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3.0 DESIGN CONCEPTS 

UNIT – 4 
 
 

What is it? Design is what almost every engineer wants to do. It is the place where creativity 

rules—where stakeholder requirements, business needs, and technical considerations all come 

together in the formulation of a product or system. Design creates a representation or model of the 

software, but unlike the requirements model, the design model provides detail about software 

architecture, data structures, interfaces, and components that are necessary to implement the 

system. 

Who does it? Software engineers conduct each of the design tasks. Why is it important? Design 

allows you to model the system or product that is to be built. This model can be assessed for 

quality and improved before code is generated, tests are conducted, and end users become 

involved in large numbers. Design is the place where software quality is established. 

What are the steps? Design depicts the software in a number of different ways. First, the 

architecture of the system or product must be represented. Then, the interfaces that connect the 

software to end users, to other systems and devices, and to its own constituent components are 

modeled. Finally, the software components that are used to construct the system are designed. 

Each of these views represents a different design action, but all must conform to a set of basic 

design concepts that guide software design work. 

What is the work product? A design model that encompasses architectural, interface, 

component level, and deployment representations is the primary work product that is produced 

during software design. 

How do I ensure that I’ve done it right? The design model is assessed by the software team 

in an effort to determine whether it contains errors, inconsistencies, or omissions; whether better 

alternatives exist; and whether the model can be implemented within the constraints, schedule, and 

cost that have been established. 

Unit III: 

Design Concepts: Design with Context of Software Engineering, The Design Process, Design 

Concepts, The Design Model. 

Architectural Design: Software Architecture, Architecture Genres, Architecture Styles, 

Architectural Design, Assessing Alternative Architectural Designs, Architectural Mapping Using 

Data Flow. 

Component-Level Design: Component, Designing Class-Based Components, Conducting 

Component-level Design, Component Level Design for WebApps, Designing Traditional 

Components, Component-Based Development. 
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DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING 

 
Software design sits at the technical kernel of software engineering and is applied regardless of the 

software process model that is used. Software design is the last software engineering action within the 

modeling activity and sets the stage for construction (code generation and testing). 

 

 

Each of the elements of the requirements model provides information that is necessary to create the four 

design models required for a complete specification of design. The flow of information during software 

design is illustrated in Figure 8.1. The requirements model, manifested by scenario-based, class-

based, flow-oriented, and behavioral elements, feed the design task. 

 
The data/class design transforms class models into design class realizations and the requisite data 

structures required to implement the software. The objects and relationships defined in the CRC diagram 

and the detailed data content depicted by class attributes and other notation provide the basis for the data 

design action. Part of class design may occur in conjunction with the design of software architecture. 

 
The architectural design defines the relationship between major structural elements of the software, the  

architectural styles and design patterns that can be  used to achieve the 
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requirements defined for the system, and the constraints that affect the way in which architecture can be 

implemented. 

 
The interface design describes how the software communicates with systems that interoperate with it, 

and with humans who use it. An interface implies a flow of information (e.g., data and/or control) and a 

specific type of behavior. Therefore, usage scenarios and behavioral models provide much of the 

information required for interface design. 

 
The component-level design transforms structural elements of the software architecture into a procedural 

description of software components. Information obtained from the class-based models, flow models, and 

behavioral models serve as the basis for component design. 

 
During design you make decisions that will ultimately affect the success of software construction and, as 

important, the ease with which software can be maintained. 

 
Design is the place where quality is fostered in software engineering. Design provides you with 

representations of software that can be assessed for quality. Design is the only way that you can accurately 

translate stakeholder’s requirements into a finished software product or system. Software design serves as 

the foundation for all the software engineering and software support activities that follow. Without design, 

you risk building an unstable system—one that will fail when small changes are made; one that may be 

difficult to test; one whose quality cannot be assessed until late in the software process, when time is short 

and many dollars have already been spent. 

 
THE DESIGN PROCESS 

 
Software design is an iterative process through which requirements are translated into a “blueprint” for 

constructing the software. That is, the design is represented at a high level of abstraction—a level that 

can be directly traced to the specific system objective and more detailed data, functional, and behavioral 

requirements. As design iterations occur, subsequent refinement leads to design representations at much 

lower levels of abstraction. These can still be traced to requirements, but the connection is more subtle. 

 
Software Quality Guidelines and Attributes: Throughout the design process, the quality of the 

evolving design is assessed with a series of technical reviews. The three characteristics that serve as a 

guide for the evaluation of a good design: 

• The design must implement all of the explicit requirements contained in the requirements model, and it 

must accommodate all of the implicit requirements desired by stakeholders. 

• The design must be a readable, understandable guide for those who generate code and for those who test 

and subsequently support the software. 
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• The design should provide a complete picture of the software, addressing the data, functional,  and 

behavioral domains from an implementation perspective. 

 
Quality Guidelines. In order to evaluate the quality of a design representation, the software team must 

establish technical criteria for good design. Guide lines are as follows 

1. A design should exhibit an architecture that (1) has been created using recognizable architectural 

styles or patterns, (2) is composed of components that exhibit good design characteristics (these are 

discussed later in this chapter), and (3) can be implemented in an evolutionary fashion, thereby facilitating 

implementation and testing. 

2. A design should be modular; that is, the software should be logically partitioned into elements or 

subsystems. 

3. A design should contain distinct representations of data, architecture, interfaces, and components. 

4. A design should lead to data structures that are appropriate for the classes to be implemented and are 

drawn from recognizable data patterns. 

5. A design should lead to components that exhibit independent functional characteristics. 

6. A design should lead to interfaces that reduce the complexity of connections between components and 

with the external environment. 

7. A design should be derived using a repeatable method that is driven by information obtained during 

software requirements analysis. 

8. A design should be represented using a notation that effectively communicates its meaning. 

 
Quality Attributes. Hewlett-Packard developed a set of software quality attributes that has been given 

the acronym FURPS—functionality, usability, reliability, performance, and supportability. The FURPS 

quality attributes represent a target for all software design: 

• Functionality is assessed by evaluating the feature set and capabilities of the program, the generality of 

the functions that are delivered, and the security of the overall system. 

• Usability is assessed by considering human factors, overall aesthetics, consistency, and documentation. 

• Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of output 

results, the mean-time-to-failure (MTTF), the ability to recover from failure, and the predictability of the 

program. 

• Performance is measured by considering processing speed, response time, resource consumption, 

throughput, and efficiency. 

• Supportability combines the ability to extend the program (extensibility), adaptability, serviceability—

these three attributes represent a more common term, maintainability—and in addition, testability, 

compatibility, configurability, the ease with which a system can be installed, and the ease with which 

problems can be localized. 

 
The Evolution of Software Design: The evolution of software design is a continuing process. Early 

design work concentrated on criteria for the development of modular programs 
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and methods for refining software structures in a topdown manner. Procedural aspects of design definition 

evolved into a philosophy called structured programming. Later work proposed methods for the 

translation of data flow or data structure into a design definition. Newer design approaches proposed an 

object-oriented approach to design derivation. More recent emphasis in software design has been on 

software architecture and the design patterns that can be used to implement software architectures and 

lower levels of design abstractions. Growing emphasis on aspect-oriented methods, model-driven 

development, and test-driven development emphasize techniques for achieving more effective modularity 

and architectural structure in the designs that are created. 

 
A number of design methods, growing out of the work just noted, are being applied throughout the 

industry. These methods have a number of common characteristics: (1) a mechanism for the translation of 

the requirements model into a design representation, (2) a notation for representing functional 

components and their interfaces, (3) heuristics for refinement and partitioning, and (4) guidelines for 

quality assessment. 

 
DESIGN CONCEPTS 

 
Design concepts has evolved over the history of software engineering. Each concept provides the software 

designer with a foundation from which more sophisticated design methods can be applied. A brief 

overview of important software design concepts that span both traditional and object-oriented software 

development is given below. 

 
Abstraction: When you consider a modular solution to any problem, many levels of abstraction can 

be posed. At the highest level of abstraction, a solution is stated in broad terms using the language of 

the problem environment. At lower levels of abstraction, a more detailed description of the solution is 

provided. Finally, at the lowest level of abstraction, the solution is stated in a manner that can be directly 

implemented. 

 
A procedural abstraction refers to a sequence of instructions that have a specific and limited function. 

The name of a procedural abstraction implies these functions, but specific details are suppressed. A data 

abstraction is a named collection of data that describes a data object. 

 

Architecture: Software architecture alludes to “the overall structure of the software and the ways 

in which that structure provides conceptual integrity for a system”. 

In its simplest form, architecture is the structure or organization of program components (modules), the 

manner in which these components interact, and the structure of data that are used by the components. 

One goal of software design is to derive an architectural rendering of a system. A set of architectural 

patterns enables a software engineer to solve common design problems. 
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Shaw and Garlan describe a set of properties as part of an architectural design: 

Structural properties. This aspect of the architectural design representation defines the components of 

a system (e.g., modules, objects, filters) and the manner in which those components are packaged and 

interact with one another. For example, objects are packaged to encapsulate both data and the processing 

that manipulates the data and interact via the invocation of methods. 

Extra-functional properties. The architectural design description should address how the design 

architecture achieves requirements for performance, capacity, reliability, security, adaptability, and other 

system characteristics. 

Families of related systems. The architectural design should draw upon repeatable patterns that are 

commonly encountered in the design of families of similar systems. In essence, the design should have the 

ability to reuse architectural building blocks. 

 
Patterns: A pattern is a named nugget of insight which conveys the essence of a proven solution to a 

recurring problem within a certain context amidst competing concerns. Stated 

A design pattern describes a design structure that solves a particular design problem within a specific 

context and amid “forces” that may have an impact on the manner in which the pattern is applied and used. 

The intent of each design pattern is to provide a description that enables a designer to determine 

(1) whether the pattern is applicable to the current work 

(2) whether the pattern can be reused (hence, saving design time) 

(3) whether the pattern can serve as a guide for developing a similar, but functionally or structurally 

different pattern. 

 
Separation of Concerns: Separation of concerns is a design concept that suggests that any complex 

problem can be more easily handled if it is subdivided into pieces that can each be solved and/or 

optimized independently. 

 
For two problems, p1 and p2, if the perceived complexity of p1 is greater than the perceived complexity of 

p2, it follows that the effort required to solve p1 is greater than the effort required to solve p2. As a 

general case, this result is intuitively obvious. It does take more time to solve a difficult problem. It also 

follows that the perceived complexity of two problems when they are combined is often greater than the 

sum of the perceived complexity when each is taken separately. This leads to a divide-and-conquer 

strategy—it’s easier to solve a complex problem when you break it into manageable pieces. This has 

important implications with regard to software modularity. 

 
Modularity: Modularity is the most common manifestation of separation of concerns. Software is 

divided into separately named and addressable components, sometimes called modules, that are 

integrated to satisfy problem requirements. It has been stated that “modularity is the single attribute of 

software that allows a program to be intellectually manageable”. The 
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number of control paths, span of reference, number of variables, and overall complexity would make 

understanding close to impossible. In almost all instances, you should break the design into many 

modules, hoping to make understanding easier and, as a consequence, reduce the cost required to build the 

software. 

if you subdivide software indefinitely the effort required to develop it will become negligibly small! 

Unfortunately, other forces come into play, causing this conclusion to be (sadly) invalid. Referring to 

Figure 8.2, the effort (cost) to develop an individual software module does decrease as the total number of 

modules increases. 

 
 

 

Given the same set of requirements, more modules means smaller individual size. However, as the number 

of modules grows, the effort (cost) associated with integrating the modules also grows. These 

characteristics lead to a total cost or effort curve shown in the figure. There is a number, M, of modules 

that would result in minimum development cost, but we do not have the necessary sophistication to predict 

M with assurance. 

 
The curves shown in Figure 8.2 do provide useful qualitative guidance when modularity is considered. 

You should modularize, but care should be taken to stay in the vicinity of M. Undermodularity or 

overmodularity should be avoided. 

 

You modularize a design (and the resulting program) so that development can be more easily planned; 

software increments can be defined and delivered; changes can be more easily accommodated; testing and 

debugging can be conducted more efficiently, and long-term maintenance can be conducted without 

serious side effects. 

 
Information Hiding: The principle of information hiding suggests that modules be “characterized by 

design decisions that (each) hides from all others.” In other words, modules should be specified and 

designed so that information (algorithms and data) contained within a module is inaccessible to other 

modules that have no need for such information. Hiding implies that effective modularity can be achieved 

by defining a set of independent modules that 
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communicate with one another only that information necessary to achieve software function. Abstraction 

helps to define the procedural (or informational) entities that make up the software. Hiding defines and 

enforces access constraints to both procedural detail within a module and any local data structure used by 

the module. The use of information hiding as a design criterion for modular systems provides the greatest 

benefits when modifications are required during testing and later during software maintenance. Because 

most data and procedural detail are hidden from other parts of the software, inadvertent errors introduced 

during modification are less likely to propagate to other locations within the software. 

 
Functional Independence: The concept of functional independence is a direct outgrowth of separation 

of concerns, modularity, and the concepts of abstraction and information hiding. Functional independence 

is achieved by developing modules with “singleminded” function and an “aversion” to excessive 

interaction with other modules. Stated another way, you should design software so that each module 

addresses a specific subset of requirements and has a simple interface when viewed from other 

parts of the program structure. Independent modules are easier to maintain (and test) because 

secondary effects caused by design or code modification are limited, error propagation is reduced, and 

reusable modules are possible. To summarize, functional independence is a key to good design, and design 

is the key to software quality. 

 
Independence is assessed using two qualitative criteria: cohesion and coupling. 

Cohesion is an indication of the relative functional strength of a module. Coupling is an indication 

of the relative interdependence among modules. 
 

A cohesive module performs a single task, requiring little interaction with other components in other 

parts of a program. Stated simply, a cohesive module should (ideally) do just one thing. Although you 

should always strive for high cohesion (i.e., single-mindedness), it is often necessary and advisable to have 

a software component perform multiple functions. 

 
Coupling is an indication of interconnection among modules in a software structure. Coupling depends 

on the interface complexity between modules, the point at which entry or reference is made to a module, 

and what data pass across the interface. In software design, you should strive for the lowest possible 

coupling. Simple connectivity among modules results in software that is easier to understand and less 

prone to a “ripple effect”, caused when errors occur at one location and propagate throughout a system. 

 
Refinement: Stepwise refinement is a top-down design strategy. . A program is developed by 

successively refining levels of procedural detail. A hierarchy is developed by decomposing a 

macroscopic statement of function (a procedural abstraction) in a stepwise fashion until programming 

language statements are reached. 
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Refinement is actually a process of elaboration begins with a statement of function (or description of 

information) that is defined at a high level of abstraction. You then elaborate on the original statement, 

providing more and more detail as each successive refinement (elaboration) occurs. Refinement helps you 

to reveal low-level details as design progresses. 

 
Aspects: As requirements analysis occurs, a set of “concerns” is uncovered. These concerns “include 

requirements, use cases, features, data structures, quality-of-service issues, variants, intellectual property 

boundaries, collaborations, patterns and contracts”. Ideally, a requirements model can be organized in a 

way that allows you to isolate each concern (requirement) so that it can be considered independently. In 

practice, however, some of these concerns span the entire system and cannot be easily 

compartmentalized. 

 
As design begins, requirements are refined into a modular design representation. Consider two 

requirements, A and B. Requirement A crosscuts requirement B “if a software decomposition [refinement] 

has been chosen in which B cannot be satisfied without taking A into account”. 

 
Refactoring: An important design activity for many agile methods is refactoring a reorganization 

technique that simplifies the design (or code) of a component without changing its function or behavior. 

“Refactoring is the process of changing a software system in such a way that it does not alter the external 

behavior of the code [design] yet improves its internal structure.” 

When software is refactored, the existing design is examined for redundancy, unused design elements, 

inefficient or unnecessary algorithms, poorly constructed or inappropriate data structures, or any other 

design failure that can be corrected to yield a better design. The result will be software that is easier to 

integrate, easier to test, and easier to maintain. 

 
Object-Oriented Design Concepts: The object-oriented (OO) paradigm is widely used in modern 

software engineering. OO design concepts such as classes and objects, inheritance, messages, and 

polymorphism, among others. 

 
Design Classes: As the design model evolves, you will define a set of design classes that refine the 

analysis classes by providing design detail that will enable the classes to be implemented, and implement a 

software infrastructure that supports the business solution. 

Five different types of design classes, each representing a different layer of the design architecture, can be 

developed. 

•   User interface classes define all abstractions that are necessary for human computer interaction 

(HCI). In many cases, HCI occurs within the context of a metaphor (e.g., a checkbook, an order form, a 

fax machine), and the design classes for the interface may be visual representations of the elements of the 

metaphor. 
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•  Business domain classes are often refinements of the analysis classes. The classes identify the 

attributes and services (methods) that are required to implement some element of the business domain. 

• Process classes implement lower-level business abstractions required to fully manage the business 

domain classes. 

• Persistent classes represent data stores (e.g., a database) that will persist beyond the execution of the 

software. 

• System classes implement software management and control functions that enable the system to 

operate and communicate within its computing environment and with the outside world. 

 
They define four characteristics of a well-formed design class: 

Complete and sufficient. A design class should be the complete encapsulation of all attributes and 

methods that can reasonably be expected (based on a knowledgeable interpretation of the class name) to 

exist for the class. 

Primitiveness. Methods associated with a design class should be focused on accomplishing one service 

for the class. Once the service has been implemented with a method, the class should not provide another 

way to accomplish the same thing. 

High cohesion. A cohesive design class has a small, focused set of responsibilities and single- mindedly 

applies attributes and methods to implement those responsibilities. 

Low coupling. Within the design model, it is necessary for design classes to collaborate with one 

another. However, collaboration should be kept to an acceptable minimum. If a design model is highly 

coupled, the system is difficult to implement, to test, and to maintain over time. In general, design classes 

within a subsystem should have only limited knowledge of other classes. This restriction, called the Law of 

Demeter, suggests that a method should only send messages to methods in neighboring classes. 

 
THE DESIGN MODEL 

 
The design model can be viewed in two different dimensions as illustrated in Figure 8.4. The process 

dimension indicates the evolution of the design model as design tasks are executed as part of the software 

process. The abstraction dimension represents the level of detail as each element of the analysis model 

is transformed into a design equivalent and then refined iteratively. Referring to Figure 8.4, the dashed 

line indicates the boundary between the analysis and design models. The analysis model slowly blends 

into the design and a clear distinction is less obvious. 

 
The elements of the design model use UML diagrams, that were used in the analysis model. The difference 

is that these diagrams are refined and elaborated as part of design; more implementation-specific 

detail is provided, and architectural structure and style, components that reside within the architecture, and 

interfaces between the components and with the outside world are all emphasized. 
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You should note, however, that model elements indicated along the horizontal axis are not always 

developed in a sequential fashion. The deployment model is usually delayed until the design has been 

fully developed. 

 

 

 

Data Design Elements: Like other software engineering activities, data design (sometimes referred to 

as data architecting) creates a model of data and/or information that is represented at a high level of 

abstraction. This data model is then refined into progressively more implementation-specific 

representations that can be processed by the computer-based system. 

The structure of data has always been an important part of software design. At the program component 

level, the design of data structures and the associated algorithms required to manipulate them is essential 

to the creation of high-quality applications. At the application level, the translation of a data model into a 

database is pivotal to achieving the business objectives of a system. At the business level, the collection 

of information stored in disparate databases and reorganized into a “data warehouse” enables data mining 

or knowledge discovery that can have an impact on the success of the business itself. 

Architectural Design Elements: The architectural design for software is the equivalent to the floor 

plan of a house. The floor plan gives us an overall view of the house. Architectural 
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design elements give us an overall view of the software. The architectural model is derived from three 

sources: 

(1) information about the application domain for the software to be built; 

(2) specific requirements model elements such as data flow diagrams or analysis classes, their 

relationships and collaborations for the problem at hand; and 

(3) the availability of architectural styles and patterns. 

The architectural design element is usually depicted as a set of interconnected subsystems, 

Each subsystem may have it’s own architecture 

 
Interface Design Elements: The interface design for software is analogous to a set of detailed 

drawings for the doors, windows, and external utilities of a house. The interface design elements for 

software depict information flows into and out of the system and how it is communicated among the 

components defined as part of the architecture. 

There are three important elements of interface design: 

(1) the user interface (UI); 

(2) external interfaces to other systems, devices, networks, or other producers or consumers of 

information; and 

(3) internal interfaces between various design components. 

These interface design elements allow the software to communicate externally and enable internal 

communication and collaboration among the components that populate the software architecture. 

 
UI design (increasingly called usability design) is a major software engineering action. Usability design 

incorporates aesthetic elements (e.g., layout, color, graphics, interaction mechanisms), ergonomic 

elements (e.g., information layout and placement, metaphors, UI navigation), and technical elements (e.g., 

UI patterns, reusable components). 

 
The design of external interfaces requires definitive information about the entity to which information is 

sent or received. The design of internal interfaces is closely aligned with component-level design. 

 
Component-Level Design Elements: The component-level design for software is the equivalent to a 

set of detailed drawings (and specifications) for each room in a house. The component-level design for 

software fully describes the internal detail of each software component. To accomplish this, the 

component-level design defines data structures for all local data objects and algorithmic detail for all 

processing that occurs within a component and an interface that allows access to all component operations 

(behaviors). Within the context of object-oriented software engineering, a component is represented in 

UML diagrammatic form as shown in Figure 8.6. 

A UML activity diagram can be used to represent processing logic. Detailed procedural flow for a 

component can be represented using either pseudocode or some other diagrammatic form (e.g., 
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flowchart or box diagram). Algorithmic structure follows the rules established for structured programming 

(i.e., a set of constrained procedural constructs). Data structures, selected based on the nature of the data 

objects to be processed, are usually modeled using pseudocode or the programming language to be used 

for implementation. 
 

 

Deployment-Level Design Elements: Deployment-level design elements indicate how software 

functionality and subsystems will be allocated within the physical computing environment that will 

support the software. 

 
 

 

During design, a UML deployment diagram is developed and then refined as shown in Figure 

8.7. The diagram shown is in descriptor form. This means that the deployment diagram shows the 

computing environment but does not explicitly indicate configuration details. 
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SOFTWARE ARCHITECTURE 

 

(Architecture  Architecture Style  Architecture Pattern  Design) 

 
What is it? Architectural design represents the structure of data and program components that are 

required to build a computer-based system. It considers the architectural style that the system will 

take, the structure and properties of the components that constitute the system, and the 

interrelationships that occur among all architectural components of a system. 

Who does it? Although a software engineer can design both data and architecture, the job is often 

allocated to specialists when large, complex systems are to be built. A database or data warehouse 

designer creates the data architecture for a system. The “system architect” selects an appropriate 

architectural style from the requirements derived during software requirements analysis. 

Why is it important? It provides you with the big picture and ensures that you’ve got it right. 

What are the steps? Architectural design begins with data design and then proceeds to the 

derivation of one or more representations of the architectural structure of the system. Alternative 

architectural styles or patterns are analyzed to derive the structure that is best suited to customer 

requirements and quality attributes. Once an alternative has been selected, the architecture is 

elaborated using an architectural design method. 

What is the work product? An architecture model encompassing data architecture and program 

structure is created during architectural design. In addition, component properties and relationships 

(interactions) are described. 

How do I ensure that I’ve done it right? At each stage, software design work products are 

reviewed for clarity, correctness, completeness, and consistency with requirements and with one 

another. 

 

What Is Architecture? :Software architecture must model the structure of a system and the 

manner in which data and procedural components collaborate with one another. 

 
The software architecture of a program or computing system is the structure or structures of the system, 

which comprise software components, the externally visible properties of those components, and the 

relationships among them. 

The architecture is not the operational software. Rather, it is a representation that enables you to 

(1) analyze the effectiveness of the design in meeting its stated requirements 

(2) architectural alternatives at a stage when making design changes is still relatively easy 

(3) reduce the risks associated with the construction of the software. 

This definition emphasizes the role of “software components” in any architectural representation. In the 

context of architectural design, a software component can be something as simple as a 
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program module or an object-oriented class, but it can also be extended to include databases and 

“middleware” that enable the configuration of a network of clients and servers. The properties of 

components are those characteristics that are necessary for an understanding of how the components 

interact with other components. At the architectural level, internal properties (e.g., details of an 

algorithm) are not specified. The relationships between components can be as simple as a procedure call 

from one module to another or as complex as a database access protocol. 

 
There is a distinct difference between the terms architecture and design. A design is an instance of an 

architecture similar to an object being an instance of a class. For example, consider the client-server 

architecture. I can design a network-centric software system in many different ways from this architecture 

using either the Java platform (Java EE) or Microsoft platform (.NET framework). So, there is one 

architecture, but many designs can be created based on that architecture. Architectural design focuses 

on the representation of the structure of software components, their properties, and interactions. 
 

Why Is Architecture Important?: Three key reasons that software architecture is important: 

• Representations of software architecture are an enabler for communication between all parties 

(stakeholders) interested in the development of a computer-based system. 

• The architecture highlights early design decisions that will have a profound impact on all software 

engineering work that follows and, as important, on the ultimate success of the system as an operational 

entity. 

• Architecture “constitutes a relatively small, intellectually graspable model of how the system is 

structured and how its components work together”. 

 
Architectural Descriptions: Different stakeholders will see an architecture from different viewpoints 

that are driven by different sets of concerns. This implies that an architectural description is actually a 

set of work products that reflect different views of the system. 

 
Tyree and Akerman note this when they write: “Developers want clear, decisive guidance on how to 

proceed with design. Customers want a clear understanding on the environmental changes that must occur 

and assurances that the architecture will meet their business needs. Other architects want a clear, salient 

understanding of the architecture’s key aspects.” Each of these “wants” is reflected in a different view 

represented using a different viewpoint. 

 
The IEEE standard defines an architectural description (AD) as “a collection of products to document 

an architecture.” The description itself is represented using multiple views, where each view is “a 

representation of a whole system from the perspective of a related set of [stakeholder] concerns.” 
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Architectural Decisions: Each view developed as part of an architectural description addresses a 

specific stakeholder concern. To develop each view the system architect considers a variety of 

alternatives and ultimately decides on the specific architectural features that best meet the 

concern. Therefore, architectural decisions themselves can be considered to be one view of the 

architecture. 

ARCHITECTURAL GENRES 

 
Although the underlying principles of architectural design apply to all types of architecture, the 

architectural genre will often dictate the specific architectural approach to the structure that must 

be built. In the context of architectural design, genre implies a specific category within the overall 

software domain. Within each category, you encounter a number of subcategories. For example, within the 

genre of buildings, you would encounter the following general styles: houses, condos, apartment buildings, 

office buildings, industrial building, warehouses, and so on. 

 
Grady Booch suggests the following architectural genres for software-based systems: 

• Artificial intelligence—Systems that simulate or augment human cognition, locomotion, or other 

organic processes. 

• Commercial and nonprofit—Systems that are fundamental to the operation of a business 

enterprise. 

• Communications—Systems that provide the infrastructure for transferring and managing data, 

for connecting users of that data, or for presenting data at the edge of an infrastructure. 

• Content authoring—Systems that are used to create or manipulate textual or multimedia 

artifacts. 

• Devices—Systems that interact with the physical world to provide some point service for an 

individual. 

• Entertainment and sports—Systems that manage public events or that provide a large group 

entertainment experience. 

• Financial—Systems that provide the infrastructure for transferring and managing money and other 

securities. 

• Games—Systems that provide an entertainment experience for individuals or groups. 

• Government—Systems that support the conduct and operations of a local, state, federal, global, 

or other political entity. 

• Industrial—Systems that simulate or control physical processes. 

• Legal—Systems that support the legal industry. 

• Medical—Systems that diagnose or heal or that contribute to medical research. 

• Military—Systems for consultation, communications, command, control, and intelligence (C4I) as well 

as offensive and defensive weapons. 

• Operating systems—Systems that sit just above hardware to provide basic software services. 

• Platforms—Systems that sit just above operating systems to provide advanced services. 
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• Scientific—Systems that are used for scientific research and applications. 

• Tools—Systems that are used to develop other systems. 

• Transportation—Systems that control water, ground, air, or space vehicles. 

• Utilities—Systems that interact with other software to provide some point service. 

 
SAI (Software Architecture for Immersipresence) is a new software architecture model for designing, 

analyzing and implementing applications performing distributed, asynchronous parallel processing of 

generic data streams. The goal of SAI is to provide a universal framework for the distributed 

implementation of algorithms and their easy integration into complex systems. 

 
ARCHITECTURAL STYLES 

 
Architectural style describes a system category that encompasses 

(1) a set of components (e.g., a database, computational modules) that perform a function required 

by a system; 

(2) a set of connectors that enable “communication, coordination and cooperation” among 

components; 

(3) constraints that define how components can be integrated to form the system; and 

(4) semantic models that enable a designer to understand the overall properties of a system by analyzing 

the known properties of its constituent parts. 

 
An architectural style is a transformation that is imposed on the design of an entire system. The intent is to 

establish a structure for all components of the system. 

 
An architectural pattern, like an architectural style, imposes a transformation on the design of an 

architecture. However, a pattern differs from a style in a number of fundamental ways: 

(1) the scope of a pattern is less broad, focusing on one aspect of the architecture rather than the 

architecture in its entirety; 

(2) a pattern imposes a rule on the architecture, describing how the software will handle some aspect of 

its functionality at the infrastructure level (e.g., concurrency) 

(3) architectural patterns tend to address specific behavioral issues within the context of the 

architecture (e.g., how real-time applications handle synchronization or interrupts). 

Patterns can be used in conjunction with an architectural style to shape the overall structure of a system. 

 
A Brief Taxonomy of Architectural Styles: Although millions of computer-based systems have been 

created over the past 60 years, the vast majority can be categorized  into one of  a relatively small 

number of architectural styles: 

Data-centered architectures. A data store (e.g., a file or database) resides at the center of this 

architecture and is accessed frequently by other components that update, add, delete, or otherwise modify 

data within the store. Figure 9.1 illustrates a typical data-centered style. Client 
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software accesses a central repository. In some cases the data repository is passive. That is, client software 

accesses the data independent of any changes to the data or the actions of other client software. Data-

centered architectures promote integrability. That is, existing components can be changed and new client 

components added to the architecture without concern about other clients (because the client components 

operate independently). In addition, data can be passed among clients using the blackboard mechanism 

(i.e., the blackboard component serves to coordinate the transfer of information between clients). Client 

components independently execute processes. 

 

Data-flow architectures. This architecture is applied when input data are to be transformed through a 

series of computational or manipulative components into output data. A pipe-and-filter pattern (Figure 9.2) 

has a set of components, called filters, connected by pipes that transmit data from one component to the 

next. Each filter works independently of those components upstream and downstream, is designed to 

expect data input of a certain form, and produces data output (to the next filter) of a specified form. 

However, the filter does not require knowledge of the workings of its neighboring filters. 
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Call and return architectures. This architectural style enables you to achieve a program structure that 

is relatively easy to modify and scale. A number of substyles exist within this category: 

• Main program/subprogram architectures. This classic program structure decomposes function into a 

control hierarchy where a “main” program invokes a number of program components that in turn may 

invoke still other components. Figure 9.3 illustrates an architecture of this type. 

• Remote procedure call architectures. The components of a main program/subprogram architecture 

are distributed across multiple computers on a network. 
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Object-oriented architectures. The components of a system encapsulate data and the operations that 

must be applied to manipulate the data. Communication and coordination between components are 

accomplished via message passing. 
 

Layered architectures. The basic structure of a layered architecture is illustrated in Figure 9.4. A 

number of different layers are defined, each accomplishing operations that progressively become closer to 

the machine instruction set. At the outer layer, components service user interface operations. At the inner 

layer, components perform operating system interfacing. Intermediate layers provide utility services and 

application software functions. These architectural styles are only a small subset of those available. Once 

requirements engineering uncovers the characteristics and constraints of the system to be built, the 

architectural style and/or combination of patterns that best fits those characteristics and constraints can be 

chosen. For example, a layered style (appropriate for most systems) can be combined with a data- centered 

architecture in many database applications. 

 
Architectural Patterns: Architectural patterns address an application-specific problem within a specific 

context and under a set of limitations and constraints. The pattern proposes an architectural solution that 

can serve as the basis for architectural design. 

 
For example, the overall architectural style for an application might be call-and-return or object- oriented. 

But within that style, you will encounter a set of common problems that might best be addressed with 

specific architectural patterns. 

 
Organization and Refinement: Because the design process often leaves you with a number of 

architectural alternatives, it is important to establish a set of design criteria that can be used to assess an 

architectural design that is derived. The following questions provide insight into an architectural style: 
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Control. How is control managed within the architecture? Does a distinct control hierarchy exist, and if 

so, what is the role of components within this control hierarchy? How do components transfer control 

within the system? How is control shared among components? What is the control topology (i.e., the 

geometric form that the control takes)? Is control synchronized or do components operate asynchronously? 

Data. How are data communicated between components? Is the flow of data continuous, or are data 

objects passed to the system sporadically? What is the mode of data transfer (i.e., are data passed from one 

component to another or are data available globally to be shared among system components)? Do data 

components (e.g., a blackboard or repository) exist, and if so, what is their role? How do functional 

components interact with data components? Are data components passive or active (i.e., does the data 

component actively interact with other components in the system)? How do data and control interact 

within the system? 

These questions provide the designer with an early assessment of design quality and lay the foundation for 

more detailed analysis of the architecture. 

 
ARCHITECTURAL DESIGN 

 
The design should define the external entities (other systems, devices, people) that the software interacts 

with and the nature of the interaction. This information can generally be acquired from the requirements 

model and all other information gathered during requirements engineering. Once context is modeled and 

all external software interfaces have been described, you can identify a set of architectural archetypes. An 

archetype is an abstraction (similar to a class) that represents one element of system behavior. 

The set of archetypes provides a collection of abstractions that must be modeled architecturally if the 

system is to be constructed, but the archetypes themselves do not provide enough implementation detail. 

 
Therefore, the designer specifies the structure of the system by defining and refining software components 

that implement each archetype. This process continues iteratively until a complete architectural structure 

has been derived. 

 
Representing the System in Context: Architectural context represents how the software 

interacts with entities external to its boundaries. At the architectural design level, a software architect 

uses an architectural context diagram (ACD) to model the manner in which software interacts with entities 

external to its boundaries. The generic structure of the architectural context diagram is illustrated in Figure 

9.5. Referring to the figure, systems that interoperate with the target system are represented as 

• Superordinate systems—those systems that use the target system as part of some higher-level 

processing scheme. 

• Subordinate systems—those systems that are used by the target system and provide data or processing 

that are necessary to complete target system functionality. 



Software Engineering Lecture notes 

 

 22 

 

 

• Peer-level systems—those systems that interact on a peer-to-peer basis (i.e.,information is either 

produced or consumed by the peers and the target system. 

• Actors—entities (people, devices) that interact with the target system by producing or consuming 

information that is necessary for requisite processing. Each of these external entities communicates with 

the target system through an interface (the small shaded rectangles). 

