

1

UNIT-5

Unit 5: More UML diagrams:State-Chart diagrams, Activity diagrams, Component Diagrams,

Deploymentdiagrams, Object diagrams.

Activity Diagrams

o An activity diagram shows the flow from activity to activity. An is an ongoing nonatomic

execution within a state machine.

o Activities ultimately result in some action, which is made up of executable atomic

computations that result in a change in state of the system or the return of a value.

o Actions encompass calling another operation, sending a signal, creating or destroying an

object, or some pure computation, such as evaluating an expression.

o Graphically, an activity diagram is a collection of vertices and arcs.

Contents

o Activity diagrams commonly contain

o Activity states and action states

o Transitions

o Objects

o Like all other diagrams, activity diagrams may contain notes and constraints.

Action States and Activity States

o Executable, atomic computations are called action states because they are states of the

system, each representing the execution of an action.

o We represent an action state using a lozenge shape (a symbol with horizontal top and bottom

and convex sides). Inside that shape, you may write any expression.

o Action states can't be decomposed. Furthermore, action states are atomic, meaning that

events may occur, but the work of the action state is not interrupted.

o Finally, the work of an action state is generally considered to take insignificant execution

time.

Action States

o activity states can be further decomposed, their activity being represented by other activity

diagrams

o Furthermore, activity states are not atomic, meaning that they may be interrupted and, in

general, are considered to take some duration to complete.

o An action state is an activity state that cannot be further decomposed.

o We can think of an activity state as a composite, whose flow of control is made up of other

activity states and action states.

2

Activity States

Transitions

o When the action or activity of a state completes, flow of control passes immediately to the

next action or activity state.

o We specify this flow by using transitions to show the path from one action or activity state to

the next action or activity state.

o In the UML, you represent a transition as a simple directed line

Triggerless Transitions

Branching

o As in a flowchart, you can include a branch, which specifies alternate paths taken based on

some Boolean expression.

o We represent a branch as a diamond. A branch may have one incoming transition and two or

more outgoing ones.

o On each outgoing transition, you place a Boolean expression, which is evaluated only once

on entering the branch.

o On each outgoing transition, you place a Boolean expression, which is evaluated only once

on entering the branch. Across all these outgoing transitions, guards should not overlap

(otherwise, the flow of control would be ambiguous), but they should cover all possibilities

(otherwise, the flow of control would freeze).

o As a convenience, you can use the keyword else to mark one outgoing transition,

representing the path taken if no other guard expression evaluates to true.

Branching

Forking and Joining

3

o When we are modeling workflows of business processes—we might encounter flows that are

concurrent.

o In the UML, you use a synchronization bar to specify the forking and joining of these parallel

flows of control. A synchronization bar is rendered as a thick horizontal or vertical line.

o Fork represents the splitting of a single flow of control into two or more concurrent flows of

control

o A fork may have one incoming transition and two or more outgoing transitions, each of

which represents an independent flow of control.

o Below the fork, the activities associated with each of these paths continues in parallel.

o Conceptually, the activities of each of these flows are truly concurrent, although, in a running

system, these flows may be either truly concurrent or sequential yet interleaved, thus giving

only the illusion of true concurrency.

Forking and Joining

o A Join represents the synchronization of two or more concurrent flows of control.

o A join may have two or more incoming transitions and one outgoing transition.

o Above the join, the activities associated with each of these paths continues in parallel.

o At the join, the concurrent flows synchronize, meaning that each waits until all incoming

flows have reached the join, at which point one flow of control continues on below the

join.

Swimlanes

o We'll find it useful, especially when you are modeling workflows of business processes, to

partition the activity states on an activity diagram into groups, each group representing the

business organization responsible for those activities.

o In the UML, each group is called a swimlane because, visually, each group is divided from

its neighbor by a vertical solid line

o A swimlane specifies a locus of activities

o Each swimlane has a name unique within its diagram.

4

o Each swimlane represents a high-level responsibility for part of the overall activity of an

activity diagram, and each swimlane may eventually be implemented by one or more classes.

o In an activity diagram partitioned into swimlanes, every activity belongs to exactly one

swimlane, but transitions may cross lanes.

Swimlanes

Object Flow

o Objects may be involved in the flow of control associated with an activity diagram.

o We can specify the things that are involved in an activity diagram by placing these objects in

the diagram, connected using a dependency to the activity or transition that creates, destroys,

or modifies them.

o This use of dependency relationships and objects is called an object flow because it

represents the participation of an object in a flow of control.

o We can also show how its role, state and attribute values change.

o We represent the state of an object by naming its state in brackets below the object's name.

o Similarly, We can represent the value of an object's attributes by rendering them in a

compartment below the object's name.

5

Object Flow

Common Uses

 We use activity diagrams to model the dynamic aspects of a system

 These dynamic aspects may involve the activity of any kind of abstraction in any view of a

system's architecture, including classes, interfaces, components, and nodes.

 When you model the dynamic aspects of a system, we'll typically use activity diagrams in

two ways.

 To model a workflow

 To model an operation

6

Common Modeling Techniques

Modeling a Workflow

 No software-intensive system exists in isolation; there's always some context in which a

system lives, and that context always encompasses actors that interact with the system.

 Especially for mission critical, enterprise software, you'll find automated systems working in

the context of higher-level business processes.

 These business processes are kinds of workflows because they represent the flow of work

and objects through the business.

 To model a workflow,

o Establish a focus for the workflow. For nontrivial systems, it's impossible to show all

interesting workflows in one diagram.

o Select the business objects that have the high-level responsibilities for parts of the

overall workflow. These may be real things from the vocabulary of the system, or

they may be more abstract. In either case, create a swimlane for each important

business object.

o Identify the preconditions of the workflow's initial state and the postconditions of the

workflow's final state. This is important in helping you model the boundaries of the

workflow.

o Beginning at the workflow's initial state, specify the activities and actions that take

place over time and render them in the activity diagram as either activity states or

action states.

o For complicated actions, or for sets of actions that appear multiple times, collapse

these into activity states, and provide a separate activity diagram that expands on

each.

o Render the transitions that connect these activity and action states. Start with the

sequential flows in the workflow first, next consider branching, and only then

consider forking and joining.

o If there are important objects that are involved in the workflow, render them in the

activity diagram, as well. Show their changing values and state as necessary to

communicate the intent of the object flow.

7

Modeling a Workflow

Modeling an Operation

 An activity diagram can be attached to any modeling element for the purpose of visualizing,

specifying, constructing, and documenting that element's behavior.

 You can attach activity diagrams to classes, interfaces, components, nodes, use cases, and

collaborations.

 The most common element to which you'll attach an activity diagram is an operation.

 An activity diagram is simply a flowchart of an operation's actions.

 An activity diagram's primary advantage is that all the elements in the diagram are

semantically tied to a rich underlying model.

 To model an operation,

o Collect the abstractions that are involved in this operation. This includes the

operation's parameters (including its return type, if any), the attributes of the

enclosing class, and certain neighboring classes.

8

o Identify the preconditions at the operation's initial state and the postconditions at the

operation's final state. Also identify any invariants of the enclosing class that must

hold during the execution of the operation.

o Beginning at the operation's initial state, specify the activities and actions that take

place over time and render them in the activity diagram as either activity states or

action states.

o Use branching as necessary to specify conditional paths and iteration.

o Only if this operation is owned by an active class, use forking and joining as

necessary to specify parallel flows of control.

Modeling an Operation

Forward and Reverse Engineering

 Forward engineering (the creation of code from a model) is possible for activity diagrams,

especially if the context of the diagram is an operation.

 For example, using the previous activity diagram, a forward engineering tool could generate

the following C++ code for the operation intersection.

 Point Line::intersection (l : Line) {

 if (slope == l.slope) return Point(0,0);

 int x = (l.delta - delta) / (slope - l.slope);

 int y = (slope * x) + delta;

9

 return Point(x, y);

 }

 Reverse engineering (the creation of a model from code) is also possible for activity

diagrams, especially if the context of the code is the body of an operation.

 In particular, the previous diagram could have been generated from the implementation of the

class Line.

Events and Signals

 An event is the specification of a significant occurrence that has a location in time and space.

 In the context of state machines, an event is an occurrence of a stimulus that can trigger a

state transition.

 A signal is a kind of event that represents the specification of an asynchronous stimulus

communicated between instances.

Kinds of Events

 Events may be external or internal.

 External events are those that pass between the system and its actors.

 Internal events are those that pass among the objects that live inside the system.

 An overflow exception is an example of an internal event.

 In the UML, you can model four kinds of events: signals, calls, the passing of time, and a

change in state.

Signals

 A signal represents a named object that is dispatched (thrown) asynchronously by one object

and then received (caught) by another.

 Exceptions are supported by most contemporary programming languages and are the most

common kind of internal signal that you will need to model.

 Signals may also be involved in generalization relationships, permitting you to model

hierarchies of events, some of which are general and some of which are specific

 Also as for classes, signals may have attributes and operations.

 A signal may be sent as the action of a state transition in a state machine or the sending of a

message in an interaction. The execution of an operation can also send signals

 In fact, when you model a class or an interface, an important part of specifying the behavior

of that element is specifying the signals that its operations can send.

10

 We model signals (and exceptions) as stereotyped classes. We can use a dependency,

stereotyped as send, to indicate that an operation sends a particular signal.

Signals

Call Events

 Just as a signal event represents the occurrence of a signal, a call event represents the

dispatch of an operation. In both cases, the event may trigger a state transition in a state

machine

 Whereas a signal is an asynchronous event, a call event is synchronous

 This means that when an object invokes an operation on another object that has a state

machine, control passes from the sender to the receiver, the transition is triggered by the

event, the operation is completed, the receiver transitions to a new state, and control returns

to the sender.

 Modeling a call event is indistinguishable from modeling a signal event. In both cases, you

show the event, along with its parameters, as the trigger for a state transition.

Call Events

Time and Change Events

 A time event is an event that represents the passage of time

 in the UML you model a time event by using the keyword after followed by some expression

that evaluates to a period of time.

 Unless you specify it explicitly, the starting time of such an expression is the time since

entering the current state.

 A change event is an event that represents a change in state or the satisfaction of some

condition

 In the UML you model a change event by using the keyword when followed by some

Boolean expression

11

 You can use such expressions to mark an absolute time (such as when time = 11:59) or for

the continuous test of an expression

Time and Change Events

Note: Although a change event models a condition that is tested continuously, you can typically

analyze the situation to see when to test the condition at discrete points in time.

Sending and Receiving Events

 Signal events and call events involve at least two objects:

 The object that sends the signal or invokes the operation

 The object to which the event is directed.

 Any instance of any class can send a signal to or invoke an operation of a receiving object.

 When an object sends a signal, the sender dispatches the signal and then continues along its

flow of control, not waiting for any return from the receiver.

 Any instance of any class can receive a call event or a signal. If this is a synchronous call

event, then the sender and the receiver are in a rendezvous(assignation) for the duration of

the operation.

 This means that the flow of control of the sender is put in lock step with the flow of control

of the receiver until the activity of the operation is carried out.

 If this is a signal, then the sender and receiver do not rendezvous: the sender dispatches the

signal but does not wait for a response from the receiver. In either case, this event may be

lost

 In the UML, you model the named signals that an object may receive by naming them in an

extra compartment of the class

12

Signals and Active Classes

Common Modeling Techniques

Modeling a Family of Signals

 In most event-driven systems, signal events are hierarchical.

 External and internal signals need not be disjoint, however. Even within these two broad

classifications, you might find specializations

 To model a family of signals

 Consider all the different kinds of signals to which a given set of active objects may

respond.

 Look for the common kinds of signals and place them in a

generalization/specialization hierarchy using inheritance. Elevate more general ones

and lower more specialized ones.

 Look for the opportunity for polymorphism in the state machines of these active

objects. Where you find polymorphism, adjust the hierarchy as necessary by

introducing intermediate abstract signals.

Modeling Exceptions

13

 An important part of visualizing, specifying, and documenting the behavior of a class or an

interface is specifying the exceptions that its operations can raise.

 In the UML, exceptions are kinds of signals, which you model as stereotyped classes.

Exceptions may be attached to specification operations.

 Modeling exceptions is somewhat the inverse of modeling a general family of signals.

 We model a family of signals primarily to specify the kinds of signals an active object may

receive

 We model exceptions primarily to specify the kinds of exceptions that an object may throw

through its operations

 To model exceptions

o For each class and interface, and for each operation of such elements, consider the

exceptional conditions that may be raised.

o Arrange these exceptions in a hierarchy. Elevate general ones, lower specialized ones,

and introduce intermediate exceptions, as necessary.

o For each operation, specify the exceptions that it may raise. You can do so explicitly

(by showing send dependencies from an operation to its exceptions) or you can put

this in the operation's specification.

Modeling Exceptions

14

State-Chart diagrams:

A statechart diagram is a view of a state machine that models the changing behavior of a state.

Statechart diagrams show the various states that an object goes through, as well as the events that

cause a transition from one state to another.

Statechart diagram model elements

The common model elements that statechart diagrams contain are:

 States

 Start and end states

 Transitions

 Entry, do, and exit actions

A state represents a condition during the life of an object during which it satisfies some condition

or waits for some event. Start and end states represent the beginning or ending of a process. A

state transition is a relationship between two states that indicates when an object can move the

focus of control on to another state once certain conditions are met. In a statechart diagram, a

transition to self element is similar to a state transition. However, it does not move the focus of

control. A state transition contains the same source and target state.

Actions in a Statechart diagram

Each state on a statechart diagram can contain multiple internal actions. An action is best

described as a task that takes place within a state. There are four possible actions within a state:

 On entry

 On exit

 Do

 On event

15

Creating a statechart diagram in Rational Rose

A statechart diagram is usually placed under the Logical View package. Right-click on the

Logical View package and select New>Statechart Diagram to create a Statechart Diagram.

Name your diagram and then double-click on the name to open the diagram work area.

States

Place the start state, , end state, , and states, , on the diagram work area by selecting

the respective icon from the diagram toolbox and then clicking on the work area at the point

where you want to place the states.

To name the states, double-click on the state. This action will bring up the State Specification

dialog box. In the General tab, type the name of your state in the Name text box.

Actions

To add an action to a state, select the Actions tab in the State Specification dialog box, right-

click anywhere in the white area and select Insert from the shortcut menu. An action will be

automatically placed. Double-click the action item to bring up the Action Specification dialog

box. Select an action from the When drop-down list box. Type the action description in the

Name field. Click OK and then click OK again to exit the State Specification dialog box.

Transitions

To create a transition to self , click the icon and then click on the state. To create

transitions between the states, click the icon and then click on the first state and drag and

release on the next state. To name the transitions, double-click on the transition to bring up the

State Transition Specification dialog box. Type the name or label in the Event text box and

click OK.

Figure 1.shows a Statechart Diagram depicting the various elements of a state machine.

16

Figure 1. A state machine

Component diagrams:

Component diagrams are different in terms of nature and behavior. Component diagrams are

used to model physical aspects of a system. Now the question is what are these physical aspects?

Physical aspects are the elements like executable, libraries, files, documents etc which resides in

a node.So component diagrams are used to visualize the organization and relationships among

components in a system. These diagrams are also used to make executable systems.

Component diagram is a special kind of diagram in UML. The purpose is also different from all

other diagrams discussed so far. It does not describe the functionality of the system but it

describes the components used to make those functionalities.

So from that point component diagrams are used to visualize the physical components in a

system. These components are libraries, packages, files etc.

Component diagrams can also be described as a static implementation view of a system. Static

implementation represents the organization of the components at a particular moment.

Transition to

self

Start

State

End

State

Transition

State

Action

17

A single component diagram cannot represent the entire system but a collection of diagrams are

used to represent the whole.

So the purpose of the component diagram can be summarized as:

 Visualize the components of a system.

 Construct executables by using forward and reverse engineering.

 Describe the organization and relationships of the components.

Component diagrams are used to describe the physical artifacts of a system. This artifact

includes files, executable, libraries etc.So the purpose of this diagram is different, and

Component diagrams are used during the implementation phase of an application. But it is

prepared well in advance to visualize the implementation details. Initially the system is designed

using different UML diagrams and then when the artifacts are ready component diagrams are

used to get an idea of the implementation.This diagram is very important because without it the

application cannot be implemented efficiently. A well prepared component diagram is also

important for other aspects like application performance, maintenance etc.

So before drawing a component diagram the following artifacts are to be identified clearly:

 Files used in the system.

 Libraries and other artifacts relevant to the application.

 Relationships among the artifacts.

Now after identifying the artifacts the following points needs to be followed:

 Use a meaningful name to identify the component for which the diagram is to be drawn.

 Prepare a mental layout before producing using tools.

 Use notes for clarifying important points.

The following is a component diagram for order management system. Here the artifacts are files.

So the diagram shows the files in the application and their relationships. In actual the component

diagram also contains dlls, libraries, folders etc.In the following diagram four files are identified

and their relationships are produced. Component diagram cannot be matched directly with other

UML diagrams discussed so far. Because it is drawn for completely different purpose.So the

following component diagram has been drawn considering all the points mentioned above:

18

Deployment diagrams:

Deployment diagrams are used to visualize the topology of the physical components of a system

where the software components are deployed. So deployment diagrams are used to describe the

static deployment view of a system. Deployment diagrams consist of nodes and their

relationships. The name Deployment itself describes the purpose of the diagram. Deployment

diagrams are used for describing the hardware components where software components are

deployed.

Component diagrams and deployment diagrams are closely related. Component diagrams are

used to describe the components and deployment diagrams shows how they are deployed in

hardware. UML is mainly designed to focus on software artifacts of a system. But these two

diagrams are special diagrams used to focus on software components and hardware components.

So most of the UML diagrams are used to handle logical components but deployment diagrams

are made to focus on hardware topology of a system. Deployment diagrams are used by the

system engineers.

The purpose of deployment diagrams can be described as:

 Visualize hardware topology of a system.

 Describe the hardware components used to deploy software components.

 Describe runtime processing nodes.

19

Deployment diagram represents the deployment view of a system. It is related to the component

diagram. Because the components are deployed using the deployment diagrams. A deployment

diagram consists of nodes. Nodes are nothing but physical hardwares used to deploy the

application.

Deployment diagrams are useful for system engineers. An efficient deployment diagram is very

important because it controls the following parameters

 Performance

 Scalability

 Maintainability

 Portability

So before drawing a deployment diagram the following artifacts should be identified:

 Nodes

 Relationships among nodes

The following deployment diagram is a sample to give an idea of the deployment view of order

management system. Here we have shown nodes as:

 Monitor

 Modem

 Caching server

 Server

The application is assumed to be a web based application which is deployed in a clustered

environment using server 1, server 2 and server 3. The user is connecting to the application using

internet. The control is flowing from the caching server to the clustered environment.So the

following deployment diagram has been drawn considering all the points mentioned above:

