

UNIT-I

Introduction to UML

1. Importance of modeling, principles of modelling

2. object oriented modelling

3. conceptual model of the UML

4. Architecture

5. Software Development Life Cycle.

Structural Modeling

6. Classes

7. Relationships

8. common Mechanisms

9. Diagrams.

10. Advanced classes

11. advanced relationships

12. Object diagrams

13. common modeling techniques.

Prepared By Mr. K.CHANDRA MOULI Page 1

1Q.DEFINE UML?

Introduction of UML

 The Unified Modeling Language is a standard language for writing software

blueprints. The UML may be used to visualize, specify, construct, and

document the artifacts of a software-intensive system.

 The UML is appropriate for modeling systems ranging from enterprise

information systems to distributed Web-based applications and even to hard

real time embedded systems. It is a very expressive language, addressing all

the views needed to develop and then deploy such systems .The UML is a

language for

Visualizing

The UML is more than just a bunch of graphical symbols. Rather, behind each

symbol in the UML notation is a well-defined semantics. In this manner, one

developer can write a model in the UML, and another developer, or even another

tool, can interpret that model unambiguously.

Specifying

The Specifying means building models that are precise, unambiguous, and

complete. In particular, the UML addresses the specification of all the

important analysis, design, and implementation decisions that must be made in

developing and deploying a software-intensive system.

Constructing

 Visualizing

 Specifying

 Constructing

 Documenting

Prepared By Mr. K.CHANDRA MOULI Page 2

The UML is not a visual programming language, but its models can be directly

connected to a variety of programming languages. This means that it is possible

to map from a model in the UML to a programming language such as Java, C++,

or Visual Basic, or even to tables in a relational database or the persistent

store of an object-oriented database.

 This mapping permits forward engineering: The generation of code from a

UML model into a programming language.

The reverse is also possible: You can reconstruct a model from an

implementation back into the UML

Documenting

Documenting a healthy software organization produces all sorts of artifacts in

addition to raw executable code. These artifacts include

 Requirements

 Architecture

 Design

 Source code

 Project plans

 Tests

 Prototypes

 Releases

2Q. WHAT IS MODEL? EXPLAIN THE IMPORTANCE AND PRINCIPLES

OF MODELING?

Importance of Modeling

Model

Prepared By Mr. K.CHANDRA MOULI Page 3

 A model is a simplification of reality. A model provides the blueprints of a

system. A model may be structural, emphasizing the organization of the

system, or it may be behavioral, emphasizing the dynamics of the system.

 If we want to build a dog house, with a little planning, we’ll likely end up with

a dog house that’s reasonably functional and we can do it with no one’s help.

 If we want to build a house for a family, it’s going to take a lot longer.

 In this case we need some detailed planning; we’ll need to draw some

blueprints, before we lay the foundation.

 If we want to build a high-rise office building, we’ll have to do extensive

planning; and we need all sorts of blueprints and models to communicate

with one another.

Why do we model

We build models so that we can better understand the system we are developing.

Through modeling, we achieve four aims.

1. Models help us to visualize a system as it is or as we want it to be.

2. Models permit us to specify the structure or behavior of a system.

3. Models give us a template that guides us in constructing a system.

4. Models document the decisions we have made.

We build models of complex systems because we cannot comprehend such a

system in its entirety.

Principles of Modeling

There are four basic principles of model

1. The choice of what models to create has a profound influence on how a

problem is attacked and how a solution is shaped.

2. Every model may be expressed at different levels of precision.

3. The best models are connected to reality.

Prepared By Mr. K.CHANDRA MOULI Page 4

4. No single model is sufficient. Every nontrivial system is best approached

through a small set of nearly independent models.

3Q. EXPLAIN THE OBJECT ORIENTED MODELING?

Object oriented modeling

In software, there are several ways to approach a model. The two most common

ways are

1 Algorithmic Perspective

 The traditional view of software development takes an algorithmic

perspective.

 In this approach, the main building block of all software is the procedure

or function.

 This view leads developers to focus on issues of control and the

decomposition of larger algorithms into smaller ones.

 As requirements change and the system grows, systems built with an

algorithmic focus turn out to be very hard to maintain.

2 Object-oriented perspective

 The contemporary view of software development takes an object-oriented

perspective.

 In this approach, the main building block of all software systems is the

object or class.

1 Algorithmic perspective

2 Object-oriented perspective

Prepared By Mr. K.CHANDRA MOULI Page 5

 A class is a description of a set of common objects.

 Every object has identity, state, and behavior.

 Object-oriented development provides the conceptual foundation for

assembling systems out of components using technology such as Java Beans

or COM+.

4Q. EXPLAIN THE CONCEPTUAL MODEL OF UML (OR) EXPLAIN THE

BUILDING BLOCK OF UML (OR) EXPLAIN THE THINGS IN UML (OR)

EXPLAIN THE RLATIONSHIPS WITH AN EXAMPLE (OR) EXPLAIN THE

DIAGRAMS (OR) EXPLAIN THE COMMON MECHANISMS?

Conceptual model of the UML

Things in the UML

There are four kinds of things in the UML:

1. Structural things

 Structural things are the nouns of UML models. These are the mostly

static parts of a model, representing elements that are either conceptual or

physical. In all, there are seven kinds of structural things.

1. Classes

2. Interfaces

3. Collaborations

1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

1. Things

2. Relationships

3. Diagrams

Prepared By Mr. K.CHANDRA MOULI Page 6

4. Use cases

5. Active classes

6. Components

7. Nodes

1. Class

 Class is a description of a set of objects that share the same attributes,

operations, relationships, and semantics.

 A class implements one or more interfaces.

 Graphically, a class is rendered as a rectangle, usually including its name,

attributes, and operations.

2. Interface

 Interface is a collection of operations that specify a service of a class or

component.

 An interface therefore describes the externally visible behavior of that

element.

 An interface might represent the complete behavior of a class or

component or only a part of that behavior.

 An interface is rendered as a circle together with its name. An interface

rarely stands alone. Rather, it is typically attached to the class or

component that realizes the interface

3. Collaboration

 Collaboration defines an interaction and is a society of roles and other

elements that work together to provide some cooperative behavior that's

bigger than the sum of all the elements.

 Graphically, collaboration is rendered as an ellipse with dashed lines, usually

including only its name

Prepared By Mr. K.CHANDRA MOULI Page 7

4. Usecase

 Use case is a description of set of sequence of actions that a system

performs that yields an observable result of value to a particular actor

 Use case is used to structure the behavioral things in a model.

 A use case is realized by a collaboration. Graphically, a use case is rendered

as an ellipse with solid lines, usually including only its name

5. Active class

 Active class is just like a class except that its objects represent elements

whose behavior is concurrent with other elements.

 Graphically, an active class is rendered just like a class, but with heavy

lines, usually including its name, attributes, and operations

6. Component

 Component is a physical and replaceable part of a system that conforms to

and provides the realization of a set of interfaces.

 Graphically, a component is rendered as a rectangle with tabs

Prepared By Mr. K.CHANDRA MOULI Page 8

7. Node

 Node is a physical element that exists at run time and represents a

computational resource, generally having at least some memory and, often,

processing capability.

 Graphically, a node is rendered as a cube, usually including only its name

2. Behavioral Things

Behavioral Things are the dynamic parts of UML models. These are the verbs

of a model, representing behavior over time and space.

 In all, there are two primary kinds of behavioral things

1. Interaction

 Interaction is a behavior that comprises a set of messages exchanged

among a set of objects within a particular context to accomplish a specific

purpose

 An interaction involves a number of other elements, including messages,

action sequences and links

 Graphically a message is rendered as a directed line, almost always including

the name of its operation

2. State Machine

 State machine is a behavior that specifies the sequences of states an

object or an interaction goes through during its lifetime in response to

events, together with its responses to those events

1. Interaction

2. State machine

Prepared By Mr. K.CHANDRA MOULI Page 9

 State machine involves a number of other elements, including states,

transitions, events and activities

 Graphically, a state is rendered as a rounded rectangle, usually including its

name and its substates

3. Grouping Things:-

 Grouping Things are the organizational parts of UML models. These are

the boxes into which a model can be decomposed

 There is one primary kind of grouping thing, namely, packages.

1. Package:-

 A package is a general-purpose mechanism for organizing elements into

groups. Structural things, behavioral things, and even other grouping things

may be placed in a package

 Graphically, a package is rendered as a tabbed folder, usually including only

its name and, sometimes, its contents

Annotational things

 Annotational things are the explanatory parts of UML models.

 These are the comments you may apply to describe about any element in a

model.

 Note

Prepared By Mr. K.CHANDRA MOULI Page 10

 A note is simply a symbol for rendering constraints and comments attached to

an element or a collection of elements.

 Graphically, a note is rendered as a rectangle with a dog-eared corner,

together with a textual or graphical comment

Relationships in the UML:

There are four kinds of relationships in the UML:

1. Dependency:-

 Dependency is a semantic relationship between two things in which a change

to one thing may affect the semantics of the other thing

 Graphically a dependency is rendered as a dashed line, possibly directed,

and occasionally including a label

2. Association :

 Association is a structural relationship that describes a set of, a link being

a connection among objects.

1. Dependency

2. Association

3. Generalization

4. Realization

Prepared By Mr. K.CHANDRA MOULI Page 11

 Graphically an association is rendered as a solid line, possibly directed,

occasionally including a label, and often containing other adornments, such

as multiplicity and role names.

3. Generalization:

 It is denoted by a solid line with a hollow arrow head pointing to the

parent

Generalization is a relationship in which the child will share the behavior of

the parent.

4. Realization

 Realization is a semantic relationship between classifiers, wherein one

classifier specifies a contract that another classifier guarantees to carry

out.

 It is denoted by dashed lines with a hollow arrow head.

Prepared By Mr. K.CHANDRA MOULI Page 12

Diagrams in the UML

 Diagram is the graphical presentation of a set of elements, most often

rendered as a connected graph of vertices (things) and arcs (relationships).

 In theory, a diagram may contain any combination of things and relationships.

 For this reason, the UML includes nine such diagrams:

There are 9 types of Diagrams in UML, which are classified into 2 types

1. Structural Diagrams (static diagrams)

2. Behavioral Diagrams (Dynamic diagrams)

1. Structural Diagrams (static diagrams)

These are of 4 types

1. Class Diagram

1. Class diagram

2. Object diagram

3. Use case diagram

4. Sequence diagram

5. Collaboration diagram

6. State chart diagram

7. Activity diagram

8. Component diagram

9. Deployment diagram

Prepared By Mr. K.CHANDRA MOULI Page 13

 A Class diagram shows a set of classes, interfaces, and collaborations and

their relationships.

 A class consists of class name, attributes, operations and responsibilities.

2. Object diagram

 Object diagrams represent static snapshots of instances of the things found

in class diagrams.

 These diagrams address the static design view or static process view of a

system.

 An object diagram shows a set of objects and their relationships.

3. Component diagram

 A component diagram shows the organizations and dependencies among a set

of components.

 Component diagrams address the static implementation view of a system.

 They are related to class diagrams in that a component typically maps to one

or more classes, interfaces, or collaborations

 It shows the organizations and dependencies among set of compo nets. The

static(view) implementation view of a system. It displays the high level

packaged structure of the code itself.

Prepared By Mr. K.CHANDRA MOULI Page 14

4. Deployment diagram

 It shows the configuration of runtime processing nodes and the

components that live on them it address the static deployment view of

architecture.

 It displays the configuration of run-time processing elements and the

software components, processes, and objects that live on them. Software

component instances represent run-time manifestations of code units.

2. Behavioral Diagrams (Dynamic diagrams)

These are of 5 types

1. Use cas e diagram

 A use case diagram shows a set of use cases and actors and their

relationships

 Use case diagrams address the static use case view of a system.

 These diagrams are especially important in organizing and modeling the

behaviors of a system.

Prepared By Mr. K.CHANDRA MOULI Page 15

Interaction Diagrams

 Both sequence diagrams and collaboration diagrams are kinds of interaction

diagrams

 Interaction diagrams address the dynamic view of a system.

2. A sequence diagram

 Sequence diagram emphasizes the time ordering of messages. It mainly shows

set of objects and the messages send /receive by those objects which is

concerned with time ordering of messages.

 It displays the time sequence of the objects participating in the interaction.

This consists of the vertical dimension (time) and horizontal dimension

(different objects).

Prepared By Mr. K.CHANDRA MOULI Page 16

To show interaction between objects we use 3 types of messages.

Simple Messages:

A Simple message shows how control is passed from one object to other

without describing communication in detail i.e. without indicating whether it is

synchronous or asynchronous message.

Synchronous Messages:

If sender object waits for a reply from receiver object from destination,

such messages are called Synchronous messages. Here, only one object can send

a message at a given instance of time.

Asynchronous Messages:

Prepared By Mr. K.CHANDRA MOULI Page 17

If sender object continues executing while target is processing the

message then such messages are said to be Asynchronous messages. Here,

multiple messages are executed at a time.

Object Lifeline: An Object life line is vertical dashed lines that represent the

existence of an object over a period of time.

Focus of Control: It is represented by rectangle that shows the period of time

during which an object performs some actions.

3. A collaboration diagram

 A collaboration diagram is an interaction diagram that emphasizes the

structural organization of the objects that send and receive messages

 Sequence diagrams and collaboration diagrams are isomorphic, meaning that

you can take one and transform it into the other.

4. Statechart diagram

 A statechart diagram shows a state machine, consisting of states,

transitions, events, and activities.

 Statechart diagrams address the dynamic view of a system.

 They are especially important in modeling the behavior of an interface,

class, or collaboration and emphasize the event-ordered behavior of an

object

Prepared By Mr. K.CHANDRA MOULI Page 18

5. Activity diagram

 An activity diagram is a special kind of a statechart diagram that shows

the flow from activity to activity within a system

 Activity diagrams address the dynamic view of a system

 They are especially important in modeling the function of a system and

emphasize the flow of control among objects.

Activity: It is a major task that must take place in order to fulfill an

operation contract.

Initial Activity: This shows the starting point of the flow. It is denoted by

solid circle

Final Activity: This shows the end of the flow in the activity diagram. It is

denoted by a solid circle nested in a circle.

Prepared By Mr. K.CHANDRA MOULI Page 19

Decision Box: A point in an Activity diagram where a flow splits into several

mutually exclusive guarded flows. It has one incoming transition and two

outgoing transitions.

Forking and Joining: We use synchronization bar to specify the forking

and joining of parallel flows of control.

A synchronization bar is a thick horizontal or vertical line.

A Fork may have one incoming transition and two or more outgoing

transitions, each of which represents an independent flow of control.

A Join may have two or more incoming transitions and one outgoing

transition.

Rules of the UML

1. Names What you can call things, relationships, and diagrams

2. Scope The context that gives specific meaning to a name

3. Visibility How those names can be seen and used by others

4. Integrity How things properly and consistently relate to one

another

5. Execution What it means to run or simulate a dynamic model

Prepared By Mr. K.CHANDRA MOULI Page 20

The UML has semantic rules for

Models built during the development of a software-intensive system tend to

evolve and may be viewed by many stakeholders in different ways and at different

times. For this reason, it is common for the development team to not only build

models that are well-formed, but also to build models that are

1. Elided Certain elements are hidden to simplify the view

2. Incomplete Certain elements may be missing

3. Inconsistent The integrity of the model is not guaranteed

Common Mechanisms in the UML

UML is made simpler by the presence of four common mechanisms that apply

consistently throughout the language.

1. Specification

 Specification that provides a textual statement of the syntax and semantics

of that building block.

 The UML's specifications provide a semantic backplane that contains all the

parts of all the models of a system, each part related to one another in a

consistent fashion.

2. Adornments

Adornments most elements in the UML have a unique and direct graphical

notation that provides a visual representation of the most important aspects

of the element.

1. Specifications

2. Adornments

3. Common divisions

4. Extensibility

mechanisms

Prepared By Mr. K.CHANDRA MOULI Page 21

 A class's specification may include other details, such as whether it is

abstract or the visibility of its attributes and operations. Many of these

details can be rendered as graphical or textual adornments to the class's

basic rectangular notation.

3. Common Divisions

 In modelling object-oriented systems, the world often gets divided in at least

a couple of ways.

 First, there is the division of class and object. A class is an abstraction; an

object is one concrete manifestation of that abstraction. In the UML, you can

model classes as well as objects, as shown in Fig.

 In this figure, there is one class, named Customer, together with three

objects: Jan (which is marked explicitly as being a Customer object),

:Customer (an anonymous Customer object),and Elyse (which in its

specification is marked as being a kind of Customer object, although it'snot

shown explicitly here).

Class And objects

 Second, there is the separation of interface and implementation. An interface

declares a contract, and an implementation represents one concrete

realization of that contract, responsible for faithfully carrying out the

interface's complete semantics.

Prepared By Mr. K.CHANDRA MOULI Page 22

 In the UML, you can model both interfaces and their implementations

Shown in Fig

Interfaces And Implementation

In this figure, there is one component named spellingwizard.dll that

implements two interfaces, IUnknown and ISpelling.

4. Extensibility Mechanisms

The UML's extensibility mechanisms include

a) Stereotypes

b) Tagged values

c) Constraints

a) Stereotype

Stereotype extends the vocabulary of the UML, allowing you to create new

kinds of building blocks that are derived from existing ones but that are

specific to your problem.

b) Tagged value

A tagged value extends the properties of a UML building block, allowing you

to create new information in that element's specification.

c) Constraint

A constraint extends the semantics of a UML building block, allowing you to

add new rules or modify existing ones.

Prepared By Mr. K.CHANDRA MOULI Page 23

5Q. EXPLAIN THE ARCHITECTURE OF UML?

ARCHITECTURE

A system's architecture is perhaps the most important artifact that can be

used to manage these different viewpoints and so control the iterative and

incremental development of a system throughout its life cycle.

Architecture is the set of significant decisions about

 The organization of a software system

 The selection of the structural elements and their interfaces by which

the system is composed

 Their behavior, as specified in the collaborations among those elements

 The composition of these structural and behavioral elements into

progressively larger subsystems

The architectural style that guides this organization: the static and dynamic

elements and their interfaces, their collaborations, and their composition.

1 Use case view

2 Design View

3 Process View

4 Implementation View

5 Deployment Diagram

Prepared By Mr. K.CHANDRA MOULI Page 24

 Modeling a System's Architecture

1. Use case view

 The use case view of a system encompasses the use cases that describe the

behavior of the system as seen by its end users, analysts, and testers.

With the UML, the static aspects of this view are captured in use case

diagrams

 The dynamic aspects of this view are captured in interaction diagrams, state

chart diagrams, and activity diagrams.

2. Design View

 The design view of a system encompasses the classes, interfaces, and

collaborations that form the vocabulary of the problem and its solution.

 This view primarily supports the functional requirements of the system,

meaning the services that the system should provide to its end users.

3. Process View

 The process view of a system encompasses the threads and processes that

form the system's concurrency and synchronization mechanisms.

 This view primarily addresses the performance, scalability, and throughput of

the system

4. Implementation View

Prepared By Mr. K.CHANDRA MOULI Page 25

 The implementation view of a system encompasses the components and files

that are used to assemble and release the physical system.

 This view primarily addresses the configuration management of the system's

releases, made up of somewhat independent components and files that can be

assembled in various ways to produce a running system.

5. Deployment view

 The deployment view of a system encompasses the nodes that form the

system's hardware topology on which the system executes.

 This view primarily addresses the distribution, delivery, and installation of the

parts that make up the physical system. With the UML, the static aspects of

this view are captured in deployment diagrams; the dynamic aspects of this

view are captured in interaction diagrams, statechart diagrams, and activity

diagrams.

6Q. EXPLAIN THE SOFTWARE DEVELOPMENT LIFE CYCLE ?

Software Development Life Cycle

UML is a software development life cycle or process independent language.

But to get most out of UML, the software development process should have

the following properties:

 Use case driven

 Architecture centric

 Iterative and Incremental

Rational Unified Process (RUP) is a software development process framework

developed by Rational Corporation which satisfies the above three properties.

The overall software development life cycle can be visualized as shown below:

Prepared By Mr. K.CHANDRA MOULI Page 26

Critical activities in each phase:

Inception:

 Business case is established
 20% of the critical use cases are identified

Elaboration:

 Develop the architecture
 Analyze the problem domain (80% of use cases are identified)

Construction:

 Source code

 User manual
 Verification and validation of code

Transition:

 Deployment of software

 New releases
 Training

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/sdlc.gif

Prepared By Mr. K.CHANDRA MOULI Page 27

7Q. EXPLAIN THE CLASS DIAGRAMS IN UML?

1. Class

A class is a description of a set of objects that share the same attributes, operations,

relationships, and semantics.

A class implements one or more interfaces.

The UML provides a graphical representation of class

 class

Terms and Concepts

1. Names

 Every class must have a name that distinguishes it from other classes.

 A name is a textual string that name alone is known as a simple name; a path

name is the class name prefixed by the name of the package in which that class

lives.

1. Class name

2. Attributes

3. Operations

4. Responsibilities

Prepared By Mr. K.CHANDRA MOULI Page 28

Simple and path names

2. Attributes

 An attribute is a named property of a class that describes a range of values that

instances of the property may hold.

 A class may have any number of attributes or no attributes at all.

 An attribute represents some property of thing you are modeling that is shared by

all objects of that class

 You can further specify an attribute by stating its class and possibly a default

initial value

Attributes

3. Operations

 An operation is the implementation of a service that can be requested from any

object of the class to affect behavior.

 A class may have any number of operations or no operations at all graphically;

operations are listed in a compartment just below the class attributes.

 You can specify an operation by stating its signature, covering the name, type, and

default value of all parameters and a return type.

Prepared By Mr. K.CHANDRA MOULI Page 29

Operations

Organizing Attributes and Operations

 To better organize long lists of attributes and operations, you can also prefix each

group with a descriptive category by using stereotypes

Stereotypes for Class Features

4. Responsibilities

 A Responsibility is a contract or an obligation of a class.

 When you model classes, a good starting point is to specify the responsibilities of

the things in your vocabulary.

 A class may have any number of responsibilities, although, in practice, every

well-structured class has at least one responsibility and at most just a handful.

 Graphically, responsibilities can be drawn in a separate compartment at the

bottom of the class icon

Prepared By Mr. K.CHANDRA MOULI Page 30

 Responsibilities

8Q. EXPLAIN THE COMMON MODELING TECHNIQUES OF CLASS

DIAGRAMS IN UML?

1 Modeling the Vocabulary of a System

1. To model the vocabulary of a system

 Identify those things that users or implementers use to describe the problem or

solution. Use CRC cards and use case-based analysis to help find these abstractions.

 For each abstraction, identify a set of responsibilities.

 Provide the attributes and operations that are needed to carry out these

responsibilities for each class.

1 Modeling the Vocabulary of a System

2 Modeling the Distribution of Responsibilities in a System

3 Modeling Non software Things

4Modeling Primitive Types

Prepared By Mr. K.CHANDRA MOULI Page 31

Modeling the Vocabulary of a System

2 Modeling the Distribution of Responsibilities in a System

1. Once you start modeling more than just a handful of classes, you will want to be sure that

your abstractions provide a balanced set of responsibilities.

2. To model the distribution of responsibilities in a system.

 Identify a set of classes that work together closely to carry out some behavior.

 Identify a set of responsibilities for each of these classes.

 Consider the ways in which those classes collaborate with one another, and

redistribute their responsibilities accordingly so that no class within collaboration

does too much or too little.

Modeling the Distribution of Responsibilities in a System

Prepared By Mr. K.CHANDRA MOULI Page 32

3 Modeling Non software Things

 Model the thing you are abstracting as a class.

 If you want to distinguish these things from the UML's defined building blocks,

create a newbuilding block by using stereotypes to specify these new semantics and

to give a distinctive visual cue.

 If the thing you are modeling is some kind of hardware that itself contains

software, consider modeling it as a kind of node, as well, so that you can further

expand on its structure.

 Modeling Non software Things

4 Modeling Primitive Types

 If you need to specify the range of values associated with this type, use constraints.

 As Figure shows, these things can be modelled in the UML as types or

enumerations, which are rendered just like classes but are explicitly marked via

stereotypes.

 Things like integers (represented by the class Int) are modeled as types, and you

can explicitly indicate the range of values these things can take on by using a

constraint. Similarly, enumeration types, such as Boolean and Status, can be

modelled as enumerations, with their individual values provided as attributes.

Modeling Primitive Types

Prepared By Mr. K.CHANDRA MOULI Page 33

9Q. EXPLAIN THE RELATIONSHIPS IN UML?

 In the UML, the ways that things can connect to one another, either logically or

physically, are modeled as relationships.

 Graphically, a relationship is rendered as a path, with different kinds of lines used to

distinguish the kinds of relationships

 Relationship

Terms and Concepts

 A relationship is a connection among things. In object-oriented modelling, the three

most important relationships are dependencies, generalizations, and associations.

Graphically, a relationship is rendered as a path, with different kinds of lines used to

distinguish the kinds of relationships.

1 Dependency

 A dependency is a using relationship that states that a change in specification of one

thing may affect another thing that uses it but not necessarily the reverse.

1 Dependency

2 Association

3 Generalization

4 Aggregation

Prepared By Mr. K.CHANDRA MOULI Page 34

 Graphically dependency is rendered as a dashed directed line, directed to the thing

being depended on.

 Most often, you will use dependencies in the context of classes to show that one class

uses another class as an argument in the signature of an operation

Dependency

2 Association

 An association is a structural relationship that specifies that objects of one thing are

connected to objects of another.

 An association that connects exactly two classes is called a binary association.

 An associations that connect more than two classes; these are called n-ary

associations.

 Graphically, an association is rendered as a solid line connecting the same or different

classes.

Name

 An association can have a name, and you use that name to describe the nature of the

relationship

Association names

Prepared By Mr. K.CHANDRA MOULI Page 35

Role

 When a class participates in an association, it has a specific role that it plays in

that relationship;

 The same class can play the same or different roles in other associations.

 An instance of an association is called a link

Roles

Multiplicity

 In many modeling situations, it's important for you to state how many objects may be

connected across an instance of an association

 This "how many" is called the multiplicity of an association's role

 You can show a multiplicity of exactly one (1), zero or one (0..1), many (0..*), or

one or more (1..*). You can even state an exact number (for example)

Multiplicity

3 Generalization

 A generalization is a relationship between a general thing (called the super class

or parent) and a more specific kind of that thing (called the subclass or child).

 Generalization means that the child is substitutable for the parent. A child inherits

the properties of its parents, especially their attributes and operations

Prepared By Mr. K.CHANDRA MOULI Page 36

 Graphically generalization is rendered as a solid directed line with a large open

arrowhead, pointing to the parent.

Generalization

4 Aggregation

 Sometimes, you will want to model a "whole/part" relationship, in which one class

represents a larger thing (the "whole"), which consists of smaller things (the

"parts").

 This kind of relationship is called aggregation, which represents a "has-a" relationship,

meaning that an object of the whole has objects of the part.

Aggregation

Prepared By Mr. K.CHANDRA MOULI Page 37

10 Q. EXPLAIN THE COMMON MODERN TECHNIQUES OF

RELASTIONSHIPS IN UML?

Modelling Simple Dependencies:

 The most common kind of dependency relationship is the connection between a class

that only uses another class as a parameter to an operation.

To model this using relationship

 Create a dependency pointing from the class with the operation to the class used as a

parameter in the operation.

.

Modelling Simple Dependencies

4.2 Modeling Single Inheritance

To model inheritance relationships

 Given a set of classes, look for responsibilities, attributes, and operations that are

common to two or more classes.

 Elevate these common responsibilities, attributes, and operations to a more

general class.

1 Modeling Simple Dependencies

2 Modeling Single Inheritance

3 Modeling Structural Relationships

4 To model structural Relationships

Prepared By Mr. K.CHANDRA MOULI Page 38

Modeling Single Inheritance

4.3 Modeling Structural Relationships

 An association specifies a structural path across which objects of the classes interact.

 For each pair of classes, if you need to navigate from objects of one to objects of

another, specify an association between the two. This is a data-driven view of

associations.

 For each pair of classes, if objects of one class need to interact with objects of the

other class other than as parameters to an operation, specify an association between

the two. This is more of a behavior-driven view of associations.

 For each of these associations, specify a multiplicity (especially when the

multiplicity is not *, which is the default), as well as role names (especially if it helps

to explain the model).

Structural relationships

Prepared By Mr. K.CHANDRA MOULI Page 39

11Q. EXPLAIN THE COMMON MECHANISMS IN UML?

3. Common Mechanisms

Terms and concepts

5.1 Notes

 A note is a graphical symbol for rendering constraints or comments attached to an

element or a collection of elements.

 Graphically, a note is rendered as a rectangle with a dog-eared corner, together

with a textual or graphical comment.

 A note may contain any combination of text or graphics.

 Notes

5.2 Stereotypes

 A stereotype is an extension of the vocabulary of the UML, allowing you to create

new kinds of building blocks similar to existing ones but specific to your problem.

 Graphically, a stereotype is rendered as a name enclosed by guillemets << >>and

placed above the name of another element

1. Notes

2. Stereotypes,

3. Tagged values

4. Constraints

Prepared By Mr. K.CHANDRA MOULI Page 40

 Stereotypes

5.3 Tagged Values

 Everything in the UML has its own set of properties: classes have names,

attributes, and operations; associations have names and two or more ends (each

with its own properties); and so on.

 With stereotypes, you can add new things to the UML; with tagged values, you can

add new properties.

Tagged Values

5.4 Constraints

 A constraint specifies conditions that must be held true for the model to be well

formed.

 A constraint is rendered as a string enclosed by brackets and placed near the

associated element

Prepared By Mr. K.CHANDRA MOULI Page 41

 Graphically, a constraint is rendered as a string enclosed by brackets and placed near

the associated element or connected to that element or elements by dependency

relationships.

Constraints

12Q. EXPLAIN THE COMMON MODELING TECHNIQUES FOR COMMON

MECHANISMS IN UML?

 Common Modeling Techniques for Common Mechanisms

1 Modeling Comments

 The most common purpose for which you'll use notes is to write down free-form

observations, reviews, or explanations.

 If your comment is lengthy or involves something richer than plain text, consider

putting your comment in an external document and linking or embedding that

document in a note attached to your model.

Modeling Comment

Prepared By Mr. K.CHANDRA MOULI Page 42

2 Modeling New Building Blocks

To model new building blocks,

identify the primitive thing in the UML that's most like what you want to model and

define a new stereotype for that thing.

 As Figure shows, there are two things that standout• Coach objects and Team

objects. These are not just plain kinds of classes. Rather, they are now primitive

building blocks that you can use in this context.

Modeling New Building Blocks

6.3 Modeling New Properties

 The basic properties of the UML's building blocks—attributes and operations for

classes, the contents of packages, and so on.

To model new properties,

 If you’re convinced there’s no other way to express these semantics, add this new

property to an individual element or a stereotype.

Prepared By Mr. K.CHANDRA MOULI Page 43

Modeling New Properties

6.3 Modeling New Semantics

To model new semantics,

 If you need to specify your semantics more precisely and formally, write your new

Semantics using OCL(object constraint language).

 This diagram shows that each Person may be a member of zero or more

Departments and that each Department must have at least one Person as a

member.

.

Modeling New Semantics

Prepared By Mr. K.CHANDRA MOULI Page 44

13Q. EXPLAIN THE DIAGRAMS IN UML?

7 Diagrams

 Typically, you'll view the Static parts of a system using one of the four following

diagrams.

 The five additional diagrams to view the Dynamic parts of a system.

 The UML defines these nine kinds of diagrams.

 For this reason, the UML includes nine such diagrams:

1. Class diagram

2. Object diagram

3. Component diagram

4. Deployment diagram

1. Use case diagram

2. Sequence diagram

3. Collaboration diagram

4. Statechart diagram

5. Activity diagram

10. Class diagram

11. Object diagram

12. Use case diagram

13. Sequence diagram

14. Collaboration diagram

15. State chart diagram

16. Activity diagram

17. Component diagram

18. Deployment diagram

Prepared By Mr. K.CHANDRA MOULI Page 45

There are 9 types of Diagrams in UML, which are classified into 2 types

3. Structural Diagrams (static diagrams)

4. Behavioral Diagrams (Dynamic diagrams)

2. Structural Diagrams (static diagrams)

These are of 4 types

5. Class Diagram

 A Class diagram shows a set of classes, interfaces, and collaborations and

their relationships.

 A class consists of class name, attributes, operations and responsibilities.

6. Object diagram

 Object diagrams represent static snapshots of instances of the things found

in class diagrams.

 These diagrams address the static design view or static process view of a

system.

 An object diagram shows a set of objects and their relationships.

7. Component diagram

 A component diagram shows the organizations and dependencies among a set

of components.

 Component diagrams address the static implementation view of a system.

Prepared By Mr. K.CHANDRA MOULI Page 46

 They are related to class diagrams in that a component typically maps to one

or more classes, interfaces, or collaborations

 It shows the organizations and dependencies among set of compo nets. The

static(view) implementation view of a system. It displays the high level

packaged structure of the code itself.

8. Deployment diagram

 It shows the configuration of runtime processing nodes and the

components that live on them it address the static deployment view of

architecture.

 It displays the configuration of run-time processing elements and the

software components, processes, and objects that live on them. Software

component instances represent run-time manifestations of code units.

3. Behavioral Diagrams (Dynamic diagrams)

These are of 5 types

6. Use cas e diagram

 A use case diagram shows a set of use cases and actors and their

relationships

Prepared By Mr. K.CHANDRA MOULI Page 47

 Use case diagrams address the static use case view of a system.

 These diagrams are especially important in organizing and modeling the

behaviors of a system.

Interaction Diagrams

 Both sequence diagrams and collaboration diagrams are kinds of interaction

diagrams

 Interaction diagrams address the dynamic view of a system.

7. A sequence diagram

 Sequence diagram emphasizes the time ordering of messages. It mainly shows

set of objects and the messages send /receive by those objects which is

concerned with time ordering of messages.

 It displays the time sequence of the objects participating in the interaction.

This consists of the vertical dimension (time) and horizontal dimension

(different objects).

Prepared By Mr. K.CHANDRA MOULI Page 48

To show interaction between objects we use 3 types of messages.

Simple Messages:

A Simple message shows how control is passed from one object to other

without describing communication in detail i.e. without indicating whether it is

synchronous or asynchronous message.

Synchronous Messages:

If sender object waits for a reply from receiver object from destination,

such messages are called Synchronous messages. Here, only one object can send

a message at a given instance of time.

Asynchronous Messages:

Prepared By Mr. K.CHANDRA MOULI Page 49

If sender object continues executing while target is processing the

message then such messages are said to be Asynchronous messages. Here,

multiple messages are executed at a time.

Object Lifeline: An Object life line is vertical dashed lines that represent the

existence of an object over a period of time.

Focus of Control: It is represented by rectangle that shows the period of time

during which an object performs some actions.

8. A collaboration diagram

 A collaboration diagram is an interaction diagram that emphasizes the

structural organization of the objects that send and receive messages

 Sequence diagrams and collaboration diagrams are isomorphic, meaning that

you can take one and transform it into the other.

9. Statechart diagram

 A statechart diagram shows a state machine, consisting of states,

transitions, events, and activities.

 Statechart diagrams address the dynamic view of a system.

 They are especially important in modeling the behavior of an interface,

class, or collaboration and emphasize the event-ordered behavior of an

object

Prepared By Mr. K.CHANDRA MOULI Page 50

10. Activity diagram

 An activity diagram is a special kind of a statechart diagram that shows

the flow from activity to activity within a system

 Activity diagrams address the dynamic view of a system

 They are especially important in modeling the function of a system and

emphasize the flow of control among objects.

Activity: It is a major task that must take place in order to fulfill an

operation contract.

Initial Activity: This shows the starting point of the flow. It is denoted by

solid circle

Final Activity: This shows the end of the flow in the activity diagram. It is

denoted by a solid circle nested in a circle.

Prepared By Mr. K.CHANDRA MOULI Page 51

Decision Box: A point in an Activity diagram where a flow splits into several

mutually exclusive guarded flows. It has one incoming transition and two

outgoing transitions.

Forking and Joining: We use synchronization bar to specify the forking

and joining of parallel flows of control.

A synchronization bar is a thick horizontal or vertical line.

A Fork may have one incoming transition and two or more outgoing

transitions, each of which represents an independent flow of control.

A Join may have two or more incoming transitions and one outgoing

transition.

14Q. EXPLAIN THE COMMON MODELING TECHNIQUES OF

DIAGRAMS IN UML?

COMMON MODELING TECHNIQUES OF DIAGRAMS

1 Modeling Different Views of a System

To model a system from different views,

1 Modeling Different views of a System

2 Modeling Different levels of Abstraction

3 Modeling Complex Views

Prepared By Mr. K.CHANDRA MOULI Page 52

 Decide which views you need to best express the architecture of your system and

to expose the technical risks to your project

 For each of these views, decide which artifacts you need to create to capture the

essential details of that view.

Use case view Use case diagrams

Design view Class diagrams (for structural modeling) Interaction diagrams (for

behavioral modeling)

 Process view None required

 Implementation

view

None required

Deployment view None required

Similarly, if yours is a client/server system, you'll probably want to include component

diagrams and deployment diagrams to model the physical details of your system.

Use case view Use case diagrams Activity diagrams (for behavioral modeling)

Design view Class diagrams (for structural modeling) Interaction diagrams (for

behavioral modeling) Statechart diagrams (for behavioral modeling)

Process view Class diagrams (for structural modeling) Interaction diagrams (for

behavioral modeling)

Implementation

view

Component diagram

 Deployment view Deployment diagrams

8.2 Modeling Different Levels of Abstraction

Basically, there are two ways to model a system at different levels of abstraction:

1. By presenting diagrams with different levels of detail against the same model.

2. By creating models at different levels of abstraction with diagrams that trace from

one model to another.

 To model a system at different levels of abstraction by presenting diagrams with

different levels of detail,

8.3 Modeling Complex Views

To model complex views,

 First, convince yourself there's no meaningful way to present this information at a

higher level of abstraction, perhaps eliding some parts of the diagram and retaining the

detail in other parts.

Prepared By Mr. K.CHANDRA MOULI Page 53

 If you've hidden as much detail as you can and your diagram is still complex, consider

grouping some of the elements in packages or in higher level collaborations, then

render only those packages or collaborations in your diagram.

.

15 Q. EXPLAIN THE ADVANCED CLASSES IN UML?

Advanced classes

 Advanced classes

Terms and concepts

9.1 Classifiers

9.1 Classifiers

9.2 Visibility

9.3 Scope

9.4 Abstract,Root,Leaf, and Polymorphic Elements

9.5 Multiplicity

9.6 Attributes

9.7 Operations

9.8 Template classes

9.9 Standard Elements

Prepared By Mr. K.CHANDRA MOULI Page 54

Interface A collection of operations that are used to specify a service of a class or a

component

Datatype A type whose values have no identity, including primitive built-in types (such as

numbers and strings), as well as enumeration types (such as Boolean)

Signal The specification of an asynchronous stimulus communicated between instances

Component A physical and replaceable part of a system that conforms to and provides the

realization of a set of interfaces

Node A physical element that exists at run time and that represents a computational

resource, generally having at least some memory and often processing capability

Use case A description of a set of a sequence of actions, including variants, that a system

performs that yields an observable result of value to a particular actor

Subsystem A grouping of elements of which some constitute a specification of the behavior

offered by the other contained elements

Classifiers

9.2 Visibility:

 One of the most important details you can specify for a classifier's attributes and

operations is its visibility. The visibility of a feature specifies whether it can be used

by other classifiers. In the UML, you can specify any of three levels of visibility.

 Figure shows a mix of public, protected, and private figures for the class Toolbar.

Prepared By Mr. K.CHANDRA MOULI Page 55

Visibility

9.3 Scope

 In the UML, you can specify two kinds of owner scope

1). Instance Each instance of the classifier holds its own value for the feature.

2). Classifier There is just one value of the feature for all instances of the classifier.

 As a figure shows, a feature that is classifier scoped is rendered by underlining the

feature' name. No adornment means that the feature is instance scoped.

Scope

public Any outside classifier with visibility to the given classifier can use the feature;

specified by prepending the symbol +

protected Any descendant of the classifier can use the feature; specified by prepending the

symbol #

private Only the classifier itself can use the feature; specified by prepending the symbol -

Prepared By Mr. K.CHANDRA MOULI Page 56

9.4 Abstract, Root, Leaf, and Polymorphic Elements

 Typically, an operation is polymorphic, which means that, in a hierarchy of

classes, you can specify operations with the same signature at different points in

thehierarchy. Ones in the child classes override the behavior of ones in the parent

classes.

 For example, display and isInside are both polymorphic operations

 Root class :Specify that class may have no Parents

 Leaf class : Specify that class may have no Childs

Abstract and Concrete Classes and Operations

9.5 Multiplicity

 The number of instances a class may have is called its multiplicity. Multiplicity is a

specification of the range of allowable cardinalities an entity may assume.

 In the UML, you can specify the multiplicity of a class by writing a multiplicity

expression in the upper-right corner of the class icon.

 .

Prepared By Mr. K.CHANDRA MOULI Page 57

Multiplicity

9.6 Attributes

In its full form, the syntax of an attribute in the UML is

9.7 Operations

In its full form, the syntax of an operation in the UML is

Direction may be any of the following values:

 in An input parameter; may not be modified

 out An output parameter; may be modified to communicate information to the caller

 inout An input parameter; may be modified

9.8 Template Classes

 A template is a parameterized element.

 A template includes slots for classes, objects, and values, and these slots serve as

the template's parameters

[visibility] name [(parameter-list)]

[: return-type] [{property-string}]

[visibility] name [multiplicity] [: type]

[= initial-value] [{property-string}]

Prepared By Mr. K.CHANDRA MOULI Page 58

Template Classes

9.9 Standard Elements

All of the UML's extensibility mechanisms apply to classes

The UML defines four standard stereotypes that apply to classes.

1. metaclass Specifies a classifier whose objects are all classes

2. powertype Specifies a classifier whose objects are the children of a given parent

3. stereotype Specifies that the classifier is a stereotype that may be applied to other

elements

4. utility Specifies a class whose attributes and operations are all class scoped

16 Q. EXPLAIN THE COMMON MODELING TECHNIQUES OF ADVANCED

CLASSES IN UML?

COMMON MODELING TECHNIQUES FOR ADVANCED CLASSES

10.1 Modeling the Semantics of a Class

 Specify the responsibilities of the class.

 Specify the pre- and post conditions of each operation, plus the invariants of the

class as a whole, using structured textprecondition, post condition, and invariant)

attached to the operation or classby a dependency relationship.

 Specify a state machine for the class. A state machine is a behavior that specifies the

Prepared By Mr. K.CHANDRA MOULI Page 59

 Specify a collaboration that represents the class.

17 Q. EXPLAIN THE ADVANCED RELATIONSHIPS IN UML?

Advanced Relationships

11.1 Dependency

 First, there are eight stereotypes that apply to dependency relationships among classes

and objects in class diagrams.

1 bind Specifies that the source instantiates the target template using the given

actual parameters

2 derive Specifies that the source may be computed from the target

3 friend Specifies that the source is given special visibility into the target

4 instanceOf Specifies that the source object is an instance of the target classifier

5 instantiate Specifies that the source creates instances of the target

6 powertype Specifies that the target is a powertype of the source; a powertype is a

classifier whose objects are all the children of a given parent

7 refine Specifies that the source is at a finer degree of abstraction than the target

8 use Specifies that the semantics of the source element depends on the

semantics of the public part of the target

There are two stereotypes that apply to dependency relationships among packages.

9 access Specifies that the source package is granted the right to reference the

elements of the target package

10 import A kind of access that specifies that the public contents of the target

package enter the flat namespace of the source, as if they had been

declared in the source

Two stereotypes apply to dependency relationships among use cases:

Prepared By Mr. K.CHANDRA MOULI Page 60

11 extend Specifies that the target use case extends the behavior of the source

12 include

Specifies that the source use case explicitly incorporates the behavior of

another use case at a location specified by the source

 There are three stereotypes when modeling interactions among objects.

13 become

Specifies that the target is the same object as the source but at a later point

in time and with possibly different values, state, or roles

14 call Specifies that the source operation invokes the target operation

15 copy

Specifies that the target object is an exact, but independent, copy of the

source

 One stereotype you'll encounter in the context of state machines is

16 send Specifies that the source operation sends the target event

Finally, one stereotype that you'll encounter in the context of organizing the elements of your

system into subsystems and models is

17 trace Specifies that the target is an historical ancestor of the source

11.2 Generalization

 A generalization is a relationship between a general thing (called the superclass or

parent) and a more specific kind of that thing(called the subclass or child).

1 implementation Specifies that the child inherits the implementation of the parent

but does not make public nor support its interfaces, thereby

violating substitutability

Next, there are four standard constraints that apply to generalization relationships

Prepared By Mr. K.CHANDRA MOULI Page 61

1 complete Specifies that all children in the generalization have been specified in

the model and that no additional children are permitted

2 incomplete Specifies that not all children in the generalization have been specified

(even if some are elided) and that additional children are permitted

3 disjoint Specifies that objects of the parent may have no more than one of the

children as a type

4 overlapping Specifies that objects of the parent may have more than one of the

children as a type

11.3 Association

 For advanced uses, there are a number of other properties you can use to model subtle

details, such as

Navigation

Vision

Qualification

Various flavors of aggregation.

Navigation

 Given a plane,unadorned association between two classes, such as Book and Library,

it's possible to navigate from objects of one kind to objects of the other kind.

Navigation

Visibility

Prepared By Mr. K.CHANDRA MOULI Page 62

 Given an association between two classes, objects of one class can see and

navigate to objects of the other, unless otherwise restricted by an explicit statement

of navigation.

 Visibility

Qualification

 You render a qualifier as a small rectangle attached to the end of an association,

placing the attributes in the rectangle

 Qualification

Interface Specifier

 An interface is a collection of operations that are used to specify a service of a class or

a component.

Prepared By Mr. K.CHANDRA MOULI Page 63

Interface Specifier

Composition

 Simple aggregation is entirely conceptual and does nothing more than distinguish a

"whole" from a "part."

 Composition is a form of aggregation, with strong ownership and coincident

lifetime as part of the whole.

 Composition

Association Classes

 In an association between two classes, the association itself might have properties.

 An association class can be seen as an association that also has class properties, or

as a class that also has association properties.

Prepared By Mr. K.CHANDRA MOULI Page 64

Association Classes

Constraints

 UML defines five constraints that may be applied to association relationships.

1 implicit Specifies that the relationship is not manifest but, rather, is only

conceptual

2 ordered Specifies that the set of objects at one end of an association are in an

explicit order

3 changeable Links between objects may be added, removed, and changed freely

4 addOnly New links may be added from an object on the opposite end of the

association

5 frozen A link, once added from an object on the opposite end of the

association, may not be modified or deleted

Finally, there is one constraint for managing related sets of associations:

1 xor Specifies that, over a set of associations, exactly one is manfest for each

associated object

Realization

 Realization is sufficiently different from dependency, generalization, and association

relationships that it is treated as a separate kind of relationship.

 A realization is a semantic relationship between classifiers in which one classifier

specifies a contract that another classifier guarantees to carry out.

 Graphically, a realization is rendered as a dashed directed line with a large open

arrowhead pointing to the classifier that specifies the contract.

Realization of an Interface

Prepared By Mr. K.CHANDRA MOULI Page 65

Realization

18 Q. EXPLAIN THE COMMON MODELING TECHNIQUES ADVANCED

RELATIONSHIPS IN UML?

 Common Modeling Techniques for advanced Relationships

12.1 Modeling Webs of Relationships

 When you model these webs of relationships,

 Don't begin in isolation. Apply use cases and scenarios to drive your discovery of

the relationships among a set of abstractions.

 In general, start by modeling the structural relationships that are present. These

reflect the static view of the system and are therefore fairly tangible.

 Next, identify opportunities for generalization/specialization relationships; use

multiple inheritance sparingly.

19 Q. EXPLAIN THE OBJECT DIAGRAMS IN UML?

Object Diagram

 An object diagram is a diagram that shows a set of objects and their

relationships at a point in time.

 Graphically, an object diagram is a collection of vertices and arcs

Prepared By Mr. K.CHANDRA MOULI Page 66

 An object diagram is a special kind of diagram and shares the same

common properties as all other diagrams—that is, a name and graphical
contents that are a projection into a model

Contents

 Object diagrams commonly contain

 Objects

 Links

 Like all other diagrams, object diagrams may contain notes and

constraints.

 Object diagrams may also contain packages or subsystems

Common Uses

 You use object diagrams to model the static design view or static process
view of a system just as you do with class diagrams

 When you model the static design view or static process view of a system,
you typically use object diagrams in one way:

 To model object structures

Modeling Object Structures

 Modeling object structures involves taking a snapshot of the objects in a

system at a given moment in time.

 An object diagram represents one static frame in the dynamic storyboard

represented by an interaction diagram

20 Q. EXPLAIN THE COMMON MODELING TECHNIQUES OF OBJECT

DIAGRAMS IN UML?

Common Modeling Techniques

Modeling Object Structures

 An object diagram shows one set of objects in relation to one another at

one moment in time.

 To model an object structure,

 Identify the mechanism you'd like to model.

 For each mechanism, identify the classes, interfaces, and other

elements that participate in this collaboration;

 identify the relationships among these things, as well.

 Consider one scenario that walks through this mechanism.

 Expose the state and attribute values of each such object, as
necessary, to understand the scenario.

Prepared By Mr. K.CHANDRA MOULI Page 67

 Similarly, expose the links among these objects, representing

instances of associations among them.

Modeling Object Structures

Forward and Reverse Engineering

 Forward engineering an object diagram is theoretically possible but
pragmatically of limited value

 Component instances and node instances are things that live outside the
running system and are amenable to some degree of forward engineering.

 Reverse engineering an object diagram is a very different thing

 To reverse engineer an object diagram,

 Chose the target you want to reverse engineer. Using a tool or simply

walking through a scenario, stop execution at a certain moment in
time.

 Identify the set of interesting objects that collaborate in that context

and render them in an object diagram.

 As necessary to understand their semantics, expose these object's

states.

 As necessary to understand their semantics, identify the links that exist

among these objects.

