Q(C, Cg), to
a clustering, , given the ground truth, g . Whether an extrinsic method is effective
largely depends on the measure, Q, it uses.

In general, a measure Q on clustering quality is effective if it satisfies the following
four essential criteria:

Cluster homogeneity. This requires that the more pure the clusters in a clustering
are, the better the clustering. Suppose that ground truth says that the objects in
a data set, D, can belong to categories L1, . . . , Ln. Consider clustering, C1, wherein
a cluster C ∈ C1 contains objects from two categories Li, Lj (1 ≤ i < j ≤ n). Also

www.jntufastupdates.com 45

C ∈ C

consider clustering C2, which is identical to C1 except that C2 is split into two clusters
containing the objects in Li and Lj, respectively. A clustering quality measure, Q,
respecting cluster homogeneity should give a higher score to C2 than C1, that is,
Q(C2, Cg) > Q(C1, Cg).

Cluster completeness. This is the counterpart of cluster homogeneity. Cluster com-
pleteness requires that for a clustering, if any two objects belong to the same category
according to ground truth, then they should be assigned to the same cluster. Cluster
completeness requires that a clustering should assign objects belonging to the same
category (according to ground truth) to the same cluster. Consider clustering C1,
which contains clusters C1 and C2, of which the members belong to the same category
according to ground truth. Let clustering C2 be identical to C1 except that C1 and C2
are merged into one cluster in C2. Then, a clustering quality measure, Q, respecting
cluster completeness should give a higher score to C2, that is, Q(C2, Cg) > Q(C1, Cg).

Rag bag. In many practical scenarios, there is often a “rag bag” category contain-
ing objects that cannot be merged with other objects. Such a category is often called
“miscellaneous,” “other,” and so on. The rag bag criterion states that putting a het-
erogeneous object into a pure cluster should be penalized more than putting it into
a rag bag. Consider a clustering 1 and a cluster C 1 such that all objects in C
except for one, denoted by o, belong to the same category according to ground truth.
Consider a clustering C2 identical to C1 except that o is assigned to a cluster Cr /= C in
C2 such that Cr contains objects from various categories according to ground truth,
and thus is noisy. In other words, Cr in C2 is a rag bag. Then, a clustering quality
measure Q respecting the rag bag criterion should give a higher score to C2, that is,
Q(C2, Cg) > Q(C1, Cg).

Small cluster preservation. If a small category is split into small pieces in a cluster-
ing, those small pieces may likely become noise and thus the small category cannot
be discovered from the clustering. The small cluster preservation criterion states that
splitting a small category into pieces is more harmful than splitting a large category
into pieces. Consider an extreme case. Let D be a data set of n + 2 objects such that,
according to ground truth, n objects, denoted by o1, . . . , on, belong to one cate-
gory and the other two objects, denoted by on+1,on+2, belong to another cate-
gory. Suppose clustering C1 has three clusters, C1 = {o1, . . . , on}, C2 = {on+1}, and
C3 = {on+2}. Let clustering C2 have three clusters, too, namely C1 = {o1, . . . , on−1},
C2 = {on}, and C3 = {on+1, on+2}. In other words, C1 splits the small category and
C2 splits the big category. A clustering quality measure Q preserving small clusters
should give a higher score to C2, that is, Q(C2, Cg) > Q(C1, Cg).

Many clustering quality measures satisfy some of these four criteria. Here, we introduce
the BCubed precision and recall metrics, which satisfy all four criteria.

BCubed evaluates the precision and recall for every object in a clustering on a given
data set according to ground truth. The precision of an object indicates how many
other objects in the same cluster belong to the same category as the object. The recall

www.jntufastupdates.com 46

(

=i j

ǁ{ | /= = }ǁ

ǁ{ | /= = }ǁ

∈

Σ

=

Σ oj:i/=j,C(oi)=C(oj)

Σ oj:i/=j,L(oi)=L(oj)

of an object reflects how many objects of the same category are assigned to the same
cluster.

Formally, let D ={o1, . . . , on} be a set of objects, and C be a clustering on D. Let L(oi)
(1 ≤ i ≤ n) be the category of oi given by ground truth, and C(oi) be the cluster ID of oi in
C. Then, for two objects, oi and oj, (1 ≤ i, j, ≤ n, i /= j), the correctness of the relation
between oi and oj in clustering C is given by

Correctness(o , o)
1 if L(oi) = L(oj) ⇔ C(oi) = C(oj)

0 otherwise.

(10.28)

BCubed precision is defined as

n

Σ
Correctness(oi, oj)

Precision BCubed =
i=1

oj i j, C(oi) C(oj)
. (10.29)

n

BCubed recall is defined as

n

Σ
Correctness(oi, oj)

Recall BCubed =
i=1 oj i j, L(oi) L(oj)

. (10.30)
n

Intrinsic Methods

When the ground truth of a data set is not available, we have to use an intrinsic method
to assess the clustering quality. In general, intrinsic methods evaluate a clustering by
examining how well the clusters are separated and how compact the clusters are. Many
intrinsic methods have the advantage of a similarity metric between objects in the
data set.

The silhouette coefficient is such a measure. For a data set, D, of n objects, suppose
D is partitioned into k clusters, C1, . . . , Ck. For each object o D, we calculate a(o) as
the average distance between o and all other objects in the cluster to which o belongs.
Similarly, b(o) is the minimum average distance from o to all clusters to which o does
not belong. Formally, suppose o ∈ Ci (1 ≤ i ≤ k); then

a(o)
or∈ Ci ,o/=or dist(o, or)

|Ci| − 1

(10.31)

www.jntufastupdates.com 47

(Σ)

=

−

j ≤j≤k,j j

and
b(o) =

C :1
min

/=i

or∈ Cj

dist(o, or)

|C |

. (10.32)

The silhouette coefficient of o is then defined as

s(o)
b(o) − a(o)

. (10.33)
max{a(o), b(o)}

The value of the silhouette coefficient is between 1 and 1. The value of a(o) reflects the
compactness of the cluster to which o belongs. The smaller the value, the more com- pact
the cluster. The value of b(o) captures the degree to which o is separated from other
clusters. The larger b(o) is, the more separated o is from other clusters. Therefore, when the
silhouette coefficient value of o approaches 1, the cluster containing o is compact and o
is far away from other clusters, which is the preferable case. However, when the
silhouette coefficient value is negative (i.e., b(o) < a(o)), this means that, in expectation, o
is closer to the objects in another cluster than to the objects in the same cluster as o. In
many cases, this is a bad situation and should be avoided.

To measure a cluster’s fitness within a clustering, we can compute the average silhou-
ette coefficient value of all objects in the cluster. To measure the quality of a clustering, we
can use the average silhouette coefficient value of all objects in the data set. The sil-
houette coefficient and other intrinsic measures can also be used in the elbow method to
heuristically derive the number of clusters in a data set by replacing the sum of within-
cluster variances.

 Clustering High-Dimensional Data
The clustering methods we have studied so far work well when the dimensionality is not
high, that is, having less than 10 attributes. There are, however, important applications
of high dimensionality. “How can we conduct cluster analysis on high-dimensional data?”

Inthissection, westudyapproachestoclusteringhigh-dimensionaldata. Section 11.2.1
starts with an overview of the major challenges and the approaches used. Methods for
high-dimensional data clustering can be divided into two categories: subspace clustering
methods (Section 11.2.2) and dimensionality reduction methods (Section 11.2.3).

 Clustering High-Dimensional Data: Problems,
Challenges, and Major Methodologies

Before we present any specific methods for clustering high-dimensional data, let’s first
demonstrate the needs of cluster analysis on high-dimensional data using examples. We
examine the challenges that call for new methods. We then categorize the major meth-
ods according to whether they search for clusters in subspaces of the original space, or
whether they create a new lower-dimensionality space and search for clusters there.

In some applications, a data object may be described by 10 or more attributes. Such
objects are referred to as a high-dimensional data space.

Example 11.9 High-dimensional data and clustering. AllElectronics keeps track of the products pur-
chased by every customer. As a customer-relationship manager, you want to cluster
customers into groups according to what they purchased from AllElectronics.

www.jntufastupdates.com 48

Table 11.4 Customer Purchase Data

Customer P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Ada 1 0 0 0 0 0 0 0 0 0

Bob 0 0 0 0 0 0 0 0 0 1

Cathy 1 0 0 0 1 0 0 0 0 1

The customer purchase data are of very high dimensionality. AllElectronics carries
tens of thousands of products. Therefore, a customer’s purchase profile, which is a vector
of the products carried by the company, has tens of thousands of dimensions.

“Are the traditional distance measures, which are frequently used in low-dimensional
cluster analysis, also effective on high-dimensional data?” Consider the customers in
Table 11.4, where 10 products, P1, . . . , P10, are used in demonstration. If a customer
purchases a product, a 1 is set at the corresponding bit; otherwise, a 0 appears. Let’s
calculate the Euclidean distances (Eq. 2.16) among Ada, Bob, and Cathy. It is easy to
see that

dist(Ada, Bob) = dist(Bob, Cathy) = dist(Ada, Cathy) =
√

2.

According to Euclidean distance, the three customers are equivalently similar (or dis-
similar) to each other. However, a close look tells us that Ada should be more similar to
Cathy than to Bob because Ada and Cathy share one common purchased item, P1.

As shown in Example 11.9, the traditional distance measures can be ineffective on
high-dimensional data. Such distance measures may be dominated by the noise in many
dimensions. Therefore, clusters in the full, high-dimensional space can be unreliable,
and finding such clusters may not be meaningful.

“Then what kinds of clusters are meaningful on high-dimensional data?” For cluster
analysis of high-dimensional data, we still want to group similar objects together. How-
ever, the data space is often too big and too messy. An additional challenge is that we
need to find not only clusters, but, for each cluster, a set of attributes that manifest the
cluster. In other words, a cluster on high-dimensional data often is defined using a small
set of attributes instead of the full data space. Essentially, clustering high-dimensional
data should return groups of objects as clusters (as conventional cluster analysis does),
in addition to, for each cluster, the set of attributes that characterize the cluster. For
example, in Table 11.4, to characterize the similarity between Ada and Cathy, P1 may be
returned as the attribute because Ada and Cathy both purchased P1.

Clustering high-dimensional data is the search for clusters and the space in which
they exist. Thus, there are two major kinds of methods:

Subspace clustering approaches search for clusters existing in subspaces of the given
high-dimensional data space, where a subspace is defined using a subset of attributes
in the full space. Subspace clustering approaches are discussed in Section 11.2.2.

www.jntufastupdates.com 49

 !

= ×

Dimensionality reduction approaches try to construct a much lower-dimensional
space and search for clusters in such a space. Often, a method may construct new
dimensions by combining some dimensions from the original data. Dimensionality
reduction methods are the topic of Section 11.2.4.

In general, clustering high-dimensional data raises several new challenges in addition

to those of conventional clustering:

A major issue is how to create appropriate models for clusters in high-dimensional
data. Unlike conventional clusters in low-dimensional spaces, clusters hidden in
high-dimensional data are often significantly smaller. For example, when clustering
customer-purchase data, we would not expect many users to have similar purchase
patterns. Searching for such small but meaningful clusters is like finding needles in
a haystack. As shown before, the conventional distance measures can be ineffective.
Instead, we often have to consider various more sophisticated techniques that can
model correlations and consistency among objects in subspaces.

There are typically an exponential number of possible subspaces or dimensionality
reduction options, and thus the optimal solutions are often computationally pro-
hibitive. For example, if the original data space has 1000 dimensions, and we want

to find clusters of dimensionality 10, then there are
1000

2.63 1023 possible
10

subspaces.

 Subspace Clustering Methods

“How can we find subspace clusters from high-dimensional data?” Many methods have
been proposed. They generally can be categorized into three major groups: subspace
search methods, correlation-based clustering methods, and biclustering methods.

Subspace Search Methods

A subspace search method searches various subspaces for clusters. Here, a cluster is a
subset of objects that are similar to each other in a subspace. The similarity is often cap-
tured by conventional measures such as distance or density. For example, the CLIQUE
algorithm introduced in Section 10.5.2 is a subspace clustering method. It enumerates
subspaces and the clusters in those subspaces in a dimensionality-increasing order, and
applies antimonotonicity to prune subspaces in which no cluster may exist.

A major challenge that subspace search methods face is how to search a series of
subspaces effectively and efficiently. Generally there are two kinds of strategies:

Bottom-up approaches start from low-dimensional subspaces and search higher-
dimensional subspaces only when there may be clusters in those higher-dimensional

www.jntufastupdates.com 50

subspaces. Various pruning techniques are explored to reduce the number of higher-
dimensional subspaces that need to be searched. CLIQUE is an example of a
bottom-up approach.

Top-down approaches start from the full space and search smaller and smaller sub-
spaces recursively. Top-down approaches are effective only if the locality assumption
holds, which require that the subspace of a cluster can be determined by the local
neighborhood.

Example 11.10 PROCLUS, a top-down subspace approach. PROCLUS is a k-medoid-like method
that first generates k potential cluster centers for a high-dimensional data set using a
sample of the data set. It then refines the subspace clusters iteratively. In each itera-
tion, for each of the current k-medoids, PROCLUS considers the local neighborhood
of the medoid in the whole data set, and identifies a subspace for the cluster by mini-
mizing the standard deviation of the distances of the points in the neighborhood to
the medoid on each dimension. Once all the subspaces for the medoids are deter-
mined, each point in the data set is assigned to the closest medoid according to the
corresponding subspace. Clusters and possible outliers are identified. In the next iter-
ation, new medoids replace existing ones if doing so improves the clustering quality.

Correlation-Based Clustering Methods

While subspace search methods search for clusters with a similarity that is measured
using conventional metrics like distance or density, correlation-based approaches can
further discover clusters that are defined by advanced correlation models.

Example 11.11 A correlation-based approach using PCA. As an example, a PCA-based approach first

applies PCA (Principal Components Analysis; see Chapter 3) to derive a set of new,
uncorrelated dimensions, and then mine clusters in the new space or its subspaces. In
addition to PCA, other space transformations may be used, such as the Hough transform
or fractal dimensions.

For additional details on subspace search methods and correlation-based clustering
methods, please refer to the bibliographic notes (Section 11.7).

Biclustering Methods

In some applications, we want to cluster both objects and attributes simultaneously.
The resulting clusters are known as biclusters and meet four requirements: (1) only a
small set of objects participate in a cluster; (2) a cluster only involves a small number of
attributes; (3) an object may participate in multiple clusters, or does not participate in
any cluster; and (4) an attribute may be involved in multiple clusters, or is not involved
in any cluster. Section 11.2.3 discusses biclustering in detail.

www.jntufastupdates.com 51

 Biclustering

In the cluster analysis discussed so far, we cluster objects according to their attribute
values. Objects and attributes are not treated in the same way. However, in some applica-
tions, objects and attributes are defined in a symmetric way, where data analysis involves
searching data matrices for submatrices that show unique patterns as clusters. This kind
of clustering technique belongs to the category of biclustering.

This section first introduces two motivating application examples of biclustering—
gene expression and recommender systems. You will then learn about the different types
of biclusters. Last, we present biclustering methods.

Application Examples

Biclustering techniques were first proposed to address the needs for analyzing gene
expression data. A gene is a unit of the passing-on of traits from a living organism to
its offspring. Typically, a gene resides on a segment of DNA. Genes are critical for all
living things because they specify all proteins and functional RNA chains. They hold the
information to build and maintain a living organism’s cells and pass genetic traits to
offspring. Synthesis of a functional gene product, either RNA or protein, relies on the
process of gene expression. A genotype is the genetic makeup of a cell, an organism, or
an individual. Phenotypes are observable characteristics of an organism. Gene expression
is the most fundamental level in genetics in that genotypes cause phenotypes.

Using DNA chips (also known as DNA microarrays) and other biological engineer-
ing techniques, we can measure the expression level of a large number (possibly all) of
an organism’s genes, in a number of different experimental conditions. Such conditions
may correspond to different time points in an experiment or samples from different
organs. Roughly speaking, the gene expression data or DNA microarray data are concep-
tually a gene-sample/condition matrix, where each row corresponds to one gene, and
each column corresponds to one sample or condition. Each element in the matrix is
a real number and records the expression level of a gene under a specific condition.
Figure 11.3 shows an illustration.

From the clustering viewpoint, an interesting issue is that a gene expression data
matrix can be analyzed in two dimensions—the gene dimension and the sample/
condition dimension.

When analyzing in the gene dimension, we treat each gene as an object and treat the
samples/conditions as attributes. By mining in the gene dimension, we may find pat-
terns shared by multiple genes, or cluster genes into groups. For example, we may
find a group of genes that express themselves similarly, which is highly interesting in
bioinformatics, such as in finding pathways.

When analyzing in the sample/condition dimension, we treat each sample/condition
as an object and treat the genes as attributes. In this way, we may find patterns of
samples/conditions, or cluster samples/conditions into groups. For example, we may
find the differences in gene expression by comparing a group of tumor samples and
nontumor samples.

www.jntufastupdates.com 52

Sample/condition

Gene

Figure 11.3 Microarrary data matrix.

Example 11.12 Gene expression. Gene expression matrices are popular in bioinformatics research and

development. For example, an important task is to classify a new gene using the expres-
sion data of the gene and that of other genes in known classes. Symmetrically, we may
classify a new sample (e.g., a new patient) using the expression data of the sample and
that of samples in known classes (e.g., tumor and nontumor). Such tasks are invaluable
in understanding the mechanisms of diseases and in clinical treatment.

As can be seen, many gene expression data mining problems are highly related to
cluster analysis. However, a challenge here is that, instead of clustering in one dimension
(e.g., gene or sample/condition), in many cases we need to cluster in two dimensions
simultaneously (e.g., both gene and sample/condition). Moreover, unlike the clustering
models we have discussed so far, a cluster in a gene expression data matrix is a submatrix
and usually has the following characteristics:

Only a small set of genes participate in the cluster.

The cluster involves only a small subset of samples/conditions.

A gene may participate in multiple clusters, or may not participate in any cluster.

A sample/condition may be involved in multiple clusters, or may not be involved in
any cluster.

To find clusters in gene-sample/condition matrices, we need new clustering tech-

niques that meet the following requirements for biclustering :

A cluster of genes is defined using only a subset of samples/conditions.

A cluster of samples/conditions is defined using only a subset of genes.

w11 w12 w1m

w21 w22 w2m

w31 w32 w3m

wn1 wn2 wnm

www.jntufastupdates.com 53

The clusters are neither exclusive (e.g., where one gene can participate in multiple
clusters) nor exhaustive (e.g., where a gene may not participate in any cluster).

Biclustering is useful not only in bioinformatics, but also in other applications as well.
Consider recommender systems as an example.

Example 11.13 Using biclustering for a recommender system. AllElectronics collects data from cus-
tomers’ evaluations of products and uses the data to recommend products to customers.
The data can be modeled as a customer-product matrix, where each row represents a
customer, and each column represents a product. Each element in the matrix represents
a customer’s evaluation of a product, which may be a score (e.g., like, like somewhat,
not like) or purchase behavior (e.g., buy or not). Figure 11.4 illustrates the structure.

The customer-product matrix can be analyzed in two dimensions: the customer
dimension and the product dimension. Treating each customer as an object and products
as attributes, AllElectronics can find customer groups that have similar preferences or
purchase patterns. Using products as objects and customers as attributes, AllElectronics
can mine product groups that are similar in customer interest.

Moreover, AllElectronics can mine clusters in both customers and products simulta-
neously. Such a cluster contains a subset of customers and involves a subset of products.
For example, AllElectronics is highly interested in finding a group of customers who all
like the same group of products. Such a cluster is a submatrix in the customer-product
matrix, where all elements have a high value. Using such a cluster, AllElectronics can
make recommendations in two directions. First, the company can recommend products
to new customers who are similar to the customers in the cluster. Second, the company
can recommend to customers new products that are similar to those involved in the
cluster.

As with biclusters in a gene expression data matrix, the biclusters in a customer-
product matrix usually have the following characteristics:

Only a small set of customers participate in a cluster.

A cluster involves only a small subset of products.

A customer can participate in multiple clusters, or may not participate in any
cluster.

Products

w11 w12 · · · w1m

Customers w21 w22 · · · w2m

· · · · · · · · · · · ·

 wn1 wn2 · · · wnm

Figure 11.4 Customer–product matrix.

www.jntufastupdates.com 54

{ }

∈ ∈ = +

× ∈ ∈ = +

· · · b6

a1 · · · 60

a33

· · ·

· · · · · ·

· · ·

· · ·

· · ·

60

· · ·

· · ·

· · ·

· · ·

· · ·

b12

60

· · ·

60

· · ·

· · ·

· · ·

· · ·

· · ·

b36

60

· · ·

60

a86 · · ·

· · ·

60 · · ·

· · ·

60

· · · b99 · · ·

· · · 60 · · ·

· · · · · · · · ·

· · · 60 · · ·

· · · · · · · · · · · ·

 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · 60 · · · 60 · · ·

A product may be involved in multiple clusters, or may not be involved in any
cluster.

Biclustering can be applied to customer-product matrices to mine clusters satisfying
these requirements.

Types of Biclusters

“How can we model biclusters and mine them?” Let’s start with some basic notation. For
the sake of simplicity, we will use “genes” and “conditions” to refer to the two dimen-
sions in our discussion. Our discussion can easily be extended to other applications. For
example, we can simply replace “genes” and “conditions” by “customers” and “products”
to tackle the customer-product biclustering problem.

Let A = {a1, . . . , an} be a set of genes and B = {b1, . . . , bm} be a set of conditions. Let
E = [eij] be a gene expression data matrix, that is, a gene-condition matrix, where 1 ≤ i
≤ n and 1 ≤ j ≤ m. A submatrix I × J is defined by a subset I ⊆ A of genes and a subset J ⊆
B of conditions. For example, in the matrix shown in Figure 11.5, {a1, a33, a86} × b6, b12,
b36, b99 is a submatrix.

A bicluster is a submatrix where genes and conditions follow consistent patterns. We
can define different types of biclusters based on such patterns.

As the simplest case, a submatrix I × J (I ⊆ A, J ⊆ B) is a bicluster with constant val-
ues if for any i ∈ I and j ∈ J , eij = c, where c is a constant. For example, the submatrix

{a1, a33, a86} × {b6, b12, b36, b99} in Figure 11.5 is a bicluster with constant values.

A bicluster is interesting if each row has a constant value, though different rows may
have different values. A bicluster with constant values on rows is a submatrix I × J
such that for any i I and j J , eij c αi, where αi is the adjustment for row i. For
example, Figure 11.6 shows a bicluster with constant values on rows.

Symmetrically, a bicluster with constant values on columns is a submatrix
I J such that for any i I and j J , eij c βj, where βj is the adjustment for
column j.

Figure 11.5 Gene-condition matrix, a submatrix, and a bicluster.

www.jntufastupdates.com 55

= ·

 ·

∈ − − ≥

∈ ∈ = + +

∈ ∈ − = −

More generally, a bicluster is interesting if the rows change in a synchronized way with
respect to the columns and vice versa. Mathematically, a bicluster with coherent
values (also known as a pattern-based cluster) is a submatrix I × J such that for
any i I and j J , eij c αi βj, where αi and βj are the adjustment for row i
and column j, respectively. For example, Figure 11.7 shows a bicluster with coherent
values.

It can be shown that I × J is a bicluster with coherent values if and only if for
any i1, i2 I and j1, j2 J , then ei1j1 ei2j1 ei1j2 ei2j2 . Moreover, instead of using
addition, we can define a bicluster with coherent values using multiplication, that
is, eij c αi βj . Clearly, biclusters with constant values on rows or columns are
special cases of biclusters with coherent values.

In some applications, we may only be interested in the up- or down-regulated
changes across genes or conditions without constraining the exact values. A biclus-
ter with coherent evolutions on rows is a submatrix I × J such that for any i1, i2 ∈ I
and j1, j2 J , (ei1j1 ei1j2)(ei2j1 ei2j2) 0. For example, Figure 11.8 shows a biclus-
ter with coherent evolutions on rows. Symmetrically, we can define biclusters with
coherent evolutions on columns.

Next, we study how to mine biclusters.

10 10 10 10 10

20 20 20 20 20

50 50 50 50 50

0 0 0 0 0

Figure 11.6 Bicluster with constant values on rows.

10 50 30 70 20

20 60 40 80 30

50 90 70 110 60

0 40 20 60 10

Figure 11.7 Bicluster with coherent values.

10 50 30 70 20

20 100 50 1000 30

50 100 90 120 80

0 80 20 100 10

Figure 11.8 Bicluster with coherent evolutions on rows.

www.jntufastupdates.com 56

iJ ij

Ij ij

Σ
=

Σ
=

ij iJ Ij

= ×
× × ≤ ≥

|I||J |
i∈ I,j∈ J |I|

i∈ I
 |J |

j∈ J

Biclustering Methods

The previous specification of the types of biclusters only considers ideal cases. In real
data sets, such perfect biclusters rarely exist. When they do exist, they are usually very
small. Instead, random noise can affect the readings of eij and thus prevent a bicluster in
nature from appearing in a perfect shape.

There are two major types of methods for discovering biclusters in data that may
come with noise. Optimization-based methods conduct an iterative search. At each
iteration, the submatrix with the highest significance score is identified as a bicluster.
The process terminates when a user-specified condition is met. Due to cost concerns
in computation, greedy search is often employed to find local optimal biclusters. Enu-
meration methods use a tolerance threshold to specify the degree of noise allowed in
the biclusters to be mined, and then tries to enumerate all submatrices of biclusters that
satisfy the requirements. We use the δ-Cluster and MaPle algorithms as examples to
illustrate these ideas.

Optimization Using the δ-Cluster Algorithm

For a submatrix, I × J , the mean of the ith row is

e
1

e . (11.16)
|J |

j∈ J

Symmetrically, the mean of the jth column is

e
1

e . (11.17)
|I|

i∈ I

The mean of all elements in the submatrix is

 1
eIJ =

Σ
e =

 1 Σ
e =

 1 Σ
e . (11.18)

The quality of the submatrix as a bicluster can be measured by the mean-squared residue
value as

 1 Σ
2

H(I × J) = (eij − eiJ − eIj + eIJ) . (11.19)

|I||J |
i∈ I ,j∈ J

Submatrix I J is a δ-bicluster if H(I J) δ, where δ 0 is a threshold. When
δ 0, I J is a perfect bicluster with coherent values. By setting δ > 0, a user can
specify the tolerance of average noise per element against a perfect bicluster, because
in Eq. (11.19) the residue on each element is

residue(eij) = eij − eiJ − eIj + eIJ . (11.20)

A maximal δ-bicluster is a δ-bicluster I × J such that there does not exist another
δ-bicluster Ir × J r, and I ⊆ Ir, J ⊆ J r, and at least one inequality holds. Finding the

www.jntufastupdates.com 57

|J |
j∈ J

|I|
i∈ I

×

×

×

ij IJiJ
 Ij

ij IJiJ
 Ij

∈ ∈ − = − × ×

× × ≥
×

ei2j1 ei2j2
1 1 2 1 1 2 2 2

maximal δ-bicluster of the largest size is computationally costly. Therefore, we can use
a heuristic greedy search method to obtain a local optimal cluster. The algorithm works
in two phases.

In the deletion phase, we start from the whole matrix. While the mean-squared
residue of the matrix is over δ, we iteratively remove rows and columns. At each
iteration, for each row i, we compute the mean-squared residue as

d(i) =
 1 Σ

(e − e − e + e)2. (11.21)

Moreover, for each column j, we compute the mean-squared residue as

d(j) =
 1 Σ

(e − e − e + e)2. (11.22)

We remove the row or column of the largest mean-squared residue. At the end of this
phase, we obtain a submatrix I J that is a δ-bicluster. However, the submatrix may
not be maximal.

In the addition phase, we iteratively expand the δ-bicluster I J obtained in the dele-
tion phase as long as the δ-bicluster requirement is maintained. At each iteration, we
consider rows and columns that are not involved in the current bicluster I J by cal-
culating their mean-squared residues. A row or column of the smallest mean-squared
residue is added into the current δ-bicluster.

This greedy algorithm can find one δ-bicluster only. To find multiple biclusters that
do not have heavy overlaps, we can run the algorithm multiple times. After each execu-
tion where a δ-bicluster is output, we can replace the elements in the output bicluster
by random numbers. Although the greedy algorithm may find neither the optimal
biclusters nor all biclusters, it is very fast even on large matrices.

Enumerating All Biclusters Using MaPle

As mentioned, a submatrix I × J is a bicluster with coherent values if and only if for any i1,
i2 I and j1, j2 J , ei1j1 ei2j1 ei1j2 ei2j2 . For any 2 2 submatrix of I J , we can define a
p-score as

p-score

ei1j1 ei1j2

!

= |(ei j — ei j) − (ei j — ei j)|. (11.23)

A submatrix I J is a δ-pCluster (for pattern-based cluster) if the p-score of every
2 2 submatrix of I J is at most δ, where δ 0 is a threshold specifying a user’s
tolerance of noise against a perfect bicluster. Here, the p-score controls the noise on
every element in a bicluster, while the mean-squared residue captures the average noise.

An interesting property of δ-pCluster is that if I × J is a δ-pCluster, then every
x × y (x, y ≥ 2) submatrix of I × J is also a δ-pCluster. This monotonicity enables

www.jntufastupdates.com 58

×

×

× ×
×

| | − ×
×

×

us to obtain a succinct representation of nonredundant δ-pClusters. A δ-pCluster is
maximal if no more rows or columns can be added into the cluster while maintaining the
δ-pCluster property. To avoid redundancy, instead of finding all δ-pClusters, we only
need to compute all maximal δ-pClusters.

MaPle is an algorithm that enumerates all maximal δ-pClusters. It systematically
enumerates every combination of conditions using a set enumeration tree and a depth-
first search. This enumeration framework is the same as the pattern-growth methods
for frequent pattern mining (Chapter 6). Consider gene expression data. For each con-
dition combination, J , MaPle finds the maximal subsets of genes, I, such that I J is
a δ-pCluster. If I J is not a submatrix of another δ-pCluster, then I J is a maximal δ-
pCluster.

There may be a huge number of condition combinations. MaPle prunes many
unfruitful combinations using the monotonicity of δ-pClusters. For a condition com-
bination, J , if there does not exist a set of genes, I, such that I J is a δ-pCluster, then
we do not need to consider any superset of J . Moreover, we should consider I J as a
candidate of a δ-pCluster only if for every (J 1)-subset J r of J , I J r is a δ-pCluster.
MaPle also employs several pruning techniques to speed up the search while retaining
the completeness of returning all maximal δ-pClusters. For example, when examining a
current δ-pCluster, I J , MaPle collects all the genes and conditions that may be added
to expand the cluster. If these candidate genes and conditions together with I and J form
a submatrix of a δ-pCluster that has already been found, then the search of I J and any
superset of J can be pruned. Interested readers may refer to the bibliographic notes for
additional information on the MaPle algorithm (Section 11.7).

An interesting observation here is that the search for maximal δ-pClusters in MaPle is
somewhat similar to mining frequent closed itemsets. Consequently, MaPle borrows the
depth-first search framework and ideas from the pruning techniques of pattern-growth
methods for frequent pattern mining. This is an example where frequent pattern mining
and cluster analysis may share similar techniques and ideas.

An advantage of MaPle and the other algorithms that enumerate all biclusters is that
they guarantee the completeness of the results and do not miss any overlapping biclus-
ters. However, a challenge for such enumeration algorithms is that they may become very
time consuming if a matrix becomes very large, such as a customer-purchase matrix of
hundreds of thousands of customers and millions of products.

 Dimensionality Reduction Methods and Spectral
Clustering

Subspace clustering methods try to find clusters in subspaces of the original data
space. In some situations, it is more effective to construct a new space instead of using
subspaces of the original data. This is the motivation behind dimensionality reduction
methods for clustering high-dimensional data.

Example 11.14 Clustering in a derived space. Consider the three clusters of points in Figure 11.9. It is

not possible to cluster these points in any subspace of the original space, X × Y , because

www.jntufastupdates.com 59

≤ ≤

2 2

Y

 0.707x  0.707y

X
O

Figure 11.9 Clustering in a derived space may be more effective.

all three clusters would end up being projected onto overlapping areas in the x and y √
2

√
2

axes. What if, instead, we construct a new dimension, − x + y (shown as a dashed
line in the figure)? By projecting the points onto this new dimension, the three clusters
become apparent.

Although Example 11.14 involves only two dimensions, the idea of constructing a
new space (so that any clustering structure that is hidden in the data becomes well man-
ifested) can be extended to high-dimensional data. Preferably, the newly constructed
space should have low dimensionality.

There are many dimensionality reduction methods. A straightforward approach is to
apply feature selection and extraction methods to the data set such as those discussed
in Chapter 3. However, such methods may not be able to detect the clustering structure.
Therefore, methods that combine feature extraction and clustering are preferred. In this
section, we introduce spectral clustering, a group of methods that are effective in high-
dimensional data applications.

Figure 11.10 shows the general framework for spectral clustering approaches. The
Ng-Jordan-Weiss algorithm is a spectral clustering method. Let’s have a look at each
step of the framework. In doing so, we also note special conditions that apply to the
Ng-Jordan-Weiss algorithm as an example.

Given a set of objects, o1, . . . , on, the distance between each pair of objects, dist(oi, oj)
(1 i, j n), and the desired number k of clusters, a spectral clustering approach works
as follows.

1. Using the distance measure, calculate an affinity matrix, W , such that

Wij = e
−

dist(oi ,oj)

σ2 ,

where σ is a scaling parameter that controls how fast the affinity Wij decreases as
dist(oi, oj) increases. In the Ng-Jordan-Weiss algorithm, Wii is set to 0.

www.jntufastupdates.com 60

=

Σ

=

= · · · ∈

,Σ
X

2 2

Data Affinity matrix

[wij]

A  f (w)

Compute leading

k eigenvectors

of A

Av  λv

Clustering in

the new space

Project back

to cluster the

original data

Figure 11.10 The framework of spectral clustering approaches. Source: Adapted from Slide 8 at http://

videolectures.net/micued08 azran mcl/ .

2. Using the affinity matrix W , derive a matrix A f (W). The way in which this is done
can vary. The Ng-Jordan-Weiss algorithm defines a matrix, D, as a diagonal matrix
such that Dii is the sum of the ith row of W , that is,

A is then set to

n

Dii = Wij. (11.24)
j=1

A = D−
1

WD−
1

. (11.25)

3. Find the k leading eigenvectors of A. Recall that the eigenvectors of a square matrix
are the nonzero vectors that remain proportional to the original vector after being
multiplied by the matrix. Mathematically, a vector v is an eigenvector of matrix A
if Av λv, where λ is called the corresponding eigenvalue. This step derives k new
dimensions from A, which are based on the affinity matrix W . Typically, k should be
much smaller than the dimensionality of the original data.

The Ng-Jordan-Weiss algorithm computes the k eigenvectors with the largest
eigenvalues x1, . . . , xk of A.

4. Using the k leading eigenvectors, project the original data into the new space defined
by the k leading eigenvectors, and run a clustering algorithm such as k-means to find
k clusters.

The Ng-Jordan-Weiss algorithm stacks the k largest eigenvectors in columns

to form a matrix X [x1x2 xk] Rn× k . The algorithm forms a matrix Y by
renormalizing each row in X to have unit length, that is,

Y
Xij . (11.26)

ij =
k 2

j=1 ij

The algorithm then treats each row in Y as a point in the k-dimensional space Rk , and
runs k-means (or any other algorithm serving the partitioning purpose) to cluster the
points into k clusters.

www.jntufastupdates.com 61

W ; A
0.5

0

0.5

V  [v1,v2,v3] U  [u1,u2,u3]
0.5

0

0.5
1

0

1

0.5

0
0

10 20 30 40 50 60

10 20 30 40 50 60

0

1

0.5

0
0

10 20 30 40 50 60

10 20 30 40 50 60

0.4

0.2

0

0.2
0 10 20 30 40 50 60

1

0.5

0

0.5
0 10 20 30 40 50 60

Figure 11.11 The new dimensions and the clustering results of the Ng-Jordan-Weiss algorithm. Source:

Adapted from Slide 9 at http://videolectures.net/micued08 azran mcl/ .

5. Assign the original data points to clusters according to how the transformed points
are assigned in the clusters obtained in step 4.

In the Ng-Jordan-Weiss algorithm, the original object oi is assigned to the jth
cluster if and only if matrix Y ’s row i is assigned to the jth cluster as a result of step 4.

In spectral clustering methods, the dimensionality of the new space is set to the
desired number of clusters. This setting expects that each new dimension should be able
to manifest a cluster.

Example 11.15 The Ng-Jordan-Weiss algorithm. Consider the set of points in Figure 11.11. The
data set, the affinity matrix, the three largest eigenvectors, and the normalized vec-
tors are shown. Note that with the three new dimensions (formed by the three largest
eigenvectors), the clusters are easily detected.

Spectral clustering is effective in high-dimensional applications such as image pro-
cessing. Theoretically, it works well when certain conditions apply. Scalability, however,
is a challenge. Computing eigenvectors on a large matrix is costly. Spectral clustering can
be combined with other clustering methods, such as biclustering. Additional informa-
tion on other dimensionality reduction clustering methods, such as kernel PCA, can be
found in the bibliographic notes (Section 11.7).

Clustering Graph and Network Data
Cluster analysis on graph and network data extracts valuable knowledge and informa-
tion. Such data are increasingly popular in many applications. We discuss applications
and challenges of clustering graph and network data in Section 11.3.1. Similarity mea-
sures for this form of clustering are given in Section 11.3.2. You will learn about graph
clustering methods in Section 11.3.3.

In general, the terms graph and network can be used interchangeably. In the rest of
this section, we mainly use the term graph.

www.jntufastupdates.com 62

 Applications and Challenges

As a customer relationship manager at AllElectronics, you notice that a lot of data relating
to customers and their purchase behavior can be preferably modeled using graphs.

Example 11.16 Bipartite graph. The customer purchase behavior at AllElectronics can be represented in a

bipartite graph. In a bipartite graph, vertices can be divided into two disjoint sets so that
each edge connects a vertex in one set to a vertex in the other set. For the AllElectronics
customer purchase data, one set of vertices represents customers, with one customer per
vertex. The other set represents products, with one product per vertex. An edge connects
a customer to a product, representing the purchase of the product by the customer.
Figure 11.12 shows an illustration.

“What kind of knowledge can we obtain by a cluster analysis of the customer-product
bipartite graph?” By clustering the customers such that those customers buying similar
sets of products are placed into one group, a customer relationship manager can make
product recommendations. For example, suppose Ada belongs to a customer cluster in
which most of the customers purchased a digital camera in the last 12 months, but Ada
has yet to purchase one. As manager, you decide to recommend a digital camera to her.
Alternatively, we can cluster products such that those products purchased by similar

sets of customers are grouped together. This clustering information can also be used
for product recommendations. For example, if a digital camera and a high-speed flash
memory card belong to the same product cluster, then when a customer purchases a
digital camera, we can recommend the high-speed flash memory card.

Bipartite graphs are widely used in many applications. Consider another example.

Example 11.17 Web search engines. In web search engines, search logs are archived to record user
queries and the corresponding click-through information. (The click-through informa-
tion tells us on which pages, given as a result of a search, the user clicked.) The query and
click-through information can be represented using a bipartite graph, where the two sets

Customers Products

Figure 11.12 Bipartite graph representing customer-purchase data.

www.jntufastupdates.com 63

of vertices correspond to queries and web pages, respectively. An edge links a query to a
web page if a user clicks the web page when asking the query. Valuable information can
be obtained by cluster analyses on the query–web page bipartite graph. For instance, we
may identify queries posed in different languages, but that mean the same thing, if the
click-through information for each query is similar.

As another example, all the web pages on the Web form a directed graph, also known
as the web graph, where each web page is a vertex, and each hyperlink is an edge pointing
from a source page to a destination page. Cluster analysis on the web graph can disclose
communities, find hubs and authoritative web pages, and detect web spams.

In addition to bipartite graphs, cluster analysis can also be applied to other types of
graphs, including general graphs, as elaborated Example 11.18.

Example 11.18 Social network. A social network is a social structure. It can be represented as a graph,
where the vertices are individuals or organizations, and the links are interdependencies
between the vertices, representing friendship, common interests, or collaborative activi-
ties. AllElectronics’ customers form a social network, where each customer is a vertex,
and an edge links two customers if they know each other.

As customer relationship manager, you are interested in finding useful information
that can be derived from AllElectronics’ social network through cluster analysis. You
obtain clusters from the network, where customers in a cluster know each other or
have friends in common. Customers within a cluster may influence one another regard-
ing purchase decision making. Moreover, communication channels can be designed to
inform the “heads” of clusters (i.e., the “best” connected people in the clusters), so
that promotional information can be spread out quickly. Thus, you may use customer
clustering to promote sales at AllElectronics.

As another example, the authors of scientific publications form a social network,
where the authors are vertices and two authors are connected by an edge if they co-
authored a publication. The network is, in general, a weighted graph because an edge
between two authors can carry a weight representing the strength of the collaboration
such as how many publications the two authors (as the end vertices) coauthored. Clus-
tering the coauthor network provides insight as to communities of authors and patterns
of collaboration.

“Are there any challenges specific to cluster analysis on graph and network data?” In
most of the clustering methods discussed so far, objects are represented using a set of
attributes. A unique feature of graph and network data is that only objects (as vertices)
and relationships between them (as edges) are given. No dimensions or attributes are
explicitly defined. To conduct cluster analysis on graph and network data, there are two
major new challenges.

“How can we measure the similarity between two objects on a graph accordingly?”
Typically, we cannot use conventional distance measures, such as Euclidean dis-
tance. Instead, we need to develop new measures to quantify the similarity. Such

www.jntufastupdates.com 64

=

=

=

∈ − { }
∈

measures often are not metric, and thus raise new challenges regarding the develop-
ment of efficient clustering methods. Similarity measures for graphs are discussed in
Section 11.3.2.

“How can we design clustering models and methods that are effective on graph and
network data?” Graph and network data are often complicated, carrying topological
structures that are more sophisticated than traditional cluster analysis applications.
Many graph data sets are large, such as the web graph containing at least tens of
billions of web pages in the publicly indexable Web. Graphs can also be sparse where,
on average, a vertex is connected to only a small number of other vertices in the
graph. To discover accurate and useful knowledge hidden deep in the data, a good
clustering method has to accommodate these factors. Clustering methods for graph
and network data are introduced in Section 11.3.3.

 Similarity Measures

“How can we measure the similarity or distance between two vertices in a graph?” In our
discussion, we examine two types of measures: geodesic distance and distance based on
random walk.

Geodesic Distance

A simple measure of the distance between two vertices in a graph is the shortest path
between the vertices. Formally, the geodesic distance between two vertices is the length
in terms of the number of edges of the shortest path between the vertices. For two
vertices that are not connected in a graph, the geodesic distance is defined as infinite.

Using geodesic distance, we can define several other useful measurements for graph
analysis and clustering. Given a graph G (V , E), where V is the set of vertices and E is
the set of edges, we define the following:

For a vertext v V , the eccentricity of v, denoted eccen(v), is the largest geodesic
distance between v and any other vertex u V v . The eccentricity of v captures
how far away v is from its remotest vertex in the graph.

The radius of graph G is the minimum eccentricity of all vertices. That is,

r min eccen(v). (11.27)
v∈ V

The radius captures the distance between the “most central point” and the “farthest
border” of the graph.

The diameter of graph G is the maximum eccentricity of all vertices. That is,

d max eccen(v). (11.28)
v∈ V

The diameter represents the largest distance between any pair of vertices.

A peripheral vertex is a vertex that achieves the diameter.

www.jntufastupdates.com 65

b

c

d

Figure 11.13 A graph, G, where vertices c, d, and e are peripheral.

Example 11.19 Measurements based on geodesic distance. Consider graph G in Figure 11.13. The

eccentricity of a is 2, that is, eccen(a) = 2, eccen(b) = 2, and eccen(c) = eccen(d) =
eccen(e) = 3. Thus, the radius of G is 2, and the diameter is 3. Note that it is not necessary
that d = 2 × r. Vertices c, d, and e are peripheral vertices.

SimRank: Similarity Based on Random Walk and

Structural Context

For some applications, geodesic distance may be inappropriate in measuring the simi-
larity between vertices in a graph. Here we introduce SimRank, a similarity measure
based on random walk and on the structural context of the graph. In mathematics, a
random walk is a trajectory that consists of taking successive random steps.

Example 11.20 Similarity between people in a social network. Let’s consider measuring the similarity

between two vertices in the AllElectronics customer social network of Example 11.18.
Here, similarity can be explained as the closeness between two participants in the net-
work, that is, how close two people are in terms of the relationship represented by the
social network.

“How well can the geodesic distance measure similarity and closeness in such a network?”
Suppose Ada and Bob are two customers in the network, and the network is undirected.
The geodesic distance (i.e., the length of the shortest path between Ada and Bob) is the
shortest path that a message can be passed from Ada to Bob and vice versa. However, this
information is not useful for AllElectronics’ customer relationship management because
the company typically does not want to send a specific message from one customer to
another. Therefore, geodesic distance does not suit the application.

“What does similarity mean in a social network?” We consider two ways to define
similarity:

Two customers are considered similar to one another if they have similar neighbors
in the social network. This heuristic is intuitive because, in practice, two people
receiving recommendations from a good number of common friends often make
similar decisions. This kind of similarity is based on the local structure (i.e., the
neighborhoods) of the vertices, and thus is called structural context–based similarity.

a

e

www.jntufastupdates.com 66

⊆ × ∈
=

∈ /=
∈ =

∅

(

=0

+
|I(u)||I(v)|

x∈ I(u) y∈ I(v)

Σ

Suppose AllElectronics sends promotional information to both Ada and Bob in the
social network. Ada and Bob may randomly forward such information to their
friends (or neighbors) in the network. The closeness between Ada and Bob can then
be measured by the likelihood that other customers simultaneously receive the pro-
motional information that was originally sent to Ada and Bob. This kind of similarity
is based on the random walk reachability over the network, and thus is referred to as
similarity based on random walk.

Let’s have a closer look at what is meant by similarity based on structural context, and
similarity based on random walk.

The intuition behind similarity based on structural context is that two vertices in a
graph are similar if they are connected to similar vertices. To measure such similarity, we
need to define the notion of individual neighborhood. In a directed graph G (V , E),
where V is the set of vertices and E V V is the set of edges, for a vertex v V , the
individual in-neighborhood of v is defined as

I(v) = {u|(u, v) ∈ E}. (11.29)

Symmetrically, we define the individual out-neighborhood of v as

O(v) = {w|(v, w) ∈ E}. (11.30)

Following the intuition illustrated in Example 11.20, we define SimRank, a
structural-context similarity, with a value that is between 0 and 1 for any pair of ver-
tices. For any vertex, v V , the similarity between the vertex and itself is s(v, v) 1
because the neighborhoods are identical. For vertices u, v V such that u v, we can
define

 C Σ
s(u, v) = s(x, y), (11.31)

|I(u)||I(v)|
x∈ I(u) y∈ I(v)

where C is a constant between 0 and 1. A vertex may not have any in-neighbors. Thus,
we define Eq. (11.31) to be 0 when either I(u) or I(v) is . Parameter C specifies the rate
of decay as similarity is propagated across edges.

“How can we compute SimRank?” A straightforward method iteratively evaluates
Eq. (11.31) until a fixed point is reached. Let si(u, v) be the SimRank score calculated
at the ith round. To begin, we set

s (u, v)
0 if u /= v

1 if u = v.

We use Eq. (11.31) to compute si+1 from si as

(11.32)

 C
si 1(u, v) =

Σ
si(x, y). (11.33)

Σ

www.jntufastupdates.com 67

Σ

= ∈

(.

Σ

Σ

=

It can be shown that
i
lim si(u, v) = s(u, v). Additional methods for approximating

SimRank are given in the
→

b
∞

ibliographic notes (Section 11.7).
Now, let’s consider similarity based on random walk. A directed graph is strongly

connected if, for any two nodes u and v, there is a path from u to v and another path
from v to u. In a strongly connected graph, G (V , E), for any two vertices, u, v V ,
we can define the expected distance from u to v as

d(u, v) = P[t]l(t), (11.34)

t :u~v

where u ~ v is a path starting from u and ending at v that may contain cycles but does
not reach v until the end. For a traveling tour, t = w1 → w2 → · · · → wk, its length is
l(t) = k − 1. The probability of the tour is defined as

P[t] =
k− 1 1
i=1 |O(wi)|

if l(t) > 0

(11.35)
0 if l(t) = 0.

To measure the probability that a vertex w receives a message that originated simulta-
neously from u and v, we extend the expected distance to the notion of expected meeting
distance, that is,

m(u, v) =

t :(u,v)~(x,x)

P[t]l(t), (11.36)

where (u, v) ~ (x, x) is a pair of tours u ~ x and v ~ x of the same length. Using a
constant C between 0 and 1, we define the expected meeting probability as

p(u, v) =

t :(u,v)~(x,x)

P[t]Cl(t), (11.37)

which is a similarity measure based on random walk. Here, the parameter C specifies
the probability of continuing the walk at each step of the trajectory.

It has been shown that s(u, v) p(u, v) for any two vertices, u and v. That is, SimRank
is based on both structural context and random walk.

 Graph Clustering Methods

Let’s consider how to conduct clustering on a graph. We first describe the intuition
behind graph clustering. We then discuss two general categories of graph clustering
methods.

To find clusters in a graph, imagine cutting the graph into pieces, each piece being
a cluster, such that the vertices within a cluster are well connected and the vertices in
different clusters are connected in a much weaker way. Formally, for a graph, G = (V , E),

www.jntufastupdates.com 68

∩ ∈ | ∈ ∈ }=
∅ {

= = ∪

{ }

a cut, C (S, T), is a partitioning of the set of vertices V in G, that is, V S T and
S T . The cut set of a cut is the set of edges, (u, v) E u S, v T . The size of
the cut is the number of edges in the cut set. For weighted graphs, the size of a cut is the
sum of the weights of the edges in the cut set.

“What kinds of cuts are good for deriving clusters in graphs?” In graph theory and some
network applications, a minimum cut is of importance. A cut is minimum if the cut’s size
is not greater than any other cut’s size. There are polynomial time algorithms to compute
minimum cuts of graphs. Can we use these algorithms in graph clustering?

Example 11.21 Cuts and clusters. Consider graph G in Figure 11.14. The graph has two clusters:
{a, b, c, d, e, f } and {g , h, i, j, k}, and one outlier vertex, l.

Consider cut C1 = ({a, b, c, d, e, f , g , h, i, j, k},{l}). Only one edge, namely, (e, l), crosses
the two partitions created by C1. Therefore, the cut set of C1 is (e, l) and the size of C1
is 1. (Note that the size of any cut in a connected graph cannot be smaller than 1.) As a
minimum cut, C1 does not lead to a good clustering because it only separates the outlier
vertex, l, from the rest of the graph.

Cut C2 = ({a, b, c, d, e, f , l}, {g , h, i, j, k}) leads to a much better clustering than C1. The
edges in the cut set of C2 are those connecting the two “natural clusters” in the graph.
Specifically, for edges (d, h) and (e, k) that are in the cut set, most of the edges connecting
d, h, e, and k belong to one cluster.

Example 11.21 indicates that using a minimum cut is unlikely to lead to a good clus-
tering. We are better off choosing a cut where, for each vertex u that is involved in an
edge in the cut set, most of the edges connecting to u belong to one cluster. Formally, let
deg(u) be the degree of u, that is, the number of edges connecting to u. The sparsity of a
cut C = (S, T) is defined as

cut size
Ф =

min{|S|, |T|}

. (11.38)

Sparsest cut C2

i

a

j

Figure 11.14 A graph G and two cuts.

b c
g

d
h

f
e

k

 Minimum cut C1

l

www.jntufastupdates.com 69

=

−

 !

A cut is sparsest if its sparsity is not greater than the sparsity of any other cut. There may
be more than one sparsest cut.

In Example 11.21 and Figure 11.14, C2 is a sparsest cut. Using sparsity as the objective
function, a sparsest cut tries to minimize the number of edges crossing the partitions and
balance the partitions in size.

Consider a clustering on a graph G (V , E) that partitions the graph into k clusters.
The modularity of a clustering assesses the quality of the clustering and is defined as

Q =

i=1

 li

|E|

 di 2

2|E|
, (11.39)

where li is the number of edges between vertices in the ith cluster, and di is the sum of
the degrees of the vertices in the ith cluster. The modularity of a clustering of a graph is
the difference between the fraction of all edges that fall into individual clusters and the
fraction that would do so if the graph vertices were randomly connected. The optimal
clustering of graphs maximizes the modularity.

Theoretically, many graph clustering problems can be regarded as finding good cuts,
such as the sparsest cuts, on the graph. In practice, however, a number of challenges
exist:

High computational cost: Many graph cut problems are computationally expen-
sive. The sparsest cut problem, for example, is NP-hard. Therefore, finding the
optimal solutions on large graphs is often impossible. A good trade-off between
efficiency/scalability and quality has to be achieved.

Sophisticated graphs: Graphs can be more sophisticated than the ones described
here, involving weights and/or cycles.

High dimensionality: A graph can have many vertices. In a similarity matrix, a vertex
is represented as a vector (a row in the matrix) with a dimensionality that is the
number of vertices in the graph. Therefore, graph clustering methods must handle
high dimensionality.

Sparsity: A large graph is often sparse, meaning each vertex on average connects to
only a small number of other vertices. A similarity matrix from a large sparse graph
can also be sparse.

There are two kinds of methods for clustering graph data, which address these
challenges. One uses clustering methods for high-dimensional data, while the other is
designed specifically for clustering graphs.

The first group of methods is based on generic clustering methods for high-
dimensional data. They extract a similarity matrix from a graph using a similarity
measure such as those discussed in Section 11.3.2. A generic clustering method can
then be applied on the similarity matrix to discover clusters. Clustering methods for

k
Σ

www.jntufastupdates.com 70

∈
= { | ∈ } ∪ { }

= ∈

= √

∈

| | ≥

= { ∈ | ≥ }

high-dimensional data are typically employed. For example, in many scenarios, once
a similarity matrix is obtained, spectral clustering methods (Section 11.2.4) can be
applied. Spectral clustering can approximate optimal graph cut solutions. For additional
information, please refer to the bibliographic notes (Section 11.7).

The second group of methods is specific to graphs. They search the graph to find
well-connected components as clusters. Let’s look at a method called SCAN (Structural
Clustering Algorithm for Networks) as an example.

Given an undirected graph, G (V , E), for a vertex, u V , the neighborhood of
u is Г(u) v (u, v) E u . Using the idea of structural-context similarity, SCAN
measures the similarity between two vertices, u, v V , by the normalized common
neighborhood size, that is,

σ (u, v)
|Г(u) ∩ Г(v)|

. (11.40)

|Г(u)||Г(v)|

The larger the value computed, the more similar the two vertices. SCAN uses a similarity
threshold ε to define the cluster membership. For a vertex, u ∈ V , the ε-neighborhood
of u is defined as Nε(u) v Г(u) σ(u, v) ε . The ε-neighborhood of u contains all
neighbors of u with a structural-context similarity to u that is at least ε.

In SCAN, a core vertex is a vertex inside of a cluster. That is, u ∈ V is a core ver-
tex if Nε(u) µ, where µ is a popularity threshold. SCAN grows clusters from core
vertices. If a vertex v is in the ε-neighborhood of a core u, then v is assigned to the
same cluster as u. This process of growing clusters continues until no cluster can be
further grown. The process is similar to the density-based clustering method, DBSCAN
(Chapter 10).

Formally, a vertex v can be directly reached from a core u if v ∈ Nε(u). Transitively, a
vertex v can be reached from a core u if there exist vertices w1, . . . , wn such that w1 can
be reached from u, wi can be reached from wi−1 for 1 < i ≤ n, and v can be reached from
wn. Moreover, two vertices, u, v V , which may or may not be cores, are said to be
connected if there exists a core w such that both u and v can be reached from w. All
vertices in a cluster are connected. A cluster is a maximum set of vertices such that every
pair in the set is connected.

Some vertices may not belong to any cluster. Such a vertex u is a hub if the neighbor-
hood Г(u) of u contains vertices from more than one cluster. If a vertex does not belong
to any cluster, and is not a hub, it is an outlier.

The SCAN algorithm is shown in Figure 11.15. The search framework closely resem-
bles the cluster-finding process in DBSCAN. SCAN finds a cut of the graph, where
each cluster is a set of vertices that are connected based on the transitive similarity in
a structural context.

An advantage of SCAN is that its time complexity is linear with respect to the number
of edges. In very large and sparse graphs, the number of edges is in the same scale of the
number of vertices. Therefore, SCAN is expected to have good scalability on clustering
large graphs.

www.jntufastupdates.com 71

=

∈
←
←

/=
∈

∃ ∈

Algorithm: SCAN for clusters on graph data.
Input: a graph G (V , E), a similarity threshold ε, and a

population threshold µ
Output: a set of clusters
Method: set all vertices in V unlabeled

for all unlabeled vertex u do
if u is a core then

generate a new cluster-id c

insert all v Nε(u) into a queue Q
while Q do

w the first vertex in Q
R the set of vertices that can be directly reached from w
for all s R do

if s is not unlabeled or labeled as nonmember then
assign the current cluster-id c to s

endif
if s is unlabeled then

insert s into queue Q
endif

endfor
remove w from Q

end while
else

label u as nonmember

endif
endfor
for all vertex u labeled nonmember do

if x, y Г(u) : x and y have different cluster-ids then
label u as hub

else
label u as outlier

endif
endfor

Figure 11.15 SCAN algorithm for cluster analysis on graph data.

 Clustering with Constraints
Users often have background knowledge that they want to integrate into cluster analysis.
There may also be application-specific requirements. Such information can be mod-
eled as clustering constraints. We approach the topic of clustering with constraints in
two steps. Section 11.4.1 categorizes the types of constraints for clustering graph data.
Methods for clustering with constraints are introduced in Section 11.4.2.

www.jntufastupdates.com 72

 Categorization of Constraints

This section studies how to categorize the constraints used in cluster analysis. Specifi-
cally, we can categorize constraints according to the subjects on which they are set, or
on how strongly the constraints are to be enforced.

As discussed in Chapter 10, cluster analysis involves three essential aspects: objects
as instances of clusters, clusters as groups of objects, and the similarity among objects.
Therefore, the first method we discuss categorizes constraints according to what they are
applied to. We thus have three types: constraints on instances, constraints on clusters, and
constraints on similarity measurement.

Constraints on instances: A constraint on instances specifies how a pair or a set of

instances should be grouped in the cluster analysis. Two common types of con-
straints from this category include:

Must-link constraints. If a must-link constraint is specified on two objects x and
y, then x and y should be grouped into one cluster in the output of the cluster
analysis. These must-link constraints are transitive. That is, if must-link(x, y) and
must-link(y, z), then must-link(x, z).

Cannot-link constraints. Cannot-link constraints are the opposite of must-link
constraints. If a cannot-link constraint is specified on two objects, x and y,
then in the output of the cluster analysis, x and y should belong to different
clusters. Cannot-link constraints can be entailed. That is, if cannot-link(x, y),
must-link(x, xr), and must-link(y, yr), then cannot-link(xr, yr).

A constraint on instances can be defined using specific instances. Alternatively, it
can also be defined using instance variables or attributes of instances. For example, a
constraint,

Constraint(x, y) : must-link(x, y) if dist(x, y) ≤ ‹,

uses the distance between objects to specify a must-link constraint.

Constraints on clusters: A constraint on clusters specifies a requirement on the clusters,
possibly using attributes of the clusters. For example, a constraint may specify the
minimum number of objects in a cluster, the maximum diameter of a cluster, or the
shape of a cluster (e.g., a convex). The number of clusters specified for partitioning
clustering methods can be regarded as a constraint on clusters.

Constraints on similarity measurement: Often, a similarity measure, such as Eucli-
dean distance, is used to measure the similarity between objects in a cluster anal-
ysis. In some applications, exceptions apply. A constraint on similarity measurement
specifies a requirement that the similarity calculation must respect. For example, to
cluster people as moving objects in a plaza, while Euclidean distance is used to give

www.jntufastupdates.com 73

the walking distance between two points, a constraint on similarity measurement is
that the trajectory implementing the shortest distance cannot cross a wall.

There can be more than one way to express a constraint, depending on the category.
For example, we can specify a constraint on clusters as

Constraint1: the diameter of a cluster cannot be larger than d.

The requirement can also be expressed using a constraint on instances as

Constraint1
r : cannot-link(x, y) if dist(x, y) > d. (11.41)

Example 11.22 Constraints on instances, clusters, and similarity measurement. AllElectronics clusters
its customers so that each group of customers can be assigned to a customer relationship
manager. Suppose we want to specify that all customers at the same address are to be
placed in the same group, which would allow more comprehensive service to families.
This can be expressed using a must-link constraint on instances:

Constraintfamily(x, y) : must-link(x, y) if x.address = y.address.

AllElectronics has eight customer relationship managers. To ensure that they each
have a similar workload, we place a constraint on clusters such that there should be
eight clusters, and each cluster should have at least 10% of the customers and no more
than 15% of the customers. We can calculate the spatial distance between two customers
using the driving distance between the two. However, if two customers live in different
countries, we have to use the flight distance instead. This is a constraint on similarity
measurement.

Another way to categorize clustering constraints considers how firmly the constraints
have to be respected. A constraint is hard if a clustering that violates the constraint
is unacceptable. A constraint is soft if a clustering that violates the constraint is not
preferable but acceptable when no better solution can be found. Soft constraints are also
called preferences.

Example 11.23 Hard and soft constraints. For AllElectronics, Constraintfamily in Example 11.22 is a hard
constraint because splitting a family into different clusters could prevent the company
from providing comprehensive services to the family, leading to poor customer satisfac-
tion. The constraint on the number of clusters (which corresponds to the number of
customer relationship managers in the company) is also hard. Example 11.22 also has
a constraint to balance the size of clusters. While satisfying this constraint is strongly
preferred, the company is flexible in that it is willing to assign a senior and more capa-
ble customer relationship manager to oversee a larger cluster. Therefore, the constraint
is soft.

Ideally, for a specific data set and a set of constraints, all clusterings satisfy the con-
straints. However, it is possible that there may be no clustering of the data set that

www.jntufastupdates.com 74

=

C A

C A

A C

satisfies all the constraints. Trivially, if two constraints in the set conflict, then no
clustering can satisfy them at the same time.

Example 11.24 Conflicting constraints. Consider these constraints:

must-link(x, y) if dist(x, y) < 5

cannot-link(x, y) if dist(x, y) > 3.

If a data set has two objects, x, y, such that dist(x, y) 4, then no clustering can satisfy
both constraints simultaneously.

Consider these two constraints:

must-link(x, y) if dist(x, y) < 5

must-link(x, y) if dist(x, y) < 3.

The second constraint is redundant given the first. Moreover, for a data set where the
distance between any two objects is at least 5, every possible clustering of the objects
satisfies the constraints.

“How can we measure the quality and the usefulness of a set of constraints?” In gene-
ral, we consider either their informativeness, or their coherence. The informativeness
is the amount of information carried by the constraints that is beyond the clustering
model. Given a data set, D, a clustering method, , and a set of constraints, , the
informativeness of with respect to on D can be measured by the fraction of con-
straints in that are unsatisfied by the clustering computed by on D. The higher the
informativeness, the more specific the requirements and background knowledge that
the constraints carry. The coherence of a set of constraints is the degree of agreement
among the constraints themselves, which can be measured by the redundancy among
the constraints.

 Methods for Clustering with Constraints

Although we can categorize clustering constraints, applications may have very different
constraints of specific forms. Consequently, various techniques are needed to handle
specific constraints. In this section, we discuss the general principles of handling hard
and soft constraints.

Handling Hard Constraints

A general strategy for handling hard constraints is to strictly respect the constraints in
the cluster assignment process. To illustrate this idea, we will use partitioning clustering
as an example.

www.jntufastupdates.com 75

Given a data set and a set of constraints on instances (i.e., must-link or cannot-link
constraints), how can we extend the k-means method to satisfy such constraints? The
COP-k-means algorithm works as follows:

1. Generate superinstances for must-link constraints. Compute the transitive clo-

sure of the must-link constraints. Here, all must-link constraints are treated as an
equivalence relation. The closure gives one or multiple subsets of objects where all
objects in a subset must be assigned to one cluster. To represent such a subset, we
replace all those objects in the subset by the mean. The superinstance also carries a
weight, which is the number of objects it represents.

After this step, the must-link constraints are always satisfied.

2. Conduct modified k-means clustering. Recall that, in k-means, an object is assigned
to the closest center. What if a nearest-center assignment violates a cannot-link con-
straint? To respect cannot-link constraints, we modify the center assignment process
in k-means to a nearest feasible center assignment. That is, when the objects are
assigned to centers in sequence, at each step we make sure the assignments so far
do not violate any cannot-link constraints. An object is assigned to the nearest center
so that the assignment respects all cannot-link constraints.

Because COP-k-means ensures that no constraints are violated at every step, it does

not require any backtracking. It is a greedy algorithm for generating a clustering that
satisfies all constraints, provided that no conflicts exist among the constraints.

Handling Soft Constraints

Clustering with soft constraints is an optimization problem. When a clustering violates a
soft constraint, a penalty is imposed on the clustering. Therefore, the optimization goal
of the clustering contains two parts: optimizing the clustering quality and minimizing
the constraint violation penalty. The overall objective function is a combination of the
clustering quality score and the penalty score.

To illustrate, we again use partitioning clustering as an example. Given a data set
and a set of soft constraints on instances, the CVQE (Constrained Vector Quanti-
zation Error) algorithm conducts k-means clustering while enforcing constraint vio-
lation penalties. The objective function used in CVQE is the sum of the distance used
in k-means, adjusted by the constraint violation penalties, which are calculated as
follows.

Penalty of a must-link violation. If there is a must-link constraint on objects x and
y, but they are assigned to two different centers, c1 and c2, respectively, then the con-
straint is violated. As a result, dist(c1, c2), the distance between c1 and c2, is added to
the objective function as the penalty.

Penalty of a cannot-link violation. If there is a cannot-link constraint on objects x
and y, but they are assigned to a common center, c, then the constraint is violated.

www.jntufastupdates.com 76

=

=

v1 v4

v2 o1 o2

v3 VG
v5

p q

VG'

The distance, dist(c, cr), between c and cr is added to the objective function as the
penalty.

Speeding up Constrained Clustering

Constraints, such as on similarity measurements, can lead to heavy costs in cluster-
ing. Consider the following clustering with obstacles problem: To cluster people as
moving objects in a plaza, Euclidean distance is used to measure the walking distance
between two points. However, a constraint on similarity measurement is that the tra-
jectory implementing the shortest distance cannot cross a wall (Section 11.4.1). Because
obstacles may occur between objects, the distance between two objects may have to be
derived by geometric computations (e.g., involving triangulation). The computational
cost is high if a large number of objects and obstacles are involved.

The clustering with obstacles problem can be represented using a graphical notation.
First, a point, p, is visible from another point, q, in the region R if the straight line
joining p and q does not intersect any obstacles. A visibility graph is the graph, VG
(V , E), such that each vertex of the obstacles has a corresponding node in V and two
nodes, v1 and v2, in V are joined by an edge in E if and only if the corresponding vertices
they represent are visible to each other. Let VGr (V r, Er) be a visibility graph created
from VG by adding two additional points, p and q, in V r. Er contains an edge joining
two points in V r if the two points are mutually visible. The shortest path between two
points, p and q, will be a subpath of VGr, as shown in Figure 11.16(a). We see that it
begins with an edge from p to either v1, v2, or v3, goes through a path in VG, and then
ends with an edge from either v4 or v5 to q.

To reduce the cost of distance computation between any two pairs of objects or
points, several preprocessing and optimization techniques can be used. One method
groups points that are close together into microclusters. This can be done by first tri-
angulating the region R into triangles, and then grouping nearby points in the same
triangle into microclusters, using a method similar to BIRCH or DBSCAN, as shown
in Figure 11.16(b). By processing microclusters rather than individual points, the over-
all computation is reduced. After that, precomputation can be performed to build two

(a) (b)

Figure 11.16 Clustering with obstacle objects (o1 and o2): (a) a visibility graph and (b) triangulation of

regions with microclusters. Source: Adapted from Tung, Hou, and Han [THH01].

kinds of join indices based on the computation of the shortest paths: (1) VV

www.jntufastupdates.com 77

indices, for any pair of obstacle vertices, and (2) MV indices, for any pair of
microcluster and obstacle vertex. Use of the indices helps further optimize the
overall performance.

Using such precomputation and optimization strategies, the distance between
any two points (at the granularity level of a microcluster) can be computed
efficiently. Thus, the clustering process can be performed in a manner similar to a
typical efficient k-medoids algorithm, such as CLARANS, and achieve good
clustering quality for large data sets.

www.jntufastupdates.com 78