Defining Archetypes: Archetypes are the abstract building blocks of an architectural 

design. An archetype is a class or pattern that represents a core abstraction that is critical to the design of 

an architecture for the target system. In general, a relatively small set of archetypes is required to design 

even relatively complex systems. The target system architecture is composed of these archetypes, which 

represent stable elements of the architecture but may be instantiated many different ways based on the 

behavior of the system. 

 
The following are the archetypes for safeHome: Node, Detector, Indicator., Controller. 
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Refining the Architecture into Components: As the software architecture is refined into 

components, the structure of the system begins to emerge. The architecture must accommodate many 

infrastructure components that enable application components but have no business connection to the 

application domain. For example, memory management components, communication components, 

database components, and task management components are often integrated into the software 

architecture. 

As an example for SafeHome home security, the set of top-level components that address the following 

functionality: 

• External communication management—coordinates communication of the security function with 

external entities such as other Internet-based systems and external alarm notification. 

• Control panel processing—manages all control panel functionality. 

• Detector management—coordinates access to all detectors attached to the system. 

• Alarm processing—verifies and acts on all alarm conditions. 

Each of these top-level components would have to be elaborated iteratively and then positioned within the 

overall SafeHome architecture. 

Describing Instantiations of the System: The architectural design that has been modeled to this 

point is still relatively high level. The context of the system has been represented, archetypes that 

indicate the important abstractions within the problem domain have been defined, the overall structure of 

the system is apparent, and the major software components have been identified. However, further 

refinement is still necessary. 
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ASSESSING ALTERNATIVE ARCHITECTURAL DESIGNS 

 
Design results in a number of architectural alternatives that are each assessed to determine which is the 

most appropriate for the problem to be solved. Two different approaches for the assessment of alternative 

architectural designs. The first method uses an iterative method to assess design trade-offs. The second 

approach applies a pseudo-quantitative technique for assessing design quality. 

 
An Architecture Trade-Off Analysis Method: The Software Engineering Institute (SEI) has 

developed an architecture trade-off analysis method (ATAM) that establishes an iterative evaluation 

process for software architectures. The design analysis activities that follow are performed iteratively: 

 
1.   Collect scenarios. A set of use cases is developed to represent the system from the user’s point of 

view. 

2.  Elicit requirements, constraints, and environment description. This information is determined as part 

of requirements engineering and is used to be certain that all stakeholder concerns have been addressed. 

3.  Describe the architectural styles/patterns that have been chosen to address the scenarios and 

requirements. The architectural style(s) should be described using one of the following architectural 

views: 

• Module view for analysis of work assignments with components and the degree to which information 

hiding has been achieved. 

• Process view for analysis of system performance. 

• Data flow view for analysis of the degree to which the architecture meets functional requirements. 

4. Evaluate quality attributes by considering each attribute in isolation. The number of quality attributes 

chosen for analysis is a function of the time available for review and the degree to which quality attributes 

are relevant to the system at hand. Quality attributes for architectural design assessment include reliability, 

performance, security, maintainability, flexibility, testability, portability, reusability, and interoperability. 

5. Identify the sensitivity of quality attributes to various architectural attributes for a specific 

architectural style. This can be accomplished by making small changes in the architecture and determining 

how sensitive a quality attribute, say performance, is to the change. Any attributes that are significantly 

affected by variation in the architecture are termed sensitivity points. 

6. Critique candidate architectures using the sensitivity analysis conducted in step 5. The 

SEI describes this approach in the following manner. 

Once the architectural sensitivity points have been determined, finding trade-off points is simply the 

identification of architectural elements to which multiple attributes are sensitive. 
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These six steps represent the first ATAM iteration. Based on the results of steps 5 and 6, some 

architecture alternatives may be eliminated, one or more of the remaining architectures may be modified 

and represented in more detail, and then the ATAM steps are reapplied. 

 
Architectural Complexity: A useful technique for assessing the overall complexity of a proposed 

architecture is to consider dependencies between components within the architecture. These dependencies 

are driven by information/control flow within the system. 

The three types of dependencies: 

Sharing dependencies represent dependence relationships among consumers who use the same 

resource or producers who produce for the same consumers. For example, for two components u and v, if 

u and v refer to the same global data, then there exists a shared dependence relationship between u and v. 

Flow dependencies represent dependence relationships between producers and consumers 

of resources. For example, for two components u and v, if u must complete before control flows into v 

(prerequisite), or if u communicates with v by parameters, then there exists a flow dependence relationship 

between u and v. 

Constrained dependencies represent constraints on the relative flow of control among a set of 

activities. For example, for two components u and v, u and v cannot execute at the same time (mutual 

exclusion), then there exists a constrained dependence relationship between u and v. 

 
Architectural Description Languages: Architectural description language (ADL) provides a 

semantics and syntax for describing a software architecture. Hofmann and his colleagues suggest that an 

ADL should provide the designer with the ability to decompose architectural components, compose 

individual components into larger architectural blocks, and represent interfaces (connection mechanisms) 

between components. Once descriptive, language based techniques for architectural design have been 

established, it is more likely that effective assessment methods for architectures will be established as the 

design evolves. 

ARCHITECTURAL MAPPING USING DATA FLOW 

 
There is no practical mapping for some architectural styles, and the designer must approach the translation 

of requirements to design for these styles in using the techniques. 

 
To illustrate one approach to architectural mapping, consider the call and return architecture—an extremely 

common structure for many types of systems. The call and return architecture can reside within other more 

sophisticated architectures. For example, the architecture of one or more components of a client-server 

architecture might be call and return. A mapping technique, called structured design, is often characterized 

as a data flow-oriented design method because it provides a convenient transition from a data flow diagram 

to software architecture. The transition from information flow (represented as a DFD) to program structure 

is accomplished as part of a six step process: (1) the type of information  flow is established, (2) 

flow boundaries are 
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indicated, (3) the DFD is mapped into the program structure, (4) control hierarchy is defined, (5) the 

resultant structure is refined using design measures and heuristics, and (6) the architectural description is 

refined and elaborated. 

 
Transform Mapping: Transform mapping is a set of design steps that allows a DFD with transform 

flow characteristics to be mapped into a specific architectural style. 

Step 1. Review the fundamental system model. The fundamental system model or context 

diagram depicts the security function as a single transformation, representing the external producers and 

consumers of data that flow into and out of the function. Figure 9.10 depicts a level 0 context model, and 

Figure 9.11 shows refined data flow for the security function. 
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Step 2. Review and refine data flow diagrams for the software. Information obtained from the 

requirements model is refined to produce greater detail. For example, the level 2 DFD for monitor sensors 

(Figure 9.12) is examined, and a level 3 data flow diagram is derived as shown in Figure 9.13. The data 

flow diagram exhibits relatively high cohesion. 
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Step 3. Determine whether the DFD has transform or transaction flow characteristics. 

Evaluating the DFD (Figure 9.13), we see data entering the software along one incoming path and exiting 

along three outgoing paths. Therefore, an overall transform characteristic will be assumed for information 

flow. 

Step 4. Isolate the transform center by specifying incoming and outgoing flow 

boundaries. Incoming data flows along a path in which information is converted from external to 

internal form; outgoing flow converts internalized data to external form. Incoming and outgoing flow 

boundaries are open to interpretation. That is, different designers may select slightly different points in the 

flow as boundary locations. Flow boundaries for the example are illustrated as shaded curves running 

vertically through the flow in Figure 9.13. The transforms (bubbles) that constitute the transform center lie 

within the two shaded boundaries that run from top to bottom in the figure. An argument can be made to 

readjust a boundary. The emphasis in this design step should be on selecting reasonable boundaries, rather 

than lengthy iteration on placement of divisions. 

Step 5. Perform “first-level factoring.” The program architecture derived using this mapping results 

in a top-down distribution of control. Factoring leads to a program structure in which top- level 

components perform decision making and low level components perform most input, computation, and 

output work. Middle-level components perform some control and do moderate amounts of work. 

Step 6. Perform “second-level factoring.” Second-level factoring is accomplished by mapping 

individual transforms (bubbles) of a DFD into appropriate modules within the architecture. 
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Step 7. Refine the first-iteration architecture using design heuristics for improved 

software quality. A first-iteration architecture can always be refined by applying concepts of functional 

independence. Components are exploded or imploded to produce sensible factoring, separation of 

concerns, good cohesion, minimal coupling, and most important, a structure that can be implemented 

without difficulty, tested without confusion, and maintained without grief. 

 
Refining the Architectural Design: Refinement of software architecture during early stages of design 

is to be encouraged. Alternative architectural styles may be derived, refined, and evaluated for the “best” 

approach. This approach to optimization is one of the true benefits derived by developing a representation 

of software architecture. 

It is important to note that structural simplicity often reflects both elegance and efficiency. Design 

refinement should strive for the smallest number of components that is consistent with effective 

modularity and the least complex data structure that adequately serves information requirements. 

 
 Component-Level Design 

 
What is it? Component-level design defines the data structures, algorithms, interface characteristics, 

and communication mechanisms allocated to each software component. 

Who does it? A software engineer performs component-level design. 

Why is it important? You have to be able to determine whether the software will work before you 

build it. The component-level design represents the software in a way that allows you to review the 

details of the design for correctness and consistency with other design representations (i.e., the data, 

architectural, and interface designs). It provides a means for assessing whether data structures, 

interfaces, and algorithms will work. 

What are the steps? Design representations of data, architecture, and interfaces form the 

foundation for component-level design. The class definition or processing narrative for each 

component is translated into a detailed design that makes use of diagrammatic or text- based forms 

that specify internal data structures, local interface detail, and processing logic. Design notation 

encompasses UML diagrams and supplementary forms. Procedural design is specified using a set of 

structured programming constructs. It is often possible to acquire existing reusable software 

components rather than building new ones. 

What is the work product? The design for each component, represented in graphical, tabular, or 

text-based notation, is the primary work product produced during component- level design. 

How do I ensure that I’ve done it right? A design review is conducted. The design is examined 

to determine whether data structures, interfaces, processing sequences, and logical conditions are 

correct and will produce the appropriate data or control transformation allocated to the component 

during earlier design steps. 
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WHAT IS A COMPONENT?: A component is a modular building block for computer software. More 

formally, component is “a modular, deployable, and replaceable part of a system that 

encapsulates implementation and exposes a set of interfaces.” 
 

Components populate the software architecture and, as a consequence, play a role in achieving the 

objectives and requirements of the system to be built. Because components reside within the software 

architecture, they must communicate and collaborate with other components and with entities (e.g., other 

systems, devices, people) that exist outside the boundaries of the software. 

An Object-Oriented View: In the context of object-oriented software engineering, a component 

contains a set of collaborating classes. Each class within a component has been fully elaborated to 

include all attributes and operations that are relevant to its implementation. As part of the design 

elaboration, all interfaces that enable the classes to communicate and collaborate with other design 

classes must also be defined. 
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The Traditional View: In the context of traditional software engineering, a component is a functional 

element of a program that incorporates processing logic, the internal data structures that are required 

to implement the processing logic, and an interface that enables the component to be invoked and data 

to be passed to it. A traditional component, also called a module, resides within the software architecture 

and serves one of three important roles: 

(1) a control component that coordinates the invocation of all other problem domain components, 

(2) a problem domain component that implements a complete or partial function that is required by the 

customer, or 

(3) an infrastructure component that is responsible for functions that support the processing required in 

the problem domain. 

 
Like object-oriented components, traditional software components are derived from the analysis model. 

To achieve effective modularity, design concepts like functional independence are applied as components 

are elaborated. 
 

 

During component-level design, each module in Figure 10.2 is elaborated. The module interface is defined 

explicitly. That is, each data or control object that flows across the interface is represented. The data 

structures that are used internal to the module are defined. The algorithm that allows the module to 

accomplish its intended function is designed  using the stepwise 
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refinement approach. The behavior of the module is sometimes represented using a state diagram. Figure 

10.3 represents the component-level design using a modified UML notation. 

 

A Process-Related View: The object-oriented and traditional views of component-level design assume 

that the component is being designed from scratch. That is, you have to create a new component based on 

specifications derived from the requirements model. 

 

Over the past two decades, the software engineering community has emphasized the need to build systems 

that make use of existing software components or design patterns. In essence, a catalog of proven design 

or code-level components is made available to you as design work proceeds. As the software architecture 

is developed, you choose components or design patterns from the catalog and use them to populate the 

architecture. 

 

Because these components have been created with reusability in mind, a complete description of their 

interface, the function(s) they perform, and the communication and collaboration they require are all 

available. 
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 DESIGNING CLASS-BASED COMPONENTS 

 
When an object-oriented software engineering approach is chosen, component-level design focuses on the 

elaboration of problem domain specific classes and the definition and refinement of infrastructure classes 

contained in the requirements model. The detailed description of the attributes, operations, and interfaces 

used by these classes is the design detail required as a precursor to the construction activity. 

 
Basic Design Principles: Four basic design principles are applicable to component-level design and 

have been widely adopted when object-oriented software engineering is applied. 

The Open-Closed Principle (OCP). “A module [component] should be open for extension but 

closed for modification”. This statement seems to be a contradiction, but it represents one of the most 

important characteristics of a good component-level design. Stated simply, you should specify the 

component in a way that allows it to be extended without the need to make internal (code or logic-level) 

modifications to the component itself. To accomplish this, you create abstractions that serve as a buffer 

between the functionality that is likely to be extended and the design class itself. 
 

 
The Liskov Substitution Principle (LSP). “Subclasses should be substitutable for their base classes”. 

This design principle, originally proposed by Barbara Liskov, suggests that a component that uses a base 

class should continue to function properly if a class derived from the base class is passed to the 

component instead. LSP demands that any class derived from a base class must honor any implied 

contract between the base class and the components that use it. 

 
Dependency Inversion Principle (DIP). “Depend on abstractions. Do not depend on concretions”. As 

we have seen in the discussion of the OCP, abstractions are the place where a design can be extended 

without great complication. The more a component depends on other 
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concrete components (rather than on abstractions such as an interface), the more difficult it will be to 

extend. 

 
The Interface Segregation Principle (ISP). “Many client-specific interfaces are better than one 

general purpose interface”. There are many instances in which multiple client components use the 

operations provided by a server class. ISP suggests that you should create a specialized interface to 

serve each major category of clients. Only those operations that are relevant to a particular category of 

clients should be specified in the interface for that client. If multiple clients require the same operations, it 

should be specified in each of the specialized interfaces. 

 
Martin suggests additional packaging principles that are applicable to component-level design: The 

Release Reuse Equivalency Principle (REP). “The granule of reuse is the granule of release”. 

When classes or components are designed for reuse, there is an implicit contract that is established 

between the developer of the reusable entity and the people who will use it. 

Rather than addressing each class individually, it is often advisable to group reusable classes into 

packages that can be managed and controlled as newer versions evolve. 

The Common Closure Principle (CCP). “Classes that change together belong together.” Classes 

should be packaged cohesively. That is, when classes are packaged as part of a design, they should 

address the same functional or behavioral area. When some characteristic of that area must change, it 

is likely that only those classes within the package will require modification. This leads to more effective 

change control and release management. 

The Common Reuse Principle (CRP). “Classes that aren’t reused together should not be grouped 

together” If classes are not grouped cohesively, it is possible that a class with no relationship to other 

classes within a package is changed. This will precipitate unnecessary integration and testing. For this 

reason, only classes that are reused together should be included within a package. 

 
Component-Level Design Guidelines: Ambler suggests the following guidelines for components, 

their interfaces, and the dependencies and inheritance characteristics Components. Naming conventions 

should be established for components that are specified as part of the architectural model and then refined 

and elaborated as part of the component-level model. Architectural component names should be drawn 

from the problem domain and should have meaning to all stakeholders who view the architectural model. 

Interfaces. Interfaces provide important information about communication and collaboration. However, 

unfettered representation of interfaces tends to complicate component diagrams. Ambler recommends that 

(1) lollipop representation of an interface should be used in lieu of the more formal UML box and dashed 

arrow approach, when diagrams grow complex; (2) for consistency, interfaces should flow from the left-

hand side of the component box; (3) only those interfaces that are relevant to the component under 

consideration should be shown, even if other interfaces are available. 
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Dependencies and Inheritance. For improved readability, it is a good to model dependencies from 

left to right and inheritance from bottom (derived classes) to top (base classes). In addition, component 

interdependencies should be represented via interfaces, rather than by representation of a component-to-

component dependency. 

 
Cohesion: Cohesion is the “single-mindedness” of a component. Within the context of component-level 

design for object-oriented systems, cohesion implies that a component or class encapsulates only attributes 

and operations that are closely related to one another and to the class or component itself. Lethbridge and 

Laganiére define a number of different types of cohesion. 

 

Functional. Exhibited primarily by operations, this level of cohesion occurs when a component performs 

a targeted computation and then returns a result. 

Layer. Exhibited by packages, components, and classes, this type of cohesion occurs when a higher layer 

accesses the services of a lower layer, but lower layers do not access higher layers. It might be possible to 

define a set of layered packages as shown in Figure 10.5. The shaded packages contain infrastructure 

components. 

Communicational. All operations that access the same data are defined within one class. In general, 

such classes focus solely on the data in question, accessing and storing it. Classes and components that 

exhibit functional, layer, and communicational cohesion are relatively easy to implement, test, and 

maintain. 

 
Coupling: Communication and collaboration are essential elements of any object- oriented system. 

Coupling is a qualitative measure of the degree to which classes are connected toone another. 

As classes (and components) become more interdependent, coupling increases. An important objective in 

component-level design is to keep coupling as low as is possible. Lethbridge and Laganiére define the 

following coupling categories: 

Content coupling. Occurs when one component “surreptitiously modifies data that is internal to another 

component”. This violates information hiding—a basic design concept. 
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Common coupling. Occurs when a number of components all make use of a global variable. Although 

this is sometimes necessary (e.g., for establishing default values that are applicable throughout an 

application), common coupling can lead to uncontrolled error propagation and unforeseen side effects 

when changes are made. 

Control coupling. Occurs when operation A() invokes operation B() and passes a control flag to 

B. The control flag then “directs” logical flow within B. The problem with this form of coupling is that an 

unrelated change in B can result in the necessity to change the meaning of the control flag that A passes. If 

this is overlooked, an error will result. 

Stamp coupling. Occurs when ClassB is declared as a type for an argument of an operation of ClassA. 

Because ClassB is now a part of the definition of ClassA, modifying the system becomes more complex. 

Data coupling. Occurs when operations pass long strings of data arguments. The “bandwidth” of 

communication between classes and components grows and the complexity of the interface increases. 

Testing and maintenance are more difficult. 

Routine call coupling. Occurs when one operation invokes another. This level of coupling is common 

and is often quite necessary. However, it does increase the connectedness of a system. 

Type use coupling. Occurs when component A uses a data type defined in component B (e.g., this 

occurs whenever “a class declares an instance variable or a local variable as having another class for its 

type”. If the type definition changes, every component that uses the definition must also change. 

Inclusion or import coupling. Occurs when component A imports or includes a package or the 

content of component B. 

External coupling. Occurs when a component communicates or collaborates with infrastructure 

components (e.g., operating system functions, database capability, telecommunication functions). 

Although this type of coupling is necessary, it should be limited to a small number of components or 

classes within a system. 

Software must communicate internally and externally. Therefore, coupling is a fact of life. However, the 

designer should work to reduce coupling whenever possible and understand the ramifications of high 

coupling when it cannot be avoided. 

 
CONDUCTING COMPONENT-LEVEL DESIGN: The following steps represent a typical task set for 

component-level design, when it is applied for an object-oriented system. 

Step 1. Identify all design classes that correspond to the problem domain. Using the 

requirements and architectural model, each analysis class and architectural component is elaborated. 

Step 2. Identify all design classes that correspond to the infrastructure domain. These 

classes are not described in the requirements model and are often missing from the architecture model, but 

they must be described at this point. As we have noted earlier, classes and components in this category 

include GUI components, operating system components, and object and data management components. 
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Step 3. Elaborate all design classes that are not acquired as reusable components. 

Elaboration requires that all interfaces, attributes, and operations necessary to implement the class be 

described in detail. Design heuristics (e.g., component cohesion and coupling) must be considered as this 

task is conducted. 

 
 

 
 

Step 3a. Specify message details when classes or components collaborate. The 

requirements model makes use of a collaboration diagram to show how analysis classes collaborate with 

one another. As component-level design proceeds, it is sometimes useful to show the details of these 

collaborations by specifying the structure of messages that are passed between objects within a system. 

Although this design activity is optional, it can be used as a precursor to the specification of interfaces that 

show how components within the system communicate and collaborate. Figure 10.6 illustrates a 

simple collaboration diagram for the printing system. 

 
Step 3b. Identify appropriate interfaces for each component. Within the context of component-

level design, a UML interface is “a group of externally visible (i.e., public) operations. The interface 

contains no internal structure, it has no attributes, no associations. Interface is the equivalent of an 

abstract class that provides a controlled connection between design classes. 

 

Step 3c. Elaborate attributes and define data types and data structures required to 

implement them. In general, data structures and types used to define attributes are defined within the 

context of the programming language that is to be used for implementation. UML defines an attribute’s 

data type using the following syntax: 

name : type-expression _ initial-value {property string} 

where name is the attribute name, type expression is the data type, initial value is the value that the 

attribute takes when an object is created, and property-string defines a property or characteristic of the 

attribute. 
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Step 3d. Describe processing flow within each operation in detail. This may be accomplished 

using a programming language-based pseudocode or with a UML activity diagram. Each software 

component is elaborated through a number of iterations that apply the stepwise refinement concept. 

 
The first iteration defines each operation as part of the design class. In every case, the operation should be 

characterized in a way that ensures high cohesion; that is, the operation should perform a single targeted 

function or subfunction. The next iteration does little more than expand the operation name. Figure 10.8 

depicts a UML activity diagram for computePaperCost(). 

Step 4. Describe persistent data sources (databases and files) and identify the classes 

required to manage them. Databases and files normally transcend the design description of an 
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individual component. In most cases, these persistent data stores are initially specified as part of 

architectural design. However, as design elaboration proceeds, it is often useful to provide additional detail 

about the structure and organization of these persistent data sources. 

Step 5. Develop and elaborate behavioral representations for a class or component. UML 

state diagrams were used as part of the requirements model to represent the externally observable behavior 

of the system and the more localized behavior of individual analysis classes. During component-level 

design, it is sometimes necessary to model the behavior of a design class. The dynamic behavior of an 

object is affected by events that are external to it and the current state of the object as illustrated in Figure 

10.9. 
 

Step 6. Elaborate deployment diagrams to provide additional implementation detail. 

Deployment diagrams are used as part of architectural design and are represented in descriptor form. In 

this form, major system functions are represented within the context of the computing environment that 

will house them. 

 
Step 7. Refactor every component-level design representation and always consider 

alternatives. The design is an iterative process. The first component-level model you create will not be 

as complete, consistent, or accurate as the nth iteration you apply to the model. It is essential to refactor as 

design work is conducted. Develop alternatives and consider each carefully, using the design principles 

and concepts. 
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 COMPONENT-LEVEL DESIGN FOR WEBAPPS 

 
WebApp component is (1) a well-defined cohesive function that manipulates content or provides 

computational or data processing for an end user or (2) a cohesive package of content and functionality 

that provides the end user with some required capability. Therefore, component- level design for WebApps 

often incorporates elements of content design and functional design. 

 
Content Design at the Component Level: Content design at the component level focuses on content 

objects and the manner in which they may be packaged for presentation to a WebApp end user. 

 
The formality of content design at the component level should be tuned to the characteristics of the 

WebApp to be built. In many cases, content objects need not be organized as components and can be 

manipulated individually. However, as the size and complexity grows, it may be necessary to organize 

content in a way that allows easier reference and design manipulation. In addition, if content is highly 

dynamic, it becomes important to establish a clear structural model that incorporates content components. 

 
Functional Design at the Component Level: Modern Web applications deliver increasingly 

sophisticated processing functions that (1) perform localized processing to generate content and navigation 

capability in a dynamic fashion, (2) provide computation or data processing capability that is appropriate 

for the WebApp’s business domain, (3) provide sophisticated database query and access, or (4) establish 

data interfaces with external corporate systems. 

To achieve these (and many other) capabilities, you will design and construct WebApp functional 

components that are similar in form to software components for conventional software. During 

architectural design, WebApp content and functionality are combined to create a functional architecture. A 

functional architecture is a representation of the functional domain of the WebApp and describes the key 

functional components in the WebApp and how these components interact with each other. 

 DESIGNING TRADITIONAL COMPONENTS 

 
The foundations of component-level design for traditional software components were formed in the early 

1960s and were solidified with the work of Edsger Dijkstra and his colleagues. The constructs emphasized 

“maintenance of functional domain.” That is, each construct had a predictable logical structure and was 

entered at the top and exited at the bottom, enabling a reader to follow procedural flow more easily. 

 
The constructs are sequence, condition, and repetition. Sequence implements processing steps that are 

essential in the specification of any algorithm. Condition provides the facility for selected 
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processing based on some logical occurrence, and repetition allows for looping. These three constructs 

are fundamental to structured programming—an important component-level design technique. The 

structured constructs were proposed to limit the procedural design of software to a small number of 

predictable logical structures. 

 
Complexity metrics indicate that the use of the structured constructs reduces program complexity and 

thereby enhances readability, testability, and maintainability. 

 

The structured constructs are logical chunks that allow a reader to recognize procedural elements of a 

module, rather than reading the design or code line by line. Understanding is enhanced when readily 

recognizable logical patterns are encountered. 

 
Graphical Design Notation: ”A picture is worth a thousand words”. There is no question that 

graphical tools, such as the UML activity diagram or the flowchart, provide useful pictorial patterns that 

readily depict procedural detail. 

 
The activity diagram allows you to represent sequence, condition, and repetition—all elements of 

structured programming—and is a descendent of an earlier pictorial design representation called a 

flowchart. A box is used to indicate a processing step. A diamond represents a logical condition, and 

arrows show the flow of control. Figure 10.10 illustrates three structured constructs. 

The sequence is represented as two processing boxes connected by a line (arrow) of control. Condition, 

also called if-then-else, is depicted as a decision diamond that, if true, causes then- part processing to 

occur, and if false, invokes else-part processing. Repetition is represented using two  slightly different 

forms. The do while tests a condition and executes a  loop task 
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repetitively as long as the condition holds true. A repeat until executes the loop task first and then tests a 

condition and repeats the task until the condition fails. The selection (or select-case) construct shown in 

the figure is actually an extension of the if-then-else. A parameter is tested by successive decisions until a 

true condition occurs and a case part processing path is executed. 

 
Tabular Design Notation: Decision tables provide a notation that translates actions and conditions 

(described in a processing narrative or a use case) into a tabular form. The table is difficult to misinterpret 

and may even be used as a machine-readable input to a table-driven algorithm. Decision table organization 

is illustrated in Figure 10.11. Referring to the figure, the table is divided into four sections. The upper left-

hand quadrant contains a list of all conditions. The lower left-hand quadrant contains a list of all actions 

that are possible based on combinations of conditions. The right-hand quadrants form a matrix that 

indicates condition combinations and the corresponding actions that will occur for a specific combination. 

Therefore, each column of the matrix may be interpreted as a processing rule. The following steps are 

applied to develop a decision table: 

1. List all actions that can be associated with a specific procedure (or component). 

2. List all conditions (or decisions made) during execution of the procedure. 

3. Associate specific sets of conditions with specific actions, eliminating impossible combinations of 

conditions; alternatively, develop every possible permutation of conditions. 

4. Define rules by indicating what actions occur for a set of conditions. 

 
Program Design Language: Program design language (PDL), also called structured English or 

pseudocode, incorporates the logical structure of a programming language with the free-form expressive 

ability of a natural language (e.g., English). Narrative text (e.g., English) is embedded within a 

programming language-like syntax. Automated tools can be used to enhance the application of PDL. 
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A basic PDL syntax should include constructs for component definition, interface description, data 

declaration, block structuring, condition constructs, repetition constructs, and input-output (I/O) 

constructs. It should be noted that PDL can be extended to include keywords for multitasking and/or 

concurrent processing, interrupt handling, interprocess synchronization, and many other features. The 

application design for which PDL is to be used should dictate the final form for the design language. The 

format and semantics for some of these PDL constructs are presented in the example that follows. 

 

 

 COMPONENT-BASED DEVELOPMENT 

 
Component-based software engineering (CBSE) is a process that emphasizes the design and construction 

of computer-based systems using reusable software “components.” 

 
Domain Engineering: The intent of domain engineering is to identify, construct, catalog, and 

disseminate a set of software components that have applicability to existing and future software in a 

particular application domain. The overall goal is to establish mechanisms that enable software engineers 

to share these components—to reuse them—during work on new and existing systems. Domain 

engineering includes three major activities—analysis, construction, and dissemination. 

 
The overall approach to domain analysis is often characterized within the context of object- oriented 

software engineering. The steps in the process are defined as: 

1. Define the domain to be investigated. 

2. Categorize the items extracted from the domain. 

3. Collect a representative sample of applications in the domain. 
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4. Analyze each application in the sample and define analysis classes. 

5. Develop a requirements model for the classes. 

It is important to note that domain analysis is applicable to any software engineering paradigm and may 

be applied for conventional as well as object-oriented development. 

 
Component Qualification, Adaptation, and Composition: Domain engineering provides the 

library of reusable components that are required for component-based software engineering. Some of these 

reusable components are developed in-house, others can be extracted from existing applications, and still 

others may be acquired from third parties. Unfortunately, the existence of reusable components does not 

guarantee that these components can be integrated easily or effectively into the architecture chosen for a 

new application. It is for this reason that a sequence of component-based development actions is applied 

when a component is proposed for use. 

 
Component Qualification. Component qualification ensures that a candidate component will perform 

the function required, will properly “fit” into the architectural style specified for the system, and will 

exhibit the quality characteristics (e.g., performance, reliability, usability) that are required for the 

application. 

 
An interface description provides useful information about the operation and use of a software component, 

but it does not provide all of the information required to determine if a proposed component can, in fact, 

be reused effectively in a new application. Among the many factors considered during component 

qualification are: 

• Application programming interface (API). 

• Development and integration tools required by the component. 

• Run-time requirements, including resource usage (e.g., memory or storage), timing or speed, and 

network protocol. 

• Service requirements, including operating system interfaces and support from other 

components. 

• Security features, including access controls and authentication protocol. 

• Embedded design assumptions, including the use of specific numerical or nonnumerical algorithms. 

• Exception handling 

 
Component Adaptation. In an ideal setting, domain engineering creates a library of components that 

can be easily integrated into an application architecture. The implication of “easy integration” is that (1) 

consistent methods of resource management have been implemented for all components in the library, (2) 

common activities such as data management exist for all components, and (3) interfaces within the 

architecture and with the external environment have been implemented in a consistent manner. 
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Conflicts may occur in one or more of the areas in selection of components. To avoid these conflicts, an 

adaptation technique called component wrapping is sometimes used. When a software team has full access 

to the internal design and code for a component white-box wrapping is applied. Like its counterpart in 

software testing white-box wrapping examines the internal processing details of the component and makes 

code-level modifications to remove any conflict. Gray-box wrapping is applied when the component 

library provides a component extension language or API that enables conflicts to be removed or masked. 

Black-box wrapping requires the introduction of pre- and postprocessing at the component interface to 

remove or mask conflicts. 

Component Composition. The component composition task assembles qualified, adapted, and 

engineered components to populate the architecture established for an application. To accomplish this, an 

infrastructure and coordination must be established to bind the components into an operational system. 

OMG/CORBA. The Object Management Group has published a common object request broker 

architecture (OMG/CORBA). An object request broker (ORB) provides a variety of services that enable 

reusable components (objects) to communicate with other components, regardless of their location within 

a system. 

Microsoft COM and .NET. Microsoft has developed a component object model (COM) that provides a 

specification for using components produced by various vendors within a single application running under 

the Windows operating system. From the point of view of the application, “the focus is not on how 

implemented, only on the fact that the object has an interface that it registers with the system, and that it 

uses the component system to communicate with other COM objects”. The Microsoft .NET framework 

encompasses COM and provides a reusable class library that covers a wide array of application domains. 

Sun JavaBeans Components. The JavaBeans component system is a portable, platform- independent 

CBSE infrastructure developed using the Java programming language. The JavaBeans component system 

encompasses a set of tools, called the Bean Development Kit (BDK), that allows developers to (1) analyze 

how existing Beans (components) work, (2) customize their behavior and appearance, (3) establish 

mechanisms for coordination and communication, (4) develop custom Beans for use in a specific 

application, and (5) test and evaluate Bean behavior. 

 
Analysis and Design for Reuse: Design concepts such as abstraction, hiding, functional 

independence, refinement, and structured programming, along with object-oriented methods, testing, 

software quality assurance (SQA), and correctness verification methods all contribute to the creation of 

software components that are reusable. 

 
The requirements model is analyzed to determine those elements that point to existing reusable 

components. Elements of the requirements model are compared to WebRef descriptions of reusable 

components in a process that is sometimes referred to as “specification matching”. If specification 

matching points to an existing component that fits the needs of the current 
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application, you can extract the component from a reuse library (repository) and use it in the design of a 

new system. If components cannot be found (i.e., there is no match), a new component is created i.e 

design for reuse (DFR) should be considered. 

Standard data. The application domain should be investigated and standard global data structures (e.g., 

file structures or a complete database) should be identified. All design components can then be 

characterized to make use of these standard data structures. 

Standard interface protocols. Three levels of interface protocol should be established: the nature of 

intramodular interfaces, the design of external technical (nonhuman) interfaces, and the human-computer 

interface. 

Program templates. An architectural style is chosen and can serve as a template for the architectural 

design of a new software. Once standard data, interfaces, and program templates have been established, 

you have a framework in which to create the design. New components that conform to this framework 

have a higher probability for subsequent reuse. 

 
Classifying and Retrieving Components: Consider a large component repository. Tens of thousands 

of reusable software components reside in it. 

 
A reusable software component can be described in many ways, but an ideal description encompasses the 

3C model—concept, content, and context. The concept of a software component is “a description of 

what the component does”. The interface to the component is fully described and the semantics—

represented within the context of pre- and post conditions— is identified. The content of a component 

describes how the concept is realized. The context places a reusable software component within its 

domain of applicability. 

 
A reuse environment exhibits the following characteristics: 

• A component database capable of storing software components and the classification 

information necessary to retrieve them. 

• A library management system that provides access to the database. 

• A software component retrieval system (e.g., an object request broker) that enables a client 

application to retrieve components and services from the library server. 

• CBSE tools that support the integration of reused components into a new design or 

implementation. 

Each of these functions interact with or is embodied within the confines of a reuse library. 

 
The reuse library is one element of a larger software repository and provides facilities for the storage of 

software components and a wide variety of reusable work products (e.g., specifications, designs, patterns, 

frameworks, code fragments, test cases, user guides). 

 
If an initial query results in a voluminous list of candidate components, the query is refined to narrow the 

list. Concept and content information are then extracted (after candidate components are found) to assist 

you in selecting the proper component. 
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