

1

LECTURE NOTES

ON

SOFTWARE ENGINEERING

2020 – 2021

II B. Tech II Semester (R20)

2

2
s

UNIT- III

Requirements Analysis, Scenario-Based Modeling, UML Models That Supplement the Use

Case, Data Modeling Concepts, Class-Based Modeling, Requirements Modeling Strategies,

Flow-Oriented Modeling, creating a Behavioral Model, Patterns for Requirements Modelling,

Requirements Modeling for WebApps

3

 3

REQUIREMENTS MODELING: SCENARIOS,

INFORMATION, AND ANALYSIS CLASSES

REQUIREMENTS ANALYSIS

Requirements analysis results in the specification of software’s operational characteristics,

indicates software’s interface with other system elements, and establishes constraints that

software must meet. Requirements analysis allows you to elaborate on basic requirements

established during the inception, elicitation, and negotiation tasks that are part of requirements

engineering.

The requirements modeling action results in one or more of the following types of models:

• Scenario-based models of requirements from the point of view of various system

“actors”

• Data models that depict the information domain for the problem

 Class-oriented models that represent object-oriented classes (attributes and operations)

and the manner in which classes collaborate to achieve system requirements

 Flow-oriented models that represent the functional elements of the system and how they

transform data as it moves through the system

 Behavioral models that depict how the software behaves as a consequence of external

“events”

These models provide a software designer with information that can be translated to

architectural, interface, and component-level designs. Finally, the requirements model provides

the developer and the customer with the means to assess quality once software is built.

Throughout requirements modeling, primary focus is on what, not how. What user

interaction occurs in a particular circumstance, what objects does the system manipulate, what

functions must the system perform, what behaviors does the system exhibit, what interfaces are

defined, and what constraints apply?

4

www.Jntufastupdates.com 4

Fig : The requirements model as a bridge between the system description and the design model

The requirements model must achieve three primary objectives:

(1) To describe what the customer requires,

(2) to establish a basis for the creation of a software design, and

(3) to define a set of requirements that can be validated once the software is built.

The analysis model bridges the gap between a system-level description that describes overall

system or business functionality as it is achieved by applying software, hardware, data, human,

and other system elements and a software design that describes the software’s application

architecture, user interface, and component-level structure.

Analysis Rules of Thumb

Arlow and Neustadt suggest a number of worthwhile rules of thumb that should be followed

when creating the analysis model:

• The model should focus on requirements that are visible within the problem or

business domain. The level of abstraction should be relatively high.

• Each element of the requirements model should add to an overall understanding of

software requirements and provide insight into the information domain, function, and

behavior of the system.

• Delay consideration of infrastructure and other nonfunctional models until design.

That is, a database may be required, but the classes necessary to implement it, the

functions required to access it, and the behavior that will be exhibited as it is used should

be considered only after problem domain analysis has been completed.

http://www.jntufastupdates.com/

5

• Minimize coupling throughout the system. It is important to represent relationships

between classes and functions. However, if the level of “interconnectedness” is extremely

high, effort should be made to reduce it.

• Be certain that the requirements model provides value to all stakeholders. Each

constituency has its own use for the model

• Keep the model as simple as it can be. Don’t create additional diagrams when they add

no new information. Don’t use complex notational forms, when a simple list will do.

Domain Analysis

Domain analysis doesn’t look at a specific application, but rather at the domain in which

the application resides.

The “specific application domain” can range from avionics to banking, frommultimedia

video games to software embedded within medical devices. The goal of domain analysis is

straightforward: to identify common problem solving elements that are applicable to all

applications within the domain, to find or create those analysis classes and/or analysis patterns

that are broadly applicable so that they may be reused.

Requirements Modeling Approaches

One view of requirements modeling, called structured analysis, considers data and the

processes that transform the data as separate entities. Data objects are modeled in a way that

defines their attributes and relationships.

A second approach to analysis modeling, called object-oriented analysis, focuses on the

definition of classes and the manner in which they collaborate with one another to effect

customer requirements. UML and the Unified Process are predominantly objectoriented.

Each element of the requirements model is represented in following figure presents the

problem from a different point of view.

Scenario-based elements depict how the user interacts with the system and the specific

sequence of activities that occur as the software is used.

Class-based elements model the objects that the system will manipulate, the operations

that will be applied to the objects to effect the manipulation, relationships between the objects,

and the collaborations that occur between the classes that are defined.

6

 6

Fig : Elements of the analysis model

Behavioral elements depict how external events change the state of the system or the

classes that reside within it. Finally,

Flow-oriented elements represent the system as an information transform, depicting how

data objects are transformed as they flow through various systemfunctions.

SCENARIO-BASED MODELING
Scenario-based elements depict how the user interacts with the system and the specific

sequence of activities that occur as the software is used.

Creating a Preliminary Use Case

Alistair Cockburn characterizes a use case as a “contract for behavior”, the “contract”

defines the way in which an actor uses a computer-based system to accomplish some goal. In

essence, a use case captures the interactions that occur between producers and consumers of

information and the system itself.

A use case describes a specific usage scenario in straightforward language from the point of

view of a defined actor. These are the questions that must be answered if use cases are to provide

value as a requirements modeling tool. (1) what to write about, (2) how much to write about it,

(3) how detailed to make your description, and (4) how to organize the description?

To begin developing a set of use cases, list the functions or activities performed by a

specific actor.

Refining a Preliminary Use Case

Each step in the primary scenario is evaluated by asking the following questions:

7

 7

• Can the actor take some other action at this point?

• Is it possible that the actor will encounter some error condition at this point? If so, what

might it be?

• Is it possible that the actor will encounter some other behavior at this point

(e.g.,behavior that is invoked by some event outside the actor’s control)? If so, what

might it be?

Cockburn recommends using a “brainstorming” session to derive a reasonably complete set of

exceptions for each use case. In addition to the three generic questions suggested earlier in this

section, the following issues should also be explored:

• Are there cases in which some “validation function” occurs during this use case? This

implies that validation function is invoked and a potential error condition might occur.

• Are there cases in which a supporting function (or actor) will fail to respond

appropriately? For example, a user action awaits a response but the function that is to

respond times out.

• Can poor system performance result in unexpected or improper user actions? For

example, a Web-based interface responds too slowly, resulting in a user making multiple

selects on a processing button. These selects queue inappropriately and ultimately

generate an error condition.

Writing a Formal Use Case

The typical outline for formal use cases can be in following manner

• The goal in context identifies the overall scope of the use case.

• The precondition describes what is known to be true before the use case is initiated.

• The trigger identifies the event or condition that “gets the use case started”

• The scenario lists the specific actions that are required by the actor and the appropriate

system responses.

• Exceptions identify the situations uncovered as the preliminary use case is refined

Additional headings may or may not be included and are reasonably self-explanatory.

Every modeling notation has limitations, and the use case is no exception. A use case focuses on

functional and behavioral requirements and is generally inappropriate for nonfunctional

requirements

8

 8

However, scenario-based modeling is appropriate for a significant majority of all situationsthat

you will encounter as a software engineer.

Fig : Simple Use Case Diagram

UML MODELS THAT SUPPLEMENT THE USE CASE

Developing an Activity Diagram

The UML activity diagram supplements the use case by providing a graphical representation of

the flow of interaction within a specific scenario. Similar to the flowchart, an activity diagram

uses rounded rectangles to imply a specific system function, arrows to represent flow through the

system, decision diamonds to depict a branching decision (each arrow emanating from the

diamond is labeled), and solid horizontal lines to indicate that parallel activities are occurring. i.e

A UML activity diagram represents the actions and decisions that occur as some function is

performed.

9

 9

Fig : Activity Diagram for ATM

Swimlane Diagrams

The UML swimlane diagram is a useful variation of the activity diagram and allows you

to represent the flow of activities described by the use case and at the same time indicate which

actor or analysis class has responsibility for the action described by an activity rectangle.

Responsibilities are represented as parallel segments that divide the diagram vertically, like the

lanes in a swimming pool.

The following figure represents swimlane diagram for ATM

10

 10

Fig : swimlane diagram for ATM

11

 11

 DATA MODELING CONCEPTS
Data modeling is the process of documenting a complex software system design as an

easily understood diagram, using text and symbols to represent the way data needs to flow. The

diagram can be used as a blueprint for the construction of new software or for re-engineering a

legacy application. The most widely used data Model by the Software engineers is Entity-

Relationship Diagram (ERD), it addresses the issues and represents all data objects that are

entered, stored, transformed, and produced within an application.

Data Objects

A data object is a representation of composite information that must be understood by

software. A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call) or event

(e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting department),

a place (e.g., a warehouse), or a structure (e.g., a file).

For example, a person or a car can be viewed as a data object in the sense that either can

be defined in terms of a set of attributes. The description of the data object incorporates the data

object and all of its attributes.

A data object encapsulates data only—there is no reference within a data object to

operations that act on the data. Therefore, the data object can be represented as a table as shown

in following table. The headings in the table reflect attributes of the object.

Fig : Tabular representation of data objects

http://searchdatamanagement.techtarget.com/definition/data

12

 12

Data Attributes

Data attributes define the properties of a data object and take on one of three different

characteristics. They can be used to (1) name an instance of the data object, (2) describe the

instance, or (3) make reference to another instance in another table.

Relationships

Data objects are connected to one another in different ways. Consider the two data objects,

person and car. These objects can be represented using the following simple notation and

relationships are 1) A person owns a car, 2) A person is insured to drive a car

Fig : Relationships between data objects

CLASS-BASED MODELING

Class-based modeling represents the objects that the system will manipulate, the

operations that will be applied to the objects to effect the manipulation, relationships between the

objects, and the collaborations that occur between the classes that are defined. The elements of a

class-based model include classes and objects, attributes, operations, class responsibility-

collaborator (CRC) models, collaboration diagrams, and packages.

Identifying Analysis Classes

We can begin to identify classes by examining the usage scenarios developed as part of

the requirements model and performing a “grammatical parse” on the use cases developed for

the system to be built.

13

 13

Analysis classes manifest themselves in one of the following ways:

• External entities (e.g., other systems, devices, people) that produce orconsume

information to be used by a computer-based system.

• Things (e.g., reports, displays, letters, signals) that are part of the information domain for

the problem.

• Occurrences or events (e.g., a property transfer or the completion of a series of robot

movements) that occur within the context of system operation.

• Roles (e.g., manager, engineer, salesperson) played by people who interact with the

system.

• Organizational units (e.g., division, group, team) that are relevant to an application.

• Places (e.g., manufacturing floor or loading dock) that establish the context of the

problem and the overall function of the system.

• Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a class of

objects or related classes of objects.

Coad and Yourdon suggest six selection characteristics that should be used as you consider each

potential class for inclusion in the analysis model:

1. Retained information. The potential class will be useful during analysis only if information

about it must be remembered so that the system can function.

2. Needed services. The potential class must have a set of identifiable operations that can change

the value of its attributes in some way.

3. Multiple attributes. During requirement analysis, the focus should be on “major” information;

a class with a single attribute may, in fact, be useful during design, but is probably better

represented as an attribute of another class during the analysis activity.

4. Common attributes. A set of attributes can be defined for the potential class and these

attributes apply to all instances of the class.

5. Common operations. A set of operations can be defined for the potential class and these

operations apply to all instances of the class.

6. Essential requirements. External entities that appear in the problem space and produce or

consume information essential to the operation of any solution for the system will almost always

be defined as classes in the requirements model.

14

 14

.2 Specifying Attributes

Attributes describe a class that has been selected for inclusion in the requirements model.

In essence, it is the attributes that define the class—that clarify what is meant by the class in the

context of the problem space.

To develop a meaningful set of attributes for an analysis class, you should study each use

case and select those “things” that reasonably “belong” to the class.

Defining Operations

Operations define the behavior of an object. Although many different types of operations exist,

they can generally be divided into four broad categories: (1) operations that manipulate data in

some way (e.g., adding, deleting, reformatting, selecting), (2) operations that perform a

computation, (3) operations that inquire about the state of an object, and (4) operations that

monitor an object for the occurrence of a controlling event.

Fig : Class diagram for the system class

Class-Responsibility-Collaborator (CRC) Modeling

Class-responsibility-collaborator (CRC) modeling provides a simple means for

identifying and organizing the classes that are relevant to system or productrequirements.

15

 15

Ambler describes CRC modeling in the following way :

A CRC model is really a collection of standard index cards that represent classes. The

cards are divided into three sections. Along the top of the card you write the name of the class.

In the body of the card you list the class responsibilities on the left and the collaborators on the

right.

The CRC model may make use of actual or virtual index cards. The intent is to develop an

organized representation of classes. Responsibilities are the attributes and operations that are

relevant for the class. i.e., a responsibility is “anything the class knows or does” Collaborators

are those classes that are required to provide a class with the information needed to complete a

responsibility. In general, a collaboration implies either a request for information or a request for

some action. A simple CRC index card is illustrated in following figure.

Fig : A CRC model index card

Classes : The taxonomy of class types can be extended by considering the following categories:

• Entity classes, also called model or business classes, are extracted directly from the

statement of the problem. These classes typically represent things that are to be stored in

a database and persist throughout the duration of the application.

16

 16

• Boundary classes are used to create the interface that the user sees and interacts with as

the software is used. Boundary classes are designed with the responsibility of managing

the way entity objects are represented to users.

• Controller classes manage a “unit of work” from start to finish. That is, controller classes

can be designed to manage (1) the creation or update of entity objects, (2) the

instantiation of boundary objects as they obtain information from entity objects, (3)

complex communication between sets of objects, (4) validation of data communicated

between objects or between the user and the application. In general, controller classes are

not considered until the design activity has begun.

Responsibilities : Wirfs-Brock and her colleagues suggest five guidelines for allocating

responsibilities to classes:

1. System intelligence should be distributed across classes to best address the needs of

the problem. Every application encompasses a certain degree of intelligence; that is,

what the system knows and what it can do.

2. Each responsibility should be stated as generally as possible. This guidelineimplies

that general responsibilities should reside high in the class hierarchy

3. Information and the behavior related to it should reside within the same class. This

achieves the object-oriented principle called encapsulation. Data and the processes that

manipulate the data should be packaged as a cohesive unit.

4. Information about one thing should be localized with a single class, not distributed

across multiple classes. A single class should take on the responsibility for storing and

manipulating a specific type of information. This responsibility should not, in general, be

shared across a number of classes. If information is distributed, software becomes more

difficult to maintain and more challenging to test.

5. Responsibilities should be shared among related classes, when appropriate. There

are many cases in which a variety of related objects must all exhibit the same behavior at the

same time.

Collaborations. Classes fulfill their responsibilities in one of two ways:

1. A class can use its own operations to manipulate its own attributes, thereby fulfilling a

particular responsibility, or

2. A class can collaborate with other classes.

17

 17

When a complete CRC model has been developed, stakeholders can review the model using

the following approach :

1. All participants in the review (of the CRC model) are given a subset of the CRC model

index cards. Cards that collaborate should be separated (i.e., no reviewer should have two

cards that collaborate).

2. All use-case scenarios (and corresponding use-case diagrams) should be organized into

categories.

3. The review leader reads the use case deliberately. As the review leader comes to a named

object, she passes a token to the person holding the corresponding class index card.

4. When the token is passed, the holder of the card is asked to describe the responsibilities

noted on the card. The group determines whether one (or more) of the responsibilities

satisfies the use-case requirement.

5. If the responsibilities and collaborations noted on the index cards cannot accommodate

the use case, modifications are made to the cards. This may include the definition of new

classes (and corresponding CRC index cards) or the specification of new or revised

responsibilities or collaborations on existing cards.

Associations and Dependencies

An association defines a relationship between classes. An association may be further defined

by indicating multiplicity. Multiplicity defines how many of one class are related to how many

of another class.

A client-server relationship exists between two analysis classes. In such cases, a client class

depends on the server class in some way and a dependency relationship is established.

Dependencies are defined by a stereotype. A stereotype is an “extensibility mechanism” within

UML that allows you to define a special modeling element whose semantics are custom defined.

In UML. Stereotypes are represented in double angle brackets (e.g., <<stereotype>>).

18

 18

Fig : Multiplicity

Fig : Dependencies

Analysis Packages

An important part of analysis modeling is categorization. That is, various elements of the

analysis model (e.g., use cases, analysis classes) are categorized in a manner that packages them

as a grouping—called an analysis package—that is given a representative name.

Fig : Packages

19

 19

Requirements Modeling (Flow, Behavior, Patterns and WEBAPPS)

REQUIREMENTS MODELING STRATEGIES

One view of requirements modeling, called structured analysis,. Data objects are

modeled in a way that defines their attributes and relationships. Processes that manipulate data

objects are modeled in a manner that shows how they transform data as data objects flow through

the system.

A second approach to analysis modeled, called object-oriented analysis, focuses on the

definition of classes and the manner in which they collaborate with one another to effect

customer requirements.

FLOW-ORIENTED MODELING

Flow-oriented modeling is perceived as an outdated technique by some software

engineers, it continues to be one of the most widely used requirements analysis notations in use

today. The data flow diagram (DFD) is the representation of Flow-oriented modeling. The

purpose of data flow diagrams is to provide a semantic bridge between users and systems

developers.”

The DFD takes an input-process-output view of a system. That is, data objects flow into

the software, are transformed by processing elements, and resultant data objects flow out of the

software. Data objects are represented by labeled arrows, and transformations are represented by

circles (also called bubbles). The DFD is presented in a hierarchical fashion. That is, the first

data flow model (sometimes called a level 0 DFD or context diagram) represents the system as a

whole. Subsequent data flow diagrams refine the context diagram, providing increasing detail

with each subsequent level.

20

 20

Fig : Context-level DFD for the Safe Home security function

Creating a Data Flow Model

The data flow diagram enables you to develop models of the information domain and

functional domain. As the DFD is refined into greater levels of detail, you perform an implicit

functional decomposition of the system. At the same time, the DFD refinement results in a

corresponding refinement of data as it moves through the processes that embody the application.

A few simple guidelines can aid immeasurably during the derivation of a data flow

diagram:

(1) The level 0 data flow diagram should depict the software/system as a single bubble;

(2) Primary input and output should be carefully noted;

(3) Refinement should begin by isolating candidate processes, data objects, and data

stores to be represented at the next level;

(4) All arrows and bubbles should be labeled with meaningful names;

(5) Information flow continuity must be maintained from level to level,2 and

(6) One bubble at a time should be refined. There is a natural tendency to overcomplicate

the data flow diagram.

A level 0 DFD for the security function is shown in above figure. The primary external

entities (boxes) produce information for use by the system and consume information generated

by the system. The labeled arrows represent data objects or data object hierarchies.

The level 0 DFD must now be expanded into a level 1 data flow model. you should apply

a “grammatical parse” to the use case narrative that describes the context-level bubble. That is,

isolate all nouns (and noun phrases) and verbs (and verb phrases). The grammatical parse is not

21

 21

foolproof, but it can provide you with an excellent jump start, if you’re struggling to define data

objects and the transforms that operate on them.

The processes represented at DFD level 1 can be further refined into lower levels. The

refinement of DFDs continues until each bubble performs a simple function. That is, until the

process represented by the bubble performs a function that would be easily implemented as a

program component. a concept, Cohesion can be used to assess the processing focus of a given

function. i.e refine DFDs until each bubble is “single-minded.”

Fig: Level 1 DFD for SafeHome security function

22

 22

Fig : Level 2 DFD that refines the monitor sensors process

 reating a Control Flow Model

The data model and the data flow diagram are all that is necessary to obtain meaningful

insight into software requirements. The following guidelines are suggested for creating a Control

Flow Model

• List all sensors that are “read” by the software.

• List all interrupt conditions.

• List all “switches” that are actuated by an operator.

• List all data conditions.

• Recalling the noun/verb parse that was applied to the processing narrative, review all

“control items” as possible control specification inputs/outputs.

• Describe the behavior of a system by identifying its states, identify how each state is

reached, and define the transitions between states.

• Focus on possible omissions—a very common error in specifying control;

23

 23

The Control Specification

A control specification (CSPEC) represents the behavior of the system in two different

ways. The CSPEC contains a state diagram that is a sequential specification of behavior. It can

also contain a program activation table—a combinatorial specification of behavior. The

following figure depicts a preliminary state diagram for the level 1 control flow model for

SafeHome. The diagram indicates how the system responds to events as it traverses the four

states defined at this level. By reviewing the state diagram, we can determine the behavior of the

system and, more important, ascertain whether there are “holes” in the specifiedbehavior.

The CSPEC describes the behavior of the system, but it gives us no information about the

inner working of the processes that are activated as a result of this behavior.

Fig : State diagram for SafeHome security function

The Process Specification

The process specification (PSPEC) is used to describe all flow model processes that

appear at the final level of refinement. The content of the process specification can include

narrative text, a program design language (PDL) description of the process algorithm,

24

 24

mathematical equations, tables, or UML activity diagrams. By providing a PSPEC to accompany

each bubble in the flow model, you can create a “mini-spec” that serves as a guide for design of

the software component that will implement the bubble.

CREATING A BEHAVIORAL MODEL

The behavioral model indicates how software will respond to external events or stimuli.

To create the model, you should perform the following steps:

1. Evaluate all use cases to fully understand the sequence of interaction within the

system.

2. Identify events that drive the interaction sequence and understand how these events

relate to specific objects.

3. Create a sequence for each use case.

4. Build a state diagram for the system.

5. Review the behavioral model to verify accuracy and consistency.

Identifying Events with the Use Case

The use case represents a sequence of activities that involves actors and the system. In

general, an event occurs whenever the system and an actor exchange information. A use case is

examined for points of information exchange. To illustrate, we reconsider the use case for a

portion of the SafeHome security function. The homeowner uses the keypad to key in a four-digit

password. The password is compared with the valid password stored in the system. If the

password is incorrect, the control panel will beep once and reset itself for additional input. If the

password is correct, the control panel awaits further action.

The underlined portions of the use case scenario indicate events. An actor should be

identified for each event; the information that is exchanged should be noted, and any conditions

or constraints should be listed. Once all events have been identified, they are allocated to the

objects involved. Objects can be responsible for generating events .

State Representations

In the context of behavioral modeling, two different characterizations of states must be

considered: (1) the state of each class as the system performs its function and (2) the state of the

system as observed from the outside as the system performs its Function Two different

behavioral representations are discussed in the paragraphs that follow. The first indicates how

25

 25

an individual class changes state based on external events and the second shows the behavior of

the software as a function of time.

State diagrams for analysis classes. One component of a behavioral model is a UML state

diagram that represents active states for each class and the events (triggers) that cause changes

between these active states. The following figure illustrates a state diagram for the ControlPanel

object in the SafeHome security function. Each arrow shown in figure represents a transition

from one active state of an object to another. The labels shown for each arrow represent the event

that triggers the transition

Fig : State diagram for the Control Panel class

Sequence diagrams. The second type of behavioral representation, called a sequence diagram in

UML, indicates how events cause transitions from object to object. Once events have been

identified by examining a use case, the modeler creates a sequence diagram—a representation of

how events cause flow from one object to another as a function of time. In essence, thesequence

diagram is a shorthand version of the use case. It represents key classes and the events that cause

behavior to flow from class to class.

26

 26

Fig : Sequence diagram (partial) for the SafeHome security function

PATTERNS FOR REQUIREMENTS MODELING

Software patterns are a mechanism for capturing domain knowledge in a way that allows

it to be reapplied when a new problem is encountered. In some cases, the domain knowledge is

applied to a new problem within the same application domain. The domain knowledge captured

by a pattern can be applied by analogy to a completely different application domain.

The pattern can be reused when performing requirements modeling for an application

within a domain. Analysis patterns are stored in a repository so that members of the software

team can use search facilities to find and reuse them. Once an appropriate pattern is selected, it

is integrated into the requirements model by reference to the pattern name.

Discovering Analysis Patterns

The requirements model is comprised of a wide variety of elements: scenario-based (use

cases), data-oriented (the data model), class-based, flow-oriented, and behavioral. Each of

these elements examines the problem from a different perspective, and each provides an

opportunity to discover patterns that may occur throughout an application domain, or by analogy,

across different application domains.

The most basic element in the description of a requirements model is the use case. Use

cases may serve as the basis for discovering one or more analysis patterns.

A semantic analysis pattern (SAP) “is a pattern that describes a small set of coherent

use cases that together describe a basic generic application”

27

 27

REQUIREMENTS MODELING FOR WEBAPPS

Requirements analysis does take time, but solving the wrong problem takes even more

time.

How Much Analysis Is Enough?

The degree to which requirements modeling for WebApps is emphasized depends on the

following factors:

• Size and complexity of WebApp increment.

• Number of stakeholders

• Size of the WebApp team.

• Degree to which members of the WebApp team have worked together

• Degree to which the organization’s success is directly dependent on the success of the

design of a specific part of the WebApp.

It only demands an analysis of those requirements that affect only that part of the

WebApp.

Requirements Modeling Input

The requirements model provides a detailed indication of the true structure of the

problem and provides insight into the shape of the solution. Requirements analysis refines this

understanding by providing additional interpretation. As the problem structure is delineated as

part of the requirements model.

Requirements Modeling Output

Requirements analysis provides a disciplined mechanism for representing andevaluating

WebApp content and function, the modes of interaction that users will encounter, and the

environment and infrastructure in which the WebApp resides. Each of these characteristics can

be represented as a set of models that allow the WebApp requirements to be analyzed in a

structured manner. While the specific models depend largely upon the nature of the WebApp,

there are five main classes of models:

• Content model—identifies the full spectrum of content to be provided by the WebApp.

Content includes text, graphics and images, video, and audio data.

• Interaction model—describes the manner in which users interact with the WebApp.

 28

• Functional model—defines the operations that will be applied to WebApp content and

describes other processing functions that are independent of content but necessary to the

end user.

• Navigation model—defines the overall navigation strategy for the WebApp.

• Configuration model—describes the environment and infrastructure in which the

WebApp resides.

4. Content. Model for WebApps

The content model contains structural elements that provide an important view of content

requirements for a WebApp. These structural elements encompass content objects and all

analysis classes, user-visible entities that are created or manipulated as a user interacts with the

Content can be developed prior to the implementation of the WebApp, while the WebApp is

being built, or long after the WebApp is operational.

A content object might be a textual description of a product, an article describing a news

event, an action photograph taken at a sporting event, a user’s response on a discussion forum, an

animated representation of a corporate logo, a short video of a speech, or an audio overlay for a

collection of presentation slides. The content objects might be stored as separate files, embedded

directly into Web pages, or obtained dynamically from a database. Content objects can be

determined directly from use cases by examining the scenario description for direct and indirect

references to content. The content model must be capable of describing the content object

Component.

Interaction Model for WebApps

Interaction model that can be composed of one or more of the following elements: (1) use

cases, (2) sequence diagrams, (3) state diagrams,16 and/or (4) user interface prototypes.

Functional Model for WebApps

The functional model addresses two processing elements of the WebApp, each representing a

different level of procedural abstraction: (1) user-observable functionality that is delivered by the

WebApp to end users, and (2) the operations contained within analysis classes that implement

behaviors associated with the class.

User-observable functionality encompasses any processing functions that are initiated

directly by the user.

29

Configuration Models for WebApps

The configuration model is nothing more than a list of server-side and client-side

attributes. However, for more complex WebApps, a variety of configuration complexities may

have an impact on analysis and design. The UML deployment diagram can be used in situations

in which complex configuration architectures must be considered.

Navigation Modeling
Navigation modeling considers how each user category will navigate from one WebApp

element (e.g., content object) to another. The mechanics of navigation are defined as part of

design. At this stage, you should focus on overall navigation requirements. The following

questions should be considered:

• Should certain elements be easier to reach than others? What is the priority for

presentation?

• Should certain elements be emphasized to force users to navigate in their direction?

• How should navigation errors be handled?

• Should navigation to related groups of elements be given priority over navigation to a

specific element?

• Should navigation be accomplished via links, via search-based access, or by some other

means?

• Should certain elements be presented to users based on the context of previous

navigation actions?

• Should a navigation log be maintained for users?

• Should a full navigation map or menu be available at every point in a user’s interaction?

• Should navigation design be driven by the most commonly expected user behaviors or

by the perceived importance of the defined WebApp elements?

• Can a user “store” his previous navigation through the WebApp to expedite future

usage?

• For which user category should optimal navigation be designed?

• How should links external to the WebApp be handled? Overlaying the existing browser

window? As a new browser window? As a separate frame?

These and many other questions should be asked and answered as part of navigationanalysis.

	II B. Tech II Semester (R20)
	REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES
	Analysis Rules of Thumb
	Domain Analysis
	Requirements Modeling Approaches
	Fig : Elements of the analysis model

	SCENARIO-BASED MODELING
	Creating a Preliminary Use Case
	Refining a Preliminary Use Case
	Writing a Formal Use Case
	Developing an Activity Diagram
	Fig : Activity Diagram for ATM
	DATA MODELING CONCEPTS
	Data Objects
	Fig : Tabular representation of data objects
	Relationships

	CLASS-BASED MODELING
	Identifying Analysis Classes
	.2 Specifying Attributes
	Defining Operations
	Fig : Class diagram for the system class
	Fig : A CRC model index card
	Associations and Dependencies
	Fig : Multiplicity
	Analysis Packages

	Requirements Modeling (Flow, Behavior, Patterns and WEBAPPS)
	FLOW-ORIENTED MODELING
	Fig : Context-level DFD for the Safe Home security function
	Fig: Level 1 DFD for SafeHome security function
	reating a Control Flow Model
	The Control Specification
	Fig : State diagram for SafeHome security function

	CREATING A BEHAVIORAL MODEL
	Identifying Events with the Use Case
	State Representations
	Fig : State diagram for the Control Panel class

	PATTERNS FOR REQUIREMENTS MODELING
	Discovering Analysis Patterns

	REQUIREMENTS MODELING FOR WEBAPPS
	How Much Analysis Is Enough?
	Requirements Modeling Input
	Requirements Modeling Output
	4. Content. Model for WebApps
	Interaction Model for WebApps
	Functional Model for WebApps
	Configuration Models for WebApps
	Navigation Modeling

