UNIT-2(PART-1)
CONCURRENCY

Process synchronization

Process Synchronization

A cooperating process is one that can affect or be affected by other processes executing
in the system.

& alalal ") y-‘r-O 2TaBalda
. WA RW 3 l k.l [= {

{ ~RaCCHs
UV JLESHEDS

~MM OI1ThDODr
LUl i ic

d|r(xcﬂv Shoro a Ioglc(ﬂ or bC‘ OHOWed 10 ShO!‘C‘

address space data only through files

(that is, both code and data) or messages.

In this chapter,
we discuss various mechanisms to ensure -

Producer Consumer Problem

A producer process produces information that is consumed by a consumer

process. \

For example, a compiler may produce assembly code, which is consumed by an assembler.
The assembler, in turn, may produce object modules, which are consumed by the loader,

o One solution to the producer-consumer problem uses shared memory.

¢ To allow producer and consumer processes to run concurrently, we must have available
a buffer of items that can be filled by the producer and emptied by the consumer.

o This buffer will reside in a region of memory that is shared by the producer and
consumer processes.

Two kinds of buffers:

| | |

Unbounded buffer ' Bounded buffer
Places no practical limit on the size of Assumes a fixed buffer size. In this
the buffer, The consumer may have to case, the consumer must wait if the
wait for new items, but the producer buffer is empty, and the producer
can always produce new items. must wait if the buffer is full,

counter variable = 0
counter is incremented every time we add a new item to the buffer counter++

counter is decremented every time we remove one item from the buffer counter-

o Suppose that the value of the variable counter is currently 5.

¢ The producer and consumer processes execute the statements “counter++" and
"counter--" concurrently.

+ Following the execution of these two statements, the value of the variable counter
may be 4, 5, or &!

o The only correct result, though, is counter == 5, which is generated correctly if the

producer and consumer execute separately.

'

e

SO SEIUSIISTRUSTUSIUSESSONESSSBSSRRSSSt .Exomp|e ..

» Suppose that the value of the variable counter is currently 5.

o The producer and consumer processes execute the statements “counter++" and
"counter-" concurrently.

+ Following the execution of these two statements, the value of the variable counter
may be 4, 5, or &!

o The only correct result, though, is counter == 5, which is generated correctly if the
producer and consumer execute separately.

B e e e i i i

"counter++" may be implemented in machine language (on a typical machine) as:
register, = counter
register, = reqgister;+1
counter = register,

"counter--" may be implemented in machine language (on a typical machine) as:
register; *- counter

register, s reqister;-1
counter = register,

critical- section problem

The Critical-Section Problem

Consider a system consisting of n processes
Each process has a segment of code, called a
critical section

in which the process may be changing common variables, updating a table, writing a file,
and so on.

when one process is executing in its critical section, no other process is to be allowed to
execute in its critical section

Each process must request permission to enter its critical section,
The section of code implementing this request is the enfry section.
The critical section may be followed by an exit section.

The remaining code is the remainder section,

% (

en#y section

critical section
exit section

remainder section

} while (TRUE),

Figure: General structure of a typical process.

A solution to the critical-section problem must satisfy the following three requirements:
1. Mutual exclusion:

If process P, is executing in its critical section, then no other processes can be executing
In their critical sections,

2 Progress:

If no process is executing in its critical section and some processes wish o enter their
critical sections, then only those processes that are not executing In their remainder
sections can participate in the decision on which will enter its critical section next, and
this selection cannot be postponed indefinitely.

3. Bounded waiting:

There exists a bound, or limit, on the number of times that other processes are allowed to
enter their critical sections after a process has made a request to enter its critical section
and before that request is granted. \

Peterson‘s Solution

Peterson’s Solution

» However, it provides a good algorithmic description of solving the critical-section
problem and illustrates some of the complexities involved in designing software
that oddresses the requirements of mutual exclusion, progress, and bounded

waiting requirements.

Mo v { coltitio C ¢ ? . 0 . O F "’,;‘;_". "P"‘f 3.0",..‘.-.0(_ ‘»,_,: Jf ' : L. ¢ .'f o
R 7\
ritical sections and remainder sections. Let's call the processes u\P) and (P,)
- s

Peterson's solution requires two data items to be shared between the two processes.

Int turt boolean flag [2
)
Indicates whose turn It 1s 10 enter ifs crihcaol Used to indicate if o Drocess Is ready 11—

sechon enter I's crimcal sechon

{ | int turn l boolean flag (2]

~» Indicates whose turn it is fo enter ifs critical ~> Used fo indicate if a process is ready to

section. enter ifs critical section.
Structure of process P, in Peterson’s solution Structure of process P, in Peterson’s solution
B
do { do {
flag (1] = true flag [7] = frue
fumns=|; furns=i, . |
while (flog [|]&& turn==[])); while (flog [1] &&tum==[i]);
critical section critical section
Iﬂog[i]-false;l |ﬂag[]]=folse;|
remainder section remainder section
} while (TRUE) ; / } while (TRUE) ; /_I

semaphores

Semaphores

¢ Semaphore proposed by Edsgar Dijkstra, is a technique to manage concurrent
processes by using a simpie integer value, which Is known as a semaphore.

Semaphores

+ Semaphore proposed by Edsger Dijkstra, is a technique to manage concurrent
processes by using a simple integer value, which is known as a semaphore.

+ Semaphore is simply a variable which is non-negative and shared between
threads. This variable is used to solve the critical section problem and to achieve

process synchronization in the multiprocessing environment,

o+ Asemaphore S is an integer variable that, apart from initialization, is
accessed only through two standard atomic operations: wait () and signal ().

wait () -+ P [from the Dutch word proberen, which means “to test”] \

signal() -V [from the Dutch word verhogen, which means " to increment”)

All the modifications fo the

integer value of the semaphore

in the wait () and signal() operations
must be executed indivisibly.

That is, when one process modifies
the semaphore value, no other proces:
can simultaneously

modify that some semaphore value,

Definition of wait (): Definition of signal ():
P (Semophor-e-g { Vv (Semophzre S) {

while (S <= 0) S4+;

s // no operation| | }

S~

}
Types of Semaphores:

1. Binary Semaphore:

The value of a binary semaphore can range only between 0 and 1. On some systems,
binary semaphores are known as mutex locks, as they are locks that provide mutual

exclusion.

Definition of wait (): Definition of signal (): Al the modifications to the

P (Semaphore $) { V(Semaphore §) { | Infeger valueof the semaphore
in the wait () and signal() operations
while (S <= 0) St must be executed indivisibly.
y // no operation| | } That is, when one process modifies

-] the semaphore value, no other proces

) can simultaneously
v modify that same semaphore value.
Types of Semaphores:

1. Binary Semaphore:

The value of a binary semaphore can range only between 0 and 1. On some systems,
binary semaphores are known as mutex locks, as they are locks that provide mutual

exclusion.

2. Counting Semaphore:
Its value can range over an unrestricted domain. It is used to control access to a

resource that has multiple instances,

Monitors

e A monitor type presents a set of programmer-defined operations that provide
mutual exclusion within the monitor
o The monitor type also contains the declaration of variables whose values define

the state of an instance of that type, along with the bodies of procedures

~ M Mot nnarrm ny oo vme ' ;

L~ " I

|
!

Syntax of a Monitor

monitor monitor_name

{
// shared variable declarations

procedure Pl (

"‘1""(4‘1.'{ s D9/)
‘. P \ 4 "“ " ! .

e s B ’
procequrePn(...) {

initialization code (...){

}
)

HESO ACADEMY

¢ A procedure defined within a monitor can access
only those variables declared locally within the monitor
and its formal parameters.

o Similarly, the local variables of a monitor can be
accessed by only the local procedures.

¢ The monitor construct ensures that only one
process at a time can be active within the monitor.

Condition Construct- condition x, y;
The only operations that can be invoked
on a condition variable are wait () and signal ().

The operation x.wait() ; means that the process
invoking this operation is suspended until another
process invokes x.signal();

The x. signal () operation res’mes exactly

one suspended process. &

queues associated
with x, y conditions .

intialization
code

Fig: Schematic view of a monitor

