
UNIT 3

DOMAIN TESTING

1. Domains and Paths:

o INTRODUCTION:

 Domain: In mathematics, domain is a set of possible values of an independent

variable or the variables of a function.

 Programs as input data classifiers: domain testing attempts to determine

whether the classification is or is not correct.

 Domain testing can be based on specifications or equivalent implementation

information.

 If domain testing is based on specifications, it is a functional test technique.

 If domain testing is based implementation details, it is a structural test

technique.

 For example, you're doing domain testing when you check extreme values of

an input variable.

All inputs to a program can be considered as if they are numbers. For example, a

character string can be treated as a number by concatenating bits and looking at them as

if they were a binary integer. This is the view in domain testing, which is why this

strategy has a mathematical flavor.

THE MODEL: The following figure is a schematic representation of domain testing.

www.Jntufastupdates.com 1

o Before doing whatever it does, a routine must classify the input and set it moving

on the right path.

o An invalid input (e.g., value too big) is just a special processing case called 'reject'.

o The input then passses to a hypothetical subroutine rather than on calculations.

o In domain testing, we focus on the classification aspect of the routine rather than

on the calculations.

o Structural knowledge is not needed for this model - only a consistent, complete

specification of input values for each case.

o We can infer that for each case there must be atleast one path to process that case.

o A DOMAIN IS A SET:

o An input domain is a set.

o If the source language supports set definitions (E.g. PASCAL set types and C

enumerated types) less testing is needed because the compiler does much of it for

us.

o Domain testing does not work well with arbitrary discrete sets of data objects.

o Domain for a loop-free program corresponds to a set of numbers defined over

the input vector.

o DOMAINS, PATHS AND PREDICATES:

o In domain testing, predicates are assumed to be interpreted in terms of input

vector variables.

o If domain testing is applied to structure, then predicate interpretation must be

based on actual paths through the routine - that is, based on the implementation

control flowgraph.

o Conversely, if domain testing is applied to specifications, interpretation is based

on a specified data flowgraph for the routine; but usually, as is the nature of

specifications, no interpretation is needed because the domains are specified

directly.

o For every domain, there is at least one path through the routine.

o There may be more than one path if the domain consists of disconnected parts or

if the domain is defined by the union of two or more domains.

o Domains are defined their boundaries. Domain boundaries are also where most

domain bugs occur.

o For every boundary there is at least one predicate that specifies what numbers

www.Jntufastupdates.com 2

belong to the domain and what numbers don't.

For example: in the statement IF x>0 THEN ALPHA ELSE BETA we know

that numbers greater than zero belong to ALPHA processing domain(s) while

zero and smaller numbers belong to BETA domain(s).

o A domain may have one or more boundaries - no matter how many variables

define it.

For example: if the predicate is x2 + y2 < 16, the domain is the inside of a

circle of radius 4 about the origin. Similarly, we could define a spherical

domain with one boundary but in three variables.

o Domains are usually defined by many boundary segments and therefore by many

predicates. i.e. the set of interpreted predicates traversed on that path (i.e., the

path's predicate expression) defines the domain's boundaries.

o A DOMAIN CLOSURE:

o A domain boundary is closed with respect to a domain if the points on the

boundary belong to the domain.

o If the boundary points belong to some other domain, the boundary is said to be

open.

o Figure 4.2 shows three situations for a one-dimensional domain - i.e., a domain

defined over one input variable; call it x

o The importance of domain closure is that incorrect closure bugs are frequent

domain bugs. For example, x >= 0 when x > 0 was intended.

www.Jntufastupdates.com 3

o DOMAIN DIMENSIONALITY:

o Every input variable adds one dimension to the domain.

o One variable defines domains on a number line.

o Two variables define planar domains.

o Three variables define solid domains.

o Every new predicate slices through previously defined domains and cuts them in

half.

o Every boundary slices through the input vector space with a dimensionality which

is less than the dimensionality of the space.

o Thus, planes are cut by lines and points, volumes by planes, lines and points and

n-spaces by hyperplanes.

o BUG ASSUMPTION:

o The bug assumption for the domain testing is that processing is okay but the

domain definition is wrong.

o An incorrectly implemented domain means that boundaries are wrong, which

may in turn mean that control flow predicates are wrong.

o Many different bugs can result in domain errors. Some of them are:

Domain Errors:

o Double Zero Representation: In computers or Languages that have a distinct

positive and negative zero, boundary errors for negative zero are common.

o Floating point zero check: A floating point number can equal zero only if the

previous definition of that number set it to zero or if it is subtracted from itself or

multiplied by zero. So the floating point zero check to be done against a epsilon

value.

o Contradictory domains: An implemented domain can never be ambiguous or

contradictory, but a specified domain can. A contradictory domain specification

means that at least two supposedly distinct domains overlap.

o Ambiguous domains: Ambiguous domains means that union of the domains is

incomplete. That is there are missing domains or holes in the specified domains.

Not specifying what happens to points on the domain boundary is a common

ambiguity.

o Over specified Domains: he domain can be overloaded with so many conditions

that the result is a null domain. Another way to put it is to say that the domain's

www.Jntufastupdates.com 4

path is unachievable.

o Boundary Errors: Errors caused in and around the boundary of a domain.

Example, boundary closure bug, shifted, tilted, missing, extra boundary.

o Closure Reversal: A common bug. The predicate is defined in terms of >=. The

programmer chooses to implement the logical complement and incorrectly uses <=

for the new predicate; i.e., x >= 0 is incorrectly negated as x <= 0, thereby

shifting boundary values to adjacent domains.

o Faulty Logic: Compound predicates (especially) are subject to faulty logic

transformations and improper simplification. If the predicates define domain

boundaries, all kinds of domain bugs can result from faulty logic manipulations.

o RESTRICTIONS TO DOMAIN TESTING: Domain testing has restrictions, as do
other testing techniques. Some of them include:

o Co-incidental Correctness: Domain testing isn't good at finding bugs for
which the outcome is correct for the wrong reasons. If we're plagued by
coincidental correctness we may misjudge an incorrect boundary. Note that this
implies weakness for domain testing when dealing with routines that have
binary outcomes (i.e., TRUE/FALSE)

o Representative Outcome: Domain testing is an example of partition testing.
Partition-testing strategies divide the program's input space into domains such
that all inputs within a domain are equivalent (not equal, but equivalent) in the
sense that any input represents all inputs in that domain. If the selected input is
shown to be correct by a test, then processing is presumed correct, and
therefore all inputs within that domain are expected (perhaps unjustifiably) to
be correct. Most test techniques, functional or structural, fall under partition
testing and therefore make this representative outcome assumption. For
example, x2 and 2x are equal for x = 2, but the functions are different. The
functional differences between adjacent domains are usually simple, such as x

+ 7 versus x + 9, rather than x2 versus 2x.
o Simple Domain Boundaries and Compound Predicates: Compound

predicates in which each part of the predicate specifies a different boundary are
not a problem: for example, x >= 0 AND x < 17, just specifies two domain
boundaries by one compound predicate. As an example of a compound
predicate that specifies one boundary, consider: x = 0 AND y >= 7 AND y <=

14. This predicate specifies one boundary equation (x = 0) but alternates
www.Jntufastupdates.com 5

closure, putting it in one or the other domain depending on whether y < 7 or y >

14. Treat compound predicates with respect because they’re more complicated

than they seem.

o Functional Homogeneity of Bugs: Whatever the bug is, it will not change the

functional form of the boundary predicate. For example, if the predicate is ax >=

b, the bug will be in the value of a or b but it will not change the predicate to ax

>= b, say.

o Linear Vector Space: Most papers on domain testing, assume linear

boundaries - not a bad assumption because in practice most boundary

predicates are linear.

o Loop Free Software: Loops are problematic for domain testing. The trouble

with loops is that each iteration can result in a different predicate expression

(after interpretation), which means a possible domain boundary change.

2. Nice & Ugly Domains:

NICE DOMAINS:

o Where do these domains come from?

Domains are and will be defined by an imperfect iterative process aimed at

achieving (user, buyer, voter) satisfaction.

o Implemented domains can't be incomplete or inconsistent. Every input will be

processed (rejection is a process), possibly forever. Inconsistent domains will be

made consistent.

o Conversely, specified domains can be incomplete and/or inconsistent. Incomplete

in this context means that there are input vectors for which no path is specified

and inconsistent means that there are at least two contradictory specifications over

the same segment of the input space.

o Some important properties of nice domains are: Linear, Complete, Systematic,

Orthogonal, Consistently closed, Convex and Simply connected.

o To the extent that domains have these properties domain testing is easy as testing

gets.

www.Jntufastupdates.com 6

o The bug frequency is lesser for nice domain than for ugly domains.

o LINEAR AND NON LINEAR BOUNDARIES:

o Nice domain boundaries are defined by linear inequalities or equations.

o The impact on testing stems from the fact that it takes only two points to

determine a straight line and three points to determine a plane and in general

n+1 points to determine a n-dimensional hyper plane.

o In practice more than 99.99% of all boundary predicates are either linear or can

be linearized by simple variable transformations.

o COMPLETE BOUNDARIES:

o Nice domain boundaries are complete in that they span the number space from

plus to minus infinity in all dimensions.

o Figure 4.4 shows some incomplete boundaries. Boundaries A and E have gaps.

o Such boundaries can come about because the path that hypothetically

corresponds to them is unachievable, because inputs are constrained in such a

way that such values can't exist, because of compound predicates that define a

single boundary, or because redundant predicates convert such boundary values

into a null set.

www.Jntufastupdates.com 7

o The advantage of complete boundaries is that one set of tests is needed to

confirm the boundary no matter how many domains it bounds.

o If the boundary is chopped up and has holes in it, then every segment of that

boundary must be tested for every domain it bounds.

o CLOSURE CONSISTENCY:

o Figure 4.6 shows another desirable domain property: boundary closures are

consistent and systematic.

o The shaded areas on the boundary denote that the boundary belongs to the domain

in which the shading lies - e.g., the boundary lines belong to the domains on the

right.

o Consistent closure means that there is a simple pattern to the closures - for

example, using the same relational operator for all boundaries of a set of parallel

boundaries.

o CONVEX:

www.Jntufastupdates.com 8

o A geometric figure (in any number of dimensions) is convex if you can take two

arbitrary points on any two different boundaries, join them by a line and all points

on that line lie within the figure.

o Nice domains are convex; dirty domains aren't.

o You can smell a suspected concavity when you see phrases such as: ". . . except if

. . .," "However . . .," ". . . but not. . . ." In programming, it's often the buts in the

specification that kill you.

o SIMPLY CONNECTED:

o Nice domains are simply connected; that is, they are in one piece rather than pieces

all over the place interspersed with other domains.

o Simple connectivity is a weaker requirement than convexity; if a domain is

convex it is simply connected, but not vice versa.

o Consider domain boundaries defined by a compound predicate of the (boolean)

form ABC. Say that the input space is divided into two domains, one defined by

ABC and, therefore, the other defined by its negation .

o For example, suppose we define valid numbers as those lying between 10 and 17

inclusive. The invalid numbers are the disconnected domain consisting of

numbers less than 10 and greater than 17.

o Simple connectivity, especially for default cases, may be impossible.

UGLY DOMAINS:

o Some domains are born ugly and some are uglified by bad specifications.

o Every simplification of ugly domains by programmers can be either good or bad.

o Programmers in search of nice solutions will "simplify" essential complexity out

of existence. Testers in search of brilliant insights will be blind to essential

complexity and therefore miss important cases.

o If the ugliness results from bad specifications and the programmer's

simplification is harmless, then the programmer has made ugly good.

o But if the domain's complexity is essential (e.g., the income tax code), such

"simplifications" constitute bugs.

o Nonlinear boundaries are so rare in ordinary programming that there's no

www.Jntufastupdates.com 9

information on how programmers might "correct" such boundaries if they're

essential.

o AMBIGUITIES AND CONTRADICTIONS:

o Domain ambiguities are holes in the input space.

o The holes may lie within the domains or in cracks between domains.

3. Domain Testing:

DOMAIN TESTING STRATEGY: The domain-testing strategy is simple, although

possibly tedious (slow).

1. Domains are defined by their boundaries; therefore, domain testing concentrates

test points on or near boundaries.

2. Classify what can go wrong with boundaries, then define a test strategy for each

case. Pick enough points to test for all recognized kinds of boundary errors.

3. Because every boundary serves at least two different domains, test points used to

check one domain can also be used to check adjacent domains. Remove

redundant test points.

4. Run the tests and by posttest analysis (the tedious part) determine if any

boundaries are faulty and if so, how.

5. Run enough tests to verify every boundary of every domain.

www.Jntufastupdates.com 10

o DOMAIN BUGS AND HOW TO TEST FOR THEM:

o An interior point (Figure 4.10) is a point in the domain such that all points

within an arbitrarily small distance (called an epsilon neighborhood) are also in

the domain.

o A boundary point is one such that within an epsilon neighborhood there are

points both in the domain and not in the domain.

o An extreme point is a point that does not lie between any two other arbitrary but

distinct points of a (convex) domain.

o An on point is a point on the boundary.

o If the domain boundary is closed, an off point is a point near the boundary but in the

adjacent domain.

o If the boundary is open, an off point is a point near the boundary but in the domain

being tested; see Figure 4.11. You can remember this by the acronym COOOOI:

Closed Off Outside, Open Off Inside.

www.Jntufastupdates.com 11

PROCEDURE FOR TESTING: The procedure is conceptually is straight forward. It

can be done by hand for two dimensions and for a few domains and practically

impossible for more than two variables.

1. Identify input variables.

2. Identify variable which appear in domain defining predicates, such as control

flow predicates.

3. Interpret all domain predicates in terms of input variables.

4. For p binary predicates, there are at most 2p combinations of TRUE-FALSE

values and therefore, at most 2p domains. Find the set of all non null domains.

The result is a boolean expression in the predicates consisting a set of AND terms

joined by OR's. For example ABC+DEF+GHI...... Where the capital letters

denote predicates. Each product term is a set of linear inequality that defines a

domain or a part of multiply connected domains.

5. Solve these inequalities to find all the extreme points of each domain using any

of the linear programming methods.

www.Jntufastupdates.com 12

4. DOMAIN AND INTERFACE TESTING

 INTRODUCTION:

o Recall that we defined integration testing as testing the correctness of the

interface between two otherwise correct components.

o Components A and B have been demonstrated to satisfy their component tests,

and as part of the act of integrating them we want to investigate possible

inconsistencies across their interface.

o Interface between any two components is considered as a subroutine call.

o We're looking for bugs in that "call" when we do interface testing.

o Let's assume that the call sequence is correct and that there are no type

incompatibilities.

o For a single variable, the domain span is the set of numbers between (and

including) the smallest value and the largest value. For every input variable we

want (at least): compatible domain spans and compatible closures (Compatible

but need not be Equal).

 DOMAINS AND RANGE:

o The set of output values produced by a function is called the range of the

function, in contrast with the domain, which is the set of input values over

which the function is defined.

o For most testing, our aim has been to specify input values and to predict

and/or confirm output values that result from those inputs.

o Interface testing requires that we select the output values of the calling

routine i.e. Caller’s range must be compatible with the called routine's

domain.

o An interface test consists of exploring the correctness of the following

mappings:

Caller domain --> caller range (caller unit test)

Caller range --> called domain (integration test)

Called domain --> called range (called unit test)

www.Jntufastupdates.com 13

 CLOSURE COMPATIBILITY:

o Assume that the caller's range and the called domain spans the same

numbers - for example, 0 to 17.

o Figure 4.16 shows the four ways in which the caller's range closure and the

called's domain closure can agree.

o The thick line means closed and the thin line means open. Figure 4.16

shows the four cases consisting of domains that are closed both on top (17)

and bottom (0), open top and closed bottom, closed top and open bottom,

and open top and bottom.

Fig: Range / Domain Closure Compatibility.

Fig: Equal-Span Range / Domain Compatibility Bugs.

INTERFACE RANGE / DOMAIN COMPATIBILITY TESTING:

www.Jntufastupdates.com 14

 For interface testing, bugs are more likely to concern single variables rather than

peculiar combinations of two or more variables.

 Test every input variable independently of other input variables to confirm

compatibility of the caller's range and the called routine's domain span and closure

of every domain defined for that variable.

 There are two boundaries to test and it's a one-dimensional domain; therefore, it

requires one on and one off point per boundary or a total of two on points and two

off points for the domain - pick the off points appropriate to the closure

(COOOOI).

 Start with the called routine's domains and generate test points in accordance to

the domain-testing strategy used for that routine in component testing.

 Unless you're a mathematical whiz you won't be able to do this without tools for

more than one variable at a time.

www.Jntufastupdates.com 15

PATH PRODUCTS AND PATH EXPRESSION:

o A path expression is an algebraic representation of sets of paths in a graph.

o Path Expressions are converted into Regular Expressions that can be

used to examine structural properties of flow graphs such as the number

of paths, processing time or whether data flow anomaly can occur

MOTIVATION:

o Flow graphs are being an abstract representation of programs.

o Any question about a program can be cast into an equivalent question

about an appropriate flow graph.

o Most software development, testing and debugging tools use flow graphs

analysis techniques.

PATH PRODUCTS:

o Normally flow graphs used to denote only control flow connectivity.

o The simplest weight we can give to a link is a name.

o Using link names as weights, we then convert the graphical flow graph

into an equivalent algebraic like expressions which denotes the set of all

possible paths from entry to exit for the flow graph.

o Every link of a graph can be given a name.

o The link name will be denoted by lower case italic letters.

o In tracing a path or path segment through a flow graph, you traverse a

succession of link names.

o The name of the path or path segment that corresponds to those links is

expressed naturally by concatenating those link names.

o For example, if you traverse links a,b,c and d along some path, the name

for that path segment is abcd. This path name is also called a path

product.

www.Jntufastupdates.com 16

Examples of paths.

PATH EXPRESSION:

o Consider a pair of nodes in a graph and the set of paths between those node.

o Denote that set of paths by Upper case letter such as X,Y. From Figure c,

the members of the path set can be listed as follows: ac, abc, abbc, abbbc,

abbbbc.............

o Alternatively, the same set of paths can be

denoted by :ac+abc+abbc+abbbc+abbbbc+...........

o The + sign is understood to mean "or" between the two nodes of interest,

paths ac, or abc, or abbc, and so on can be taken.

o Any expression that consists of path names and "OR"s and which denotes

a set of paths between two nodes is called a "Path Expression."

www.Jntufastupdates.com 17

PATH PRODUCTS:

o The name of a path that consists of two successive path segments is

conveniently expressed by the concatenation or Path Product of the

segment names.

o For example, if X and Y are defined as X=abcde,Y=fghij,then the path

corresponding to X followed by Y is denoted by

XY=abcdefghij

o Similarly,

o YX=fghijabcde

o aX=aabcde

o Xa=abcdea

o XaX=abcdeaabcde

o If X and Y represent sets of paths or path expressions, their product

represents the set of paths that can be obtained by following every

element of X by any element of Y in all possible ways.

o For example,

o X = abc + def + ghi Y = uvw + z Then,

o XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz

o If a link or segment name is repeated, that fact is denoted by an exponent.

o The exponent's value denotes the number of repetitions:

o a1 = a; a2 = aa; a3 = aaa; an = aaaa . . . n times. Similarly, if

o X = abcde then X1 = abcde

o X2 = abcdeabcde = (abcde)2

o X3 = abcdeabcdeabcde = (abcde)2abcde = abcde(abcde)2 = (abcde)3

o The path product is not commutative (that is XY!=YX).

o The path product is

Associative. RULE 1:

A(BC)=(AB)C=ABC

o where A,B,C are path names, set of path names or path expressions.

www.Jntufastupdates.com 18

PATH SUMS:

o PATH SUMS: The "+" sign was used to denote the fact that path names

were part of the same set of paths.

o The "PATH SUM" denotes paths in parallel between nodes.

o If X and Y are sets of paths that lie between the same pair of nodes, then

X+Y denotes the UNION of those set of paths. For example,

o The first set of parallel paths is denoted by X + Y + d and the second set by U

+V + W + h

+ i + j. The set of all paths in this

flowgraph is f(X + Y + d)g(U + V + W + h +

i + j)k

o The path is a set union operation, it is clearly Commutative and Associative.

DISTRIBUTIVE LAWS:

o The product and sum operations are distributive, and the ordinary rules

of multiplication apply; that is

` RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD

o Applying these rules to the below Figure (a)

yields e(a+b)(c+d)f=e(ac+ad+bc+bd)f=

eacf+eadf+ebcf+ebdf

ABSORPTION RULE:

o If X and Y denote the same set of paths, then the union of these sets is

unchanged; consequently,

RULE 5: X+X=X (Absorption Rule)

www.Jntufastupdates.com 19

o For example, if X=a+aa+abc+abcd+def then X+a = X+aa = X+abc = X+abcd

= X+def = X

LOOPS:

o Loops can be understood as an infinite set of parallel paths. Say that the

loop consists of a single link b. then the set of all paths through that loop

point is b0+b1+b2+b3+b4+b5+..............

Example:

This potentially infinite sum is denoted by b* for an individual link and by X* when

X is a path expression.

o The path expression for the above figure is denoted by

the notation: ab*c=ac+abc+abbc+abbbc+................

o Evidently, aa*=a*a=a+ and XX*=X*X=X+

2. REDUCTION PROCEDURE ALGORITHM:

o This section presents a reduction procedure for converting a flow graph

whose links are labeled with names into a path expression that denotes

the set of all entry/exit paths in that flow graph. The procedure is a node-

by-node removal algorithm.

www.Jntufastupdates.com 20

The steps in Reduction Algorithm are as follows:

1. Combine all serial links by multiplying their path expressions.

2. Combine all parallel links by adding their path expressions.

3. Remove all self-loops (from any node to itself) by replacing them with a link of the

form X*, where X is the path expression of the link in that loop.

STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP:

4. Select any node for removal other than the initial or final node. Replace it

with a set of equivalent links whose path expressions correspond to all the

ways you can form a product of the set of inlinks with the set of outlinks

of that node.

5. Combine any remaining serial links by multiplying their path expressions.

6. Combine all parallel links by adding their path expressions.

7. Remove all self-loops as in step 3.

8. Does the graph consist of a single link between the entry node and the exit

node? If yes, then the path expression for that link is a path expression for

the original flow graph; otherwise, return to step 4.

A flow graph can have many equivalent path expressions between a

given pair of nodes; that is, there are many different ways to generate the

set of all paths between two nodes without affecting the content of that

set.

The appearance of the path expression depends, in general, on the order

in which nodes are removed.

From the above diagram, one can infer: (a + b)(c + d + e) = ac + ad + + ae + bc + bd + be

www.Jntufastupdates.com 21

LOOP REMOVAL OPERATIONS:

 There are two ways of looking at the loop-removal operation:

A REDUCTION PROCEDURE – EXAMPLE:

 Remove node 10 by applying step 4 and combine by step 5 to yield

www.Jntufastupdates.com 22

 Remove node 9 by applying step4 and 5 to yield,

 Remove node 7 by steps 4 and 5, as follows,

 Remove node 8 by steps 4 and 5, to obtain,

www.Jntufastupdates.com 23

Parallel Term: combine them to create a path expression for an

equivalent link whose path expression is c+gkh; that is,

Loop Term: Removing node 4 leads to a loop term.

Continue the process by applying the loop-removal step as follows:

www.Jntufastupdates.com 24

Removing node 5 produces:

Remove the loop at node 6 to yield:

Remove node 3 to yield:

o Removing the loop and then node 6 result in the following expression:

a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d)*(ilhd)*e

www.Jntufastupdates.com 25

3. REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION:

THE PROBLEM:
o The generic flow-anomaly detection problem (note: not just data-flow

anomalies, but any flow anomaly) is that of looking for a specific

sequence of options considering all possible paths through a routine.

o Let the operations be SET and RESET, denoted by s and r respectively,

and we want to know if there is a SET followed immediately a SET or a

RESET followed immediately by a RESET (an ss or an rr sequence).

o Some more application examples:

1. A file can be opened (o), closed (c), read (r), or written (w). If the file is

read or written to after it's been closed, the sequence is nonsensical.

Therefore, cr andcw are anomalous. Similarly, if the file is read before

it's been written, just after opening, we may have a bug. Therefore, or

is also anomalous. Furthermore, ooand cc, though not actual bugs,

are a waste of time and therefore should also be examined.

2. A tape transport can do a rewind (d), fast-forward (f), read (r), write (w),

stop (p), and skip (k). There are rules concerning the use of the

transport; for example, you cannot go from rewind to fast-forward

without an intervening stop or from rewind or fast-forward to read or

write without an intervening stop. The following sequences are

anomalous: df, dr, dw, fd, and fr. Does the flowgraph lead to

anomalous sequences on any path? If so, what sequences and under

what circumstances?

3. The data-flow anomalies discussed in Unit 4 requires us to detect the

dd, dk, kk, and ku sequences. Are there paths with anomalous data

flows?

THE METHOD:

o Annotate each link in the graph with the appropriate operator or the null

operator 1.

o Simplify things to the extent possible, using the fact that a + a = a and 12 = 1.

www.Jntufastupdates.com 26

o You now have a regular expression that denotes all the possible

sequences of operators in that graph. You can now examine that

regular expression for the sequences of interest.

o EXAMPLE: Let A, B, C, be nonempty sets of character sequences

whose smallest string is at least one character long. Let T be a two-

character string of characters. Then if T is a substring of (i.e., if T

appears within) ABnC, then T will appear in AB2C. (HUANG's

Theorem)

o As an example, let A = pp

B = srr

C = rp T = ss

The theorem states that ss will appear in pp(srr)nrp if it appears in pp(srr)2rp.

However, let

A = p + pp + ps

B = psr + ps(r + ps) C = rp

T = P4

Is it obvious that there is a p4 sequence in ABnC? The theorem states that we

have only to look at

(p + pp + ps)[psr + ps(r + ps)]2rp

Multiplying out the expression and simplifying shows that there is no p4
sequence.

 Incidentally, the above observation is an informal proof of the

wisdom of looping twice discussed in Unit 2. Because data-flow

anomalies are represented by two-character sequences, it follows the

above theorem that looping twice is what you need to do to find such

anomalies.

LIMITATIONS:

o Huang's theorem can be easily generalized to cover sequences of greater

length than two characters. Beyond three characters, though, things

get complex and this method has probably reached its utilitarian limit

for manual application.

o There are some nice theorems for finding sequences that occur at the

beginnings and ends of strings but no nice algorithms for finding

strings buried in an expression.

www.Jntufastupdates.com 27

o Static flow analysis methods can't determine whether a path is or is not

achievable. Unless the flow analysis includes symbolic execution or

similar techniques, the impact of unachievable paths will not be

included in the analysis.

o The flow-anomaly application, for example, doesn't tell us that there

will be a flow anomaly - it tells us that if the path is achievable, then

there will be a flow anomaly. Such analytical problems go away, of

course, if you take the trouble to design routines for which all paths are

achievable.

4. APPLICATIONS:

 The purpose of the node removal algorithm is to present one very

generalized concept- the path expression and way of getting it.

 Every application follows this common pattern:

1. Convert the program or graph into a path expression.

2. Identify a property of interest and derive an appropriate set of

"arithmetic" rules that characterizes the property.

3. Replace the link names by the link weights for the property of

interest. The path expression has now been converted to an

expression in some algebra,

such as ordinary algebra, regular expressions, or boolean

algebra. This algebraic expression summarizes the property of

interest over the set of all paths.

4. Simplify or evaluate the resulting "algebraic" expression to

answer the question you asked.

HOW MANY PATHS IN A FLOWGRAPH?

o The question is not simple. Here are some ways you could ask it:

1. What is the maximum number of different paths possible?

2. What is the fewest number of paths possible?

3. How many different paths are there really?

4. What is the average number of paths?

o Determining the actual number of different paths is an inherently

www.Jntufastupdates.com 28

difficult problem because there could be unachievable paths resulting

from correlated and dependent predicates.

o If we know both of these numbers (maximum and minimum number of

possible paths) we have a good idea of how complete our testing is.

o Asking for "the average number of paths" is meaningless.

MAXIMUM PATH COUNT ARITHMETIC:

o Label each link with a link weight that corresponds to the number of

paths that link represents.

o Also mark each loop with the maximum number of times that loop can

be taken. If the answer is infinite, you might as well stop the analysis

because it is clear that the maximum number of paths will be infinite.

o There are three cases of interest: parallel links, serial links, and loops.

Example:

The following is a reasonably well-structured program.

www.Jntufastupdates.com 29

o Each link represents a single link and consequently is given a weight of

"1" to start. Lets say the outer loop will be taken exactly four times and

inner Loop Can be taken zero or three times Its path expression, with a

little work, is:

Path expression: a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh

A: The flow graph should be annotated by replacing the link name with

the maximum of paths through that link (1) and also note the number

of times for looping.

B: Combine the first pair of parallel loops outside the loop and also the

pair in the outer loop.

C: Multiply the things out and remove nodes to clear the clutter.

www.Jntufastupdates.com 30

For the Inner Loop:

D: Calculate the total weight of inner loop, which can execute a min. of 0

times and max. of 3 times. So, it inner loop can be evaluated as follows:

13 = 10 + 11 + 12 + 13 = 1 + 1 + 1 + 1 = 4

E: Multiply the link weights inside the loop: 1 X 4 = 4

F: Evaluate the loop by multiplying the link wieghts: 2 X 4 = 8.

G: Simpifying the loop further results in the total maximum number

of paths in the flowgraph: 2 X 84 X 2 = 32,768.

www.Jntufastupdates.com 31

Alternatively, you could have substituted a "1" for each link in the path

expression and then simplified, as follows:

a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh

= 1(1 + 1)1(1(1 x 1)31 x 1 x 1(1 + 1)1)41(1 x 1)31 x 1 x 1

= 2(131 x (2))413

= 2(4 x 2)4 x 4

= 2 x 84 x 4 = 32,768

 This is the same result we got graphically.

 Actually, the outer loop should be taken exactly four times. That

doesn't mean it will be taken zero or four times. Consequently,

there is a superfluous "4" on the outlink in the last step.

www.Jntufastupdates.com 32

 Therefore the maximum number of different paths is 8192 rather than

32,768.

STRUCTURED FLOWGRAPH:

o Structured code can be defined in several different ways that do not

involve ad-hoc rules such as not using GOTOs.

o A structured flowgraph is one that can be reduced to a single link by

successive application of the transformations of Below Figure.

Figure: Structured Flow Graph Transformations.

o The node-by-node reduction procedure can also be used as a test for

structured code.

o Flow graphs that DO NOT contain one or more of the graphs shown

below (Figure) as subgraphs are structured.

1. Jumping into loops

2. Jumping out of loops

3. Branching into decisions

4. Branching out of decisions

www.Jntufastupdates.com 33

www.Jntufastupdates.com 34

LOWER PATH COUNT ARITHMETIC:

o A lower bound on the number of paths in a routine can be

approximated for structured flow graphs.

o The arithmetic is as follows:

The values of the weights are the number of members in a set of paths.

EXAMPLE:

Applying the arithmetic to the earlier example gives us the identical steps

unitl step 3 (C) as below:

www.Jntufastupdates.com 35

From Step 4, the it would be different from the previous example:

www.Jntufastupdates.com 36

o If you observe the original graph, it takes at least two paths to cover

and that it can be done in two paths.

o If you have fewer paths in your test plan than this minimum you

probably haven't covered. It's another check.

CALCULATING THE PROBABILITY:
Path selection should be biased toward the low - rather than the high-

probability paths.This raises an interesting question:

What is the probability of being at a certain point in a routine?

This question can be answered under suitable assumptions primarily that all

probabilities involved are independent, which is to say that all decisions are

independent and uncorrelated. We use the same algorithm as before: node-by-

node removal of uninteresting nodes.

Weights, Notations and Arithmetic:

 Probabilities can come into the act only at decisions

(including decisions associated with loops).

 Annotate each outlink with a weight equal to the probability

of going in that direction.

 Evidently, the sum of the outlink probabilities must equal 1

 For a simple loop, if the loop will be taken a mean of N times,

the looping probability is N/(N + 1) and the probability of not

looping is 1/(N + 1).

 A link that is not part of a decision node has a probability of 1.

 The arithmetic rules are those of ordinary arithmetic.

www.Jntufastupdates.com 37

 In this table, in case of a loop, PA is the probability of the

link leaving the loop and PL is the probability of looping.

 The rules are those of ordinary probability theory.

1. If you can do something either from column A with a

probability of PA or from column B with a probability

PB, then the probability that you do either is PA + PB.

2. For the series case, if you must do both things, and

their probabilities are independent (as assumed), then

the probability that you do both is the product of their

probabilities.

 For example, a loop node has a looping probability of PL and

a probability of not looping of PA, which is obviously equal to

I - PL.

 Following the above rule, all we've done is replace the

outgoing probability with 1 - so why the complicated rule?

After a few steps in which you've removed nodes, combined

parallel terms, removed loops and the like, you might find

www.Jntufastupdates.com 38

something like this:

because PL + PA + PB + PC = 1, 1 - PL = PA + PB + PC, and

www.Jntufastupdates.com 39

EXAMPLE:

which is what we've postulated for any decision. In other

words, division by 1 - PL renormalizes the outlink

probabilities so that their sum equals unity after the loop is

removed.

 Here is a complicated bit of logic. We want to know the

probability associated with cases A, B, and C.

 Let us do this in three parts, starting with case A. Note that

the sum of the probabilities at each decision node is equal

to 1. Start by throwing away anything that isn't on the way

to case A, and then apply the reduction procedure. To avoid

clutter, we usually leave out probabilities equal to 1.

CASE A:

www.Jntufastupdates.com 40

www.Jntufastupdates.com 41

 Case B is simpler:

 Case C is similar and should yield a probability of 1 -

0.125 - 0.158 = 0.717:

 These checks. It's a good idea when doing this sort of thing

to calculate all the probabilities and to verify that the sum of

the routine's exit probabilities does equal 1.

 If it doesn't, then you've made calculation error or, more

likely, you've left out some bra How about path probabilities?

That's easy. Just trace the path of interest and multiply the

probabilities as you go.

www.Jntufastupdates.com 42

 Alternatively, write down the path name and do the indicated

arithmetic operation.

www.Jntufastupdates.com 43

 Say that a path consisted of links a, b, c, d, e, and the

associated probabilities were .2, .5, 1., .01, and I

respectively. Path abcbcbcdeabddea would have a probability

of 5 x 10-10.

 Long paths are usually improbable.

MEAN PROCESSING TIME OF A ROUTINE:

Given the execution time of all statements or instructions for every link in a

flowgraph and the probability for each direction for all decisions are to find the

mean processing time for the routine as a whole.

The model has two weights associated with every link: the processing time for

that link, denoted by T, and the probability of that link P.

The arithmetic rules for calculating the mean time:

EXAMPLE:

1. Start with the original flow graph annotated with probabilities and

processing time.

2. Combine the parallel links of the outer loop. The result is just the

mean of the processing times for the links because there aren't any

other links leaving the first node. Also combine the pair of links at the

beginning of the flow graph.

www.Jntufastupdates.com 44

3. Combine as many serial links as you can.

www.Jntufastupdates.com 45

4. Use the cross-term step to eliminate a node and to create the inner

self - loop. 5.Finally, you can get the mean processing time, by using the

arithmetic rules as follows:

PUSH/POP, GET/RETURN:

This model can be used to answer several different questions that can turn

up in debugging. It can also help decide which test cases to design.

The question is:

Given a pair of complementary operations such as PUSH (the stack) and POP

(the stack), considering the set of all possible paths through the routine,

what is the net effect of the routine? PUSH or POP? How many times?

www.Jntufastupdates.com 46

Under what conditions?

Here are some other examples of complementary operations to which this

model applies: GET/RETURN a resource block.

OPEN/CLOSE a file.

START/STOP a device or process.

EXAMPLE 1 (PUSH / POP):

 Here is the Push/Pop Arithmetic:

www.Jntufastupdates.com 47

 The numeral 1 is used to indicate that nothing of interest

(neither PUSH nor POP) occurs on a given link.

 "H" denotes PUSH and "P" denotes POP. The

operations are commutative, associative, and

distributive.

 Consider the following flow graph:

P(P + 1)1{P(HH)n1HP1(P + H)1}n2P(HH)n1HPH

 Simplifying by using the arithmetic tables,

= (P2 + P){P(HH)n1(P + H)}n1(HH)n1

= (P2 + P){H2n1(P2 + 1)}n2H2n1

 Below Table 5.9 shows several combinations of values for the

two looping terms - M1 is the number of times the inner loop

will be taken and M2 the number of times the outer loop will

be taken.

www.Jntufastupdates.com 48

Figure 5.9: Result of the PUSH / POP Graph Analysis.

 These expressions state that the stack will be popped only if

the inner loop is not taken.

 The stack will be left alone only if the inner loop is iterated

once, but it may also be pushed.

 For all other values of the inner loop, the stack will only be

pushed.

EXAMPLE 2 (GET / RETURN):

www.Jntufastupdates.com 49

example are used for GET / RETURN a buffer block or

resource, or, in fact, for any pair of

www.Jntufastupdates.com 50

complementary operations in which the total number of

operations in either direction is cumulative.

 The arithmetic tables for GET/RETURN are:

"G" denotes GET and "R" denotes RETURN.

 Consider the following flowgraph:

 G(G + R)G(GR)*GGR*R

= G(G + R)G3R*R

= (G + R)G3R*

= (G4 + G2)R*

 This expression specifies the conditions under which the

resources will be balanced on leaving the routine.

 If the upper branch is taken at the first decision, the second

loop must be taken four times.

 If the lower branch is taken at the first decision, the second

loop must be taken twice.

 For any other values, the routine will not balance. Therefore,

the first loop does not have to be instrumented to verify this

behavior because its impact should be nil.

LIMITATIONS AND SOLUTIONS:

o The main limitation to these applications is the problem of unachievable paths.

www.Jntufastupdates.com 51

algorithms work well when all paths are possible, but may provide

misleading results when some paths are unachievable.

o The approach to handling unachievable paths (for any application)

is to partition the graph into subgraphs so that all paths in each of

the subgraphs are achievable.

o The resulting subgraphs may overlap, because one path may be

common to several different subgraphs.

o Each predicate's truth-functional value potentially splits the graph

into two subgraphs. For n predicates, there could be as many as 2n

subgraphs.

www.Jntufastupdates.com 52

REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION:

 THE PROBLEM:

o The generic flow-anomaly detection problem (note: not just data-

flow anomalies, but any flow anomaly) is that of looking for a

specific sequence of options considering all possible paths

through a routine.

o Let the operations be SET and RESET, denoted by s and r

respectively, and we want to know if there is a SET followed

immediately a SET or a RESET followed immediately by a RESET

(an ss or an rr sequence).

o Some more application examples:

1. A file can be opened (o), closed (c), read (r), or written (w). If

the file is read or written to after it's been closed, the

sequence is nonsensical. Therefore, cr and cw are

anomalous. Similarly, if the file is read before it's been

written, just after opening, we may have a bug. Therefore, or

is also anomalous. Furthermore, oo and cc, though not

actual bugs, are a waste of time and therefore should also be

examined.

2. A tape transport can do a rewind (d), fast-forward (f), read (r),

write (w), stop (p), and skip (k). There are rules concerning

the use of the transport; for example, you cannot go from

rewind to fast-forward without an intervening stop or from

rewind or fast-forward to read or write without an

intervening stop. The following sequences are anomalous: df,

dr, dw, fd, and fr. Does the flowgraph lead to anomalous

sequences on any path? If so, what sequences and under

what circumstances?

3. The data-flow anomalies discussed in Unit 4 requires us to

detect the dd, dk, kk, and ku sequences. Are there paths

www.Jntufastupdates.com 53

with anomalous data flows?

 THE METHOD:

o Annotate each link in the graph with the appropriate operator or

the null operator 1.

o Simplify things to the extent possible, using the fact that a + a = a and

12 = 1.

o You now have a regular expression that denotes all the

possible sequences of operators in that graph. You can now

examine that regular expression for the sequences of interest.

o EXAMPLE: Let A, B, C, be nonempty sets of character sequences

whose smallest string is at least one character long. Let T be a two-

character string of characters. Then if T is a substring of (i.e., if T

appears within) ABnC, then T will appear in AB2C. (HUANG's

Theorem)

As an example, let

o A =

pp B

= srr

C =

rp T =

ss

The theorem states that ss will appear in pp(srr)nrp if it appears in

pp(srr)2rp.

www.Jntufastupdates.com 54

o However, let

A = p + pp + ps

B = psr + ps(r + ps)

C = rp

T = P4

Is it obvious that there is a p4 sequence in ABnC? The theorem states that we have

only to look at

(p + pp + ps)[psr + ps(r + ps)]2rp

Multiplying out the expression and simplifying shows that there is no p4

sequence.

o Incidentally, the above observation is an informal proof of the wisdom

of looping twice discussed in Unit 2. Because data-flow anomalies are

represented by two- character sequences, it follows the above theorem

that looping twice is what you need to do to find such anomalies.

 LIMITATIONS:

o Huang's theorem can be easily generalized to cover sequences of

greater length than two characters. Beyond three characters, though,

things get complex and this method has probably reached its

utilitarian limit for manual application.

o There are some nice theorems for finding sequences that occur at the

beginnings and ends of strings but no nice algorithms for finding

strings buried in an expression.

o Static flow analysis methods can't determine whether a path is or is

not achievable. Unless the flow analysis includes symbolic execution

or similar techniques, the impact of unachievable paths will not be

included in the analysis.

The flow-anomaly application, for example, doesn't tell us that there will be a flow anomaly - it

www.Jntufastupdates.com 55

tells us that if the path is achievable, then there will be a flow anomaly. Such analytical problems

go away, of course, if you take the trouble to design routines for which all paths are achievable.

www.Jntufastupdates.com 56

	UNIT 3
	DOMAIN TESTING
	o INTRODUCTION:
	o A DOMAIN IS A SET:
	o DOMAINS, PATHS AND PREDICATES:
	o A DOMAIN CLOSURE:
	o DOMAIN DIMENSIONALITY:
	o BUG ASSUMPTION:
	Domain Errors:

	2. Nice & Ugly Domains:
	NICE DOMAINS:
	o LINEAR AND NON LINEAR BOUNDARIES:
	o COMPLETE BOUNDARIES:
	o CLOSURE CONSISTENCY:
	o CONVEX:
	o SIMPLY CONNECTED:
	UGLY DOMAINS:
	o AMBIGUITIES AND CONTRADICTIONS:

	3. Domain Testing:
	o DOMAIN BUGS AND HOW TO TEST FOR THEM:
	4. DOMAIN AND INTERFACE TESTING
	 DOMAINS AND RANGE:
	 CLOSURE COMPATIBILITY:
	Fig: Range / Domain Closure Compatibility.
	MOTIVATION:
	PATH PRODUCTS:
	Examples of paths.
	PATH PRODUCTS: (1)
	PATH SUMS:
	DISTRIBUTIVE LAWS:
	ABSORPTION RULE:
	LOOPS:
	Example:
	2. REDUCTION PROCEDURE ALGORITHM:
	The steps in Reduction Algorithm are as follows:
	STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP:
	LOOP REMOVAL OPERATIONS:
	A REDUCTION PROCEDURE – EXAMPLE:
	Continue the process by applying the loop-removal step as follows:
	Remove the loop at node 6 to yield:
	a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d)*(ilhd)*e
	THE METHOD:
	LIMITATIONS:
	4. APPLICATIONS:
	HOW MANY PATHS IN A FLOWGRAPH?
	MAXIMUM PATH COUNT ARITHMETIC:

	Example:
	Path expression: a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh
	For the Inner Loop:
	a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh
	STRUCTURED FLOWGRAPH:
	Figure: Structured Flow Graph Transformations.
	LOWER PATH COUNT ARITHMETIC:
	EXAMPLE:

	CALCULATING THE PROBABILITY:
	What is the probability of being at a certain point in a routine?

	Weights, Notations and Arithmetic:
	EXAMPLE:
	MEAN PROCESSING TIME OF A ROUTINE:
	EXAMPLE: (1)
	PUSH/POP, GET/RETURN:
	Given a pair of complementary operations such as PUSH (the stack) and POP (the stack), considering the set of all possible paths through the routine, what is the net effect of the routine? PUSH or POP? How many times? Under what conditions?
	EXAMPLE 1 (PUSH / POP):
	Figure 5.9: Result of the PUSH / POP Graph Analysis.
	EXAMPLE 2 (GET / RETURN):
	LIMITATIONS AND SOLUTIONS:
	REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION:
	 THE METHOD:
	 LIMITATIONS:

