
DOMAIN TESTING:

DOMAINS AND PATHS:

 INTRODUCTION:

o Domain:In mathematics, domain is a set of possible values of

an independant variable or the variables of a function.

o Programs as input data classifiers: domain testing attempts to

determine whether the classification is or is not correct.

o Domain testing can be based on specifications or equivalent

implementation information.

o If domain testing is based on specifications, it is a functional

test technique.

o If domain testing is based implementation details, it is a

structural test technique.

o For example, you're doing domain testing when you check

extreme values of an input variable.

All inputs to a program can be considered as if they are

numbers. For example, a character string can be treated as

a number by concatenating bits and looking at them as if

they were a binary integer. This is the view in domain

testing, which is why this strategy has a mathematical

flavor.

 THE MODEL: The following figure is a schematic representation of

domain testing.

www.Jntufastupdates.com 1

Figure 4.1: Schematic Representation of Domain Testing.

o Before doing whatever it does, a routine must classify the

input and set it moving on the right path.

o An invalid input (e.g., value too big) is just a special

processing case called 'reject'.

o The input then passses to a hypothetical subroutine rather

than on calculations.

o In domain testing, we focus on the classification aspect of the

routine rather than on the calculations.

o Structural knowledge is not needed for this model - only a

consistent, complete specification of input values for each

case.

o We can infer that for each case there must be atleast one path

to process that case.

 A DOMAIN IS A SET:

o An input domain is a set.

o If the source language supports set definitions (E.g. PASCAL

set types and C enumerated types) less testing is needed

because the compiler does much of it for us.

o Domain testing does not work well with arbitrary discrete sets

of data objects.

o Domain for a loop-free program corresponds to a set of

numbers defined over the input vector.

 DOMAINS, PATHS AND PREDICATES:

o In domain testing, predicates are assumed to be interpreted in

terms of input vector variables.

o If domain testing is applied to structure, then predicate

interpretation must be based on actual paths through the

routine - that is, based on the implementation control

flowgraph.

o Conversely, if domain testing is applied to specifications,

interpretation is based on a specified data flowgraph for the

routine; but usually, as is the nature of specifications, no

interpretation is needed because the domains are specified

directly.

o For every domain, there is at least one path through the

routine.

o There may be more than one path if the domain consists of

disconnected parts or if the domain is defined by the union of

two or more domains.

o Domains are defined their boundaries. Domain boundaries are

also where most domain bugs occur.

www.Jntufastupdates.com 2

o For every boundary there is at least one predicate that

specifies what numbers belong to the domain and what

numbers don't.

For example, in the statement IF x>0 THEN ALPHA ELSE

BETA we know that numbers greater than zero belong to

ALPHA processing domain(s) while zero and smaller

numbers belong to BETA domain(s).

o A domain may have one or more boundaries - no matter how

many variables define it.

For example, if the predicate is x2 + y2 < 16, the domain is

the inside of a circle of radius 4 about the origin. Similarly,

we could define a spherical domain with one boundary but in

three variables.

o Domains are usually defined by many boundary segments and

therefore by many predicates. i.e. the set of interpreted

predicates traversed on that path (i.e., the path's predicate

expression) defines the domain's boundaries.

 A DOMAIN CLOSURE:

o A domain boundary is closed with respect to a domain if the

points on the boundary belong to the domain.

o If the boundary points belong to some other domain, the

boundary is said to be open.

o Figure 4.2 shows three situations for a one-dimensional

domain - i.e., a domain defined over one input variable; call it

x

o The importance of domain closure is that incorrect closure

bugs are frequent domain bugs. For example, x >= 0 when x

> 0 was intended.

www.Jntufastupdates.com 3

Figure 4.2: Open and Closed Domains.

 DOMAIN DIMENSIONALITY:

o Every input variable adds one dimension to the domain.

o One variable defines domains on a number line.

o Two variables define planar domains.

o Three variables define solid domains.

o Every new predicate slices through previously defined

domains and cuts them in half.

o Every boundary slices through the input vector space with a

dimensionality which is less than the dimensionality of the

space.

o Thus, planes are cut by lines and points, volumes by planes,

lines and points and n-spaces by hyperplanes.

 BUG ASSUMPTION:

o The bug assumption for the domain testing is that processing

is okay but the domain definition is wrong.

o An incorrectly implemented domain means that boundaries

are wrong, which may in turn mean that control flow

predicates are wrong.

o Many different bugs can result in domain errors. Some of

them are:

Domain Errors:

 Double Zero Representation :In computers or

Languages that have a distinct positive and negative

zero, boundary errors for negative zero are common.

www.Jntufastupdates.com 4

 Floating point zero check:A floating point number

can equal zero only if the previous definition of that

number set it to zero or if it is subtracted from it self

or multiplied by zero. So the floating point zero

check to be done against a epsilon value.

 Contradictory domains:An implemented domain

can never be ambiguous or contradictory, but a

specified domain can. A contradictory domain

specification means that at least two supposedly

distinct domains overlap.

 Ambiguous domains:Ambiguous domains means

that union of the domains is incomplete. That is

there are missing domains or holes in the specified

domains. Not specifying what happens to points on

the domain boundary is a common ambiguity.

 Overspecified Domains:he domain can be

overloaded with so many conditions that the result is

a null domain. Another way to put it is to say that the

domain's path is unachievable.

 Boundary Errors:Errors caused in and around the

boundary of a domain. Example, boundary closure

bug, shifted, tilted, missing, extra boundary.

 Closure Reversal:A common bug. The predicate is

defined in terms of >=. The programmer chooses to

implement the logical complement and incorrectly

uses <= for the new predicate; i.e., x >= 0 is

incorrectly negated as x <= 0, thereby shifting

boundary values to adjacent domains.

 Faulty Logic:Compound predicates (especially) are

subject to faulty logic transformations and improper

simplification. If the predicates define domain

boundaries, all kinds of domain bugs can result from

faulty logic manipulations.

 RESTRICTIONS TO DOMAIN TESTING:Domain testing has

restrictions, as do other testing techniques. Some of them include:

o Co-incidental Correctness:Domain testing isn't good at

finding bugs for which the outcome is correct for the wrong

reasons. If we're plagued by coincidental correctness we may

misjudge an incorrect boundary. Note that this implies

weakness for domain testing when dealing with routines that

have binary outcomes (i.e., TRUE/FALSE)

o Representative Outcome:Domain testing is an example

of partition testing. Partition-testing strategies divide the

www.Jntufastupdates.com 5

program's input space into domains such that all inputs within

a domain are equivalent (not equal, but equivalent) in the

sense that any input represents all inputs in that domain. If the

selected input is shown to be correct by a test, then processing

is presumed correct, and therefore all inputs within that

domain are expected (perhaps unjustifiably) to be correct.

Most test techniques, functional or structural, fall under

partition testing and therefore make this representative

outcome assumption. For example, x2 and 2x are equal for x =

2, but the functions are different. The functional differences

between adjacent domains are usually simple, such as x + 7

versus x + 9, rather than x2 versus 2x.

o Simple Domain Boundaries and Compound

Predicates:Compound predicates in which each part of the

predicate specifies a different boundary are not a problem: for

example, x >= 0 AND x < 17, just specifies two domain

boundaries by one compound predicate. As an example of a

compound predicate that specifies one boundary, consider: x

= 0 AND y >= 7 AND y <= 14. This predicate specifies one

boundary equation (x = 0) but alternates closure, putting it in

one or the other domain depending on whether y < 7 or y >

14. Treat compound predicates with respect because they’re

more complicated than they seem.

o Functional Homogeneity of Bugs:Whatever the bug is, it

will not change the functional form of the boundary predicate.

For example, if the predicate is ax >= b, the bug will be in the

value of a or b but it will not change the predicate to ax >= b,

say.

o Linear Vector Space:Most papers on domain testing, assume

linear boundaries - not a bad assumption because in practice

most boundary predicates are linear.

o Loop Free Software:Loops are problematic for domain

testing. The trouble with loops is that each iteration can result

in a different predicate expression (after interpretation), which

means a possible domain boundary change.

 NICE AND UGLY DOMAINS:

 NICE DOMAINS:

o Where does these domains come from?

Domains are and will be defined by an imperfect iterative

process aimed at achieving (user, buyer, voter) satisfaction.

www.Jntufastupdates.com 6

o Implemented domains can't be incomplete or inconsistent.

Every input will be processed (rejection is a process),

possibly forever. Inconsistent domains will be made

consistent.

o Conversely, specified domains can be incomplete and/or

inconsistent. Incomplete in this context means that there are

input vectors for which no path is specified, and inconsistent

means that there are at least two contradictory specifications

over the same segment of the input space.

o Some important properties of nice domains are: Linear,

Complete, Systematic, Orthogonal, Consistently closed,

Convex and Simply connected.

o To the extent that domains have these properties domain

testing is easy as testing gets.

o The bug frequency is lesser for nice domain than for ugly

domains.

Figure 4.3: Nice Two-Dimensional Domains.

 LINEAR AND NON LINEAR BOUNDARIES:

o Nice domain boundaries are defined by linear inequalities or

equations.

o The impact on testing stems from the fact that it takes only

two points to determine a straight line and three points to

determine a plane and in general n+1 points to determine a n-

dimensional hyper plane.

www.Jntufastupdates.com 7

o In practice more than 99.99% of all boundary predicates are

either linear or can be linearized by simple variable

transformations.

 COMPLETE BOUNDARIES:

o Nice domain boundaries are complete in that they span the

number space from plus to minus infinity in all dimensions.

o Figure 4.4 shows some incomplete boundaries. Boundaries A

and E have gaps.

o Such boundaries can come about because the path that

hypothetically corresponds to them is unachievable, because

inputs are constrained in such a way that such values can't

exist, because of compound predicates that define a single

boundary, or because redundant predicates convert such

boundary values into a null set.

o The advantage of complete boundaries is that one set of tests

is needed to confirm the boundary no matter how many

domains it bounds.

o If the boundary is chopped up and has holes in it, then every

segment of that boundary must be tested for every domain it

bounds.

www.Jntufastupdates.com 8

Figure 4.4: Incomplete Domain Boundaries.

 SYSTEMATIC BOUNDARIES:

o Systematic boundary means that boundary inequalities related

by a simple function such as a constant.

o In Figure 4.3 for example, the domain boundaries for u and v

differ only by a constant. We want relations such as

where fi is an arbitrary linear function, X is the input

vector, ki and c are constants, and g(i,c) is a decent function

over i and c that yields a constant, such as k + ic.

o The first example is a set of parallel lines, and the second

example is a set of systematically (e.g., equally) spaced

parallel lines (such as the spokes of a wheel, if equally spaced

in angles, systematic).

o If the boundaries are systematic and if you have one tied

down and generate tests for it, the tests for the rest of the

boundaries in that set can be automatically generated.

 ORTHOGONAL BOUNDARIES:

o Two boundary sets U and V (See Figure 4.3) are said to be

orthogonal if every inequality in V is perpendicular to every

inequality in U.

o If two boundary sets are orthogonal, then they can be tested

independently

o In Figure 4.3 we have six boundaries in U and four in V. We

can confirm the boundary properties in a number of tests

proportional to 6 + 4 = 10 (O(n)). If we tilt the boundaries to

get Figure 4.5, we must now test the intersections. We've

gone from a linear number of cases to a quadratic: from O(n)

to O(n2).

www.Jntufastupdates.com 9

Figure 4.5: Tilted Boundaries.

Figure 4.6: Linear, Non-orthogonal Domain

Boundaries.

o Actually, there are two different but related orthogonality

conditions. Sets of boundaries can be orthogonal to one

another but not orthogonal to the coordinate axes (condition

www.Jntufastupdates.com 10

1), or boundaries can be orthogonal to the coordinate axes

(condition 2).

 CLOSURE CONSISTENCY:

o Figure 4.6 shows another desirable domain property:

boundary closures are consistent and systematic.

o The shaded areas on the boundary denote that the boundary

belongs to the domain in which the shading lies - e.g., the

boundary lines belong to the domains on the right.

o Consistent closure means that there is a simple pattern to the

closures - for example, using the same relational operator for

all boundaries of a set of parallel boundaries.

 CONVEX:

o A geometric figure (in any number of dimensions) is convex

if you can take two arbitrary points on any two different

boundaries, join them by a line and all points on that line lie

within the figure.

o Nice domains are convex; dirty domains aren't.

o You can smell a suspected concavity when you see phrases

such as: ". . . except if . . .," "However . . .," ". . . but not. . . ."

In programming, it's often the buts in the specification that

kill you.

 SIMPLY CONNECTED:

o Nice domains are simply connected; that is, they are in one

piece rather than pieces all over the place interspersed with

other domains.

o Simple connectivity is a weaker requirement than convexity;

if a domain is convex it is simply connected, but not vice

versa.

o Consider domain boundaries defined by a compound

predicate of the (boolean) form ABC. Say that the input space

is divided into two domains, one defined by ABC and,

therefore, the other defined by its negation .

o For example, suppose we define valid numbers as those lying

between 10 and 17 inclusive. The invalid numbers are the

disconnected domain consisting of numbers less than 10 and

greater than 17.

o Simple connectivity, especially for default cases, may be

impossible.

www.Jntufastupdates.com 11

 UGLY DOMAINS:

o Some domains are born ugly and some are uglified by bad

specifications.

o Every simplification of ugly domains by programmers can be

either good or bad.

o Programmers in search of nice solutions will "simplify"

essential complexity out of existence. Testers in search of

brilliant insights will be blind to essential complexity and

therefore miss important cases.

o If the ugliness results from bad specifications and the

programmer's simplification is harmless, then the programmer

has made ugly good.

o But if the domain's complexity is essential (e.g., the income

tax code), such "simplifications" constitute bugs.

o Nonlinear boundaries are so rare in ordinary programming

that there's no information on how programmers might

"correct" such boundaries if they're essential.

 AMBIGUITIES AND CONTRADICTIONS:

o Domain ambiguities are holes in the input space.

o The holes may lie with in the domains or in cracks between

domains.

Figure 4.7: Domain Ambiguities and

Contradictions.

o Two kinds of contradictions are possible: overlapped domain

specifications and overlapped closure specifications

www.Jntufastupdates.com 12

o Figure 4.7c shows overlapped domains and Figure 4.7d shows

dual closure assignment.

 SIMPLIFYING THE TOPOLOGY:

o The programmer's and tester's reaction to complex domains is

the same - simplify

o There are three generic

cases: concavities, holes and disconnected pieces.

o Programmers introduce bugs and testers misdesign test cases

by: smoothing out concavities (Figure 4.8a), filling in holes

(Figure 4.8b), and joining disconnected pieces (Figure 4.8c).

Figure 4.8: Simplifying the topology.

 RECTIFYING BOUNDARY CLOSURES:

o If domain boundaries are parallel but have closures that go

every which way (left, right, left, . . .) the natural reaction is

to make closures go the same way (see Figure 4.9).

www.Jntufastupdates.com 13

Figure 4.9: Forcing Closure Consistency.

DOMAIN TESTING:

 DOMAIN TESTING STRATEGY: The domain-testing strategy is

simple, although possibly tedious (slow).

1. Domains are defined by their boundaries; therefore, domain

testing concentrates test points on or near boundaries.

2. Classify what can go wrong with boundaries, then define a

test strategy for each case. Pick enough points to test for all

recognized kinds of boundary errors.

3. Because every boundary serves at least two different

domains, test points used to check one domain can also be

used to check adjacent domains. Remove redundant test

points.

4. Run the tests and by posttest analysis (the tedious part)

determine if any boundaries are faulty and if so, how.

5. Run enough tests to verify every boundary of every domain.

 DOMAIN BUGS AND HOW TO TEST FOR THEM:

o An interior point (Figure 4.10) is a point in the domain such

that all points within an arbitrarily small distance (called an

epsilon neighborhood) are also in the domain.

o A boundary point is one such that within an epsilon

neighborhood there are points both in the domain and not in

the domain.

o An extreme point is a point that does not lie between any two

other arbitrary but distinct points of a (convex) domain.

www.Jntufastupdates.com 14

Figure 4.10: Interior, Boundary and Extreme

points.

o An on point is a point on the boundary.

o If the domain boundary is closed, an off point is a point near

the boundary but in the adjacent domain.

o If the boundary is open, an off point is a point near the

boundary but in the domain being tested; see Figure 4.11.

You can remember this by the acronym COOOOI: Closed Off

Outside, Open Off Inside.

www.Jntufastupdates.com 15

Figure 4.11: On points and Off points.

o Figure 4.12 shows generic domain bugs: closure bug, shifted

boundaries, tilted boundaries, extra boundary, missing

boundary.

Figure 4.12: Generic Domain Bugs.

TESTING ONE DIMENSIONAL DOMAINS:

o Figure 4.13 shows possible domain bugs for a one-

dimensional open domain boundary.

o The closure can be wrong (i.e., assigned to the wrong

domain) or the boundary (a point in this case) can be shifted

one way or the other, we can be missing a boundary, or we

can have an extra boundary.

www.Jntufastupdates.com 16

Figure 4.13: One Dimensional Domain Bugs,

Open Boundaries.

o In Figure 4.13a we assumed that the boundary was to be open

for A. The bug we're looking for is a closure error, which

converts > to >= or < to <= (Figure 4.13b). One test (marked

x) on the boundary point detects this bug because processing

for that point will go to domain A rather than B.

o In Figure 4.13c we've suffered a boundary shift to the left.

The test point we used for closure detects this bug because the

bug forces the point from the B domain, where it should be, to

A processing. Note that we can't distinguish between a shift

and a closure error, but we do know that we have a bug.

o Figure 4.13d shows a shift the other way. The on point doesn't

tell us anything because the boundary shift doesn't change the

fact that the test point will be processed in B. To detect this

shift we need a point close to the boundary but within A. The

boundary is open, therefore by definition, the off point is in A

(Open Off Inside).

www.Jntufastupdates.com 17

o The same open off point also suffices to detect a missing

boundary because what should have been processed in A is

now processed in B.

o To detect an extra boundary we have to look at two domain

boundaries. In this context an extra boundary means that A

has been split in two. The two off points that we selected

before (one for each boundary) does the job. If point C had

been a closed boundary, the on test point at C would do it.

o For closed domains look at Figure 4.14. As for the open

boundary, a test point on the boundary detects the closure

bug. The rest of the cases are similar to the open boundary,

except now the strategy requires off points just outside the

domain.

Figure 4.14: One Dimensional Domain Bugs,

Closed Boundaries.

TESTING TWO DIMENSIONAL DOMAINS:

o Figure 4.15 shows possible domain boundary bugs for a two-

dimensional domain.

o A and B are adjacent domains and the boundary is closed

with respect to A, which means that it is open with respect to

B.

www.Jntufastupdates.com 18

Figure 4.15: Two Dimensional Domain Bugs.

o For Closed Boundaries:

1. Closure Bug: Figure 4.15a shows a faulty closure,

such as might be caused by using a wrong operator

(for example, x >= k when x > k was intended, or

vice versa). The two on points detect this bug

because those values will get B rather than A

processing.

www.Jntufastupdates.com 19

2. Shifted Boundary: In Figure 4.15b the bug is a shift

up, which converts part of domain B into A

processing, denoted by A'. This result is caused by

an incorrect constant in a predicate, such as x + y >=

17 when x + y >= 7 was intended. The off point

(closed off outside) catches this bug. Figure 4.15c

shows a shift down that is caught by the two on

points.

3. Tilted Boundary: A tilted boundary occurs when

coefficients in the boundary inequality are wrong.

For example, 3x + 7y > 17 when 7x + 3y > 17 was

intended. Figure 4.15d has a tilted boundary, which

creates erroneous domain segments A' and B'. In this

example the bug is caught by the left on point.

4. Extra Boundary: An extra boundary is created by

an extra predicate. An extra boundary will slice

through many different domains and will therefore

cause many test failures for the same bug. The extra

boundary in Figure 4.15e is caught by two on points,

and depending on which way the extra boundary

goes, possibly by the off point also.

5. Missing Boundary: A missing boundary is created

by leaving a boundary predicate out. A missing

boundary will merge different domains and will

cause many test failures although there is only one

bug. A missing boundary, shown in Figure 4.15f, is

caught by the two on points because the processing

for A and B is the same - either A or B processing.

PROCEDURE FOR TESTING: The procedure is conceptually is straight

forward. It can be done by hand for two dimensions and for a few domains

and practically impossible for more than two variables.

0. Identify input variables.

1. Identify variable which appear in domain defining predicates,

such as control flow predicates.

2. Interpret all domain predicates in terms of input variables.

3. For p binary predicates, there are at most 2p combinations of

TRUE-FALSE values and therefore, at most 2p domains. Find

the set of all non null domains. The result is a boolean

expression in the predicates consisting a set of AND terms

joined by OR's. For example ABC+DEF+GHI Where the

capital letters denote predicates. Each product term is a set of

linear inequality that defines a domain or a part of a multiply

connected domains.

www.Jntufastupdates.com 20

4. Solve these inequalities to find all the extreme points of each

domain using any of the linear programming methods.

DOMAIN AND INTERFACE TESTING

INTRODUCTION:

o Recall that we defined integration testing as testing the

correctness of the interface between two otherwise correct

components.

o Components A and B have been demonstrated to satisfy their

component tests, and as part of the act of integrating them we

want to investigate possible inconsistencies across their

interface.

o Interface between any two components is considered as a

subroutine call.

o We're looking for bugs in that "call" when we do interface

testing.

o Let's assume that the call sequence is correct and that there

are no type incompatibilities.

o For a single variable, the domain span is the set of numbers

between (and including) the smallest value and the largest

value. For every input variable we want (at least): compatible

domain spans and compatible closures (Compatible but need

not be Equal).

 DOMAINS AND RANGE:

o The set of output values produced by a function is called

the range of the function, in contrast with the domain, which

is the set of input values over which the function is defined.

o For most testing, our aim has been to specify input values and

to predict and/or confirm output values that result from those

inputs.

o Interface testing requires that we select the output values of

the calling routine i.e. caller's range must be compatible with

the called routine's domain.

o An interface test consists of exploring the correctness of the

following mappings:

caller domain --> caller range (caller unit test)

caller range --> called domain (integration test)

called domain --> called range (called unit test)

 CLOSURE COMPATIBILITY:

www.Jntufastupdates.com 21

o Assume that the caller's range and the called domain spans the

same numbers - for example, 0 to 17.

o Figure 4.16 shows the four ways in which the caller's range

closure and the called's domain closure can agree.

o The thick line means closed and the thin line means open.

Figure 4.16 shows the four cases consisting of domains that

are closed both on top (17) and bottom (0), open top and

closed bottom, closed top and open bottom, and open top and

bottom.

Figure 4.16: Range / Domain Closure

Compatibility.

o Figure 4.17 shows the twelve different ways the caller and the

called can disagree about closure. Not all of them are

necessarily bugs. The four cases in which a caller boundary is

open and the called is closed (marked with a "?") are probably

not buggy. It means that the caller will not supply such values

but the called can accept them.

Figure 4.17: Equal-Span Range / Domain

Compatibility Bugs.

www.Jntufastupdates.com 22

 SPAN COMPATIBILITY:

o Figure 4.18 shows three possibly harmless span

incompatibilities.

Figure 4.18: Harmless Range / Domain Span

incompatibility bug (Caller Span is smaller than

Called).

o In all cases, the caller's range is a subset of the called's

domain. That's not necessarily a bug.

o The routine is used by many callers; some require values

inside a range and some don't. This kind of span

incompatibility is a bug only if the caller expects the called

routine to validate the called number for the caller.

o Figure 4.19a shows the opposite situation, in which the called

routine's domain has a smaller span than the caller expects.

All of these examples are buggy.

www.Jntufastupdates.com 23

Figure 4.19: Buggy Range / Domain Mismatches

o In Figure 4.19b the ranges and domains don't line up; hence

good values are rejected, bad values are accepted, and if the

called routine isn't robust enough, we have crashes.

o Figure 4.19c combines these notions to show various ways we

can have holes in the domain: these are all probably buggy.

 INTERFACE RANGE / DOMAIN COMPATIBILITY TESTING:

o For interface testing, bugs are more likely to concern single

variables rather than peculiar combinations of two or more

variables.

o Test every input variable independently of other input

variables to confirm compatibility of the caller's range and the

called routine's domain span and closure of every domain

defined for that variable.

o There are two boundaries to test and it's a one-dimensional

domain; therefore, it requires one on and one off point per

boundary or a total of two on points and two off points for the

domain - pick the off points appropriate to the closure

(COOOOI).

o Start with the called routine's domains and generate test

points in accordance to the domain-testing strategy used for

that routine in component testing.

o Unless you're a mathematical whiz you won't be able to do

this without tools for more than one variable at a time.

www.Jntufastupdates.com 24

Domains and Testability

The best approach to do domain is testing is to stay away from it by making

things simple such that the testing is not required

Orthogonal domain boundaries, consistent closure, independent boundaries,

linear boundaries, etc.., make the domain testing easier

Non-linear boundaries can be converted into equivalent linear boundaries. This

can be done by applying linearizing transformation

Nice boundaries come in parallel sets. Non- parallel inequalities can be

converted into a set of orthogonal boundaries inequalities by suitable co-

ordinate transformations

Testing can be divided into several steps that can be merged and made small

that can be converted into a canonical program form

PATHS, PATH PRODUCTS AND REGULAR EXPRESSIONS

This unit gives an indepth overview of Paths of various flow graphs, their

interpretations and application.

At the end of this unit, the student will be able to:

 Interpret the control flowgraph and identify the path products, path

sums and path expressions.

 Identify how the mathematical laws (distributive, associative,

commutative etc) holds for the paths.

 Apply reduction procedure algorithm to a control flowgraph and

simplify it into a single path expression.

 Find the all possible paths (Max. Path Count) of a given flow graph.

 Find the minimum paths required to cover a given flow graph.

 Calculate the probability of paths and understand the need for finding

the probabilities.

 Differentiate betweeen Structured and Un-structured flowgraphs.

 Calculate the mean processing time of a routine of a given flowgraph.

 Understand how complimentary operations such as PUSH / POP or

GET / RETURN are interpreted in a flowgraph.

 Identify the limitations of the above approaches.

 Understand the problems due to flow-anomalies and identify whether

anomalies exist in the given path expression.

PATH PRODUCTS AND PATH EXPRESSION:

www.Jntufastupdates.com 25

 MOTIVATION:

o Flow graphs are being an abstract representation of programs.

o Any question about a program can be cast into an equivalent

question about an appropriate flowgraph.

o Most software development, testing and debugging tools use

flow graphs analysis techniques.

 PATH PRODUCTS:

o Normally flow graphs used to denote only control flow

connectivity.

o The simplest weight we can give to a link is a name.

o Using link names as weights, we then convert the graphical

flow graph into an equivalent algebraic like expressions

which denotes the set of all possible paths from entry to exit

for the flow graph.

o Every link of a graph can be given a name.

o The link name will be denoted by lower case italic letters.

o In tracing a path or path segment through a flow graph, you

traverse a succession of link names.

o The name of the path or path segment that corresponds to

those links is expressed naturally by concatenating those link

names.

o For example, if you traverse links a,b,c and d along some

path, the name for that path segment is abcd. This path name

is also called a path product. Figure 5.1 shows some

examples:

www.Jntufastupdates.com 26

Figure 5.1: Examples of paths.

 PATH EXPRESSION:

o Consider a pair of nodes in a graph and the set of paths

between those node.

o Denote that set of paths by Upper case letter such as X,Y.

From Figure 5.1c, the members of the path set can be listed as

follows:

ac, abc, abbc, abbbc, abbbbc.............

o Alternatively, the same set of paths can be denoted by :

ac+abc+abbc+abbbc+abbbbc+...........

o The + sign is understood to mean "or" between the two nodes

of interest, paths ac, or abc, or abbc, and so on can be taken.

www.Jntufastupdates.com 27

o Any expression that consists of path names and "OR"s and

which denotes a set of paths between two nodes is called a

"Path Expression.".

 PATH PRODUCTS:

o The name of a path that consists of two successive path

segments is conveniently expressed by the concatenation

or Path Product of the segment names.

o For example, if X and Y are defined as X=abcde,Y=fghij,then

the path corresponding to X followed by Y is denoted by

XY=abcdefghij

o Similarly,

o YX=fghijabcde

o aX=aabcde

o Xa=abcdea

XaX=abcdeaabcde

o If X and Y represent sets of paths or path expressions, their

product represents the set of paths that can be obtained by

following every element of X by any element of Y in all

possible ways. For example,

o X = abc + def + ghi

o Y = uvw + z

Then,

XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz

o If a link or segment name is repeated, that fact is denoted by

an exponent. The exponent's value denotes the number of

repetitions:

o a1 = a; a2 = aa; a3 = aaa; an = aaaa . . . n times.

Similarly, if

X = abcde

then

X1 = abcde

X2 = abcdeabcde = (abcde)2

X3 = abcdeabcdeabcde = (abcde)2abcde

www.Jntufastupdates.com 28

= abcde(abcde)2 = (abcde)3

o The path product is not commutative (that is XY!=YX).

o The path product is Associative.

RULE 1: A(BC)=(AB)C=ABC

where A,B,C are path names, set of path names or path

expressions.

o The zeroth power of a link name, path product, or path

expression is also needed for completeness. It is denoted by

the numeral "1" and denotes the "path" whose length is zero -

that is, the path that doesn't have any links.

o a0 = 1

o X0 = 1

 PATH SUMS:

o The "+" sign was used to denote the fact that path names were

part of the same set of paths.

o The "PATH SUM" denotes paths in parallel between nodes.

o Links a and b in Figure 5.1a are parallel paths and are denoted

by a + b. Similarly, links c and d are parallel paths between

the next two nodes and are denoted by c + d.

o The set of all paths between nodes 1 and 2 can be thought of

as a set of parallel paths and denoted by

eacf+eadf+ebcf+ebdf.

o If X and Y are sets of paths that lie between the same pair of

nodes, then X+Y denotes the UNION of those set of paths.

For example, in Figure 5.2:

Figure 5.2: Examples of path sums.

www.Jntufastupdates.com 29

The first set of parallel paths is denoted by X + Y + d and the

second set by U + V + W + h + i + j. The set of all paths in

this flowgraph is f(X + Y + d)g(U + V + W + h + i + j)k

o The path is a set union operation, it is clearly Commutative

and Associative.

o RULE 2: X+Y=Y+X

o RULE 3: (X+Y)+Z=X+(Y+Z)=X+Y+Z

 DISTRIBUTIVE LAWS:

o The product and sum operations are distributive, and the

ordinary rules of multiplication apply; that is

RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD

o Applying these rules to the below Figure 5.1a yields

o e(a+b)(c+d)f=e(ac+ad+bc+bd)f = eacf+eadf+ebcf+ebdf

 ABSORPTION RULE:

o If X and Y denote the same set of paths, then the union of

these sets is unchanged; consequently,

RULE 5: X+X=X (Absorption Rule)

o If a set consists of paths names and a member of that set is

added to it, the "new" name, which is already in that set of

names, contributes nothing and can be ignored.

o For example,

o if X=a+aa+abc+abcd+def then

 X+a = X+aa = X+abc = X+abcd = X+def = X

It follows that any arbitrary sum of identical path expressions

reduces to the same path expression.

 LOOPS:

o Loops can be understood as an infinite set of parallel paths.

Say that the loop consists of a single link b. then the set of all

paths through that loop point is

b0+b1+b2+b3+b4+b5+..............

www.Jntufastupdates.com 30

Figure 5.3: Examples of path loops.

o This potentially infinite sum is denoted by b* for an

individual link and by X* when X is a path expression.

Figure 5.4: Another example of path loops.

o The path expression for the above figure is denoted by the

notation:

ab*c=ac+abc+abbc+abbbc+................

o Evidently,

aa*=a*a=a+ and XX*=X*X=X+

o It is more convenient to denote the fact that a loop cannot be

taken more than a certain, say n, number of times.

o A bar is used under the exponent to denote the fact as follows:

Xn = X0+X1+X2+X3+X4+X5+..................+Xn

 RULES 6 - 16:

o The following rules can be derived from the previous rules:

o RULE 6: Xn + Xm = Xn if n>m

www.Jntufastupdates.com 31

RULE 6: Xn + Xm = Xm if m>n

RULE 7: XnXm = Xn+m

RULE 8: XnX* = X*Xn = X*

RULE 9: XnX+ = X+Xn = X+

RULE 10: X*X+ = X+X* = X+

RULE 11: 1 + 1 = 1

RULE 12: 1X = X1 = X

Following or preceding a set of paths by a path of zero length

does not change the set.

RULE 13: 1n = 1n = 1* = 1+ = 1

No matter how often you traverse a path of zero length,It is a

path of zero length.

RULE 14: 1++1 = 1*=1

The null set of paths is denoted by the numeral 0. it obeys

the following rules:

RULE 15: X+0=0+X=X

RULE 16: 0X=X0=0

If you block the paths of a graph for or aft by a graph that has

no paths , there wont be any paths.

REDUCTION PROCEDURE:

 REDUCTION PROCEDURE ALGORITHM:

o This section presents a reduction procedure for converting a

flowgraph whose links are labeled with names into a path

expression that denotes the set of all entry/exit paths in that

flowgraph. The procedure is a node-by-node removal

algorithm.

o The steps in Reduction Algorithm are as follows:

1. Combine all serial links by multiplying their path

expressions.

2. Combine all parallel links by adding their path

expressions.

3. Remove all self-loops (from any node to itself) by

replacing them with a link of the form X*, where X

is the path expression of the link in that loop.

STEPS 4 - 8 ARE IN THE ALGORIHTM'S

LOOP:

4. Select any node for removal other than the initial or

final node. Replace it with a set of equivalent links

www.Jntufastupdates.com 32

whose path expressions correspond to all the ways

you can form a product of the set of inlinks with the

set of outlinks of that node.

5. Combine any remaining serial links by multiplying

their path expressions.

6. Combine all parallel links by adding their path

expressions.

7. Remove all self-loops as in step 3.

8. Does the graph consist of a single link between the

entry node and the exit node? If yes, then the path

expression for that link is a path expression for the

original flowgraph; otherwise, return to step 4.

o A flowgraph can have many equivalent path expressions

between a given pair of nodes; that is, there are many

different ways to generate the set of all paths between two

nodes without affecting the content of that set.

o The appearance of the path expression depends, in general, on

the order in which nodes are removed.

 CROSS-TERM STEP (STEP 4):

o The cross - term step is the fundamental step of the reduction

algorithm.

o It removes a node, thereby reducing the number of nodes by

one.

o Successive applications of this step eventually get you down

to one entry and one exit node. The following diagram shows

the situation at an arbitrary node that has been selected for

removal:

o From the above diagram, one can infer:

o (a + b)(c + d + e) = ac + ad + + ae + bc + bd + be

 LOOP REMOVAL OPERATIONS:

o There are two ways of looking at the loop-removal operation:

www.Jntufastupdates.com 33

o In the first way, we remove the self-loop and then multiply all

outgoing links by Z*.

o In the second way, we split the node into two equivalent

nodes, call them A and A' and put in a link between them

whose path expression is Z*. Then we remove node A' using

steps 4 and 5 to yield outgoing links whose path expressions

are Z*X and Z*Y.

 A REDUCTION PROCEDURE - EXAMPLE:

o Let us see by applying this algorithm to the following graph

where we remove several nodes in order; that is

Figure 5.5: Example Flowgraph for

demonstrating reduction procedure.

o Remove node 10 by applying step 4 and combine by step 5 to

yield

www.Jntufastupdates.com 34

o Remove node 9 by applying step4 and 5 to yield

o Remove node 7 by steps 4 and 5, as follows:

o Remove node 8 by steps 4 and 5, to obtain:

www.Jntufastupdates.com 35

o PARALLEL TERM (STEP 6):

Removal of node 8 above led to a pair of parallel links

between nodes 4 and 5. combine them to create a path

expression for an equivalent link whose path expression is

c+gkh; that is

o LOOP TERM (STEP 7):

Removing node 4 leads to a loop term. The graph has now

been replaced with the following equivalent simpler graph:

www.Jntufastupdates.com 36

o Continue the process by applying the loop-removal step as

follows:

o Removing node 5 produces:

o Remove the loop at node 6 to yield:

o Remove node 3 to yield:

www.Jntufastupdates.com 37

o Removing the loop and then node 6 result in the following

expression:

o

a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d)*(ilhd)*e

o You can practice by applying the algorithm on the following

flowgraphs and generate their respective path expressions:

Figure 5.6: Some graphs and their path

expressions.

APPLICATIONS:

 APPLICATIONS:

o The purpose of the node removal algorithm is to present one

very generalized concept- the path expression and way of

getting it.

o Every application follows this common pattern:

www.Jntufastupdates.com 38

1. Convert the program or graph into a path expression.

2. Identify a property of interest and derive an

appropriate set of "arithmetic" rules that

characterizes the property.

3. Replace the link names by the link weights for the

property of interest. The path expression has now

been converted to an expression in some algebra,

such as ordinary algebra, regular expressions, or

boolean algebra. This algebraic expression

summarizes the property of interest over the set of

all paths.

4. Simplify or evaluate the resulting "algebraic"

expression to answer the question you asked.

 HOW MANY PATHS IN A FLOWGRAPH ?

o The question is not simple. Here are some ways you could ask

it:

1. What is the maximum number of different paths

possible?

2. What is the fewest number of paths possible?

3. How many different paths are there really?

4. What is the average number of paths?

o Determining the actual number of different paths is an

inherently difficult problem because there could be

unachievable paths resulting from correlated and dependent

predicates.

o If we know both of these numbers (maximum and minimum

number of possible paths) we have a good idea of how

complete our testing is.

o Asking for "the average number of paths" is meaningless.

 MAXIMUM PATH COUNT ARITHMETIC:

o Label each link with a link weight that corresponds to the

number of paths that link represents.

o Also mark each loop with the maximum number of times that

loop can be taken. If the answer is infinite, you might as well

stop the analysis because it is clear that the maximum number

of paths will be infinite.

o There are three cases of interest: parallel links, serial links,

and loops.

www.Jntufastupdates.com 39

o This arithmetic is an ordinary algebra. The weight is the

number of paths in each set.

o EXAMPLE:

 The following is a reasonably well-structured

program.

Each link represents a single link and consequently

is given a weight of "1" to start. Lets say the outer

loop will be taken exactly four times and inner Loop

Can be taken zero or three times Its path expression,

with a little work, is:

Path expression: a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh

 A: The flow graph should be annotated by replacing

the link name with the maximum of paths through

that link (1) and also note the number of times for

looping.

 B: Combine the first pair of parallel loops outside

the loop and also the pair in the outer loop.

 C: Multiply the things out and remove nodes to clear

the clutter.

www.Jntufastupdates.com 40

 For the Inner Loop:

D:Calculate the total weight of inner loop, which can

execute a min. of 0 times and max. of 3 times. So, it

inner loop can be evaluated as follows:

13 = 10 + 11 + 12 + 13 = 1 + 1 + 1 + 1 = 4

 E: Multiply the link weights inside the loop: 1 X 4 =

4

 F: Evaluate the loop by multiplying the link wieghts:

2 X 4 = 8.

 G: Simpifying the loop further results in the total

maximum number of paths in the flowgraph:

2 X 84 X 2 = 32,768.

www.Jntufastupdates.com 41

Alternatively, you could have substituted a "1" for each link in the path

expression and then simplified, as follows:

a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh

= 1(1 + 1)1(1(1 x 1)31 x 1 x 1(1 + 1)1)41(1 x 1)31 x 1 x 1

= 2(131 x (2))413

= 2(4 x 2)4 x 4

= 2 x 84 x 4 = 32,768

This is the same result we got graphically.

Actually, the outer loop should be taken exactly four times. That doesn't

mean it will be taken zero or four times. Consequently, there is a

superfluous "4" on the outlink in the last step. Therefore the maximum

number of different paths is 8192 rather than 32,768.

STRUCTURED FLOWGRAPH:

Structured code can be defined in several different ways that do not

involve ad-hoc rules such as not using GOTOs.

A structured flowgraph is one that can be reduced to a single link by

successive application of the transformations of Figure 5.7.

www.Jntufastupdates.com 42

Figure 5.7: Structured Flowgraph

Transformations.

The node-by-node reduction procedure can also be used as a test for

structured code.

Flow graphs that DO NOT contain one or more of the graphs shown below

(Figure 5.8) as subgraphs are structured.

0. Jumping into loops

1. Jumping out of loops

2. Branching into decisions

3. Branching out of decisions

www.Jntufastupdates.com 43

Figure 5.8: Un-structured sub-graphs.

LOWER PATH COUNT ARITHMETIC:

A lower bound on the number of paths in a routine can be approximated

for structured flow graphs.

The arithmetic is as follows:

www.Jntufastupdates.com 44

The values of the weights are the number of members in a set of paths.

EXAMPLE:

 Applying the arithmetic to the earlier example gives

us the identical steps unitl step 3 (C) as below:

www.Jntufastupdates.com 45

 From Step 4, the it would be different from the

previous example:

 If you observe the original graph, it takes at least two

paths to cover and that it can be done in two paths.

 If you have fewer paths in your test plan than this

minimum you probably haven't covered. It's another

check.

CALCULATING THE PROBABILITY:

Path selection should be biased toward the low - rather than the high-

probability paths.

This raises an interesting question:

What is the probability of being at a certain point in a routine?

This question can be answered under suitable assumptions, primarily that

all probabilities involved are independent, which is to say that all decisions

are independent and uncorrelated.

www.Jntufastupdates.com 46

We use the same algorithm as before : node-by-node removal of

uninteresting nodes.

Weights, Notations and Arithmetic:

 Probabilities can come into the act only at decisions

(including decisions associated with loops).

 Annotate each outlink with a weight equal to the

probability of going in that direction.

 Evidently, the sum of the outlink probabilities must

equal 1

 For a simple loop, if the loop will be taken a mean of

N times, the looping probability is N/(N + 1) and the

probability of not looping is 1/(N + 1).

 A link that is not part of a decision node has a

probability of 1.

 The arithmetic rules are those of ordinary arithmetic.

 In this table, in case of a loop, PA is the probability

of the link leaving the loop and PL is the probability

of looping.

 The rules are those of ordinary probability theory.

1. If you can do something either from

column A with a probability of PA or from

column B with a probability PB, then the

probability that you do either is PA + PB.

2. For the series case, if you must do both

things, and their probabilities are

independent (as assumed), then the

probability that you do both is the product

of their probabilities.

www.Jntufastupdates.com 47

 For example, a loop node has a looping probability

of PL and a probability of not looping of PA, which is

obviously equal to I - PL.

 Following the above rule, all we've done is replace

the outgoing probability with 1 - so why the

complicated rule? After a few steps in which you've

removed nodes, combined parallel terms, removed

loops and the like, you might find something like

this:

because PL + PA + PB + PC = 1, 1 - PL = PA + PB +

PC, and

which is what we've postulated for any decision. In

other words, division by 1 - PL renormalizes the

outlink probabilities so that their sum equals unity

after the loop is removed.

www.Jntufastupdates.com 48

EXAMPLE:

 Here is a complicated bit of logic. We want to know

the probability associated with cases A, B, and C.

 Let us do this in three parts, starting with case A.

Note that the sum of the probabilities at each

decision node is equal to 1. Start by throwing away

anything that isn't on the way to case A, and then

apply the reduction procedure. To avoid clutter, we

usually leave out probabilities equal to 1.

CASE A:

www.Jntufastupdates.com 49

 Case B is simpler:

www.Jntufastupdates.com 50

 Case C is similar and should yield a probability of 1

- 0.125 - 0.158 = 0.717:

 This checks. It's a good idea when doing this sort of

thing to calculate all the probabilities and to verify

www.Jntufastupdates.com 51

that the sum of the routine's exit probabilities does

equal 1.

 If it doesn't, then you've made calculation error or,

more likely, you've left out some branching

probability.

 How about path probabilities? That's easy. Just trace

the path of interest and multiply the probabilities as

you go.

 Alternatively, write down the path name and do the

indicated arithmetic operation.

 Say that a path consisted of links a, b, c, d, e, and the

associated probabilities were .2, .5, 1., .01, and I

respectively. Path abcbcbcdeabddea would have a

probability of 5 x 10-10.

 Long paths are usually improbable.

MEAN PROCESSING TIME OF A ROUTINE:

Given the execution time of all statements or instructions for every link in

a flowgraph and the probability for each direction for all decisions are to

find the mean processing time for the routine as a whole.

The model has two weights associated with every link: the processing time

for that link, denoted by T, and the probability of that link P.

The arithmetic rules for calculating the mean time:

EXAMPLE:

0. Start with the original flow graph annotated with

probabilities and processing time.

www.Jntufastupdates.com 52

1. Combine the parallel links of the outer loop. The

result is just the mean of the processing times for the

links because there aren't any other links leaving the

first node. Also combine the pair of links at the

beginning of the flowgraph..

2. Combine as many serial links as you can.

3. Use the cross-term step to eliminate a node and to

create the inner self - loop.

www.Jntufastupdates.com 53

4. Finally, you can get the mean processing time, by

using the arithmetic rules as follows:

PUSH/POP, GET/RETURN:

This model can be used to answer several different questions that can turn

up in debugging.

It can also help decide which test cases to design.

The question is:

Given a pair of complementary operations such as PUSH (the stack)

and POP (the stack), considering the set of all possible paths through

the routine, what is the net effect of the routine? PUSH or POP? How

many times? Under what conditions?

www.Jntufastupdates.com 54

Here are some other examples of complementary operations to which this

model applies:

GET/RETURN a resource block.

OPEN/CLOSE a file.

START/STOP a device or process.

EXAMPLE 1 (PUSH / POP):

 Here is the Push/Pop Arithmetic:

 The numeral 1 is used to indicate that nothing of

interest (neither PUSH nor POP) occurs on a given

link.

 "H" denotes PUSH and "P" denotes POP. The

operations are commutative, associative, and

distributive.

 Consider the following flowgraph:

www.Jntufastupdates.com 55

P(P + 1)1{P(HH)n1HP1(P + H)1}n2P(HH)n1HPH

 Simplifying by using the arithmetic tables,

 =(P2 + P){P(HH)n1(P + H)}n1(HH)n1

 =(P2 + P){H2n1(P2 + 1)}n2H2n1

 Below Table 5.9 shows several combinations of

values for the two looping terms - M1 is the number

of times the inner loop will be taken and M2 the

number of times the outer loop will be taken.

www.Jntufastupdates.com 56

Figure 5.9: Result of the PUSH / POP

Graph Analysis.

 These expressions state that the stack will be popped

only if the inner loop is not taken.

 The stack will be left alone only if the inner loop is

iterated once, but it may also be pushed.

www.Jntufastupdates.com 57

 For all other values of the inner loop, the stack will

only be pushed.

EXAMPLE 2 (GET / RETURN):

 Exactly the same arithmetic tables used for previous

example are used for GET / RETURN a buffer block

or resource, or, in fact, for any pair of

complementary operations in which the total number

of operations in either direction is cumulative.

 The arithmetic tables for GET/RETURN are:

"G" denotes GET and "R" denotes RETURN.

 Consider the following flowgraph:

 G(G + R)G(GR)*GGR*R

= G(G + R)G3R*R

= (G + R)G3R*

= (G4 + G2)R*

 This expression specifies the conditions under which

the resources will be balanced on leaving the routine.

 If the upper branch is taken at the first decision, the

second loop must be taken four times.

www.Jntufastupdates.com 58

 If the lower branch is taken at the first decision, the

second loop must be taken twice.

 For any other values, the routine will not balance.

Therefore, the first loop does not have to be

instrumented to verify this behavior because its

impact should be nil.

LIMITATIONS AND SOLUTIONS:

The main limitation to these applications is the problem of unachievable

paths.

The node-by-node reduction procedure, and most graph-theory-based

algorithms work well when all paths are possible, but may provide

misleading results when some paths are unachievable.

The approach to handling unachievable paths (for any application) is to

partition the graph into subgraphs so that all paths in each of the subgraphs

are achievable.

The resulting subgraphs may overlap, because one path may be common

to several different subgraphs.

Each predicate's truth-functional value potentially splits the graph into two

subgraphs. For n predicates, there could be as many as 2n subgraphs.

REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION:

THE PROBLEM:

o The generic flow-anomaly detection problem (note: not just

data-flow anomalies, but any flow anomaly) is that of looking

for a specific sequence of options considering all possible

paths through a routine.

o Let the operations be SET and RESET, denoted by s and r

respectively, and we want to know if there is a SET followed

immediately a SET or a RESET followed immediately by a

RESET (an ss or an rr sequence).

o Some more application examples:

1. A file can be opened (o), closed (c), read (r), or

written (w). If the file is read or written to after it's

been closed, the sequence is nonsensical.

Therefore, cr and cware anomalous. Similarly, if the

file is read before it's been written, just after

opening, we may have a bug. Therefore, or is also

anomalous. Furthermore, oo and cc, though not

actual bugs, are a waste of time and therefore should

also be examined.

2. A tape transport can do a rewind (d), fast-forward

(f), read (r), write (w), stop (p), and skip (k). There

www.Jntufastupdates.com 59

are rules concerning the use of the transport; for

example, you cannot go from rewind to fast-forward

without an intervening stop or from rewind or fast-

forward to read or write without an intervening stop.

The following sequences are

anomalous: df, dr, dw, fd, and fr. Does the flowgraph

lead to anomalous sequences on any path? If so,

what sequences and under what circumstances?

3. The data-flow anomalies discussed in Unit 4 requires

us to detect the dd, dk, kk, and ku sequences. Are

there paths with anomalous data flows?

 THE METHOD:

o Annotate each link in the graph with the appropriate operator

or the null operator 1.

o Simplify things to the extent possible, using the fact that a + a

= a and 12 = 1.

o You now have a regular expression that denotes all the

possible sequences of operators in that graph. You can now

examine that regular expression for the sequences of interest.

o EXAMPLE: Let A, B, C, be nonempty sets of character

sequences whose smallest string is at least one character long.

Let T be a two-character string of characters. Then if T is a

substring of (i.e., if T appears within) ABnC, then T will

appear in AB2C. (HUANG's Theorem)

o As an example, let

A= pp

B= srr

C= rp

T= ss

The theorem states that ss will appear in pp(srr)nrp if it

appears in pp(srr)2rp.

o However, let

A= p + pp + ps

B= psr + ps(r + ps)

C= rp

T= P4

Is it obvious that there is a p4 sequence in ABnC? The

theorem states that we have only to look at

www.Jntufastupdates.com 60

(p + pp + ps)[psr + ps(r + ps)]2rp

Multiplying out the expression and simplifying shows that

there is no p4 sequence.

o Incidentally, the above observation is an informal proof of the

wisdom of looping twice discussed in Unit 2. Because data-

flow anomalies are represented by two-character sequences, it

follows the above theorem that looping twice is what you

need to do to find such anomalies.

 LIMITATIONS:

o Huang's theorem can be easily generalized to cover sequences

of greater length than two characters. Beyond three

characters, though, things get complex and this method has

probably reached its utilitarian limit for manual application.

o There are some nice theorems for finding sequences that

occur at the beginnings and ends of strings but no nice

algorithms for finding strings buried in an expression.

o Static flow analysis methods can't determine whether a path is

or is not achievable. Unless the flow analysis includes

symbolic execution or similar techniques, the impact of

unachievable paths will not be included in the analysis.

o The flow-anomaly application, for example, doesn't tell us

that there will be a flow anomaly - it tells us that if the path is

achievable, then there will be a flow anomaly. Such analytical

problems go away, of course, if you take the trouble to design

routines for which all paths are achievable.

www.Jntufastupdates.com 61

	DOMAIN TESTING:
	DOMAINS AND PATHS:
	INTRODUCTION:
	Figure 4.1: Schematic Representation of Domain Testing.
	Figure 4.2: Open and Closed Domains.
	Figure 4.3: Nice Two-Dimensional Domains.
	Figure 4.4: Incomplete Domain Boundaries.
	Figure 4.5: Tilted Boundaries.
	Figure 4.6: Linear, Non-orthogonal Domain Boundaries.
	Figure 4.7: Domain Ambiguities and Contradictions.
	Figure 4.8: Simplifying the topology.
	Figure 4.9: Forcing Closure Consistency.
	DOMAIN TESTING: (1)
	DOMAIN TESTING STRATEGY: The domain-testing strategy is simple, although possibly tedious (slow).
	Figure 4.10: Interior, Boundary and Extreme points.
	Figure 4.11: On points and Off points.
	Figure 4.12: Generic Domain Bugs.
	Figure 4.13: One Dimensional Domain Bugs, Open Boundaries.
	Figure 4.14: One Dimensional Domain Bugs, Closed Boundaries.
	Figure 4.15: Two Dimensional Domain Bugs.
	DOMAIN AND INTERFACE TESTING
	INTRODUCTION: (1)
	Figure 4.16: Range / Domain Closure Compatibility.
	Figure 4.17: Equal-Span Range / Domain Compatibility Bugs.
	Figure 4.18: Harmless Range / Domain Span incompatibility bug (Caller Span is smaller than Called).
	Figure 4.19: Buggy Range / Domain Mismatches
	Domains and Testability
	PATHS, PATH PRODUCTS AND REGULAR EXPRESSIONS
	PATH PRODUCTS AND PATH EXPRESSION:
	Figure 5.1: Examples of paths.
	Figure 5.2: Examples of path sums.
	Figure 5.3: Examples of path loops.
	Figure 5.4: Another example of path loops.
	REDUCTION PROCEDURE:
	REDUCTION PROCEDURE ALGORITHM:
	Figure 5.5: Example Flowgraph for demonstrating reduction procedure.
	Figure 5.6: Some graphs and their path expressions.
	APPLICATIONS:
	Figure 5.7: Structured Flowgraph Transformations.
	Figure 5.8: Un-structured sub-graphs.
	Figure 5.9: Result of the PUSH / POP Graph Analysis.
	REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION: THE PROBLEM:

