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UNIT –I 

INTRODUCTION 
(1) Purpose of Testing: 
       (i) What we do: 

 Testing consumes at least half of the labor expended to produce a working program.  
 Few programmers like testing and even fewer like test design—especially if test design and 

testing take longer than program design and coding.  
 This attitude is understandable.  
 Software is ephemeral: you can’t point to something physical. 
  I think, deep down, most of us don’t believe in software—at least not the way we believe in 

hardware.  
 If software is insubstantial, then how much more insubstantial does software testing seem? 

There isn’t even some debugged code to point to when we’re through with test design.  
 The effort put into testing seems wasted if the tests don’t reveal bugs. 
 There’s another, deeper, problem with testing that’s related to the reason we do it (MILL78B, 

MYER79). It’s done to catch bugs.  
 There’s a myth that if we were really good at programming, there would be no bugs to catch. 

If only we could really concentrate, if everyone used structured programming, top-down 
design, decision tables, if programs were written in SQUISH, if we had the right silver bullets, 
then there would be no bugs.  

 So goes the myth. There are bugs, the myth says, because we are bad at what we do; and if 
we are bad at it, we should feel guilty about it. 

  Therefore, testing and test design amount to an admission of failure, which instills a goodly 
dose of guilt. And the tedium of testing is just punishment for our errors.  

 Punishment for what? For being human? Guilt for what? For not achieving inhuman 
perfection? For not distinguishing between what another programmer thinks and what he 
says? For not being telepathic? For not solving human communication problems that have 
been kicked around by philosophers and theologians for 40 centuries? 

 The statistics show that programming, done well, will still have one to three bugs per hundred 
statements (AKIY71, ALBE76, BOEH75B, ENDR75, RADA81, SHOO75, THAY76, 
WEIS85B).*  

 Certainly, if you have a 10% error rate, then you either need more programming education or 
you deserve reprimand and guilt.**  

 There are some persons who claim that they can write bug-free programs. There’s a saying 
among sailors on the Chesapeake Bay, whose sandy, shifting bottom outdates charts before 
they’re printed, “If you haven’t run aground on the Chesapeake, you haven’t sailed the 
Chesapeake much.”  

 So it is with programming and bugs: I have them, you have them, we all have them—and the 
point is to do what we can to prevent them and to discover them as early as possible, but not 
to feel guilty about them.  

 Programmers! Cast out your guilt! Spend half your time in joyous testing and debugging! 
Thrill to the excitement of the chase! Stalk bugs with care, methodology, and reason. Build 
traps for them.  

 Be more artful than those devious bugs and taste the joys of guiltless programming! Testers! 
Break that software (as you must) and drive it to the ultimate—but don’t enjoy the 
programmer’s pain. 
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      (ii) Productivity and quality in Software: 

 Consider the manufacture of a mass-produced widget. Whatever the design cost, it is a small 
part of the total cost when amortized over a large production run.  

 Once in production, every manufacturing stage is subjected to quality control and testing 
from component source inspection to final testing before shipping.  

 If flaws are discovered at any stage, the widget or part of it will either be discarded or cycled 
back for rework and correction.  

 The assembly line’s productivity is measured by the sum of the costs of the materials, the 
rework, and the discarded components, and the cost of quality assurance and testing.  

 There is a trade-off between quality-assurance costs and manufacturing costs. If insufficient 
effort is spent in quality assurance, the reject rate will be high and so will the net cost. 

  Conversely, if inspection is so good that all faults are caught as they occur, inspection costs 
will dominate, and again net cost will suffer.  

 The manufacturing process designers attempt to establish a level of testing and quality 
assurance that minimizes net cost for a given quality objective.  

 Testing and quality-assurance costs for manufactured items can be as low as 2% in 
consumer products or as high as 80% in products such as spaceships, nuclear reactors, and 
aircraft, where failures threaten life.  

 The relation between productivity and quality for software is very different from that for 
manufactured goods.  

 The “manufacturing” cost of a software copy is trivial: the cost of the tape or disc and a few 
minutes of computer time.  

 Furthermore, software “manufacturing” quality assurance is automated through the use of 
check sums and other error-detecting methods.  

 Software costs are dominated by development.  
 Software maintenance is unlike hardware maintenance. It is not really “maintenance” but an 

extended development in which enhancements are designed and installed and deficiencies 
corrected. 

  The biggest part of software cost is the cost of bugs: the cost of detecting them, the cost of 
correcting them, the cost of designing tests that discover them, and the cost of running those 
tests.  

 The main difference then between widget productivity and software productivity is that for 
hardware quality is only one of several productivity determinants, whereas for software, 
quality and productivity are almost indistinguishable. 

(iii) Goals for testing: 

 Testing and test design, as parts of quality assurance, should also focus on bug prevention. 
To the extent that testing and test design do not prevent bugs, they should be able to 
discover symptoms caused by bugs.  

 Finally, tests should provide clear diagnoses so that bugs can be easily corrected. Bug 
prevention is testing’s first goal.  

 A prevented bug is better than a detected and corrected bug because if the bug is prevented, 
there’s no code to correct.  

 Moreover, no retesting is needed to confirm that the correction was valid, no one is 
embarrassed, no memory is consumed, and prevented bugs can’t wreck a schedule.  

 More than the act of testing, the act of designing tests is one of the best bug preventers 
known.  

 The thinking that must be done to create a useful test can discover and eliminate bugs before 
they are coded—indeed, test-design thinking can discover and eliminate bugs at every stage 
in the creation of software, from conception to specification, to design, coding, and the rest.  
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 For this reason, Dave Gelperin and Bill Hetzel (GELP87) advocate “Test, then code.” The 
ideal test activity would be so successful at bug prevention that actual testing would be 
unnecessary because all bugs would have been found and fixed during test design.* 

 Unfortunately, we can’t achieve this ideal. Despite our effort, there will be bugs because we 
are human.  

 To the extent that testing fails to reach its primary goal, bug prevention, it must reach its 
secondary goal, bug discovery. Bugs are not always obvious.  

 A bug is manifested in deviations from expected behavior. A test design must document 
expectations, the test procedure in detail, and the results of the actual test—all of which are 
subject to error.  

 But knowing that a program is incorrect does not imply knowing the bug. Different bugs can 
have the same manifestations, and one bug can have many symptoms. 

  The symptoms and the causes can be disentangled only by using many small detailed tests. 
      (iv) Phases in a Tester’s Mental Life: 

      (a) Why Testing: 

 What’s the purpose of testing? There’s an attitudinal progression characterized by the 
following five phases:  
PHASE 0—There’s no difference between testing and debugging. Other than in support of 
debugging, testing has no purpose.  
PHASE 1—The purpose of testing is to show that the software works.  
PHASE 2—The purpose of testing is to show that the software doesn’t work.  
PHASE 3—The purpose of testing is not to prove anything, but to reduce the perceived risk 
of not working to an acceptable value.  
PHASE 4—Testing is not an act. It is a mental discipline that results in low-risk software 
without much testing effort.  

(b) Phase 0 Thinking: 
 I called the inability to distinguish between testing and debugging “phase 0” because it 

denies that testing matters, which is why I denied it the grace of a number. See Section 2.1 in 
this chapter for the difference between testing and debugging. If phase 0 thinking dominates 
an organization, then there can be no effective testing, no quality assurance, and no quality. 
Phase 0 thinking was the norm in the early days of software development and dominated the 
scene until the early 1970s, when testing emerged as a discipline.  

 Phase 0 thinking was appropriate to an environment characterized by expensive and scarce 
computing resources, low-cost (relative to hardware) software, lone programmers, small 
projects, and throwaway software. Today, this kind of thinking is the greatest cultural barrier 
to good testing and quality software. But phase 0 thinking is a problem for testers and 
developers today because many software managers learned and practiced programming 
when this mode was the norm—and it’s hard to change how you think. 

(c) Phase 1 Thinking-The Software Works 

 Phase I thinking represented progress because it recognized the distinction between testing 
and debugging. This thinking dominated the leading edge of testing until the late 1970s when 
its fallacy was discovered. This recognition is attributed to Myers (MYER79) who observed 
that it is self-corrupting. It only takes one failed test to show that software doesn’t work, but 
even an infinite number of tests won’t prove that it does. The objective of phase 1 thinking is 
unachievable. The process is corrupted because the probability of showing that the software 
works decreases as testing increases; that is, the more you test, the likelier you are to find a 
bug. Therefore, if your objective is to demonstrate a high probability of working, that objective 
is best achieved by not testing at all! Although this conclusion may seem silly to the 
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conscious, rational mind, it is the kind of syllogism that our unconscious mind loves to 
implement. 

(d) Phase 2 Thinking-The Software Doesn’t Work: 

 When, as testers, we shift our goal to phase 2 thinking we are no longer working in cahoots 
with the designers, but against them. The difference between phase 1 and 2 thinking is 
illustrated by analogy to the difference between bookkeepers and auditors. The bookkeeper’s 
goal is to show that the books balance, but the auditor’s goal is to show that despite the 
appearance of balance, the bookkeeper has embezzled. Phase 2 thinking leads to strong, 
revealing tests.  

 While one failed test satisfies the phase 2 goal, phase 2 thinking also has limits. The test 
reveals a bug, the programmer corrects it, the test designer designs and executes another 
test intended to demonstrate another bug. Phase 2 thinking leads to a never-ending 
sequence of ever more diabolical tests. Taken to extremes, it too never ends, and the result 
is reliable software that never gets shipped. The trouble with phase 2 thinking is that we don’t 
know when to stop. 

(e) Phase 3 Thinking-Test for Risk Reduction: 

 Phase 3 thinking is nothing more than accepting the principles of statistical quality control. I 
say “accepting” rather than “implementing” because it’s not obvious how statistical quality 
control should be applied to software. To the extent that testing catches bugs and to the 
extent that those bugs are fixed, testing does improve the product. If a test is passed, then 
the product’s quality does not change, but our perception of that quality does. Testing, pass 
or fail, reduces our perception of risk about a software product. The more we test, the more 
we test with harsh tests, the more confidence we have in the product. We’ll risk release when 
that confidence is high enough.* 

(f) Phase 4 Thinking-A State of Mind: 

 The phase 4 thinker’s knowledge of what testing can and can’t do, combined with knowing 
what makes software testable, results in software that doesn’t need much testing to achieve 
the lower-phase goals. Testability is the goal for two reasons. The first and obvious reason is 
that we want to reduce the labor of testing. The second and more important reason is that 
testable code has fewer bugs than code that’s hard to test. The impact on productivity of 
these two factors working together is multiplicative. What makes code testable? One of the 
main reasons to learn test techniques is to answer that question.  

(g) Cumulative Goals: 

 The above goals are cumulative. Debugging depends on testing as a tool for probing 
hypothesized causes of symptoms. There are many ways to break software that have 
nothing to do with the software’s functional requirements: phase 2 tests alone might never 
show that the software does what it’s supposed to do. It’s impractical to break software until 
the easy demonstrations of workability are behind you. Use of statistical methods as a guide 
to test design, as a means to achieve good testing at acceptable risks, is a way of fine-tuning 
the process. It should be applied only to large, robust products with few bugs. Finally, a state 
of mind isn’t enough: even the most testable software must be debugged, must work, and 
must be hard to break.  

      (v) Test Design: 

 Although programmers, testers, and programming managers know that code must be 
designed and tested, many appear to be unaware that tests themselves must be designed 
and tested—designed by a process no less rigorous and no less controlled than that used for 
code.  
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 Too often, test cases are attempted without prior analysis of the program’s requirements or 
structure. Such test design, if you can call it that, is just a haphazard series of ad-lib cases 
that are not documented either before or after the tests are executed. 

 Because they were not formally designed, they cannot be precisely repeated, and no one is 
sure whether there was a bug or not. After the bug has been ostensibly corrected, no one is 
sure that the retest was identical to the test that found the bug.  

 Ad-lib tests are useful during debugging, where their primary purpose is to help locate the 
bug, but adlib tests done in support of debugging, no matter how exhausting, are not 
substitutes for designed tests. 

 The test-design phase of programming should be explicitly identified. Instead of “design, 
code, desk check, test, and debug,” the programming process should be described as: 
“design, test design, code, test code, program inspection, test inspection, test debugging, 
test execution, program debugging, testing.”  

 Giving test design an explicit place in the scheme of things provides more visibility to that 
amorphous half of the labor that often goes under the name “test and debug.” It makes it less 
likely that test design will be given short shrift when the budget’s small and the schedule’s 
tight and there’s a vague hope that maybe this time, just this once, the system will come 
together without bugs. 

      (vi) Testing Isn’t Everything: 

 This is a book on testing techniques, which are only part of our weaponry against bugs. 
Research and practice (BASI87, FAGA76, MYER78, WEIN65, WHIT87) show that other 
approaches to the creation of good software are possible and essential. Testing, I believe, is 
still our most potent weapon, but there’s evidence (FAGA76) that other methods may be as 
effective: but you can’t implement inspections, say, instead of testing because testing and 
inspections catch or prevent different kinds of bugs. Today, if we want to prevent all the bugs 
that we can and catch those that we don’t prevent, we must review, inspect, read, do 
walkthroughs, and then test. We don’t know today the mix of approaches to use under what 
circumstances. Experience shows that the “best mix” very much depends on things such as 
development environment, application, size of project, language, history, and culture. The 
other major methods in decreasing order of effectiveness are as follows: 

 Inspection Methods—In this category I include walkthroughs, desk checking, formal 
inspections (FAGA76), and code reading. These methods appear to be as effective as 
testing, but the bugs caught do not completely overlap.  

 Design Style—By this term I mean the stylistic criteria used by programmers to define what 
they mean by a “good” program. Sticking to outmoded style, such as “tight” code or 
“optimizing” for performance destroys quality. Conversely, adopting stylistic objectives such 
as testability, openness, and clarity can do much to prevent bugs.  

 Static Analysis Methods—These methods include anything that can be done by formal 
analysis of source code during or in conjunction with compilation. Syntax checking in early 
compilers was rudimentary and was part of the programmer’s “testing,” Compilers have taken 
that job over (thank the Lord). Strong typing and type checking eliminate an entire 
category of bugs. There’s a lot more that can be done to detect errors by static analysis. It’s 
an area of intensive research and development. For example, much of data-flow anomaly 
detection (see Chapters 5 and 8), which today is part of testing, will eventually be 
incorporated into the compiler’s static analysis.  

 Languages—The source language can help reduce certain kinds of bugs. Languages 
continue to evolve, and preventing bugs is a driving force in that evolution. Curiously, though, 
programmers find new kinds of bugs in new languages, so the bug rate seems to be 
independent of the language used.  
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 Design Methodologies and Development Environment—The design methodology (that is, 
the development process used and the environment in which that methodology is 
embedded), can prevent many kinds of bugs. For example, configuration control and 
automatic distribution of change information prevents bugs which result from a programmer’s 
unawareness that there were changes.  

      (vii) The Pesticide Paradox and the Complexity Barrier: 

 You’re a poor farmer growing cotton in Alabama and the boll weevils are destroying your 
crop. You mortgage the farm to buy DDT, which you spray on your field, killing 98% of the 
pest, saving the crop. The next year, you spray the DDT early in the season, but the boll 
weevils still eat your crop because the 2% you didn’t kill last year were resistant to DDT. You 
now have to mortgage the farm to buy DDT and Malathion; then next year’s boll weevils will 
resist both pesticides and you’ll have to mortgage the farm yet again. That’s the pesticide 
paradox* for boll weevils and also for software testing. 

 First Law: The Pesticide Paradox—Every method you use to prevent or find bugs leaves a 
residue of subtler bugs against which those methods are ineffectual. That’s not too bad, you 
say, because at least the software gets better and better. Not quite!  

 Second Law: The Complexity Barrier—Software complexity (and therefore that of bugs) 
grows to the limits of our ability to manage that complexity. 

 By eliminating the (previous) easy bugs you allowed another escalation of features and 
complexity, but this time you have subtler bugs to face, just to retain the reliability you had 
before. Society seems to be unwilling to limit complexity because we all want that extra bell, 
whistle, and feature interaction. Thus, our users always push us to the complexity barrier and 
how close we can approach that barrier is largely determined by the strength of the 
techniques we can wield against ever more complex and subtle bugs.  

(2) Some Dichotomies: 
      (i) Testing Versus Debugging: 

 Testing and debugging are often lumped under the same heading, and it’s no wonder that 
their roles are often confused: for some, the two words are synonymous; for others, the 
phrase “test and debug” is treated as a single word. The purpose of testing is to show that 
a program has bugs. The purpose of debugging is find the error or misconception that led 
to the program’s failure and to design and implement the program changes that correct the 
error. Debugging usually follows testing, but they differ as to goals, methods, and most 
important, psychology: 

 1.  Testing starts with known conditions, uses predefined procedures, and has predictable 
 outcomes; only whether or not the program passes the test is unpredictable. Debugging 
 starts from possibly unknown initial conditions, and the end cannot be predicted, except 
 statistically.  
 2.  Testing can and should be planned, designed, and scheduled. The procedures for, and 
 duration of, debugging cannot be so constrained.  
 3.  Testing is a demonstration of error or apparent correctness. Debugging is a deductive 
 process.  
 4.  Testing proves a programmer’s failure. Debugging is the programmer’s vindication.  
 5.  Testing, as executed, should strive to be predictable, dull, constrained, rigid, and 
 inhuman. Debugging demands intuitive leaps, conjectures, experimentation, and freedom.  
 6.  Much of testing can be done without design knowledge. Debugging is impossible without 
 detailed design knowledge.  
 7.  Testing can often be done by an outsider. Debugging must be done by an insider.  
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 8.  Although there is a robust theory of testing that establishes theoretical limits to what 
 testing can and can’t do, debugging has only recently been attacked by theorists—and so far 
 there are only rudimentary results.  
 9.  Much of test execution and design can be automated. Automated debugging is still a 
 dream.  
      (ii) Function Versus Structure: 

 Tests can be designed from a functional or a structural point of view. In functional testing 
the program or system is treated as a black box. It is subjected to inputs, and its outputs are 
verified for conformance to specified behavior. The software’s user should be concerned only 
with functionality and features, and the program’s implementation details should not matter. 
Functional testing takes the user’s point of view. 

 Structural testing does look at the implementation details. Such things as programming 
style, control method, source language, database design, and coding details dominate 
structural testing; but the boundary between function and structure is fuzzy. Good systems 
are built in layers—from the outside to the inside. The user sees only the outermost layer, the 
layer of pure function. Each layer inward is less related to the system’s functions and more 
constrained by its structure: so what is structure to one layer is function to the next. For 
example, the user of an online system doesn’t know that the system has a memory-allocation 
routine. For the user, such things are structural details. The memory-management routine’s 
designer works from a specification for that routine. The specification is a definition of 
“function” at that layer. The memory-management routine uses a link-block subroutine. The 
memory-management routine’s designer writes a “functional” specification for a link-block 
subroutine, thereby defining a further layer of structural detail and function. At deeper levels, 
the programmer views the operating system as a structural detail, but the operating system’s 
designer treats the computer’s hardware logic as the structural detail. 

 Most of this book is devoted to models of programs and the tests that can be designed by 
using those models. A given model, and the associated tests may be first introduced in a 
structural context but later used again in a functional context, or vice versa. The initial choice 
of how to present a model was based on the context that seemed most natural for that model 
and in which it was likeliest that the model would be used for test design. Just as you can’t 
clearly distinguish function from structure, you can’t fix the utility of a model to structural tests 
or functional tests. If it helps you design effective tests, then use the model in whatever 
context it seems to work. 

 There’s no controversy between the use of structural versus functional tests: both are useful, 
both have limitations, both target different kinds of bugs. Functional tests can, in principle, 
detect all bugs but would take infinite time to do so. Structural tests are inherently finite but 
cannot detect all errors, even if completely executed. The art of testing, in part, is in how you 
choose between structural and functional tests. 

      (iii) The Designer Versus the Tester: 

 If testing were wholly based on functional specifications and independent of implementation 
details, then the designer and the tester could be completely separated. Conversely, to 
design a test plan based only on a system’s structural details would require the software 
designer’s knowledge, and hence only she could design the tests. The more you know about 
the design, the likelier you are to eliminate useless tests, which, despite functional 
differences, are actually handled by the same routines over the same paths; but the more 
you know about the design, the likelier you are to have the same misconceptions as the 
designer. Ignorance of structure is the independent tester’s best friend and worst enemy. The 
naive tester has no preconceptions about what is or is not possible and will, therefore, design 
tests that the program’s designer would never think of—and many tests that never should be 
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thought of. Knowledge, which is the designer’s strength, brings efficiency to testing but also 
blindness to missing functions and strange cases. Tests designed and executed by the 
software’s designers are by nature biased toward structural considerations and therefore 
suffer the limitations of structural testing. Tests designed and executed by an independent 
tester are bias-free and can’t be finished. Part of the artistry of testing is to balance 
knowledge and its biases against ignorance and its inefficiencies.  

 In this book I discuss the “tester,” “test-team member,” or “test designer” in contrast to the 
“programmer” and “program designer,” as if they were distinct persons. As one goes from 
unit testing to unit integration, to component testing and integration, to system testing, 
and finally to formal system feature testing, it is increasingly more effective if the “tester” 
and “programmer” are different persons. The techniques presented in this book can be used 
for all testing—from unit to system. When the technique is used in system testing, the 
designer and tester are probably different persons; but when the technique is used in unit 
testing, the tester and programmer merge into one person, who sometimes acts as a 
programmer and sometimes as a tester. 

 You must be a constructive schizophrenic. Be clear about the difference between your role 
as a programmer and as a tester. The tester in you must be suspicious, uncompromising, 
hostile, and compulsively obsessed with destroying, utterly destroying, the programmer’s 
software. The tester in you is your Mister Hyde—your Incredible Hulk. He must exercise what 
Gruenberger calls “low cunning.” (HETZ73) The programmer in you is trying to do a job in the 
simplest and cleanest way possible, on time, and within budget. Sometimes you achieve this 
by having great insights into the programming problem that reduce complexity and labor and 
are almost correct. And with that tester/Hulk lurking in the background of your mind, it pays to 
have a healthy paranoia about bugs. Remember, then, that when I refer to the “test designer” 
and “programmer” as separate persons, the extent to which they are separated depends on 
the testing level and the context in which the technique is applied. This saves me the effort of 
writing about the same technique twice and you the tedium of reading it twice.  

      (iv) Modularity Versus Efficiency: 

 Both tests and systems can be modular. A module is a discrete, well-defined, small 
component of a system. The smaller the component, the easier it is to understand; but every 
component has interfaces with other components, and all interfaces are sources of 
confusion. The smaller the component, the likelier are interface bugs. Large components 
reduce external interfaces but have complicated internal logic that may be difficult or 
impossible to understand. Part of the artistry of software design is setting component size 
and boundaries at points that balance internal complexity against interface complexity to 
achieve an overall complexity minimization. 

 Testing can and should likewise be organized into modular components. Small, independent 
test cases have the virtue of easy repeatability. If an error is found by testing, only the small 
test, not a large component that consists of a sequence of hundreds of interdependent tests, 
need be rerun to confirm that a test design bug has been fixed. Similarly, if the test has a 
bug, only that test need be changed and not a whole test plan. But microscopic test cases 
require individual setups and each such setup (e.g., data, inputs) can have bugs. As with 
system design, artistry comes into test design in setting the scope of each test and groups of 
tests so that test design, test debugging, and test execution labor are minimized without 
compromising effectiveness. 

      (v) Small Versus Large: 

 I often write small analytical programs of a few hundred lines that, once used, are discarded. 
Do I use formal test techniques, quality assurance, and all the rest I so passionately 
advocate? Of course not, and I’m not a hypocrite. I do what everyone does in similar 

www.Jntufastupdates.com



Software Testing Methodologies Unit I 

Page 9 

circumstances: I design, I code, I test a few cases, debug, redesign, recode, and so on, 
much as I did 30 years ago. I can get away with such (slovenly) practices because I’m 
programming for a very small, intelligent, forgiving, user population—me. It’s the ultimate of 
small programs and it is most efficiently done by intuitive means and complete lack of 
formality.  

 Let’s up the scale to a larger package. I’m still the only programmer and user, but now, the 
package has thirty components averaging 750 statements each, developed over a period of 
5 years. Now I must create and maintain a data dictionary and do thorough unit testing. But 
I’ll take my own word for it and not bother to retain all those test cases or to exercise formal 
configuration control. 

 You can extrapolate from there or draw on your experiences. Programming in the large 
(DERE76) means constructing programs that consist of many components written by many 
different persons. Programming in the small is what we do for ourselves in the privacy of 
our own offices or as homework exercises in an undergraduate programming course. Size 
brings with it nonlinear scale effects, which are imperfectly understood today. Qualitative 
changes occur with size and so must testing methods and quality criteria. A primary example 
is the notion of coverage—a measure of test completeness. Without worrying about exactly 
what these terms mean, 100% coverage is essential for unit testing, but we back off this 
requirement as we deal with ever larger software aggregates, accept 75%-85% for most 
systems, and possibly as low as 50% for huge systems of 10 million lines of code or so. 

      (vi) The Builder Versus the Buyer: 

 Most software is written and used by the same organization. Unfortunately, this situation is 
dishonest because it clouds accountability. Many organizations today recognize the virtue of 
independent software development and operation because it leads to better software, better 
security, and better testing. Independent software development does not mean that all 
software should be bought from software houses or consultants but that the software 
developing entity and the entity that pays for the software be separated enough to make 
accountability clear. I’ve heard of cases where the software development group and the 
operational group within the same company negotiate and sign formal contracts with one 
another—with lawyers present. If there is no separation between builder and buyer, there can 
be no accountability. If there is no accountability, the motivation for software quality 
disappears and with it any serious attempt to do proper testing.  

 Just as programmers and testers can merge and become one, so can builder and buyer. 
There are several other persons in the software development cast of characters who, like the 
above, can also be separated or merged: 
1.  The builder, who designs for and is accountable to  
2.  The buyer, who pays for the system in the hope of profits from providing services to  
3.  The user, the ultimate beneficiary or victim of the system. The user’s interests are 
guarded by  
4.  The tester, who is dedicated to the builder’s destruction and  
5.  The operator, who has to live with the builder’s mistakes, the buyer’s murky 
specifications, the tester’s oversights, and the user’s complaints.  

(3) A Model For Testing: 
      (i) The Project: 

 Testing is applied to anything from subroutines to systems that consist of millions of 
statements. The archetypical system is one that allows the exploration of all aspects of 
testing without the complications that have nothing to do with testing but affect any very large 
project.  
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 It’s medium-scale programming. Testing the interfaces between different parts of your own 
mind is very different from testing the interface between you and other programmers 
separated from you by geography, language, time, and disposition.  

 Testing a one-shot routine that will be run only a few times is very different from testing one 
that must run for decades and may be modified by some unknown future programmer.  

 Although all the problems of the solitary routine occur for the routine that is embedded in a 
system, the converse is not true: many kinds of bugs just can’t exist in solitary routines. 

  There is an implied context for the test methods discussed in this book—a real-world context 
characterized by the following model project:  

 Application—The specifics of the application are unimportant. It is a real-time system that 
must provide timely responses to user requests for services. It is an online system connected 
to remote terminals.  

 Staff—The programming staff consists of twenty to thirty programmers—big enough to 
warrant formality, but not too big to manage—big enough to use specialists for some parts of 
the system’s design.  

 Schedule—The project will take 24 months from the start of design to formal acceptance by 
the customer. Acceptance will be followed by a 6-month cutover period. Computer resources 
for development and testing will be almost adequate.  

 Specification—The specification is good. It is functionally detailed without constraining the 
design, but there are undocumented “understandings” concerning the requirements.  

 Acceptance Test—The system will be accepted only after a formal acceptance test. The 
application is not new, so part of the formal test already exists. At first the customer will 
intend to design the acceptance test, but later it will become the software design team’s 
responsibility.  

 Personnel—The staff is professional and experienced in programming and in the 
application. Half the staff has programmed that computer before and most know the source 
language. One-third, mostly junior programmers, have no experience with the application. 
The typical programmer has been employed by the programming department for 3 years. 
The climate is open and frank. Management’s attitude is positive and knowledgeable about 
the realities of such projects.  

 Standards—Programming and test standards exist and are usually followed. They 
understand the role of interfaces and the need for interface standards. Documentation is 
good. There is an internal, semiformal, quality-assurance function. The database is centrally 
developed and administered.  

 Objectives—The system is the first of many similar systems that will be implemented in the 
future. No two will be identical, but they will have 75% of the code in common. Once 
installed, the system is expected to operate profitably for more than 10 years.  

 Source—One-third of the code is new, one-third extracted from a previous, reliable, but 
poorly documented system, and one-third is being rehosted (from another language, 
computer, operating system—take your pick).  

 History—One programmer will quit before his components are tested. Another programmer 
will be fired before testing begins: excellent work, but poorly documented. One component 
will have to be redone after unit testing: a superb piece of work that defies integration. The 
customer will insist on five big changes and twenty small ones. There will be at least one 
nasty problem that nobody—not the customer, not the programmer, not the managers, nor 
the hardware vendor—suspected. A facility and/or hardware delivery problem will delay 
testing for several weeks and force second- and third-shift work. Several important 
milestones will slip but the delivery date will be met.  
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 Our model project is a typical well-run, successful project with a share of glory and 
catastrophe—neither a utopian project nor a slice of hell.  

      (ii)Overview: 

 The process starts with a program embedded in an environment, such as a computer, an 
operating system, or a calling program. We understand human nature and its suceptibility to 
error. This understanding leads us to create three models: a model of the environment, a 
model of the program, and a model of the expected bugs. From these models we create a 
set of tests, which are then executed. The result of each test is either expected or 
unexpected. If unexpected, it may lead us to revise the test, our model or concept of how the 
program behaves, our concept of what bugs are possible, or the program itself. Only rarely 
would we attempt to modify the environment.  

      (iii)The Environment: 

 A program’s environment is the hardware and software required to make it run. For online 
systems the environment may include communications lines, other systems, terminals, and 
operators. The environment also includes all programs that interact with—and are used to 
create—the program under test, such as operating system, loader, linkage editor, compiler, 
utility routines. 

 Programmers should learn early in their careers that it’s not smart to blame the environment 
(that is, hardware and firmware) for bugs. Hardware bugs are rare. So are bugs in 
manufacturer-supplied software. This isn’t because logic designers and operating system 
programmers are better than application programmers, but because such hardware and 
software is stable, tends to be in operation for a long time, and most bugs will have been 
found and fixed by the time programmers use that hardware or software.* Because hardware 
and firmware are stable, we don’t have to consider all of the environment’s complexity. 
Instead, we work with a simplification of it, in which only the features most important to the 
program at hand are considered. Our model of the environment includes our beliefs 
regarding such things as the workings of the computer’s instruction set, operating system 
macros and commands, and what a higher-order language statement will do. If testing 
reveals an unexpected result, we may have to change our beliefs (our model of the 
environment) to find out what went wrong. But sometimes the environment could be wrong: 
the bug could be in the hardware or firmware after all. 

      (iv)The Program: 

 Most programs are too complicated to understand in detail. We must simplify our concept of 
the program in order to test it. So although a real program is exercised on the test bed, in our 
brains we deal with a simplified version of it—a version in which most details are ignored. If 
the program calls a subroutine, we tend not to think about the subroutine’s details unless its 
operation is suspect. Similarly, we may ignore processing details to focus on the program’s 
control structure or ignore control structure to focus on processing. As with the environment, 
if the simple model of the program does not explain the unexpected behavior, we may have 
to modify that model to include more facts and details. And if that fails, we may have to 
modify the program.  

      (v)Bugs: 

 Bugs are more insidious than ever we expect them to be. Yet it is convenient to categorize 
them: initialization, call sequence, wrong variable, and so on. Our notion of what is or isn’t a 
bug varies. A bad specification may lead us to mistake good behavior for bugs, and vice 
versa. An unexpected test result may lead us to change our notion of what a bug is—that is 
to say, our model of bugs.  

 While we’re on the subject of bugs, I’d like to dispel some optimistic notions that many 
programmers and testers have about bugs. Most programmers and testers have beliefs 
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about bugs that express a naivete that ranks with belief in the tooth fairy. If you hold any of 
the following beliefs, then disabuse yourself of them because as long as you believe in such 
things you will be unable to test effectively and unable to justify the dirty tests most programs 
need. 

 Benign Bug Hypothesis—The belief that bugs are nice, tame, and logical. Only weak bugs 
have a logic to them and are amenable to exposure by strictly logical means. Subtle bugs 
have no definable pattern—they are wild cards.  

 Bug Locality Hypothesis—The belief that a bug discovered within a component affects only 
that component’s behavior; that because of structure, language syntax, and data 
organization, the symptoms of a bug are localized to the component’s designed domain. Only 
weak bugs are so localized. Subtle bugs have consequences that are arbitrarily far removed 
from the cause in time and/or space from the component in which they exist.  

 Control Bug Dominance—The belief that errors in the control structure of programs 
dominate the bugs. While many easy bugs, especially in components, can be traced to 
control-flow errors, data-flow and data-structure errors are as common. Subtle bugs that 
violate data-structure boundaries and data/code separation can’t be found by looking only at 
control structures.  

 Code/Data Separation—The belief, especially in HOL programming, that bugs respect the 
separation of code and data.* Furthermore, in real systems the distinction between code and 
data can be hard to make, and it is exactly that blurred distinction that permit such bugs to 
exist.  

 Lingua Salvator Est—The hopeful belief that language syntax and semantics (e.g., 
structured coding, strong typing, complexity hiding) eliminates most bugs. True, good 
language features do help prevent the simpler component bugs but there’s no statistical 
evidence to support the notion that such features help with subtle bugs in big systems.  

 Corrections Abide—The mistaken belief that a corrected bug remains corrected. Here’s a 
generic counterexample. A bug is believed to have symptoms caused by the interaction of 
components A and B but the real problem is a bug in C, which left a residue in a data 
structure used by both A and B. The bug is “corrected” by changing A and B. Later, C is 
modified or removed and the symptoms of A and B recur. Subtle bugs are like that.  

 Silver Bullets—The mistaken belief that X (language, design method, representation, 
environment—name your own) grants immunity from bugs. Easy-to-moderate bugs may be 
reduced, but remember the pesticide paradox.  

 Sadism Suffices—The common belief, especially by independent testers, that a sadistic 
streak, low cunning, and intuition are sufficient to extirpate most bugs. You only catch easy 
bugs that way. Tough bugs need methodology and techniques, so read on.  

 Angelic Testers—The ludicrous belief that testers are better at test design than 
programmers are at code design.*  

      (vi)Tests: 

 Tests are formal procedures. Inputs must be prepared, outcomes predicted, tests 
documented, commands executed, and results observed; all these steps are subject to error. 
There is nothing magical about testing and test design that immunizes testers against bugs. 
An unexpected test result is as often cause by a test bug as it is by a real bug.* Bugs can 
creep into the documentation, the inputs, and the commands and becloud our observation of 
results. An unexpected test result, therefore, may lead us to revise the tests. Because the 
tests are themselves in an environment, we also have a mental model of the tests, and 
instead of revising the tests, we may have to revise that mental model. 

      (vii)Testing and Levels: 
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 We do three distinct kinds of testing on a typical software system: unit/ component testing, 
integration testing, and system testing. The objectives of each class is different and 
therefore, we can expect the mix of test methods used to differ. They are: 

 Unit, Unit Testing—A unit is the smallest testable piece of software, by which I mean that it 
can be compiled or assembled, linked, loaded, and put under the control of a test harness or 
driver. A unit is usually the work of one programmer and it consists of several hundred or 
fewer, lines of source code. Unit testing is the testing we do to show that the unit does not 
satisfy its functional specification and/or that its implemented structure does not match the 
intended design structure. When our tests reveal such faults, we say that there is a unit bug.  

 Component, Component Testing—A component is an integrated aggregate of one or 
more units. A unit is a component, a component with subroutines it calls is a component, etc. 
By this (recursive) definition, a component can be anything from a unit to an entire system. 
Component testing is the testing we do to show that the component does not satisfy its 
functional specification and/or that its implemented structure does not match the intended 
design structure.  

 When our tests reveal such problems, we say that there is a component bug. Integration, 
Integration Testing—Integration is a process by which components are aggregated to 
create larger components. Integration testing is testing done to show that even though the 
components were individually satisfactory, as demonstrated by successful passage of 
component tests, the combination of components are incorrect or inconsistent. For example, 
components A and B have both passed their component tests.  

 Integration testing is aimed as showing inconsistencies between A and B. Examples of such 
inconsistencies are improper call or return sequences, inconsistent data validation criteria, 
and inconsistent handling of data objects. Integration testing should not be confused with 
testing integrated objects, which is just higher level component testing. Integration testing is 
specifically aimed at exposing the problems that arise from the combination of components. 
The sequence, then, consists of component testing for components A and B, integration 
testing for the combination of A and B, and finally, component testing for the “new” 
component (A,B).*  

 System, System Testing—A system is a big component. System testing is aimed at 
revealing bugs that cannot be attributed to components as such, to the inconsistencies 
between components, or to the planned interactions of components and other objects. 
System testing concerns issues and behaviors that can only be exposed by testing the entire 
integrated system or a major part of it. System testing includes testing for performance, 
security, accountability, configuration sensitivity, start-up, and recovery.  

 This book concerns component testing, but the techniques discussed here also apply to 
integration and system testing. There aren’t any special integration and system testing 
techniques but the mix of effective techniques changes as our concern shifts from 
components to integration, to system. How and where integration and system testing will be 
covered is discussed in the preface to this book. You’ll find comments on techniques 
concerning their relative effectiveness as applied to component, integration, and system 
testing throughout the book. Such comments are intended to guide your selection of a mix of 
techniques that best matches your testing concerns, be it component, integration, or system, 
or some mixture of the three.  

      (viii)The Role of Models: 

 Testing is a process in which we create mental models of the environment, the program, 
human nature, and the tests themselves. Each model is used either until we accept the 
behavior as correct or until the model is no longer sufficient for the purpose. Unexpected test 
results always force a revision of some mental model, and in turn may lead to a revision of 
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whatever is being modeled. The revised model may be more detailed, which is to say more 
complicated, or more abstract, which is to say simpler. The art of testing consists of creating, 
selecting, exploring, and revising models. Our ability to go through this process depends on 
the number of different models we have at hand and their ability to express a program’s 
behavior.  

(4) The Consequences of Bugs: 
      (i) The Importance of Bugs: 

 The importance of a bug depends on frequency, correction cost, installation cost, and 
consequences.  

 Frequency—How often does that kind of bug occur? See Table 2.1 on page 57 for bug 
frequency statistics. Pay more attention to the more frequent bug types. 

 Correction Cost—What does it cost to correct the bug after it’s been found? That cost is the 
sum of two factors: (1) the cost of discovery and (2) the cost of correction. These costs go up 
dramatically the later in the development cycle the bug is discovered. Correction cost also 
depends on system size. The larger the system the more it costs to correct the same bug. 

 Installation Cost—Installation cost depends on the number of installations: small for a 
single-user program, but how about a PC operating system bug? Installation cost can 
dominate all other costs—fixing one simple bug and distributing the fix could exceed the 
entire system’s development cost. 

 Consequences—What are the consequences of the bug? You might measure this by the 
mean size of the awards made by juries to the victims of your bug. 

 A reasonable metric for bug importance is: 
     importance($) = frequency*(correction_cost + installation_cost + consequential_cost)  
 Frequency tends not to depend on application or environment, but correction, installation, 

and consequential costs do. As designers, testers, and QA workers, you must be interested 
in bug importance, not raw frequency. Therefore you must create your own importance 
model. This chapter will help you do that.  

      (ii) How Bugs Affect Us-Consequences: 

 Bug consequences range from mild to catastrophic. Consequences should be measured in 
human rather than machine terms because it is ultimately for humans that we write 
programs. If you answer the question, “What are the consequences of this bug?” in machine 
terms by saying, for example, “Bit so-and-so will be set instead of reset,” you’re avoiding 
responsibility for the bug. Although it may be difficult to do in the scope of a subroutine, 
programmers should try to measure the consequences of their bugs in human terms. Here 
are some consequences on a scale of one to ten:  

 1.  Mild—The symptoms of the bug offend us aesthetically; a misspelled output or a 
misaligned printout.  

 2.  Moderate—Outputs are misleading or redundant. The bug impacts the system’s 
performance.  

 3.  Annoying—The system’s behavior, because of the bug, is dehumanizing. Names are 
truncated or arbitrarily modified. Bills for $0.00 are sent. Operators must use unnatural 
command sequences and must trick the system into a proper response for unusual bug-
related cases.  

 4.  Disturbing—It refuses to handle legitimate transactions. The automatic teller machine 
won’t give you money. My credit card is declared invalid.  

 5.  Serious—It loses track of transactions: not just the transaction itself (your paycheck), but 
the fact that the transaction occurred. Accountability is lost.  

 6.  Very Serious—Instead of losing your paycheck, the system credits it to another account or 
converts deposits into withdrawals. The bug causes the system to do the wrong transaction.  
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 7.  Extreme—The problems aren’t limited to a few users or to a few transaction types. They 
are frequent and arbitrary instead of sporadic or for unusual cases.  

 8.  Intolerable—Long-term, unrecoverable corruption of the data base occurs and the 
corruption is not easily discovered. Serious consideration is given to shutting the system 
down.  

 9.  Catastrophic—The decision to shut down is taken out of our hands because the system 
fails.  

 10.  Infectious—What can be worse than a failed system? One that corrupts other systems 
even though it does not fail in itself; that erodes the social or physical environment; that melts 
nuclear reactors or starts wars; whose influence, because of malfunction, is far greater than 
expected; a system that kills.  

 Any of these consequences could follow from that wrong bit. Programming is a serious 
business, and testing is more serious still. It pays to have nightmares about undiscovered 
bugs once in a while (SHED80). When was the last time one of your bugs violated 
someone’s human rights?  

      (iii) Flexible Severity Rather Than Absolutes: 

 Many programmers, testers, and quality assurance workers have an absolutist attitude 
toward bugs. “Everybody knows that a program must be perfect if it’s to work: if there’s a 
bug, it must be fixed.” That’s untrue, of course, even though the myth continues to be foisted 
onto an unwary public. Ask the person in the street and chances are that they’ll parrot that 
myth of ours. That’s trouble for us because we can’t do it now and never could. It’s our myth 
because we, the computer types, created it and continue to perpetuate it. Software never 
was perfect and won’t get perfect. But is that a license to create garbage? The missing 
ingredient is our reluctance to quantify quality. If instead of saying that software has either 0 
quality (there is at least one bug) or 100% (perfect quality and no bugs), we recognize that 
quality can be measured on some scale, say from 0 to 10. Quality can be measured as a 
combination of factors, of which the number of bugs and their severity is only one 
component. The details of how this is done is the subject of another book; but it’s enough to 
say that many organizations have designed and use satisfactory, quantitative, quality 
metrics. Because bugs and their symptoms play a significant role in such metrics, as testing 
progresses you can see the quality rise from next to zero to some value at which it is deemed 
safe to ship the product. 

 Examining these metrics closer, we see that how the parts are weighted depends on 
environment, application, culture, and many other factors. 

 Let’s look at a few of these: 
 Correction Cost—The cost of correcting a bug has almost nothing to do with symptom 

severity. Catastrophic, life-threatening bugs could be trivial to fix, whereas minor annoyances 
could require major rewrites to correct.  

 Context and Application Dependency—The severity of a bug, for the same bug with the 
same symptoms, depends on context. For example, a roundoff error in an orbit calculation 
doesn’t mean much in a spaceship video game but it matters to real astronauts.  

 Creating Culture Dependency—What’s important depends on the creators of the software 
and their cultural aspirations. Test tool vendors are more sensitive about bugs in their 
products than, say, games software vendors.  

 User Culture Dependency—What’s important depends on the user culture. An R&D shop 
might accept a bug for which there’s a workaround; a banker would go to jail for that same 
bug; and naive users of PC software go crazy over bugs that pros ignore.  

 The Software Development Phase—Severity depends on development phase. Any bug 
gets more severe as it gets closer to field use and more severe the longer it’s been around—
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more severe because of the dramatic rise in correction cost with time. Also, what’s a trivial or 
subtle bug to the designer means little to the maintenance programmer for whom all bugs are 
equally mysterious.  

      (iv) The Nightmare List and When to Stop Testing: 

 In George Orwell’s novel, 1984, there’s a torture chamber called “room 101”—a room that 
contains your own special nightmare. For me, sailing through 4-foot waves, the boat heeled 
over, is exhilarating; for my seasick passengers, that’s room 101. For me, rounding Cape 
Horn in winter, with 20-foot waves in a gale is a room 101 but I’ve heard round-the-world 
sailboat racers call such conditions “bracing.” 

 The point about bugs is that you or your organization must define your own nightmares. I 
can’t tell you what they are, and therefore I can’t ascribe a severity to bugs. Which is why I 
treat all bugs as equally as I can in this book. And when I slip and express a value judgment 
about bugs, recognize it for what it is because I can’t completely rid myself of my own values. 

 How should you go about quantifying the nightmare? Here’s a workable procedure: 
 1.  List your worst software nightmares. State them in terms of the symptoms they produce 

and how your user will react to those symptoms. For end users and the population at large, 
the categories of Section 2.2 above are a starting point. For programmers the nightmare may 
be closer to home, such as: “I might get a bad personal performance rating.”  

 2.  Convert the consequences of each nightmare into a cost. Usually, this is a labor cost for 
correcting the nightmare, but if your scope extends to the public, it could be the cost of 
lawsuits, lost business, or nuclear reactor meltdowns.  

 3.  Order the list from the costliest to the cheapest and then discard the low-concern 
nightmares with which you can live.  

 4.  Based on your experience, measured data (the best source to use), intuition, and 
published statistics postulate the kinds of bugs that are likely to create the symptoms 
expressed by each nightmare. Don’t go too deep because most bugs are easy. This is a bug 
design process. If you can “design” the bug by a one-character or one statement change, 
then it’s a good target. If it takes hours of sneaky thinking to characterize the bug, then either 
it’s an unlikely bug or you’re worried about a saboteur in your organization, which could be 
appropriate in some cases. Most bugs are simple goofs once you find and understand them.  

 5.  For each nightmare, then, you’ve developed a list of possible causative bugs. Order that 
list by decreasing probability. Judge the probability based on your own bug statistics, 
intuition, experience, etc. The same bug type will appear in different nightmares. The 
importance of a bug type is calculated by multiplying the expected cost of the nightmare by 
the probability of the bug and summing across all nightmares:  

 6.  Rank the bug types in order of decreasing importance to you.  
 7.  Design tests (based on your knowledge of test techniques) and design your quality 

assurance inspection process by using the methods that are most effective against the most 
important bugs.  

 8.  If a test is passed, then some nightmares or parts of them go away. If a test is failed, then 
a nightmare is possible, but upon correcting the bug, it too goes away. Testing, then, gives 
you information you can use to revise your estimated nightmare probabilities. As you test, 
revise the probabilities and reorder the nightmare list. Taking whatever information you get 
from testing and working it back through the exercise leads you to revise your subsequent 
test strategy, either on this project if it’s big enough or long enough, or on subsequent 
projects.  

 9.  Stop testing when the probability of all nightmares has been shown to be inconsequential 
as a result of hard evidence produced by testing.  
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 The above prescription can be implemented as a formal part of the software development 
process, or it can be adopted as a guideline or philosophical point of view. The idea is not 
that you implement elaborate metrics (unless that’s appropriate) but that you recognize the 
importance of the feedback that testing provides to the testing process itself and, more 
important, to the kinds of tests you will design.  

 The mature tester’s problem has never been how to design tests. If you understand testing 
techniques, you will know how to design several different infinities of justifiable tests. The 
tester’s central problem is how to best cull a reasonable, finite, number of tests from that 
multifold infinity—a test suite that, as experience and logic leads us to predict, will have a 
high probability of putting the nightmares to rest—that is to say, an effective, revealing, set of 
tests. Look at the pesticide paradox again and observe the following consequence: 

 Corollary to the First Law—Test suites wear out. 
 Yesterday’s elegant, revealing, effective, test suite will wear out because programmers and 

designers, given feedback on their bugs, do modify their programming habits and style in an 
attempt to reduce the incidence of bugs they know about. Furthermore, the better the 
feedback, the better the QA, the more responsive the programmers are, the faster those 
suites wear out. Yes, the software is getting better, but that only allows you to approach 
closer to, or to leap over, the previous complexity barrier. True, bug statistics tell you nothing 
about the coming release, only the bugs of the previous release—but that’s better than 
basing your test technique strategy on general industry statistics or on myths. If you don’t 
gather bug statistics, organized into some rational taxonomy, you don’t know how effective 
your testing has been, and worse, you don’t know how worn out your test suite is. The 
consequences of that ignorance is a brutal shock.  

 How many horror stories do you want to hear about the sophisticated outfit that tested long, 
hard, and diligently—sent release 3.4 to the field, confident that it was the best tested product 
they had ever shipped—only to have it bomb more miserably than any prior release? 

(5) A Taxonomy For Bugs: 
      (i) General: 

 There is no universally correct way to categorize bugs. This taxonomy is not rigid. Bugs are 
difficult to categorize. A given bug can be put into one or another category depending on its 
history and the programmer’s state of mind. For example, a one-character error in a source 
statement changes the statement, but unfortunately it passes syntax checking. As a result, 
data are corrupted in an area far removed from the actual bug. That in turn leads to an 
improperly executed function. Is this a typewriting error, a coding error, a data error, or a 
functional error? If the bug is in our own program, we’re tempted to blame it on typewriting;** 
if in another programmer’s code, on carelessness. And if our job is to critique the system, we 
might say that the fault is an inadequate internal data-validation mechanism. A detailed 
taxonomy is presented in the appendix. 

  The major categories are: requirements, features and functionality, structure, data, 
implementation and coding, integration, system and software architecture, and testing. A first 
breakdown is provided in Table 2. 1, whereas in the appendix the breakdown is as fine as 
makes sense. Bug taxonomy, as testing, is potentially infinite. More important than adopting 
the “right” taxonomy is that you adopt some taxonomy and that you use it as a statistical 
framework on which to base your testing strategy. Because there’s so much effort required to 
develop a taxonomy, don’t redo my work—you’re invited to adopt the taxonomy of the 
appendix (or any part thereof) and are hereby authorized to copy it (with appropriate 
attribution) without guilt or fear of being sued by me for plagiarism. If my taxonomy doesn’t 
turn you on, adopt the IEEE taxonomy (IEEE87B). 
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(ii) Requirements, Features, and Functionality Bugs: 

(a) Requirements and Specifications: 

 Requirements and the specifications developed from them can be incomplete, ambiguous, or 
self-contradictory. They can be misunderstood or impossible to understand. The specification 
may assume, but not mention, other specifications and prerequisites that are known to the 
specifier but not to the designer. And specifications that don’t have these flaws may change 
while the design is in progress. Features are modified, added, and deleted. The designer has 
to hit a moving target and occasionally misses.  

 Requirements, especially as expressed in a specification (or often, as not expressed 
because there is no specification) are a major source of expensive bugs. The range is from a 
few percent to more than 50%, depending on application and environment. What hurts most 
about these bugs is that they’re the earliest to invade the system and the last to leave. It’s not 
unusual for a faulty requirement to get through all development testing, beta testing, and 
initial field use, only to be caught after hundreds of sites have been installed. 

(b) Feature Bugs: 

 Specification problems usually create corresponding feature problems. A feature can be 
wrong, missing, or superfluous. A missing feature or case is the easiest to detect and correct. 
A wrong feature could have deep design implications. Extra features were once considered 
desirable. We now recognize that “free” features are rarely free. Any increase in generality 
that does not contribute to reliability, modularity, maintainability, and robustness should be 
suspected. Gratuitous enhancements can, if they increase complexity, accumulate into a 
fertile compost heap that breeds future bugs, and they can create holes that can be 
converted into security breaches. Conversely, one cannot rigidly forbid additional features 
that might be a consequence of good design. Removing the features might complicate the 
software, consume more resources, and foster more bugs.  

(c) Feature Interaction: 

 Providing clear, correct, implementable, and testable feature specifications is not enough. 
Features usually come in groups of related features. The features of each group and the 
interaction of features within each group are usually well tested. The problem is 
unpredictable interactions between feature groups or even between individual features. For 
example, your telephone is provided with call holding and call forwarding. Call holding allows 
you to put a new incoming call on hold while you continue talking to the first caller. Call 
forwarding allows you to redirect incoming calls to some other telephone number. Here are 
some simple feature interaction questions: How about holding a third call when there is 
already a call on hold? Forwarding forwarded calls (i.e., the number forwarded to is also 
forwarding calls)? Forwarding calls in a loop? Holding while forwarding is active? Initiating 
forwarding when there is a call on hold? Holding for forwarded calls when the telephone 
forwarded to does (doesn’t) have forwarding? . . . If you think these variations are brain 
twisters, how about feature interactions for your income tax return, say between federal, 
state, and local tax laws? Every application has its peculiar set of features and a much bigger 
set of unspecified feature interaction potentials and therefore feature interaction bugs. We 
have very little statistics on these bugs, but the trend seems to be that as the earlier, simpler, 
bugs are removed, feature interaction bugs emerge as a major category. Other than 
deliberately preventing some interactions and testing the important combinations, we have 
no magic remedy for these problems.  

(d) Specification and Feature Bug Remedies: 

 Most feature bugs are rooted in human-to-human communication problems. One solution is 
the use of high-level, formal specification languages or systems (BELF76, BERZ85, 
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DAVI88A, DAV18813, FISC79, HAYE85, PROG88, SOFT88, YEHR80). Such languages and 
systems provide short-term support but, in the long run, do not solve the problem.  

 Short-Term Support—Specification languages (we’ll call them all “languages” hereafter, even 
though some may be interactive dialogue systems) facilitate formalization of requirements 
and (partial)* inconsistency and ambiguity analysis. With formal specifications, partially to 
fully automatic test case generation is possible. Generally, users and developers of such 
products have found them to be cost-effective.  

 Long-Term Support—Assume that we have a great specification language and that it can be 
used to create unambiguous, complete specifications with unambiguous, complete tests and 
consistent test criteria. A specification written in that language could theoretically be compiled 
into object code (ignoring efficiency and practicality issues). But this is just programming in 
HOL squared. The specification problem has been shifted to a higher level but not 
eliminated. Theoretical considerations aside, given a system which can generate functional 
tests from specifications, the likeliest impact is a further complexity escalation facilitated by 
the reduction of another class of bugs (the complexity barrier law).  

 The long-term impact of formal specification languages and systems will probably be that 
they will influence the design of ordinary programming languages so that more of current 
specification can be formalized. This approach will reduce, but not eliminate, specification 
bugs. The pesticide paradox will work again to eliminate the kinds of specification bugs we 
now have (simple ambiguities and contradictions), leaving us a residue of tougher 
specification bugs that will need an even higher order specification system to expose.  

(e) Testing Techniques: 

 Most functional test techniques—that is, those techniques which are based on a 
behavioral description of software, such as transaction flow testing (Chapter 4), syntax 
testing (Chapter 9), domain testing (Chapter 6), logic testing (Chapter 10), and state 
testing (Chapter 11) are useful in testing functional bugs. They are also useful in testing for 
requirements and specification bugs to the extent that the requirements can be expressed in 
terms of the model on which the technique is based. 

      (iii) Structural Bugs: 

(a) Control and Sequence Bugs: 

 Control and sequence bugs include paths left out, unreachable code, improper nesting of 
loops, loop-back or loop-termination criteria incorrect, missing process steps, duplicated 
processing, unnecessary processing, rampaging GOTO’s, ill-conceived switches, spaghetti 
code, and worst of all, pachinko code. 

 Although much of testing and software design literature focuses on control flow bugs, they 
are not as common in new software as the literature might lead one to believe. One reason 
for the popularity of control-flow problems in the literature is that this area is amenable to 
theoretical treatment. Fortunately, most control-flow bugs (in new code) are easily tested and 
caught in unit testing. 

 Another source of confusion and therefore research concern is that novice programmers 
working on toy problems do tend to have more control-flow bugs than experienced 
programmers. A third reason for concern with control-flow problems is that dirty old code, 
especially assembly language and COBOL code, can be dominated by control-flow bugs. In 
fact, a good reason to rewrite an application from scratch is that the old control structure has 
become so complicated and so arbitrary after decades of rework that no one dare modify it 
further and, further, it defies testing. 

 Control and sequence bugs at all levels are caught by testing, especially structural testing, 
more specifically, path testing (Chapter 3), combined with a bottom-line functional test based 
on a specification. These bugs are partially prevented by language choice (e.g., languages 
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that restrict control-flow options) and style, and most important, lots of memory. Experience 
shows that many control-flow problems result directly from trying to “squeeze” 8 pounds of 
software into a 4-pound bag (i.e., 8K object into 4K). Squeezing for short execution time is as 
bad. 

(b) Logic Bugs: 

 Bugs in logic, especially those related to misunderstanding how case statements and logic 
operators behave singly and in combinations, include nonexistent cases, improper layout of 
cases, “impossible” cases that are not impossible, a “don’t-care” case that matters, improper 
negation of a boolean expression (for example, using “greater than” as the negation of “less 
than”), improper simplification and combination of cases, overlap of exclusive cases, 
confusing “exclusive OR” with “inclusive OR.”  

 Another problematic area concerns misunderstanding the semantics of the order in which a 
boolean expression is evaluated for specific compilers, especially in the context of deeply 
nested IF-THEN-ELSE constructs. For example, the truth or falsity of a logical expression is 
determined after evaluating a few terms, so evaluation of further terms (usually) stops, but 
the programmer expects that further terms will be evaluated. In other words, although the 
boolean expression appears as a single statement, the programmer does not understand 
that its components will be evaluated sequentially. See index entries on predicate coverage 
for more information. 

 If these bugs are part of logical (i.e., boolean) processing not related to control flow, then 
they are categorized as processing bugs. If they are part of a logical expression (i.e., 
control-flow predicate) which is used to direct the control flow, then they are categorized as 
control-flow bugs. 

 Logic bugs are not really different in kind from arithmetic bugs. They are likelier than 
arithmetic bugs because programmers, like most people, have less formal training in logic at 
an early age than they do in arithmetic. The best defense against this kind of bug is a 
systematic analysis of cases. Logic-based testing (Chapter 10) is helpful. 

(c) Processing Bugs: 

 Processing bugs include arithmetic bugs, algebraic, mathematical function evaluation, 
algorithm selection, and general processing. Many problems in this area are related to 
incorrect conversion from one data representation to another. This is especially true in 
assembly language programming. Other problems include ignoring overflow, ignoring the 
difference between positive and negative zero, improper use of greater-than, greater-than-or-
equal, less-than, less-than-or-equal, assumption of equality to zero in floating point, and 
improper comparison between different formats as in ASCII to binary or integer to floating 
point.  

 Although these bugs are frequent (12%), they tend to be caught in good unit testing and also 
tend to have localized effects. Selection of covering test cases, especially domain-testing 
methods (Chapter 6) are the testing remedies for this kind of bug. 

(d) Initialization Bugs: 

 Initialization bugs are common, and experienced programmers and testers know they must 
look for them. Both improper and superfluous initialization occur. The latter tends to be less 
harmful but can affect performance. Typical bugs are as follows: forgetting to initialize 
working space, registers, or data areas before first use or assuming that they are initialized 
elsewhere; a bug in the first value of a loop-control parameter; accepting an initial value 
without a validation check; and initializing to the wrong format, data representation, or type.  

 The remedies here are in the kinds of tools the programmer has. The source language also 
helps. Explicit declaration of all variables, as in Pascal, helps to reduce some initialization 
problems. Preprocessors, either built into the language or run separately, can detect some, 
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but not all, initialization problems. The test methods of Chapter 5 are helpful for test design 
and for debugging initialization problems. 

      (e) Data Flow Bugs and Anomalies: 

 Most initialization bugs are a special case of data-flow anomalies. A data-flow anomaly 
occurs when there is a path along which we expect to do something unreasonable with data, 
such as using an uninitialized variable, attempting to use a variable before it exists, modifying 
data and then not storing or using the result, or initializing twice without an intermediate use. 
Although part of data-flow anomaly detection can be done by the compiler based on 
information known at compile time, much can be detected only by execution and therefore is 
a subject for testing. It is generally recognized today that data-flow anomalies are as 
important as control-flow anomalies. The methods of Chapters 5 and 12 will help you design 
tests aimed at data-flow problems. 

      (iv) Data Bugs: 

      (a) General: 

 Data bugs include all bugs that arise from the specification of data objects, their formats, the 
number of such objects, and their initial values. Data bugs are at least as common as bugs in 
code, but they are often treated as if they did not exist at all. Underestimating the frequency 
of data bugs is caused by poor bug accounting. In some projects, bugs in data declarations 
are just not counted, and for that matter, data declaration statements are not counted as part 
of the code. The separation of code and data is, of course, artificial because their roles can 
be interchanged at will. At the extreme, one can write a twenty-instruction program that can 
simulate any computer (a Turing machine) and have all “programs” recorded as data and 
manipulated as such. Furthermore, this can be done in any language on any computer—but 
who would want to?  

 Software is evolving toward programs in which more and more of the control and processing 
functions are stored in tables. I call this the third law: 

 Third Law—Code migrates to data. 
 Because of this law there is an increasing awareness that bugs in code are only half the 

battle and that data problems should be given equal attention. The bug statistics of Table 2.1 
support this concept; that is, structural bugs and data bugs each have frequencies of about 
25%. If you examine a piece of contemporary source code, you may find that half of the 
statements are data declarations. Although these statements do not result in executable 
code, because they are specified by humans, they are as subject to error as operative 
statements. If a program is designed under the assumption that a certain data object will be 
set to zero and it isn’t, the operative statements of the program are not at fault. Even so, 
there is still an initialization bug, which, because it is in a data statement, could be harder to 
find than if it had been a bug in executable code. 

 This increase in the proportion of the source statements devoted to data definition is a direct 
consequence of two factors: (1) the dramatic reduction in the cost of main memory and disc 
storage, and (2) the high cost of creating and testing software. Generalized software 
controlled by tables is not efficient. Computer costs, especially memory costs, have 
decreased to the point where the inefficiencies of generalized table-driven code are not 
usually significant. The increasing cost of software as a percentage of system cost has 
shifted the emphasis in the software industry away from single-purpose, unique software to 
an increased reliance on prepackaged, generalized programs. This trend is evident in the 
computer manufacturers’ software, in the existence of a healthy proprietary software industry, 
and in the emergence of languages and programming environments that support code 
reusability (e.g., object-oriented languages). Generalized packages must satisfy a wide range 
of options, host configurations, operating systems, and computers. The designer of a 
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generalized package achieves generality, in part, by making many things parametric, such as 
array sizes, memory partition, and file structure. It is not unusual for a big application 
package to have several hundred parameters. Setting the parameter values particularizes 
the program to the specific installation. The parameters are interrelated, and errors in those 
relations can cause illogical conditions and, therefore, bugs. 

 Another source of database complexity increase is the use of control tables in lieu of code. 
The simplest example is the use of tables that turn processing options on and off. A more 
complicated form of control table is used when a system must execute a set of closely 
related processes that have the same control structure but are different in details. An early 
example is found in telephony, where the details of controlling a telephone call are table-
driven. A generalized call-control processor handles calls from and to different kinds of lines. 
The system is loaded with a set of tables that corresponds to the protocols required for that 
telephone exchange. Another example is the use of generalized device-control software 
which is particularized by data stored in device tables. The operating system can be used 
with new, undefined devices, if those devices’ parameters can fit into a set of very broad 
values. The culmination of this trend is the use of complete, internal, transaction-control 
languages designed for the application. Instead of being coded as computer instructions or 
language statements, the steps required to process a transaction are stored as a sequence 
of constants in a transaction-processing table. The state of the transaction, that is, the 
current processing step, is stored in a transaction-control block. The generalized transaction-
control processor uses the combination of transaction state and the control tables to direct 
the transaction to the next step. The transaction-control table is actually a program which is 
processed interpretively by the transaction-control processor. That program may contain the 
equivalent of addressing, conditional branch instructions, looping statements, case 
statements, and so on. In other words, a hidden programming language has been created. 
It is an effective design technique because it enables fixed software to handle many different 
transaction types, individually and simultaneously. Furthermore, modifying the control tables 
to install new transaction types is usually easier than making the same modifications in code. 

 In summary, current programming trends are leading to the increasing use of undeclared, 
internal, specialized programming languages. These are languages—make no mistake about 
that—even if they are simple compared to normal programming languages; but the syntax of 
these languages is rarely debugged. There’s no compiler for them and therefore no source 
syntax checking. The programs in these languages are inserted as octal or hexadecimal 
codes—as if we were programming back in the early days of UNIVAC-I. Large, low-cost 
memory will continue to strengthen this trend and, consequently, there will be an increased 
incidence of code masquerading as data. Bugs in this kind of hidden code are at least as 
difficult to find as bugs in normal code. The first step in the avoidance of data bugs—whether 
the data are used as pure data, as parameters, or as hidden code—is the realization that all 
source statements, including data declarations, must be counted, and that all source 
statements, whether or not they result in object code, are bug-prone. 

 The categories used for data bugs are different from those used for code bugs. Each way of 
looking at data provides a different perspective. These categories for data bugs overlap and 
are no stricter than the categories used for bugs in code. 

      (b) Dynamic Versus Static: 

 Dynamic data are transitory. Whatever their purpose, they have a relatively short lifetime, 
typically the processing time of one transaction. A storage object may be used to hold 
dynamic data of different types, with different formats, attributes, and residues. Failure to 
initialize a shared object properly can lead to data-dependent bugs caused by residues from 
a previous use of that object by another transaction. Note that the culprit transaction is long 
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gone when the bug’s symptoms are discovered. Because the effect of corruption of dynamic 
data can be arbitrarily far removed from the cause, such bugs are among the most difficult to 
catch. The design remedy is complete documentation of all shared-memory structures, 
defensive code that does thorough data-validation checks, and centralized-resource 
managers.  

 The basic problem is leftover garbage in a shared resource. This can be handled in one of 
three ways: (1) cleanup after use by the user, (2) common cleanup by the resource manager, 
and (3) no cleanup. The latter is the method usually used. Therefore, resource users must 
program under the assumption that the resource manager gives them garbage-filled 
resources. Common cleanup is used in very secure systems where subsequent users of a 
resource must never be able to read data left by a previous user in another security or 
privacy category.  

 Static data are fixed in form and content. Whatever their purpose, they appear in the source 
code or data base, directly or indirectly, as, for example, a number, a string of characters, or 
a bit pattern. Static data need not be explicit in the source code. Some languages provide 
compile-time processing, which is especially useful in general-purpose routines that are 
particularized by interrelated parameters. Compile-time processing is an effective measure 
against parameter-value conflicts. Instead of relying on the programmer to calculate the 
correct values of interrelated parameters, a program executed at compile time (or assembly 
time) calculates the parameters’ values. If compile-time processing is not a language feature, 
then a specialized preprocessor can be built that will check the parameter values and 
calculate those values that are derived from others. As an example, a large commercial 
telecommunications system has several hundred parameters that dictate the number of lines, 
the layout of all storage media, the hardware configuration, the characteristics of the lines, 
the allowable user options for those lines, and so on. These are processed by a site-adapter 
program that not only sets the parameter values but builds data declarations, sizes arrays, 
creates constants, and inserts processing routines from a library. A bug in the site adapter, or 
in the data given to the site adapter, can result in bugs in the static data used by the object 
programs for that site. 

 Another example is the postprocessor used to install many personal computer software 
packages. Here the configuration peculiarities are handled by generalized table-driven 
software, which is particularized at run (actually, installation) time. 

 Any preprocessing (or postprocessing) code, any code executed at compile or assembly time 
or before, at load time, at installation time, or some other time can lead to faulty static data 
and therefore bugs—even though such code (and the execution thereof) does not represent 
object code at run time. We tend to take compilers, assemblers, utilities, loaders, and 
configurators for granted and do not suspect them to be bug sources. This is not a bad 
assumption for standard utilities or translators. But if a highly parameterized system uses 
site-adapter software or preprocessors or compile-time/assembly-time processing, and if 
such processors and code are developed concurrently with the working software of the 
application—watch out! 

 Software used to produce object code is suspect until validated. All new software must be 
rigorously tested even if it isn’t part of the application’s mainstream. Static data can be just as 
wrong as any other kind and can have just as many bugs. Do not treat a routine that creates 
static data as “simple” because it “just stuffs a bunch of numbers into a table.” Subject such 
code to the same testing rigor that you apply to running code.* 

 The design remedy for the preprocessing situation is in the source language. If the language 
permits compile-time processing that can be used to particularize parameter values and data 
structures, and if the syntax of the compile-time statements is identical to the syntax of the 
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rest of the language, then the code will be subjected to the same validation and syntax 
checking as ordinary code. Such language facilities eliminate the need for most specialized 
preprocessors, table generators, and site adapters. For postprocessors, there is no magic, 
other than to recognize that users judge developers by the entire picture, installation software 
included. 

      (c) Information, Parameter, and Control: 

 Static or dynamic data can serve in one of three roles, or in a combination of roles: as a 
parameter, for control, or for information. What constitutes control or information is a matter 
of perspective and can shift from one processing level to another. A scheduler receives a 
request to start a process. To the scheduler the identity of the process is information to be 
processed, but at another level it is control. My name is used to generate a hash code that 
will be used to access a disc record. My name is information, but to the disc hardware its 
translation into an address is control (e.g., move to track so-and-so).  

 Information is usually dynamic and tends to be local to a single transaction or task. As such, 
errors in information (when data are treated as information, that is) may not be serious bugs. 
The bug, if any, is in the lack of protective data-validation code or in the failure to protect the 
routine’s logic from out-of-range data or data in the wrong format. The only way we can be 
sure that there is data-validation code in a routine is to put it there. Assuming that the other 
routine will validate data invites latent bugs and maintenance problems. The program evolves 
and changes, and it is forgotten that the modified routine did the data validation for several 
other routines. If a routine is vulnerable to bad data, the only sane thing to do is to block such 
data within the routine; but it’s even better to redesign it so that it is no longer vulnerable. 

 Inadequate data validation often leads to finger pointing. The calling routine’s author is 
blamed, the called routine’s author blames back, they both blame the operators. This 
scenario leads to a lot of ego confrontation and guilt. “If only the other programmers did their 
job correctly,” you say, “we wouldn’t need all this redundant data validation and defensive 
code. I have to put in this extra junk because I’m surrounded by slobs!” This attitude is 
understandable, but not productive. Furthermore, if you really feel that way, you’re likely to 
feel guilty about it. Don’t blame your fellow programmer and don’t feel guilt. Nature has 
conspired against us but given us a scapegoat. One of the unfortunate side effects of large-
scale integrated circuitry stems from the use of microscopic logic elements that work at very 
low energy levels. Modern circuitry is vulnerable to electronic noise, electromagnetic 
radiation, cosmic rays, neutron hits, stray alpha particles, and other noxious disturbances. No 
kidding—alpha-particle hits that can change the value of a bit are a serious problem, and the 
semiconductor manufacturers are spending a lot of money and effort to reduce the random 
modification of data by alpha particles. Therefore, even if your fellow programmers did 
thorough, correct data validation, dynamic data, static data, parameters, and code can be 
corrupted. Program without rancor and guilt! Put in the data-validation checks and blame the 
necessity on sun spots and alpha particles!* 

      (d) Contents, Structure, and Attributes: 

 Data specifications consist of three parts:  
 Contents—The actual bit pattern, character string, or number put into a data structure. 

Content is a pure bit pattern and has no meaning unless it is interpreted by a hardware or 
software processor. All data bugs result in the corruption or misinterpretation of content.  

 Structure—The size and shape and numbers that describe the data object, that is, the 
memory locations used to store the content (e.g., 16 characters aligned on a word boundary, 
122 blocks of 83 characters each, bits 4 through 14 of word 17). Structures can have 
substructures and can be arranged into superstructures. A hunk of memory may have 
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several different structures defined over it—e.g., a two-dimensional array treated elsewhere 
as N one-dimensional arrays.  

 Attributes—The specification of meaning, that is, the semantics associated with the contents 
of a data object (e.g., an integer, an alphanumeric string, a subroutine).  

 The severity and subtlety of bugs increases as we go from content to attributes because 
things get less formal in that direction. Content has been dealt with earlier in this section. 
Structural bugs can take the form of declaration bugs, but these are not the worst kind of 
structural bugs. A serious potential for bugs occurs when data are used with different 
structures. Here is a piece of clever design. The programmer has subdivided the problem 
into eight cases and uses a 3-bit field to designate the case. Another programmer has four 
different cases to consider and uses a 2-bit field for the purpose. A third programmer is 
interested in the combination of the other two sets of cases and treats the whole as a 5-bit 
field that leads to thirty-two combined cases. We cannot judge, out of context, whether this is 
a good design or an abomination, but we can note that there is a different structure in the 
minds of the three programmers and therefore a potential for bugs. The practice of 
interpreting a given memory location under several different structures is not intrinsically bad. 
Often, the only alternative would be increased memory and many more data transfers.  

 Attributes of data are the meanings we associate with data. Although some bugs are related 
to misinterpretation of integers for floating point and other basic representation problems, the 
more subtle attribute-related bugs are embedded in the application. Consider a 16-bit field. It 
could represent, among other things, a number, a loop-iteration count, a control code, a 
pointer, or a link field. Each interpretation is a different attribute. There is no way for the 
computer to know that it is proper or improper to add a control code to a link field to yield a 
loop count. We have used the same data with different meanings. In modern parlance, we 
have changed the data type. It is generally incorrect to logically or arithmetically combine 
objects whose types are different. Conversely, it is almost impossible to create an efficient 
system without doing so. Shifts in interpretation usually occur at interfaces, especially the 
human interface that is behind every software interface. See GANN76 for a summary of type 
bugs. 

 The preventive measures for data-type bugs are in the source language, documentation, and 
coding style. Explicit documentation of the contents, structure, and attributes of all data 
objects is essential. The database documentation should be centralized. All alternate 
interpretation of a given data object should be listed along with the identity of all routines that 
have access to that object. A proper data dictionary (which is what the database 
documentation is called) can be as large as the narrative description of the code. The data 
dictionary and the database it represents must also be designed. This design is done by a 
high-level design process, which is as important as the design of the software architecture. 
My point of view here is dogmatic. Routines should not be administratively treated as if they 
have their “own” data declarations.* All data structures should be globally defined and 
centrally administered. Exceptions, such as a private work area, should be individually 
justified. Such private data structures must never be used by any other routine but the 
structure must still be documented in the data dictionary. 

 It’s impossible to properly test software of any size (say 10,000+ statements) without central 
database management and a configuration-controlled data dictionary. I was once faced with 
such a herculean challenge. My first step was to try to create the missing data dictionary 
preparatory to any attempt to define tests. The act of dragging the murky bottoms of a 
hundred minds for hidden data declarations and semiprivate space in an attempt to create a 
data dictionary revealed so many data bugs that it was obvious that the system would defy 
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integration. I never did get to design tests for that project—it collapsed; and a new design 
was started surreptitiously from scratch. 

 The second remedy is in the source language. Strongly typed languages prevent the 
inadvertent mixed manipulation of data that are declared as different types. A conversion in 
usage from pointer type to counter type, say, requires an explicit statement that will do the 
conversion. Such statements may or may not result in object code. Conversion from floating 
point to integer, would, of course, require object code, but conversion from pointer to counter 
might not. Strong typing forces the explicit declaration of attributes and provides compiler 
facilities to check for mixed-type operations. The ability of the user to specify types, as in 
Pascal, is mandatory. These data-typing facilities force the specification of data attributes into 
the source code, which makes them more amenable to automatic verification by the compiler 
and to test design than when the attributes are described in a separate data dictionary. In 
assembly language programming, or in source languages that do not have user-defined 
types, the remedy is the use of field-access macros. No programmer is allowed to directly 
access a field in the database. Access can be obtained only through the use of a field-access 
macro. The macro code does all the extraction, stripping, justification, and type conversion 
necessary. If the database structure has to be changed, the affected field-access macros are 
changed, but the source code that uses the macros does not (usually) have to be changed. 
The attributes of the data are documented with the field-access macro documentation. 
Another advantage of this approach is that the data dictionary can be automatically produced 
from the specifications of the field-access macro library. 

      (v) Coding Bugs: 

 Coding errors of all kinds can create any of the other kinds of bugs. Syntax errors are 
generally not important in the scheme of things if the source language translator has 
adequate syntax checking. Failure to catch a syntax error is a bug in the translator. A good 
translator will also catch undeclared data, undeclared routines, dangling code, and many 
initialization problems. Any programming error caught by the translator (assembler, compiler, 
or interpreter) does not substantially affect test design and execution because testing cannot 
start until such errors are corrected. Whether it takes a programmer one, ten, or a hundred 
passes before a routine can be tested should concern software management (because it is a 
programming productivity issue) but not test design (which is a quality-assurance issue). But 
if a program has many source-syntax errors, we should expect many logic and coding 
bugs—because a slob is a slob is a slob.  

 Given good source-syntax checking, the most common pure coding errors are typographical, 
followed by errors caused by not understanding the operation of an instruction or statement 
or the by-products of an instruction or statement. Coding bugs are the wild cards of 
programming. Unlike logic or process bugs, which have their own perverse rationality, wild 
cards are arbitrary. 

 The most common kind of coding bug, and often considered the least harmful, are 
documentation bugs (i.e., erroneous comments). Although many documentation bugs are 
simple spelling errors or the result of poor writing, many are actual errors—that is, misleading 
or erroneous comments. We can no longer afford to discount such bugs because their 
consequences are as great as “true” coding errors. Today, programming labor is dominated 
by maintenance. This will increase as software becomes even longer-lived. Documentation 
bugs lead to incorrect maintenance actions and therefore cause the insertion of other bugs. 
Testing techniques have nothing to offer for these bugs. The solution lies in inspections, QA, 
automated data dictionaries, and specification systems. 
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(vi) Interface, Integration, and System Bugs: 

      (a) External Interfaces: 

 The external interfaces are the means used to communicate with the world. These include 
devices, actuators, sensors, input terminals, printers, and communication lines. Often there is 
a person on the other side of the interface. That person may be ingenious or ingenuous, but 
is frequently malevolent. The primary design criterion for an interface with the outside world 
should be robustness. All external interfaces, human or machine, employ a protocol. 
Protocols are complicated and hard to understand. The protocol itself may be wrong, 
especially if it’s new, or it may be incorrectly implemented. Other external interface bugs 
include: invalid timing or sequence assumptions related to external signals; 
misunderstanding external input and output formats; and insufficient tolerance to bad input 
data. The test design methods of Chapters 6, 9, and 11 are suited to testing external 
interfaces. 

      (b) Internal Interfaces: 

 Internal interfaces are in principle not different from external interfaces, but there are 
differences in practice because the internal environment is more controlled. The external 
environment is fixed and the system must adapt to it but the internal environment, which 
consists of interfaces with other components, can be negotiated. Internal interfaces have the 
same problems external interfaces have, as well as a few more that are more closely related 
to implementation details: protocol-design bugs, input and output format bugs, inadequate 
protection against corrupted data, wrong subroutine call sequence, call-parameter bugs, 
misunderstood entry or exit parameter values.  

 To the extent that internal interfaces, protocols, and formats are formalized, the test methods 
of Chapters 6, 9, and 11 will be helpful. The real remedy is in the design and in standards. 
Internal interfaces should be standardized and not just allowed to grow. They should be 
formal, and there should be as few as possible. There’s a trade-off between the number of 
different internal interfaces and the complexity of the interfaces. One universal interface 
would have so many parameters that it would be inefficient and subject to abuse, misuse, 
and misunderstanding. Unique interfaces for every pair of communicating routines would be 
efficient, but N programmers could lead to N2 interfaces, most of which wouldn’t be 
documented and all of which would have to be tested (but wouldn’t be). The main objective of 
integration testing is to test all internal interfaces (BEIZ84). 

      (c) Hardware Architecture: 

 It’s easy to forget that hardware exists. You can have a programming career and never see a 
mainframe or minicomputer. When you are working through successive layers of application 
executive, operating system, compiler, and other intervening software, it’s understandable 
that the hardware architecture appears abstract and remote. It is neither practical nor 
economical for every programmer in a large project to know all aspects of the hardware 
architecture. Software bugs related to hardware architecture originate mostly from 
misunderstanding how the hardware works. Here are examples: paging mechanism ignored 
or misunderstood, address-generation error, I/O-device operation or instruction error, I/O-
device address error, misunderstood device-status code, improper hardware simultaneity 
assumption, hardware race condition ignored, data format wrong for device, wrong format 
expected, device protocol error, device instruction-sequence limitation ignored, expecting the 
device to respond too quickly, waiting too long for a response, ignoring channel throughput 
limits, assuming that the device is initialized, assuming that the device is not initialized, 
incorrect interrupt handling, ignoring hardware fault or error conditions, ignoring operator 
malice.  
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 The remedy for hardware architecture and interface problems is two-fold: (1) good 
programming and testing and (2) centralization of hardware interface software in programs 
written by hardware interface specialists. Hardware interface testing is complicated by the 
fact that modern hardware has very few buttons, switches, and lights. Old computers had lots 
of them, and you could abuse those buttons and switches to create wonderful anomalous 
interface conditions that could not be simulated any other way. Today’s highly integrated 
black boxes rarely have such controls and, consequently, considerable ingenuity may be 
needed to simulate and test hardware interface status conditions. Modern hardware is better 
and cheaper without the buttons and lights, but also harder to test. This paradox can be 
resolved by hardware that has special test modes and test instructions that do what the 
buttons and switches used to do. The hardware manufacturers, as a group, have yet to 
provide adequate features of this kind. Often the only alternative is to use an elaborate 
hardware simulator instead of the real hardware. Then you’re faced with the problem of 
distinguishing between real bugs and hardware simulator implementation bugs. 

      (d) Operating System: 

 Program bugs related to the operating system are a combination of hardware architecture 
and interface bugs, mostly caused by a misunderstanding of what it is the operating system 
does. And, of course, the operating system could have bugs of its own. Operating systems 
can lull the programmer into believing that all hardware interface issues are handled by it. 
Furthermore, as the operating system matures, bugs in it are found and corrected, but some 
of these corrections may leave quirks. Sometimes the bug is not fixed at all, but a notice of 
the problem is buried somewhere in the documentation—if only you knew where to look for it.  

 The remedy for operating system interface bugs is the same as for hardware bugs: use 
operating system interface specialists, and use explicit interface modules or macros for all 
operating system calls. This approach may not eliminate the bugs, but at least it will localize 
them and make testing easier. 

      (e) Software Architecture: 

 Software architecture bugs are often the kind that are called “interactive.” Routines can pass 
unit and integration testing without revealing such bugs. Many of them depend on load, and 
their symptoms emerge only when the system is stressed. They tend to be the most difficult 
kind of bug to find and exhume. Here is a sample of the causes of such bugs: assumption 
that there will be no interrupts, failure to block or unblock interrupts, assumption that code is 
reentrant or not reentrant, bypassing data interlocks, failure to close or open an interlock, 
assumption that a called routine is resident or not resident, assumption that a calling program 
is resident or not resident, assumption that registers or memory were initialized or not 
initialized, assumption that register or memory location content did not change, local setting 
of global parameters, and global setting of local parameters.  

 The first line of defense against these bugs is the design. The first bastion of that defense is 
that there be a design for the software architecture. Not designing a software architecture is 
an unfortunate but common disease. The most elegant test techniques will be helpless in a 
complicated system whose architecture “just growed” without plan or structure. All test 
techniques are applicable to the discovery of software architecture bugs, but experience has 
shown that careful integration of modules and subjecting the final system to a brutal stress 
test are especially effective (BEIZ84).* 

      (f) Control and Sequence Bugs: 

 System-level control and sequence bugs include: ignored timing; assuming that events occur 
in a specified sequence; starting a process before its prerequisites are met (e.g., working on 
data before all the data have arrived from disc); waiting for an impossible combination of 
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prerequisites; not recognizing when prerequisites have been met; specifying wrong priority, 
program state, or processing level; missing, wrong, redundant, or superfluous process steps.  

 The remedy for these bugs is in the design. Highly structured sequence control is helpful. 
Specialized, internal, sequence-control mechanisms, such as an internal job control 
language, are useful. Sequence steps and prerequisites stored in tables and processed 
interpretively by a sequence-control processor or dispatcher make process sequences easier 
to test and to modify if bugs are discovered. Path testing as applied to transaction 
flowgraphs, as discussed in Chapter 4, is especially effective at detecting system-level 
control and sequence bugs. 

      (g) Resource Management Problems: 

 Memory is subdivided into dynamically allocated resources such as buffer blocks, queue 
blocks, task control blocks, and overlay buffers. Similarly, external mass storage units such 
as discs, are subdivided into memory-resource pools. Here are some resource usage and 
management bugs: required resource not obtained (rare); wrong resource used (common, if 
there are several resources with the same structure or different kinds of resources in the 
same pool); resource already in use; race condition in getting a resource; resource not 
returned to the right pool; fractionated resources not properly recombined (some resource 
managers take big resources and subdivide them into smaller resources, and Humpty 
Dumpty isn’t always put together again); failure to return a resource (common); resource 
deadlock (a type A resource is needed to get a type B, a type B is needed to get a type C, 
and a type C is needed to get a type A); resource use forbidden to the caller; used resource 
not returned; resource linked to the wrong kind of queue; forgetting to return a resource. 

 A design remedy that prevents bugs is always preferable to a test method that discovers 
them. The design remedy in resource management is to keep the resource structure simple: 
the fewest different kinds of resources, the fewest pools, and no private resource 
management. 

 Complicated resource structures are often designed in a misguided attempt to save memory 
and not because they’re essential. The software has to handle, say, large-, small-, and 
medium-length transactions, and it is reasoned that memory will be saved if three different-
sized resources are implemented. This reasoning is often faulty because: 

 1.  Memory is cheap and getting cheaper.  
 2.  Complicated resource structures and multiple pools need management software; that 

software needs memory, and the increase in program space could be bigger than the 
expected data space saved.  

 3.  The complicated scheme takes additional processing time, and therefore all resources are 
held in use a little longer. The size of the pools will have to be increased to compensate for 
this additional holding time.  

 4.  The basis for sizing the resource is often wrong. A typical choice is to make the buffer 
block’s length equal to the length required by an average transaction—usually a poor choice. 
A correct analysis (see BEIZ78, pp. 301-302) shows that the optimum resource size is 
usually proportional to the square root of the transaction’s length. However, square-root laws 
are relatively insensitive to parameter changes and consequently the waste of using many 
short blocks for long transactions or large blocks to store short transactions isn’t as bad as 
naive intuition suggests.  

 The second design remedy is to centralize the management of all pools, either through 
centralized resource managers, common resource-management subroutines, resource-
management macros, or a combination of these.  

 I mentioned resource loss three times—it was not a writing bug. Resource loss is the most 
frequent resource-related bug. Common sense tells you why programmers lose resources. 
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You need the resource to process—so it’s unlikely that you’ll forget to get it; but when the job 
is done, the successful conclusion of the task will not be affected if the resource is not 
returned. A good routine attempts to get resources as soon as possible at a common point 
and also attempts to return them at a common point; but strange paths may require more 
resources, and you could forget that you’re using several resource units instead of one. 
Furthermore, an exception-condition handler that responds to system-threatening illogical 
conditions may bypass the normal exit and jump directly to an executive level—and there 
goes the resource. The design remedies are to centralize resource fetch-and-return within 
each routine and to provide macros that return all resources rather than just one. Resource-
loss problems are exhumed by path testing (Chapter 3), by transaction-flow testing (Chapter 
4), data-flow testing (Chapter 5), and by stress testing (BEIZ84). 

      (h) Integration Bugs: 

 Integration bugs are bugs having to do with the integration of, and with the interfaces 
between, presumably working and tested components. Most of these bugs result from 
inconsistencies or incompatibilities between components. All methods used to transfer data 
directly or indirectly between components and all methods by which components share data 
can host integration bugs and are therefore proper targets for integration testing. The 
communication methods include data structures, call sequences, registers, semaphores, 
communication links, protocols, and so on. Integration strategies and special testing 
considerations are discussed in more detail in BEIZ84. While integration bugs do not 
constitute a big bug category (9%) they are an expensive category because they are usually 
caught late in the game and because they force changes in several components and/or data 
structures, often during the height of system debugging. Test methods aimed at interfaces, 
especially domain testing (Chapter 6), syntax testing (Chapter 9), and data-flow testing when 
applied across components (Chapter 5), are effective contributors to the discovery and 
elimination of integration bugs. 

      (i) System Bugs: 

 System bugs is a catch-all phrase covering all kinds of bugs that cannot be ascribed to 
components or to their simple interactions, but result from the totality of interactions between 
many components such as programs, data, hardware, and the operating system. System 
testing as a discipline is discussed in BEIZ84. The only test technique that applies obviously 
and directly to system testing is transaction-flow testing (Chapter 4); but the reader should 
keep in mind two important facts: (1) all test techniques can be useful at all levels, from unit 
to system, and (2) there can be no meaningful system testing until there has been thorough 
component and integration testing. System bugs are infrequent (1.7%) but very important 
(expensive) because they are often found only after the system has been fielded and 
because the fix is rarely simple. 

      (vii) Test and Test Design Bugs: 

      (a) Testing: 

 Testers have no immunity to bugs (see the footnote on page 20). Tests, especially system 
tests, require complicated scenarios and databases. They require code or the equivalent to 
execute, and consequently they can have bugs. The virtue of independent functional testing 
is that it provides an unbiased point of view; but that lack of bias is an opportunity for 
different, and possibly incorrect, interpretations of the specification. Although test bugs are 
not software bugs, it’s hard to tell them apart, and much labor can be spent making the 
distinction. Also, consider the maintenance programmer—does it matter whether she’s 
worked 3 days to chase and fix a real bug or wasted 3 days chasing a chimerical bug that 
was really a faulty test specification?  
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  (b) Test Criteria: 

 The specification is correct, it is correctly interpreted and implemented, and a seemingly 
proper test has been designed; but the criterion by which the software’s behavior is judged is 
incorrect or impossible. How would you, for example, “prove that the entire system is free of 
bugs?” If a criterion is quantitative, such as a throughput or processing delay, the act of 
measuring the performance can perturb the performance measured. The more complicated 
the criteria, the likelier they are to have bugs.  

      (c) Remedies: 

 The remedies for test bugs are: test debugging, test quality assurance, test execution 
automation, and test design automation.  

 Test Debugging—The first remedy for test bugs is testing and debugging the tests. The 
differences between test debugging and program debugging are not fundamental. Test 
debugging is usually easier because tests, when properly designed, are simpler than 
programs and do not have to make concessions to efficiency. Also, tests tend to have a 
localized impact relative to other tests, and therefore the complicated interactions that usually 
plague software designers are less frequent. We have no magic prescriptions for test 
debugging—no more than we have for software debugging.  

 Test Quality Assurance—Programmers have the right to ask how quality in independent 

testing and test design is monitored. Should we implement test testers and test—tester 
tests? This sequence does not converge. Methods for test quality assurance are discussed in 
Software System Testing and Quality Assurance (BEIZ84).  

 Test Execution Automation—The history of software bug removal and prevention is 
indistinguishable from the history of programming automation aids. Assemblers, loaders, 
compilers, and the like were all developed to reduce the incidence of programmer and/or 
operator errors. Test execution bugs are virtually eliminated by various test execution 
automation tools, many of which are discussed throughout this book. The point is that 
“manual testing” is self-contradictory. If you want to get rid of test execution bugs, get rid of 
manual execution.  

 Test Design Automation—Just as much of software development has been automated (what 

is a compiler, after all?) much test design can be and has been automated. For a given 
productivity rate, automation reduces bug count—be it for software or be it for tests.  

      (viii) Testing and Design Style: 

 This is a book on test design, yet this chapter has said a lot about programming style and 
design. You might wonder why the productivity of one programming group is as much as 10 
times higher than that of another group working on the same application, the same computer, 
in the same language, and under similar constraints. It should be obvious—bad designs lead 
to bugs, and bad designs are difficult to test; therefore, the bugs remain. Good designs inhibit 
bugs before they occur and are easy to test. The two factors are multiplicative, which 
explains the large productivity differences. The best test techniques are useless when 
applied to abominable code: it is sometimes easier to redesign a bad routine than to attempt 
to create tests for it. The labor required to produce new code plus the test design and 
execution labor for the new code can be much less than the labor required to design 
thorough tests for an undisciplined, unstructured monstrosity. Good testing works best on 
good code and good designs. And no test technique can ever convert garbage into gold.  
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FLOW GRAPHS AND PATH TESTING 
(1) Basics concepts of path testing:  

       (i) Motivation and Assumptions: 
(a) Path testing  
 A sequence of statements which starts at an entry and ends at an exit by passing all the  

 existing junctions, decisions etc is known as path. 
 Path testing is a process which involves all the available paths in a program from an entry 

 to an exit in such a way that the entire path is thoroughly tested.  
 If the set of paths is properly chosen, then we have achieved some measure of test 

 thoroughness.  
 (b) Motivation 

 Path–testing techniques are the oldest of all structural test techniques.  
 Path–testing techniques were also the first techniques to come under theoretical scrutiny.  
 There is considerable evidence that path testing was independently discovered and used 

many times in many different places.  
 Path testing is most applicable to new software for unit testing. It is a structural technique. It 

requires complete knowledge of the program’s structure (i.e., source code).  
 It is most often used by programmers to unit–test their own code.  

         (c) The Bug Assumption: 

 The bug assumption for the path–testing strategies is that something has gone wrong with 
the software that makes it take a different path than intended. 

  As an example, “GOTO X” where “GOTO Y” had been intended. As another example, “IF 
A is true THEN DO X ELSE DO Y”, instead of “IF A is false THEN . . .” 

 We also assume, in path testing, that specifications are correct and achievable, that there 
are no processing bugs other than those that affect the control flow, and that data are 
properly defined and accessed. 

(ii) Control Flowgraphs: 
(a) About control flowgraphs: 

 The control flowgraph is a graphical representation of a program’s control structure.  
 A control flowgraph is a form of a flowchart which does not deal with the internal structure 

of the process rather it shows the data flow and the control flow between the processes. 
 It uses the elements process blocks, decisions and junctions. 

            (i) Process Block 

 A process block* is a sequence of program statements uninterrupted by either decisions 
or junctions.  

 Formally, it is a sequence of statements such that if any one statement of the block is 
executed, then all statements are executed. 

 Here once a process block is initiated, every statement within it will be executed. 
 Every process has an entry and an exit and consists of a single or series of statements. 
 Control flow graph are not concerned with the details of operations in a process block 

so, the test cases are designed accordingly. 
 

   Processes   

 

  

 (ii) Decisions and Case Statements: 

 A decision is a program point at which the control flow can split.  

 

Do process A 
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 Machine language conditional branch and conditional skip instructions are examples of 
decisions. 

 The FORTRAN IF and the Pascal IF–THEN–ELSE constructs are decisions, although 
they also contain processing components. 

 While most decisions are two–way or binary, some (such as the FORTRAN IF) are 
three–way branches in control flow. 

 The design of test cases is generally easier with two–way branches than with three–way 
branches, and there are also more powerful test–design tools that can be used. 

 Any decision can split the control flow into different way branches. 
 This multi way branches can be termed as case statements. 
 The designing of test cases for decision and case statements are same. 
 
        Yes : THEN DO 

 
 
 

 
                NO: ELSE 

   Decision   

 

     CASE—OF-- 
             CASE 1    
   Case Statement   

             CASE 2 

          

                        CASE N    

 (iii) Junctions: 

 A junction is a point in the program where the control flow can merge.  
 That is all the control flows can merge at a point in a program which is known as 

junction.  
 In other words a node with more than one input line is known as junction. 
 Examples of junctions are: the target of a jump or skip instruction in assembly language, 

a label that is the target of a GOTO, the END–IF and CONTINUE statements in 
FORTRAN, and the Pascal statement labels, END and UNTIL. 

 
         

                 

   Junctions   

 

               

 

IF A=B 

     ? 

1 

2 

N 

1 2 
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 Control flowgraph advantages: 

 Control flowgraph eliminates the occurrence of some problems which results from 
expanding the visual complexities. 

 Control flowgraph treats all the steps inside a process as a single process entity and 
shows only data and control flow to and from that entity there by reducing the 
complexity of structure. 

 Control flowgraphs can be referred to as a modern approach for representation of flows. 
 Control flowgraph gives the precise and clear view of the program structure, the 

directions of data flow etc. 
    Control flowgraph disadvantages: 

 Control flowgraph plays an important role in representing the program control structure, 
but are sparsely available due to the scarcity of control flowgraph generators. 

 The information needed to produce a control flowgraph is not provided by most of the 
compilers. 

 Although the control flowgraphs are informative, but causes inconveniency while 
working. 

 Control flowgraph structure is similar to many programming structures and is very 
difficult to differentiate.. 

        (b) Control Flowgraphs Versus Flowcharts 

 Flowchart is a graph which represents the control structure of the program, as well as the 
internal structure of each and every process or process block. 

 Control flowgraph is also a graph which represents the control structure of a program, but it 
excludes the detailed structure of process blocks. 

 All the steps inside a process are shown using flowchart in addition to the control flows, but 
control flowgraph considers all the steps as a  single process entity and shows only the 
control flows to and from that process entity. 

 Flowchart shows the internal flows of each process so, it is difficult to identify the actual 
control flows between different processes. 

 Whereas control flowgraphs shows the control and data flow only between processes, 
there by complexity is reduced. 

 Flowcharts had lost its importance because of the detailed information, it provides which is 
not in use for process design. 

 We can also use flowchart for representing the control and data flows in a traditional way 
and control flowgraphs as the modern approach for representation of flows. 

 Flowcharts can easily be drawn manually using available flowchart generators whereas 
control flowgraph can be drawn difficult. 

 In control flowgraphs, we don’t show the details of what is in a process block; indeed, the 
entire block, no matter how many statements in it, is shown as a single process.  

 In flowcharts, conversely, every part of the process block is drawn: if a process block 
consists of 100 steps, the flowchart may have 100 boxes. 

 Flowchart has a box to represent each and every process step which is not the case with 
control flowgraph, only the outline of process block is shown in control flowgraph. 

         (c) Notational Evolution 

 The control flowgraph is a simplified representation of the program’s structure. 
 To understand its creation and use, we’ll go through an example, written in a FORTRAN–

like program design language (PDL). 
 The code is given below. 
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           CODE* (PDL) 

 INPUT X,Y 

 Z:=X+Y 

 V:=X-Y 

               IF Z>=0 GOTO SAM 

               JOE:Z:=Z-1 

               SAM:Z:=Z+V 

 FOR U=0 TO Z 

               V(U),U(V):=(Z+V)*V 

 IF V(U)=0 GOTO JOE 

               Z:=Z-1 

               IF Z=0 GOTO ELL 

               U:=U+1 

               NEXT U 

               V(U+1)+U(V-1) 

               ELL:V(U+U(V)):=U+V 

               END 

 One-to-one Flowchart for the above code is given by 
 
            YES 
 
 
`            NO 
 
 
 
 
 
 
  
.                  yes 

            

            NO 

                                            NO                  NO 

```` 

                                   YES                                                     YES 

 

 

 

 

INPUT X,Y Z=X+Y V=X-Y Z>=0       

    ? 

 

SAM 

 

JOE 

 

SAM 
Z=Z-1 Z=Z+V U=0 

 

LOOP 

 

LOOP V(U)=(Z+V)*U U(V)=(Z+V)*U 
V(U)

=0 ? 

 

JOE 

Z=Z-1 Z=0 

? 
U=U+1 U=Z 

? 
U=U+1 

 

LOOP 

V(U-1)=V(U+1)+U(V-1) 
 

ELL 
V(U+U(V))=U+V 

 

END 
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 Control flowgraph for the above example is given by 

                                                           NO 

  

         YES 

              YES 

 

                 NO 

 

                  NO 

                                                                                 NO 

 

                                                                        YES 

 

 

         (d) Flowgraph–Program Correspondence 

 A flowgraph is a pictorial representation of a program and not the program itself. 
 We can’t always associate the parts of a program in a unique way with flowgraph parts 

because many program structures, such as IF–THEN–ELSE constructs, consist of a 
combination of decisions, junctions, and processes. 

 Furthermore, the translation from a flowgraph element to a statement and vice versa is not 
always unique. 

 A FORTRAN DO has three parts: a decision, an end–point junction, and a process that 
iterates the DO variable. 

 The FORTRAN IF–THEN–ELSE has a decision, a junction, and three processes (including 
the processing associated with the decision itself). 

 Therefore, neither of these statements can be translated into a single flowgraph element. 
 Some computers have looping, iterating, and EXECUTE instructions or other instruction 

options and modes that prevent the direct correspondence between instructions and 
flowgraph elements. 

 Such differences are so familiar to us that we often code without conscious awareness of 
their existence. 

 It is, however, important that the distinction between a program and its flowgraph 
representation be kept in mind during test design. 

PROCESS 1 
Z>=0      

    ? 

JOE 
PROCESS 2 

SAM 

 

LOOP PROCESS 3 PROCESS 4 
V(U)

=0 ?      

    ? 

PROCESS 7 

U=Z 

    ? PROCESS 6 
Z=0  

?  PROCESS 5 

END 

SAM 

PROCESS 9 
ELL 

PROCESS 8 
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 An improper translation from flowgraph to code during coding can lead to bugs, and an 
improper translation (in either direction) during test design can lead to missing test cases 
and consequently, to undiscovered bugs. 

         (e) Flowgraph and Flowchart Generation 

 The control flowgraph is a simplified version of the earlier flowchart. 
 Flowcharts can be (1) hand–drawn by the programmer, (2) automatically produced by a 

flowcharting program based on a mechanical analysis of the source code, or (3) 
semiautomatically produced by a flowcharting program based in part on structural analysis 
of the source code and in part on directions given by the programmer. 

 The semiautomatic flowchart is most common with assembly language source code. 
 A flowcharting package that provides controls over how statements are mapped into 

process boxes can be used to produce a flowchart that is reasonably close to the control 
flowgraph. 

 You do this by starting process boxes just after any decision or GOTO target and ending 
them just before branches or GOTOs. 

 (iii) Path Testing: 
        (a) Paths, Nodes, and Links 

 A path through a program is a sequence of instructions or statements that starts at an 
entry, junction, or decision and ends at another, or possibly the same, junction, decision, or 
exit. 

 A path may go through several junctions, processes, or decisions, one or more times. 
 Every path consists of a set of processes known as links. 
 A direct connection between two nodes is also called a “process”. 
 Links can be denoted by an arrow and can represented by the lower case letters. 
 A path segment is a succession of consecutive links that belongs to some path. 
 The length of a path is measured by the number of links in it and not by the number of 

instructions or statements executed along the path. 
 An alternative way to measure the length of a path is by the number of nodes traversed. 
 Nodes are mainly denoted by small circles. A node which has more than one input link is 

known as a junction, and a node which has more than one output link is referred to as a 
decision. 

 Nodes can be labeled by an alphabets or numbers. 
 If programs are assumed to have an entry and an exit node, then the number of links 

traversed is just one less than the number of nodes traversed. 
 Because links are named by the pair of nodes they join, the name of a path is the name of 

the nodes along the path. 
 f 
 
 
  a   b     c                  d                e 
 
 
 There are two different paths from an entry (A) to an exit (B), they are ACDEFB and 

ACDFB respectively. In these two ACDFB is the shortest path between an entry and an 
exit. 

 In all the nodes (A,B,C,D,E,F), D is the decision which has 2 output links, and F is a 
junction which has two input links. 

 The a,b,c,d,e,f are all the available links. 
 

A E C B D F 
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         (b) Multi–Entry/Multi–Exit Routines 

 Multi-entry means, multiple entry points and multi-exit refers to multiple exit points. 
 Generally all routines and programs have a single entry and a single exit. 
 There are certain situations in which it is appropriate to change the routine and choose an 

alternate way to normal control structure. 
 There is no justifiable reason which forces you to change the routine. 
 You may want to choose an alternate routine, when an illegitimate condition occur and will 

damage the system’s data, if that path is continued further. 
 The other reason might be the occurrence of several fluctuations during the processing of 

same path. 
 Hence changing of route is advantageous in such situations by placing an entry point in a 

routine which sends the flow to appropriate location. 
 If a routine can have several different kinds of outcomes, then an exit parameter should be 

used. 
 As there is no direct connection between entry and exit so control flow is managed by 

reviewing the parameter values of entry and exit in both directions of the routine. 
 The main drawback of multi-entry and multi-exit routines is that all the test cases are 

difficult to cover because the control flow between various processes can’t be determined 
easily due to multiple entry and exit points. 

         (c) Fundamental Path Selection Criteria 

 There are many paths between the entry and exit of a typical routine. 
 Path selection mainly deals with the selection of an optimal path between its entry and exit. 
 If a routine contains decisions or loops inside it, then there will be more number of paths. 
 For example every decision doubles the number of potential paths, and every loop 

multiplies the number of potential paths by the number of different iteration values possible 
for the loop. 

 If a routine has one loop, each pass through that loop (once, twice, three times, and so on) 
constitutes a different path through the routine, even though the same code is traversed 
each time. 

 A lavish test approach might consist of testing all paths, but that would not be a complete 
test, because a bug could create unwanted paths or make mandatory paths unexecutable. 

 Complete testing involves 
  1.  Exercise every path from entry to exit.  
  2.  Exercise every statement or instruction at least once.  
  3.  Exercise every branch and case statement, in each direction, at least once.  
 If prescription 1 is followed then prescriptions 2 and 3 are automatically followed, but 

prescription 1 is impractical for most routines. 
  Example  yes 

 

  

    no 

  

 

 

 For X is less than zero, the output is X+A while X is greater than or equal to zero the output 
is X+2A because decision doubles the number of paths. 

 If we execute all the statements but not the branches in the above example we would get 
the bug. 

 

X<0 

   ? 

 

    X=X+A 
200     X=X+A 300 
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     yes 

 

  

    no 

  

 

 

 For the above example if X is less than zero the output is correct, but for any positive value 
the output will be X=X+A which is wrong. 

 A static analysis that is an analysis based on examining the source code or structure 
cannot determine whether a piece of code is or is not reachable. 

 Only a dynamic analysis that is an analysis based on the code’s behavior while running can 
determine whether code is reachable or not. 

         (d) Path–Testing Criteria 

 There are three path testing criteria. 
 The notation P1, P2, …, P∞ should alert you to the fact that there is an infinite number of 

such strategies, but even that’s insufficient to exhaust testing. 
               (i) Path Testing (P∞): 

 Path testing deals with the execution of paths if we have tested all the available control 
flow paths we have achieved 100% path coverage which is mostly impossible. 

 The word coverage refers to combinational value of 100% statement coverage and 
branch coverage. 

 It is represented as (C1 +C2), where C1 refers to statement coverage and C2 refers to 
branch coverage. 

 Hence this type of coverage is also referred as completed coverage. 
              (ii) Statement Testing (P1): 

 Statement testing deals with the execution of all the statements inside a program at 
least once. 

 The process of performing possible tests in order to achieve statement testing is called 
100% statement coverage. 

 Statement coverage is also known as 100% node coverage. 
 We denote this by C1.  

              (iii) Branch Testing (P2): 

 Branch testing deals with the execution of all the branches at least once in the program. 
 The process of performing possible tests in order to achieve branch testing is called 

100% branch coverage. 
 Branch coverage is also known as link coverage. 
 We denote branch coverage by C2. 

          (e) Common Sense and Strategies 

 Branch and statement coverage are accepted today as the minimum mandatory testing 
requirement. 

 Statement coverage is established as a minimum testing requirement in the IEEE unit test 
standard. 

 Statement and branch coverage have also been used for more than two decades as 
minimum mandatory unit test requirements for new code at IBM and other major computer 
and software companies. 

 The justification for insisting on statement and branch coverage isn’t based on theory but 
on common sense. 

X<0 

   ? 
200     X=X+A 300 
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 Also with our common sense, we can classify code with much probability of having bugs 
and code with less probability, separately. 

 Keeping the code with lower probability of bugs untested may not be wrong because this 
code will probably have less or no bugs. 

 The code with higher probability of bugs is tested thoroughly to remove all the bugs. Even if 
we are skipping some part of this code it will not create a big one because this portion is 
tested many times in the entire testing process. 

         (f) Which Paths 

 We must pick enough paths to achieve C1 + C2. 
 It’s better to take many simple paths than a few complicated paths. 
 An example of path selection is given below. 

 
                              a                    b                              c                        d                           e 

BEGIN                 END 
       YES 
 
        NO 
 
                    i                           h                        g                       f 
 
 
         l                          k                       j   (M=5) 
        YES                     NO                     YES 
 

       m    NO 

 As we trace the paths, create a table that shows the paths, the coverage status of each 
process, and each decision. 

 Start at the beginning and take the most obvious path to the exit—it typically corresponds 
to the normal path. 

 The most obvious path in above figure is (1,3,4,5,6,2), if we name it by nodes, or abcde if 
we name it by links. 

 Then take the next most obvious path, abhkgde. All other paths in this example lead to 
loops. 

 Take a simple loop first—building, if possible, on a previous path, such as abhlibcde. 
 Then take another loop, abcdfjgde. And finally, abcdfmibcde. 
 The above paths lead to the following table. 

 

PATHS DECISIONS 
  4                 6              7         9 

PROCESS-LINK 
a   b   c   d   e   f   g   h   i   j   k   l   m 

abcde YES YES    

abhkgde NO YES  NO  

abhlibcde NO,YES YES  YES  

abcdfjgde YES NO,YES YES   

abcdfmibcde YES NO,YES NO   

 

1 3 5 2 4 6 

10 4 5 6 
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 After you have traced a covering path set on the master sheet and filled in the table for 
every path, check the following. 

    1. Does every decision have a YES and a NO in its column? (C2)  
      2.  Has every case of all case statements been marked? (C2)  
      3.  Is every three–way branch (less, equal, greater) covered? (C2)  
      4.  Is every link (process) covered at least once? (C1)* 
 Select successive paths as small variations of previous paths. 
 Try to chance only one thing at a time that is only one decision’s outcome if possible. 
 It is better to have several paths, each differing by only one thing, than one path that covers 

more but along which several things change. 
 The abcd segment in the above example is common to many paths 

         (g) Path selection rules: 
     (a) Selection of simple path: 

 Select an entry/exit path which is simple and assign selected path with either nodes or 
links. 

    (b) Selection of additional paths: 
 After selection of simple path, the next obvious path is selected. 
 This method of selecting successive paths can be done by making small changes to the 

previous paths. 
 Unlike long and complex paths, various small paths are selected which involves gradual 

variations. 
 In path selection Select paths with no loops, Select shorter paths and Select simple and 

sensible paths. 
    (c) Selection of Non-functional Sensible paths: 

 Select additional paths in such a way that coverage is achieved through the non-
functional sensible paths. 

 This type of selection should be preferred only if coverage is essential. 
    (d) Meet the user Requirements: 

 All possible paths should be selected in order to meet the requirements of a user. 
 This process is repeated until statement (C1) and branch (C2) coverages are achieved. 
 During this process checking is carried out on each and every decision statement, 

branch covering, link covering etc. 
 Statement coverage and branch coverage (C1 +C2) does not support loop-related bugs. 

(iv) Loops: 
         (a)  The Kinds of Loops 

 There are three kinds of loops. 
 They are nested, concatenated and horrible loops. 

               (i) Cases for a Single Loop: 

 A single loop can be covered with two cases: looping and not looping. 
 The different cases for a single loop are 
 Case 1—Single Loop, Zero Minimum, N Maximum, No Excluded Values. 
 Case 2—Single Loop, Nonzero Minimum, No Excluded Values. 
 Case 3—Single Loops with Excluded Values. 

.   (ii) Nested Loops: 

 The nested loops are quite complicated i.e. a loop within another loop is known as 
nested loop. 

 It is very expensive to test the path which contains nested loop because of its 
complexity. 
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 If you had five tests for one loop, a pair of nested loops would require 25 tests, and 
three nested loops would require125. 

 To overcome this complexity we have to follow some steps. 
        1.  Start at the innermost loop. Set all the outer loops to their minimum values.  
          2.  Test the minimum, minimum + 1, typical, maximum – 1, and maximum for the  
    innermost loop, while holding the outer loops at their minimum–iteration–parameter 
    values. Expand the tests as required for out–of–range and excluded values.  
        3.  If you’ve done the outermost loop, GOTO step 5, ELSE move out one loop and set 
   it up as in step 2—with all other loops set to typical values.  
        4.  Continue outward in this manner until all loops have been covered.  

     5.  Do the five cases for all loops in the nest simultaneously. 
 This procedure works out to twelve tests for a pair of nested loops, sixteen for three 

nested loops, and nineteen for four nested loops. 
 Practicality may prevent testing in which all loops achieve their maximum values 

simultaneously.                 
 Example                    f                                                                                                                                                                                                                                                                                                

                                                                                                                                         

   a       b                                    c                                 d                    (M=3)

                            

                   g        

                                                                     f 

   a        b                    c                            d                                e     (M= 3)      

    (iii) Concatenated Loops: 

 Concatenated loops are the loops which reside one beside the other on the same path. 
 In other words, when there exits two adjacent loops on the same path such that, an exit 

of one loop serves as an entry point for the other loop, then the loops are said to be 
concatenated. 

 If the loops cannot be on the same path, then they are not concatenated and can be 
treated as individual loops. 

 If one loop’s repetition value depends on the repetition value of other loop and both lie 
on same path they can be termed as nested loops.                        

                                      i                                                    h                                                      g                                

                                                           

                 a                   b                            c                     d                              e                          (M=4) 

 

 

   

1 3 2 4 5 

1 3 2 5 6 4 

1 3 

2 

4 6 5 7 

e 
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   (iv) Horrible Loops: 

 If the loops cannot be on the same path, then they are not concatenated and can be 
treated as individual loops. 

 Horrible loops are the complexed of all the three loops. This complex structure of 
horrible loops makes it very difficult to be tested. 

 The design of test cases for horrible loops is indefinite and is too many to execute. 
Hence horrible loops must be avoided. 

 
                                                                 i 

 
       h 

             j`                                                               k 

 
  
                       a                                 b                         c                               d                    (M=5) 

                                           e 

                           f 
 
           g 

 

         (f) Loop–Testing Time 

 Any kind of loop can lead to long testing time, especially if all the extreme value cases are 
to be attempted (MAX – 1, MAX, MAX + 1). 

 This situation is obviously worse for nested and dependent concatenated loops. 
 In the context of real testing, most tests take a fraction of a second to execute, and even 

deeply nested loops can be tested in seconds or minutes. 
 The unreasonably long test execution times (i.e., hours or centuries) could indicate bugs in 

the software or the specification. 
 Consider nested loops in which testing the combination of extreme values leads to long test 

times. You have several options:  
1.  Show that the combined execution time results from an unreasonable or incorrect 
specification. Fix the specification.  
2.  Prove that although the combined extreme cases are hypothetically possible, they are 
not possible in the real world. That is, the combined extreme cases cannot occur.  
3.  Put in limits or checks that prevent the combined extreme cases. Then you have to test 
the software that implements such safety measures.  
4.  Test with the extreme–value combinations, but use different numbers.  

(v) More on Testing Multi–Entry/Multi–Exit Routines: 
         (a)  A Weak Approach 

 To test the program with multi-entry and multi-exit routines are as follows. 
 First, built the fictitious single entry routine and fictitious exit routine with fictitious case 

statements and processes respectively. 
 Secondly concentrate on fictitious common junction. This fictitious code will help you to 

organize the test case design for multi-entry and multi-exit routines. 
 This technique involves a lot of extra work because you must examine the cross-reference 

listings to find all references to the labels that correspond to the multiple entries. 
 All the designers of routines should know how they want to exit, but it’s difficult to control an 

entry that can be initiated by many other programmers. 
 The Conversion of Multi-exit or Multi-entry routines is given by the following figures. 

1 4 2 3 5 

6 7 

8 
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 (i) A Multi-entry routine is converted to an equivalent single-entry routine with an entry   
     parameter and a controlling case statement. 

 
 
 
 
 
            CASE 
 
 
 
 
 
 
 
 
 

 (ii) A Multi-exit routine is converted to an equivalent single-exit routine with an exit        
      parameter. 

 
 
 
 
 
 
  

 

 

          

 

 

 

(b) The Integration Testing Issue 

 Treating the multi–entry/multi–exit routine by using a fictional entry case statement and a 
fictional exit parameter is a weak approach because it does not solve the essential testing 
problem. 

 The essential problem is an integration testing issue and has to do with paths within called 
components. 

 For example we have a multi–entry routine with three entrances and three different callers. 
The first entrance is valid for callers A and B, the second is valid only for caller A, and the 
third is valid for callers B and C. 

 Just testing the entrances doesn’t do the job because in integration testing it’s the interface, 
the validity of the call that must be established. 

 In integration testing, we would have to do at least two tests for the A and B callers—one 
for each of their entrances. Note also that, in general, during unit testing we have no idea 
who the callers are to be. 

BEGIN 1 

BEGIN 2 

 

BEGIN N 

 

BEGIN 1 1 

2 

N 

EXIT 1 

EXIT 2 

EXIT N 

1 

2 

N 

SET E=1 

SET E=2 

SET E=N 

 EXIT 

1 
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 Multi-entry components are shown in the following figure. 
 

                     VALID FOR CALLER A,B 

                         VALID FOR CALLER  A 

                               VALID FOR CALLER B,C 

 Multi-exit routine is shown in the following figure. 
 

                                                                  (1) VALID ONLY FOR X 

CALLED BY X,Y                                              (2)  VALID FOR X OR Y                             

           (3) VALID ONLY FOR Y 

 The above multi-exit routine has three exits labeled 1, 2, and 3. 
 It can be called by components X or Y. Exits 1 and 2 are valid for the X calls and 2 and 3 

are valid for the Y calls. 
 Component testing must not only confirm that exits 1 and 2 are taken for the X calls, but 

that there are no paths for the X calls that lead to exit 3—and similarly for exit 1 and the Y 
calls. 

 But when we are doing unit tests, we do not know who will call this routine with what 
restrictions. As for the multi–entry routine, we must establish the validity of the exit for every 
caller. 

 Note that we must confirm that not only does the caller take the expected exit, but also that 
there is no way for the caller to return via the wrong exit. 

 When we combine the multi–entry routine with the multi–exit routine, we see that in 
integration testing we must examine every combination of entry and exit for every caller. 

 Since we don’t know, during unit design, which combinations will or will not be valid, unit 
testing must at least treat each such combination as if it were a separate routine. 

 Thus, a routine with three entrances and four exits results in twelve routines’ worth of unit 
testing. 

 Integration testing is made more complicated in proportion to the number of exits, or 
fourfold. 

         (c) The Theory and Tools Issue 

 A well-formed software is a software, which has single entry and single exit with a rigid 
structure. 

 Software which does not have this property is called ill-formed. 
 The other characteristic of well–formed software is to insist on strict structuring in addition 

to single–entry/single–exit. 
 An assumption that multi-entry and multi-exit routines can’t occur in testing theory has been 

followed. 
 Such multi-entry and multi-exit routines come under ill formed routines. 
 Before applying the theoretical rules, it is better to confirm whether the software is well-

formed or ill-formed. 
 Ill-formed (multi-entry and multi-exit) software does not have any structure so, testing of 

one component does not guarantee the test results for another. 
 Even test generators may not be able to generate test cases for ill-formed software. 
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         (d) Strategy Summary 

The proper way to test multi–entry or multi–exit routines is:  
1.  Get rid of them.  
2.  Completely control those you can’t get rid of.  
3.  Supply the imaginary input case statements, and exit parameters to control flowgraph in  
     order to design test cases for these routines.  
4.  Do stronger unit testing by treating each and every entry/exit combination considered as a   
     completely different routine.  
5.  Multi-entry and multi-exit routines are assumed to be more unusual and dangerous so,  
     integration testing is performed with more efforts and concentration.  
6.  Be sure you understand that test cases designed based on your assumption are suitable for   

  multi-entry and multi-exit routines.  

(vi) Effectiveness of Path Testing: 
         (a) Effectiveness and Limitations 

 Unit testing is comparatively stronger than path testing which is stronger than statement 
and branch testing. 

 Unit testing can catch up to 65% of bugs in overall structure, this implies that path testing 
captures approximately 35% of bugs in the overall structure as per statistical reports. 

 Path testing is more effective for unstructured than for structured software. 
 Apart from effectiveness, path testing also has certain limitations. 

1.  Planning to cover does not mean you will cover. Path testing may not cover if you have  
     bugs.  
2.  Path testing has to be combined with other methods to improve the overall performance in   
     terms of percentage.  
3.  Unit level path testing does not concentrate on integration issues which may result in  
     interface errors.  
4.  Database and data–flow errors may not be caught.  
5.  Illegitimate functions or missed functions cannot be identified during path testing.  
6.  Not all initialization errors are caught by path testing.  
7.  Specification errors can’t be caught.  

          (b) A Lot of Work? 

 Path testing involves a lot of work that is. 
 Development of control flowgraph. 
 Choosing a route that can cover all the paths, decisions and junctions in a flowgraph. 
 Determining the input values which satisfies each path expression for selecting the 

respective paths. 
 Writing test cases for loops.  

 The statistics indicate that you will spend half of your time testing and debugging—
presumably that time includes the time required to design and document test cases. 

 Furthermore, the act of careful, complete, systematic, test design will catch as many bugs 
as the act of testing. 

 It is worth that, the test design process, at all levels, and is at least as effective at catching 
bugs as is running the test designed by that process. 

         (c)More on How to Do It 

 To trace the path from your code, you need a marking pen, a copying machine and a 
source code list. 

 At first you may want to create the control flowgraph and use that as a basis for test design, 
but as you gain experience with practice, you’ll find that you can select the paths directly on 
the source code without bothering to draw the control flowgraph. 
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 If you can path trace through code for debugging purposes then you can just as easily trace 
through code for test design purposes. 

 And if you can’t trace a path through code, are you a programmer then you do it with code 
almost the same way as you would with a pictorial control flowgraph. 

 Choose your path and mark only the executed statements in case of “if-then-else 
statements”. 

 Also mark all the ongoing statements on a path with a marking pen by doing this you will 
accomplish C1. 

 Place or draw your marking on a master sheet with the marking pen (yellow). 
 For achieving C2 we need to identify and mark all the statements irrespective of its 

execution even for the if-then-else statements. 

 (vii) Variations: 
 Branch and statement coverage as basic testing criteria are well established as effective, 

reasonable, and easy to implement. 
 There are two main classes of variations:  

1.  Strategies between P2 and total path testing.  
 2.  Strategies weaker than P1 or P2. 
 The stronger strategies typically require more complicated path selection criteria, most of 

which are impractical for human test design. 
 Typically, the strategy has been embedded in a tool that either selects a covering set of 

paths based on the strategy or helps the programmer to do so. 
 While research can show that strategy A is stronger than B in the sense that all tests 

generated by B are included in those generated by A, it is much more difficult to ascertain 
cost–effectiveness. 

 For example, if strategy A takes 100 times as many cases to satisfy as B, the effectiveness 
of A would depend on the probability that there are bugs of the type caught by A and not by 
B. 

 We have almost no such statistics and therefore we know very little about the pragmatic 
effectiveness of this class of variations. 

 As an example of how we can build a family of path–testing strategies, consider a family in 
which we construct paths out of segments that traverse one, two, or three nodes or more. 

 If we build all paths out single–node segments P1 (hardly to be called a “path,” then we 
have achieved C1. If we use two–node segments (e.g., links = P2) to construct paths, we 
achieve C2. 

(2) Predicates, Path Predicates, and Achievable Paths:  

(i) General 

 Selecting a path does not mean that it is achievable.  
 If all decisions are based on variables whose values are independent of the processing and 

of one another, then all combinations of decision outcomes are possible (2n outcomes for n 
binary decisions) and all paths are achievable: in general, this is not so. 

 Every selected path leads to an associated boolean expression, called the path predicate 
expression, which characterizes the input values (if any) that will cause that path to be 
traversed. 

(ii) Predicates 
(a) Definition and Examples 

 The direction taken at a decision depends on the value of decision variables. 
  For binary decisions, decision processing ultimately results in the evaluation of a logical 

(i.e., boolean) function whose outcome is either TRUE or FALSE. 
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 Although the function evaluated at the decision can be numeric or alphanumeric, when the 
decision is made it is based on a logical function’s truth value. 

 The logical function evaluated at a decision is called a predicate. 
 That is Predicate is a function which is logically executed during the decision processing. 
 The result of this function decides the direction of flow. 
Example 

 “A is greater than zero,” “the fifth character has a numerical value of 31,” “X is either 
negative or equal to 10,” “X + Y = 3Z2 – 44,” “Flag 21 is set.”. 

 Every path corresponds to a succession of TRUE/FALSE values for the predicates 
traversed on that path. 

 As an example: 
“ ‘X is greater than zero’ is TRUE.”  
AND  
“ ‘X + Y = 3Z2 – 44’ is FALSE.”  
AND  
“ ‘W is either negative or equal to 10’ is TRUE.”  

 is a sequence of predicates whose truth values will cause the routine to take a specific path. 
A predicate associated with a path is called a path predicate. 

(b) Multiway Branches 

 The path taken through a multiway branch such as computed GOTO’s (FORTRAN), case 
statements (Pascal), or jump tables (assembly language) cannot be directly expressed in 
TRUE/FALSE terms. 

 Although it is possible to describe such alternatives by using multivalued logic, an easier 
expedient is to express multiway branches as an equivalent set of IF . . . THEN . . . ELSE 
statements. 

 For example, a three–way case statement can be written as:  
IF case=1 DO A1 ELSE 
(IF case=2 DO A2 ELSE DO A3 ENDIF) ENDIF  

 The translation is not unique because there are many ways to create a tree of IF . . . THEN 
. . . ELSE statements that simulates the multiway branch. 

  We treat multiway branches this way as an analytical convenience in order to talk about 
testing. 

 we don’t replace multiway branches with nested IF’s just to test them. 
(c)Inputs 

 In testing, the word input is not restricted to direct inputs, such as variables in a subroutine 
call, but includes all data objects referenced by the routine whose values are fixed prior to 
entering it. 

 for example, inputs in a calling sequence, objects in a data structure, values left in a 
register. 

 Although inputs may be numerical, set members, boolean, integers, strings, or virtually any 
combination of object types, we can talk about data as if they are numbers. 

         (iii) Predicate Expressions 
         (a) Predicate Interpretation 

 Predicate interpretation refers to the process of expressing the predicate in terms of the 
given input vector by performing various symbolic replacement of operations. 

 For example if X1 and X2 are inputs, the predicate might be “X1 + X2 > 0”. 
 Now let the value of X2 be given using another predicate as X2:=Y+5 
 The substitution of X2 value in the first predicate gives you another predicate which is 

X+Y+5 > 0. This process is known as predicate interpretation. 

www.Jntufastupdates.com



Software Testing Methodologies Unit I 

Page 49 

 The path predicates are the specific form of the predicates of the decisions along the 
selected path after interpretation. 

 (b) Independence and Correlation of Variables and Predicates 
 The path predicates take on truth values (TRUE/FALSE) based on the values of input 

variables, either directly (interpretation is not required) or indirectly (interpretation is 
required). 

 If a variable’s value does not change as a result of processing, that variable is independent 
of the processing. 

 Conversely, if the variable’s value can change as a result of the processing the variable is 
process dependent. 

 Similarly, a predicate whose truth value can change as a result of the processing is said to 
be process dependent and one whose truth value does not change as a result of the 
processing is process independent. 

 Process dependence of a predicate does not always follow from dependence of the input 
variables on which that predicate is based. 

 For example, the input variables are X and Y and the predicate is “X + Y = 10”. 
 The processing increments X and decrements Y. 
 Although the numerical values of X and Y are process dependent, the predicate “X + Y = 

10” is process independent. 
 Variables, whether process dependent or independent, may be correlated to one another. 
 Two variables are correlated if every combination of their values cannot be independently 

specified. 
 Variables whose values can be specified independently without restriction are uncorrelated. 
 By analogy, a pair of predicates whose outcomes depend on one or more variables in 

common (whether or not those variables are correlated) are said to be correlated 
predicates. 

         (c) Path Predicate Expressions 

 Path predicate expressions are the collection of expressions that must be fulfilled in order 
to achieve the desired path. 

 This collection of expressions is satisfied based on input values provided. 
 These input values must meet all the expressions. If all the expressions are met then the 

path is chosen else the path is rejected. 
 This is shown by means of an example 

   X1 =18 
   X2 +5 X3 +2>0 
   X4 – X2 >=10 X3   
   Let the input values of X2, X3, X4 be 2,1,12 respectively. 
  Substituting the values in above predicates, we get 
  X1 =18 
  X2 +5 X3 +2=2+5*1+2=9 >0 
  X4 – X2 >=10 X3    i.e. 12-2 >=10(1)    i.e. 10 >=10 

 All the conditions appear to be correct as per the values so this path can be chosen.  

        (iv) Predicate Coverage 
        (a) Compound Predicates 

 Most programming languages permit compound predicates at decisions—that is, 
predicates of the form A .OR. B or A .AND. B. and more complicated boolean expressions. 

 The branch taken at such decisions is determined by the truth value of the entire boolean 
expression. 

 Simply the compound predicate is the combination of two predicates. 
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 Even if a given decision’s predicate is not compound, it may become compound after 
interpretation because interpretation may require us to carry forward a compound term. 

         (b) Predicate Coverage 

 Predicate coverage is the process of testing all the truth values related to a specific path in 
all the possible ways. 

 If all the values are tested in all possible directions then we can say that 100% predicate 
coverage is achieved which needs lots of efforts. 

 Predicate coverage is slightly comparable to path coverage and is much powerful than the 
branch coverage. 

 If we are using a compound predicate then predicate coverage involves testing of both the 
predicates in any order. 

         (v) Testing Blindness 
         (a) The Problem 

 Blindness is a situation which results in the correct path via wrong route unintentionally. 
 Testing blindness is a pathological situation in which the desired path is achieved for the 

wrong reason. 
 It can occur because of the interaction of two or more statements that makes the buggy 

predicate “work” despite its bug and because of an unfortunate selection of input values 
that does not reveal the situation. 

 There are three kinds of predicate blindness: assignment blindness, equality blindness, and 
self–blindness 

         (b) Assignment Blindness 

 Assignment blindness comes into consideration when both the predicates irrespective of 
their correctness are satisfied by a value assigned to the assignment statement. 

 Assignment blindness may also lead to wrong path selection. 
 

Correct  Buggy (Incorrect) 

X := 7 X := 7 

..... ..... 

IF Y > 0 THEN IF X + Y > 0 THEN 

 If the test case sets Y := 1 the desired path is taken in either case, but there is still a bug. 
 Some other path that leads to the same predicate could have a different assignment value 

for X, so the wrong path would be taken because of the error in the predicate. 
         (c)Equality Blindness 

 Equality blindness occurs when the path selected by a prior predicate results in a value that 
works both for the correct and buggy predicate. 

Correct  Buggy  

IF Y = 2 THEN. . . IF Y = 2 THEN. . . 

..... ..... 

IF X + Y > 3 THEN. . . IF X > 1 THEN. . . 

 The first predicate (IF Y = 2) forces the rest of the path, so that for any positive value of X, 
the path taken at the second predicate will be the same for the correct and buggy versions. 

        (d) Self–Blindness 

 Self–blindness occurs when the buggy predicate is a multiple of the correct predicate and 
as a result is indistinguishable along that path. 
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Correct  Buggy  

X := A X := A 

..... ..... 

IF X – 1 > 0 THEN... IF X + A – 2 > 0 THEN 

 The assignment (X := A) makes the predicates multiples of each other (for example,  
      A – 1 > 0 and 2A – 2 > 0), so the direction taken is the same for the correct and buggy    
      version. 

(3) Path Sensitizing:  
         (i) Review :Achievable and Unachievable Paths. 

 In order to accomplish test completeness (i.e. C1 or C2 ) for sufficient paths the procedure is 
as follows. 
1. Extract the programs control flowgraph and select a set of tentative covering paths. 
2. After path selection, determine the predicates for all paths that exist in the selected path 

set. This makes the basic nature of each predicate compound. 
3. In order to achieve a Boolean expression, the path is traced by multiplying the individual 

compound predicates. For instance, let the compound predicate be 
 (A+BC)(D+E)(FGH)(IJ)(K)(L)  
  where the terms in the parentheses are the compound predicates met at each 
  decision along the path and each letter (A,B,…) stands for simple predicates. 
4. The Boolean expression is converted into SOP (Sum of Products) format by multiplying 

the terms in the given expression as follows 
 ADFGHIJKL + AEFGHIJKL + BCDFGHIJKL + BCEFGHIJKL 

 Path predicate expressions are the collection of expressions that must be fulfilled in order 
to achieve the desired path. 

 If all the expressions are met then the path is achievable else the path is not achievable. 
 The act of finding a set of solutions to the path predicate expression is called path 

sensitization. 
        (ii) Pragmatic Observations 

 The purpose of the above discussion has been to explore the sensitization issues and to 
provide insight into tools that help us sensitize paths. 

 If in practice you really had to do the above in the manner indicated then test design would 
be a difficult procedure suitable only to the mathematically inclined. 

 It doesn’t go that way in practice: it’s much easier 
         (iii) Heuristic Procedures for Sensitizing Paths 

 Heuristic procedures are the most optimistic ways for sensitizing paths. 
 The first preference for selecting a path must be given to the paths which can be easily 

sensitized there by delaying the paths whose solution to the path predicate expression is 
difficult to obtain. 

 This convention is followed just for the sake of coverage. Heuristic procedures for path 
sensitization involve discovery and problem solving using past experience and reasoning. 

1.  All the process dependent process independent and correlated input variables are first 
determined and classified accordingly. Show the type of relation that is (logical, arithmetic, 
functional) and dependency by means of equations for the correlated and dependent 
variables respectively.  
2.  After classifying the variables, determine and classify the predicates depending on the 
input variables into dependent, independent or correlated predicates and also show the type 
of relation that exists among them.  
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3.  Consider the uncorrelated and independent predicates for selection or path. During the 
selection, if you have found any dependent predicate, then there may be a classification error 
or there might be a bug or complete path coverage is not yet achieved.  
4.  Now, consider the correlated and independent predicates if they are not covered then 
start considering the dependent and uncorrelated, predicates. If the complete coverage is not 
yet accomplished then move on to the last selection i.e. consider correlated, dependent 
variables.  
5.  Display all the input variables, its values, relationship among the variables, type of links 
for all independent, dependent and correlated variables respectively of every selected path.  
6.  Every path will produce some set of inequalities, which must be met in order to select that 
path.  

            (iv) Examples 
           (a) Simple, Independent, Uncorrelated Predicates 

 

 

 

 

 

 

 

 Consider the independent, uncorrelated predicates. 
 The uppercase letters in the decision boxes of the above figure represent the predicates. 
 There are four decisions in this example and, consequently, four predicates.  
 False predicates are denoted by a bar on the variable. True predicates are represented by 

the variables without any bar over them. 
 From the above figure, we can retrieve the entire covering path and the predicate values 

which can be represented as follows. 
     Path                       Predicate values 
                                             abcdef                          AC 
              aghcimkf                      ABCD 
              aglmjef                        ABD 
 Using a few more but simpler paths with fewer changes to cover the same flowgraph is 
               Path                       Predicate values 
                                             abcdef                          AC 
              abcimjef                       ACD 
              abcimkf                       ACD 
              aghcdef                       ABC 
              aglmkf                         ABD 

         

 

 

1 4 6 7 2 A C 

B 

9 D 
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 (b) Correlated, Independent Predicates 

 
 
 
 
 
 
 
 
 
 The two decisions in the above figure are correlated because they used the identical 

predicate (A). 
 If you picked paths abdeg and acdfg, which seem to provide coverage, you would find that 

neither of these paths is achievable. 
 If the A branch (c) is taken at the first decision, then the A branch (e) must also be taken at 

the second decision. 
 There are two decisions and therefore a potential for four paths, but only two of them, abdfg 

and acdeg, are achievable. 
 

 

 

 

 

 

 The flowgraph can be replaced with the above figure, in which we have reproduced the 
common code, or alternatively, we can embed the common link d code into a subroutine. 

         (c) Dependent Predicates 

 Finding sensitizing values for dependent predicates may force you to “play computer.” 
 Usually, and thankfully, most of the routine’s processing does not affect the control flow and 

consequently can be ignored. 
 Simulate the computer only to the extent necessary to force paths.  
 Loops are the most common kind of dependent predicates; the number of times a typical 

routine will iterate in the loop is usually determinable in a straightforward manner from the 
input variables’ values.  

 Consequently it is usually easy to work backward to determine the input value that will force 
the loop a specified number of times 

         (d) The General Case 

 There is no simple procedure for the general case. It is easy to state the steps involved but 
much harder to accomplish them. 

1.  Select cases to provide coverage on the basis of functionally sensible paths. If the routine 
is well structured, you should be able to force most of the paths without deep analysis. 
Intractable paths should be examined for potential bugs before investing time solving 
equations or whatever you might have to do to find path–forcing input values.  

1 A 4 A 6 2 

1 A 6 2 

4 5 

4 5 
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2.  Tackle the path with the fewest decisions first. Give preference to non looping paths over 
looping paths.  
3.  Start at the end of the path and not the beginning. Trace the path in reverse and list the 
predicates in the order in which they appear. The first predicate (the last on the path in the 
normal direction) imposes restrictions on subsequent predicates (previous when reckoned in 
the normal path direction). Determine the broadest possible range of values for the predicate 
that will satisfy the desired path direction.  
4.  Continue working backward along the path to the next decision. The next decision may be 
restricted by the range of values you determined for the previous decision (in the backward 
direction). Pick a range of values for the affected variables as broad as possible for the 
desired direction and consistent with the set of values thus far determined.  
5.  Continue until you reach the entrance and therefore have established a set of input 
conditions for the entire path.  

        (4) Path Instrumentation:  

(i) Coincidental Correctness: 

 Coincidental Correctness is described as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Since the test outcome is considered as a part of design process, the test is made to run 
for comparing the actual outcome with the desired outcome. 

 Even if the desired outcome is equal to the actual outcome, only some of the conditions are 
satisfied by the test which are not sufficient enough. 

 This type of condition is named as coincidental correctness. 
 Simply it can be defined as a condition in which we check whether the expected outcome of 

a test is generated truly. 
 For instance, the coincidental correctness is represented as follows. 
 Let us consider an input variable X with an initial value 16 (X=16) which produces a single 

outcome Y with a value 2 (Y=2) no matter which case we select. 
 Therefore the tests chosen this way will not tell us whether we have achieved coverage. 
 For example, the five cases could be totally jumbled and still the outcome would be the 

same. 
 Path instrumentation is what we have to do to confirm that the outcome was achieved by 

the independent path.  
 

X:=16 CASE SELECT Y:=X-14 

Y:=2 

Y:=X/8 

Y:=log4(x) 

Y:=Xmod14 
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 (ii) Path Instrumentation. 

 Path instrumentation is a technique used for identifying whether the outcome of a test is 
achieved through the desired path or a wrong path. 

 Path instrumentation technique is another form of interpretive trace program, which will run 
each and every statement sequentially there by storing all labels and values of the 
statements covered for. 

 The trouble with traces is that they give us far more information than we need, which is of 
no use. 

 To overcome this drawback many different instrumentation methods have evolved. 
         (iii) Link Markers 

 A simple and effective form of instrumentation is called a traversal marker or link marker. 
 Name every link by a lowercase letter. Whenever a link is passed, it’s name is recorded in 

the marker.  
 The concatenation of the names of all the links starting from an entry to an exit gives the 

path name. 
 The single link marker may not serve the purpose, because there is every possibility of bug 

which may result in a new link in the middle of the link being traversed. 
 
 
 
 
 
 
 
` 
 
 
 We intended to traverse the ikm path, but because of a GOTO in the middle of the m link, 

we go to process B. 
 If coincidental correctness is against us, the outcomes will be the same and we won’t know 

about the bug. 
 The solution is to implement two markers per link: one at the beginning of each link and 

one at the end. 
 The two link markers now specify the path name and confirm both the beginning and end of 

the link.  
 The double link markers are shown in the following figure. 
 
 
 
 
 
 
 
 
` 
 

 
          

 

 ? PROCESS A PROCESS B 

PROCESS C PROCESS D ? 

 PROCESS A PROCESS B 

PROCESS C PROCESS D ? 

? 
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         (iv) Link Counters 

 Link counter is one of the instrumentation techniques which usually based on the concept 
of counters. 

 This method provides comparatively less information than interpretive trace method. 
 Link counter method of instrumentation follows same procedure as that of link marker but 

make use of counters instead of using labels for each link which has executed. 
 Counters in this method goes on increasing with respect to each link traversed. 
 Single counter may not serve the purpose so, we move little deeper and introduce a 

separate counter for every link. 
 With this in practice, we can cross check the total link count against the expected path 

length. 
 This format is not reliable because there is every possibility of having a bug, which may 

result in a new link in the middle of the link being traveled. 
 The same problem that led us to double link markers also leads us to double link counters. 

          (iv) Other Instrumentation Methods. 

 The methods you can use to instrument paths are limited only by your imagination. Here’s 
 a sample:  
1.  Mark each link by a unique prime number and multiply the link name into a central 
register. The path name is a unique number and you can recapture the links traversed by 
factoring.  
2.  Use a bit map with a single bit per link and set that bit when the link is traversed. 
3.  Use a hash coding scheme over the link names, or calculate an error–detecting code over 
the link names, such as a check sum.  
4.  Use your symbolic debugger or trace to give you a trace only of subroutine calls and 
return.  
5.  Set a variable value at the beginning of the link to a unique number for that link and use 
an assertion statement at the end of the link to confirm that you’re still on it.  

 Every instrumentation probe (marker, counter) you insert gives you more information, but 
with each probe the information is further removed from reality. 

           (vi) Implementation 

 For unit testing, path instrumentation and verification can be provided by a comprehensive 
test tool that supports your source language. 

 It is easiest to install probes when programming in languages that support conditional 
assembly or conditional compilation. 

 The probes are written in the source code and tagged into categories. Both counters and 
traversal markers can be implemented, and one need not be parsimonious with the number 
and placement of probes because only those that are activated for that test will be compiled 
or assembled. 

 For any test or small set of tests, only some of the probes will be active. Rarely would you 
compile with all probes activated and then only when all else failed. 

    (5) Implementation and Application of path testing:  

 Path testing is a process which involves all the available paths in a program from an entry 
to an exit in such a way that the entire path is thoroughly tested. 

 Path testing implementation and application can be categorized as follows. 
         (i)  Integration, Coverage, and Paths in Called Components 

 Path–testing methods are mainly used in unit testing, especially for new software. 
 Classical unit testing mainly involves the use of stubs for replacement of all called 

components and corequisite components thereby testing the new component individually. 
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 Path testing process which is carried out at this phase is to analyze the control flow errors 
rather than focusing on bugs in called or corequisite components. 

 We then integrate the component with its called subroutines and corequisite components, 
one at a time, carefully probing the interface issues. 

 Once the interfaces have been tested, we retest the integrated component, this time with 
the stubs replaced by the real subroutines and corequisite component. 

 The component is now ready for the next level of integration. This bottom–up integration 
process continues until the entire system has been integrated. 

 Coverage issue arises since, subroutines and corequisite components are considered to be 
a part of the component and hence, increasing the complexity as large code need to be 
processed which makes path sensitization much difficult. 

 The main intention behind path testing is that, testing each level at any time increases the 
effectiveness of the test but the drawback associated with this approach is that it results in 
i.e. predicate coverage and blindness i.e. outcome of one level may not be compatible with 
the outcome of other consecutive levels. 

         (ii) New Code 

 The new code (components) has to be given higher priority for testing than the old trusted 
components. 

 Stubs are used where it is clear that the bug potential for the stub is significantly lower than 
that of the called component. 

 That means that old, trusted components will not be replaced by stubs. 
 Some consideration is given to paths within called components, but only to the extent that 

we have to do so to assure that the paths we select at the higher level is achievable. 
 Paths within the low level components are also tested, so that there should not be any un-

achievable path at higher level. 
 Typically, we’ll try to use the shortest entry/exit path that will do the job; avoid loops; avoid 

lower–level subroutine calls; avoid as much lower–level complexity as possible. 
 Unit testing must be automated in such a way, that it must perform the testing at each level 

of integration. 
         (iii) Maintenance 

 The maintenance situation is distinctly different. 
 Path testing will be carried out on the modified components but called and corequisite 

components will be kept unchanged. 
 If we have a configuration–controlled, automated, unit test suite, then path testing will be 

repeated entirely with such modifications as required to accommodate the changes. 
 Otherwise, selected paths will be chosen in an attempt to achieve C2 over the changed 

code. 
 As the maintenance methods are studied further a new methodology will be discovered, 

which will help us to achieve the desired coverage. 
         (iv) Rehosting 

 Rehosting is a process of transforming the old software environment into a new more 
friendly environment in which rehosted software can run cost effectively. 

 When used in conjunction with automatic or semiautomatic structural test generators, we 
get a very powerful, effective, rehosting process. 

 The objective of rehosting is to change the operating environment and not the rehosted 
software. 

 You cannot rehost the software, while performing changes in its environment i.e., the two 
things cannot be done simultaneously. 

 Rehosting can be done in the following ways. 
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 First, a translator from the old to the new environment is created and tested as any piece of 
software would be. The bugs in the rehosting process, if any, will be in the translation 
algorithm and the translator, and the rehosting process is intended to catch those bugs . 

 Second, a complete (C1 + C2) path test suite is created for the old software in the old 
environment.  

 Components may be grouped to reduce total testing labor and to avoid a total buildup and 
reintegration, but C1 + C2 is not compromised.  

 The suite is run on the old software in the old environment and all outcomes are recorded. 
 These outcomes serve as a guideline for rehosted software. The outcomes and test cases 

are adapted by the new environment with the help of another interpreter. 
 These adapted environment and software are integrated and retested. 
 This approach might be even more costly than building the new software, but it provides us 

with an environment which suites the requirements of software there by providing stable 
and reliable software base without bothering about the issues pertaining to software 
security. 
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