UNIT-1 (PART-2)
Process Scheduling
Criteria And Algorithms

PROCESS SCHEDULING

Process Scheduling

» The objective of multiprogramming is to have some process running at all

times, to maximize CPU utilization.

» The objective of time sharing is to switch the CPU among processes so

frequently that users can interact with each program while it is running.

» To meet these objectives, the process scheduler selects an available
process (possibly from a set of several available processes) for program

execution on the CPU.

o For asingle-processor system, there will never be more than one
running process
o If there are more processes, the rest will have to wait until the CPU

2 | i .. = - ol Lo
IS fr‘CCC R e BP0 A AT S g7 A e [] o v e e e Sl EERITTAl o o

Scheduling Queues

As processes enter the system, they are put mto a job queue,
JOB QUEUE which consists of all processes m the system.

The processes that are residing m mam memory
READY QUEUE and are ready and waiting to execute are kept on a list called the

ready queue.
It A

PROCESSES
A

and they are ready to be executed.

SCHEDULING CRITERIA

Scheduling Criteria
CPU utilization
Throughput
¥ Turnaround time
waiting time

Response time

Scheduling Criteria

| We want fo keep the CPU as busy as possible. Conceptually,

| 5
|

CPU utilization CPU utilization can range from 0 to 100 percent. In a real

system, it should range from 40 percent (for a lightly loaded
system) to 90 percent (for a heavily used system).

P----

| If the CPU is busy executing processes, then work is being

|

|

Throughput F ' , done. One measure of work is the number of processes that |
| are completed per time unit, called throughput. :

' From the point of view of a particular process, the important

|

. criterion is how long it takes to execute that process. The E

Tunaround | [. inferval from the time of submission of a process to the time |
fime | of completion is the turnaround time. Turnaround fime is the |

¢ i sum of the periods spent waiting to get into memory, i

| waiting in the ready queue, executing on the CPU, and doing s_F
I 1/0. |

' The CPU scheduling algorithm does not affect the amount of

—]—9' time during which a process executes or does I/0; it affects
Waiting time

: ready queue. Waiting time is the sum of the periods spent

| waiting in the ready queue.

|

|

|

— | only the amount of time that a process spends waiting in the |
|

|

|

e e R o e e S T L e sl e o go] |

| Inan inferactive system, turnaround time may not be the
 best criterion. Often, a process can produce some output
| fairly early and can continue computing new results while

Response fime | "1 previous results are being output to the user. Thus, another

| ;

| the first response is produced. This measure, called response
9 : fime, is the time it takes to start responding, not the time it

| fakes to output the response. The turnaround time is

|
|
|
|
|
|
|
|
. . s ol
| measure is the time from the submissionof a request until |
|
|
|
|
|
|
| generally limited by the speed of the output device. :

|

CPU SCHEDULING

CPU Scheduling

CPU scheduling is the basis of multiprogrammed operating systems
By switching the CPU among processes, the operating system can make the computer more

productive.

Topics to be covered

+ To introduce CPU scheduling, which is the basis for multiprogrammed operating systems.

+ To describe various CPU-scheduling algorithms

¥

FCFS ALGORITHM

Scheduling Algorithms
(First-Come, First-Served Scheduling)

« By far the simplest CPU-scheduling algorithm.
* The process that requests the CPU first is allocated the CPU first.

¢ The implementation of the FCFS policy is easily managed with a FIFO queue.

Tail @@@ﬁ}ﬁ]@ Head

First In - First Out

N,
L =0,

Vv

« When a process enters the ready queue, its PCB is linked onto the tail of the queue.
« When the CPU is free, it is allocated to the process at the head of the queue.

» The running process is then remaved from the queue.

This reduction is substantial. Thus, the average waiting time under an FCFS policy is

generally not minimal and may vary substantially if the process's CPU burst times vary
greatly.

l The FCFS scheduling algorithm is nonpreemptive l

+ Once the CPU has been allocated to a process, that process keeps the CPU until it
releases the CPU, either by terminating or by requesting I/0.

o The FCFS algorithm is thus particularly troublesome for time-sharing systems,
where it is important that each user get a share of the CPU at reqular intervals.

+ [twould be disastrous to allow one process to keep the CPU for an extended

period.
f

Consider the following set of processes that arrive at time 0

Process Burst Time (ms)
Pl 24
P2
P3

If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the
result shown in the following Gantt chart:

Pl P2 | P3

0
Waiting Time forPl= Oms
Waiting Time for P2= 24 ms
Waiting Time for P3 = 27 ms

4 27 30

~ Average Waiting Time = (0 + 24 + 27)/3= 17 m?

If the processes arrive in the order P2, P3, P1, however the result will be shown in the
following Gantt chart:

P2 3 P1
0 3 b 30

Waiting Time for P1= 6 ms

Waiting Time forP2= Oms ~ Average Waiting Time=(6+0+ 3)/3=3ms

Waiting Time for P3 = 3ms p

This reduction is substantial. Thus, the average waiting time under an FCFS policy is
generally not minimal and may vary substantially if the process’s CPU burst times vary

greatly.

Scheduling Algorithms

(Shortest-Job-First Scheduling)

o This algorithm associates with each process the length of the process’s next CPU

ourst

o When the CPU is available, it is assigned 10 the process that has the smallest next
CPU burst

o If the next CPU bursts of two processes are the same, FCFS scheduling is used to

break the tie.

[The SJF algorithm can be either preemptive or wm;zre%rw:-‘xw}

A more appropriate term for this scheduling method would be the
Shortest-Next-CPU-Burst Algorithm
becouse scheduling depends on the length of the next CPU burst of a process, rather than its total
length.

Exomple of SJF Scheduling (Non-Premptive)

Consider the following set of processes,with the length of the CPU burst given in

milliseconds:

 ProcessID Burst Time | Waiting Time for P1= Ims
Pl | 8 |

- » Waiting Time for P2= 16 ms
P2 8
P3 | 7 | Waiting Time for P3 = 9ms
s 3 Waiting Time for P4 = Oms
Gantt Chart: | |
0 5 G 16 24 Average Waiting T’ne

P4 Pl P3 P2

2(3+1649+40)/4=7ms

PRIORITY ALGORITHM

Scheduling Algorithms

(Priority Scheduling)
o A priority Is associated with each process, and the CPU is allocated to the process
with the highest priority

o Equal-priority processes are scheduled in FCFS order,

o An SJF algorithm is simply a priority algorithm where the priority is the inverse of
the (predicted) next CPU burst,
The larger the CPU burst, the lower the priority, and vice versa.

[Prioriry scheduling can be either preemptive or nonpree n‘;;'wo-_]

A preempftive priority scheduling algorithm will preempt the CPU if the priority of the

newly arrived process Is higher than the priority of the currently running process.

Consider the following set of processes, assumed to have arrived at time 0, in the order
P1, P2, P3, P4, PS5, with the length of the CPU burst given in milliseconds:

,—-—.‘———_—.—-‘Q—..‘, - R e — <t o

Process ID Burst Tlme Pnomy i
P \ 10 3
R | 1
P3 2 | 4
P4 t | 8
PS5 5 | 2

S— e — -

Using Priority Scheduling, we would schedule these
processes according to the following Gantt Chart:

0 1 b

16

18

19

P2| PS5 Pl

P3

P4

Waiting Time for P5= 1 ms

Waiting Time for PL= 6 ms
Waiting Time for P2= 0 ms
Waiting Time for P3= 16 ms

Waiting Time for P4 = 18 ms

l

1
Average Waiting Time

a(b+0+16+18+1)/5

=41/5ms
=82ms L ‘l

Problem with Priority Scheduling

A major problem with priority scheduling algorithms is indefinite blocking,

or starvation.

A process that is ready to run but waiting for the CPU can be considered blocked.
A priority scheduling algorithm can leave some low priority processes waiting
indefinitely.

In a heavily loaded computer system, a steady stream of higher-priority processes
can prevent a low-priority process from ever getting the CPU.

Solution to the Problem
A solution to the problem of indefinite blockage of low-priority processes is aging
Aging is a technique of gradually increasing the priority of processes that wait in
the system for a long time.
For example,
If priorities range from 127 (low) to 0 (high), we could increase the priority of a waiting
process by 1 every g minutes.

Eventually, even a process with an initial priority of 127 would have the highest priority in |
the system ond would be executed.

ROUND ROBBIN ALGORITHM

Scheduling Algorithms

(Round-Robin Scheduling)

ng algorithm is designed especially for timesharing

» Itis similar fo FCFS scheduling, but|preemption|is added to switch between processes.

A ! 'V"‘| r
L A STQn U

P10 \—pd P2

\ P7
“ Pb

The Ready Queue

P3

s -

» quantum or time slice, Is defined (generally from

10 10 100 milliseconds)

o The ready queue Is treated as a circular queue

The CPU scheduler goes around the ready queue,

allocating the CPU to each process for a time interval
of up to 1 time quantum.

Implementation of Round Robin scheduling:

+ We keep the ready queue as a FIFO queue of processes. Tail @ﬁfﬂ@@@*m
¢ New processes are added to the tail of the ready queue. fstin -t

+ The CPU scheduler picks the first process from the ready queue, sets a timer to
interrupt after 1 time quantum, and dispatches the process.

One of two thiggs will then happen
¥ A) ,
The process may have a CPU burst of ~ The CPU burst of the currently running process is longer
less than 1 time quantum than 1 time quantum, the timer will go off and will couse an
7 interrupt 10 the O.S.
The process itself will release the CPU -
voluntarily A context switch will be executed, and the process will be
-l put ot the tail of the ready queue
| The CPU scheduler wil then proceed J ‘
10 the next process in the reody The CPU scheduler will then select the next
queue process in the ready queue

MUV VUV OSSN U lg

(Turnaround Time and Waiting Time)

Consider the following set of processes that arrive a1 time 0, with the length of the CPU
burst given in milliseconds and time quantum token as 4 milliseconds for RR Scheduling:

/

Time Quantum

 ProcessID | Burst Time
Pl 24
P2 5
p3 3
Gantt Chart: L)
0 4 7 0 4 18 2 % 3
Pl P2 P3 Pl Pl Pl Pl Pl

Method 1

Turn Around time = Completion time - Arrival fime

Waiting time = Turn Around fime - Burst time

Process | Completion | Turnaround | Waiting
ID Time Time Time
P1 50 30-0= 30 30-24=6
P2 7 7-0=7 | 7-3 =4
P3 10 10-0=10| 10-3=7
Average Turn Around time
=(30+7+10)/3

=47/3 = 15.66 ms

Average waiting time
=(6+4+7)/3
=17/3 = 5.66ms

Method 2
Waiting time = Last Start Time - Arrival Time - '
(Preemption x Time Quantum)

Process Waiting Time

ID

P1 26-0-(5x4)= 6

P2 4-0- (Oxd)= 4

P3 7=0=(0x4) = 7
Average waiting time
=(6+4+7)/3
=17/3 = 5.66 ms

'

Process ID Burst Time
Gaontt Chart;
P1 24
P2 LS 0 4 L
P3 1 Pl | P2 Pl
Method |

Turn Around time = Completion time - Arrival time

Waiting time = Turn Around time - Burst time

Process | Completion | Turnaround | Waiting
1D Time Time Time
P1 30 50-0= 30| 30-24=6
P2 1 1=0=7 | 7=-3 =4
P3 10 10-0=10| 10-3=7

