

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR FIRST YEAR B.TECH PROGRAMME-NRIA 20 REG I YEAR I SEMESTER

SI.	Course	Title of the Course		eme o eriods	f Inst Per	ruction Week)	E (Max	No. of Credits		
110	Coue		L	Т	Р	Total	CIA	SEA	Total	Creatis
1	HS	Professional Communication	3	0	0	3	30	70	100	3
2	BS	Engineering Mathematics – I	3	0	0	3	30	70	100	3
3	BS	Applied Physics	3	0	0	3	30	70	100	3
4	ES	Engineering Graphics	3	0	0	3	30	70	100	3
5	ES	Programming And Problem Solving With C	3	0	0	3	30	70	100	3
6	HS	Applied Physics Lab	0	0	3	3	15	35	50	1.5
7	BS	Programming And Problem Solving With C Lab	0	0	3	3	15	35	50	1.5
	Total				6	21	180	420	600	18

I YEAR II SEMESTER

Sl. No	Course Code	Title of the Course		eme (eriod:	of Ins s Per	truction Week)	Exa	Scheme minatio Marks	No. of Credits	
110	Coue		L	Т	Р	Total	CIA	SEA	Total	Creuns
1	HS	Engineering Mathematics – II	3	0	0	3	30	70	100	3
2	BS	Applied Chemistry	3	0	0	3	30	70	100	3
3	BS	Java Programming	2	0	2	4	30	70	100	3
4	ES	Network Analysis	3	1	0	4	30	70	100	4
5	PC	Basic Electrical Engineering	3	0	0	3	30	70	100	3
6	MC	Environmental Sciences	2	0	0	2	30	70	100	0
7	HS	Communicative English Lab	0	0	3	3	15	35	50	1.5
8	BS	Applied Chemistry Lab	0	0	3	3	15	35	50	1.5
9	ES	Basic Electrical Engineering Lab	0	0	3	3	15	35	50	1.5
10		Electronic Workshop Lab	0	0	3	3	15	35	50	1.5
	Total				14	31	240	560	800	22

L - LECTURE T – TUTORIAL P - PRACTICAL

CIA – Continuous Internal Assessment SEA – Semester End Assessment

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR SECOND YEAR B.TECH PROGRAMME-NRIA 20 REG II YEAR I SEMESTER

SI. No	Course Code	Title of the Course	Sch (P	eme o eriod	of Ins s Per	truction Week)	E (N	Scheme xamina ⁄Iax Ma	No. of Credits	
110			L	Т	P	Total	CIA	SEA	Total	
1	BS	Vector Calculus, Complex Variables and Partial Differential Equations	3	-	-	3	30	70	100	3
2	PC	Signals and Systems	3	-	-	3	30	70	100	3
3	PC	Electronic Devices and circuits	3	-	-	3	30	70	100	3
4	PC	Switching Theory and Logic Design	3	-	-	3	30	70	100	3
5	PC	Random Variables and Stochastic Processes	3	-	-	3	30	70	100	3
6	PC LAB	Basic Simulation Lab	-	-	3	3	15	35	50	1.5
7	PC LAB	Electronic Devices and circuits Lab	-	-	3	3	15	35	50	1.5
8	PC LAB	Switching Theory and Logic Design Lab	-	-	3	3	15	35	50	1.5
9	SC*	Electronic Circuit Design	1	-	2	3	-	50	50	2
10	MC	Constitution of India	2	-	-		30	70	100	0
		Total	18	0	11	29	225	575	800	21.5

II YEAR II SEMESTER

SI. No	Course Code	Title of the Course		eme struc r We	of tion (ek)	Periods	E (N	Scheme xamina Iax Ma	No. of Credits	
			L	Т	Р	Total	CIA	SEA	Total	
1	ES	Linear Control Systems	3	-	-	3	30	70	100	3
2	PC	Analog Communications	3	-	-	3	30	70	100	3
3	PC	Analog and Pulse Circuits	3	-	-	3	30	70	100	3
4	PC	Electromagnetic Waves and Transmission Lines	3	-	-	3	30	70	100	3
5	HS	Managerial Economics and Financial Analysis	3	-	-	3	30	70	100	3
6	PC LAB	Analog Communications Lab	I	-	3	3	15	35	50	1.5
7	PC LAB	Analog and Pulse Circuits Lab	-	-	3	3	15	35	50	1.5
8	PC LAB	VHDL Programming Lab		-	3	3	15	35	50	1.5
9	SC*	Python Programming		-	2	3	-	50	50	2
	Total			0	11	27	195	505	700	21.5

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR THIRD YEAR B.TECH PROGRAMME III YEAR I SEMESTER

Sl.	Course	Title of the Course	Sch (P	eme (eriod	of Ins s Per	truction Week)	Exa	Scheme minatio Marks	of n (Max)	No. of Credits
110	Coue		L	Т	Р	Total	CIA	SEA	Total	Creuits
1	РС	Linear and Digital Integrated Circuits	3	-	-	3	30	70	100	3
2	РС	Antennas and Wave Propagation	3	-	-	3	30	70	100	3
3	PC	Digital Communications	3	-	-	3	30	70	100	3
4	OE	Open Elective	3	-	-	3	30	70	100	3
5	PE	 i) Computer architecture and Organization ii) Biomedical Engineering iii) Electromagnetic Interference and Electromagnetic Compatibility 	3	-	-	3	30	70	100	3
6	PC LAB	Linear and Digital Integrated Circuits Lab	-	-	3	3	15	35	50	1.5
7	PC LAB	Digital Communications Lab	-	-	3	3	15	35	50	1.5
8	SC*	Internet of Things	1	-	2	3	-	50	50	2
9	MC	Intellectual Property Rights and Patents	-	-	2	3	30	70	100	0
Summer Internship two months (mandatory)after second year (to be evaluated during V semester)				0	0	0	15	35	50	1.5
	Total				10	27	255	595	850	21. 5

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR THIRD YEAR B.TECH PROGRAMME III YEAR II SEMESTER

SI.	Course	Title of the Course	Sch (P	eme (eriod	of Ins s Per	truction Week)	Exa	Scheme minatio Marks	of n (Max)	No. of Credits
110	Cour		L	Т	Р	Total	CIA	SEA	Total	Creans
1	PC	Microprocessors and Microcontrollers	3	I	-	3	30	70	100	3
2	PC	Digital Signal Processing	3	-	-	3	30	70	100	3
3	PC	VLSI Design	3	-	-	3	30	70	100	3
4	PE	 i) Optical Communications ii) Embedded Systems iii) Radar Systems 	3	-	-	3	30	70	100	3
5	OE	Open Elective	3	-	-	3	30	70	100	3
6	PC LAB	VLSI Lab	-	-	3	3	15	35	50	1.5
7	PC LAB	Microprocessors and Microcontrollers Lab	-	-	3	3	15	35	50	1.5
8	PC LAB	Digital Signal Processing Lab	-	-	3	3	30	70	100	1.5
9	SC*	Sensors and Instrumentation	2	-	-	2	-	50	50	2
10	MC	Professional Ethics and Human Values	2	-	-	2	30	70	100	0
	Total				9	28	240	630	900	21. 5
Honors/Minor Courses(the hours distribution can be 3-0-2 or 3-1-0)				-	-	4	30	70	100	4
	Indu	ustrial / Research Internship(Mar	ndato	ry) 2	Mon	ths durin	g sum	mer vac	cation	

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR FOURTH YEAR B.TECH PROGRAMME-NRIA-20 Reg IV YEAR I SEMESTER

SI. No	Course Code	Title of the Course	S	Scheme of Instruction (Periods Per Week)				Scheme minatior Marks	No. of	
			L	Т	Р	Total	CIA	SEA	Total	Credits
1	PE III	 i) Low Power VLSI D ii) Data Communication Computer Networks iii) Electronic Measures and Instrumentation 	Design ons & s 3 ments	-	-	3	30	70	100	3
2	PE IV	 i) Digital Image Proce ii) Digital IC Design u CMOS iii) Satellite Communic 	essing sing ations	-	-	3	30	70	100	3
3	PE V	 i) Soft Computing ski ii) Machine learning iii) Cellular Mobile Communications 	lls 3	-	-	3	30	70	100	3
4	OE	Open Elective - III	3	-	-	3	30	70	100	3
5	OE	Open Elective - IV	3	-	-	3	30	70	100	3
6	HSE	Universal Human Valu	es 3	-	-	3	30	70	100	3
7	SC*	Microwave & RF Communi Laboratory	cation 1	-	2	3	15	35	50	2
8	MC	Employability Skills	2	-	-	2	30	70	100	0
Ind aft	ustrial / Res er third yea	earch Internship(Mandatory) to be evaluated during VII semester	-	-	-	2	-	50	50	2
		Total	21	l -	2	25	225	575	800	22
	Honors/M distributio	linor Courses(the hours n can be 3-0-2 or 3-1-0)	4	-	-	4	30	70	100	4

IV YEAR II SEMESTER

SI. No	Course Code	Title of the Course	Sch (P	eme (eriods	of Ins s Per	truction Week)	Exa	Scheme minatio <u>Marks</u>	No. of Credits	
	Coue		L	Т	Р	Total	CIA	SEA	Total	ereutis
1		Major Project work	-	I	-	I	40	60	100	8
2		Community Service Project	-	I	-	Ι	-	50	50	4
		Total								12

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

STRUCTURE FOR FIRST YEAR B.TECH PROGRAMME- NRIA 20 REG

`S1. No	Course Code	Title of the Course] (Per	Sch Insti iods	eme ructi Per	of on Week)	S Ex (Maxi	cheme o aminati mum M	of on arks)	No. of Credits
			L	Т	Ρ	Total	CIA	SEA	Total	
1	20A1100101	Professional Communication	3	0	0	3	30	70	100	3
2	20A1100201	Engineering Mathematics-I	3	0	0	3	30	70	100	3
3	20A1100203	Applied Physics	3	0	0	3	30	70	100	3
4	20A1103301	Engineering Graphics	3	0	0	3	30	70	100	3
5	20A1105301	Programming and Problem Solving with C	3	0	0	3	30	70	100	3
6	20A1100292	Applied Physics Lab	0	0	3	3	15	35	50	1.5
7	20A1105391	Programming and Problem Solving with C Lab	0	0	3	3	15	35	50	1.5
	Total				6	21	180	420	600	18

I YEAR I SEMESTER

I YEAR II SEMESTER

S1. No	Course Code	Title of the Course	Scho (P	eme eriod	of Ins ls Per	truction Week)	S Ez (Max	Scheme kaminat imum N	of tion Iarks)	No. of Credits
			Total	CIA	SEA	Total				
1	20A1200201	Engineering Mathematics-II	3	0	0	3	30	70	100	3
2	20A1200205	Applied Chemistry	3	0	0	3	30	70	100	3
3	20A1205302	Java Programming	2	0	2	4	30	70	100	3
4	20A1204301	Network Analysis	3	1	0	4	30	70	100	4
5	20A1202302	Basic Electrical Engineering	3	0	0	3	30	70	100	3
6	20A1200801	Environmental Sciences	2	0	0	2	30	70*	100	0
7	20A1200191	Communicative English Lab	0	0	3	3	15	35	50	1.5
8	20A1200294	Applied Chemistry Lab	0	0	3	3	15	35	50	1.5
9	20A1202392	Basic Electrical Engineering Lab	0	0	3	3	15	35	50	1.5
10	20A1202391	Electronic Workshop Lab	0	0	3	3	3 15 35 50			
Total			16	1	14	31	240	560	800	22

* Internal Evaluation

L - LECTURE T – TUTORIAL P - PRACTICAL

CIA – Continuous Internal Assessment SEA – Semester End Assessment

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

			(20A1 Comn	1001 non te	01: PH D CE.H	ROFE: CEE.M	SSION	IAL COM E.CSE.I'	IMUNICA F.AIML a	TION	5)
Lectu	ıre – Tı	utoria	ul:	3-1	Hours	, <u> </u>		I1	nternal l	Marks:	30	7
Credi	its			3				E	xternal]	Marks:	70	
Prere	quisite	es: No	ne									
Cours	se Obje	ective	s									
1. 10 2. To pa 3. To 4. To	o streng o expose araphras o help th o train th	then the stud sing. he stud he stud	tudents lents d dents i	cal abi s to va levelop in func	effecti	the stu sub-ski tve writ	dents : ills and ting sk gramm	in diffe 1 strate ills thr ar req	rent cont egies of re ough para uired to e	exts. ading and agraph wr quip them	l writin iting. 1 with f	ng – summarizing and Fluent English.
5. 10 va	arious lit	terary	texts.	s to th		lically	by exp	using t			cio-cui	turai contexts tinougn
Cours	se Out	come	s									
Upo: to:	n su	cces	ssful	cor	nple	tion	of	the	course	e, the	stud	lent will be able
CO1	Build writt	d the § en for	gramn m.	natica	l struc	ctures	accui	rately	in their 1	real-time	situat	tions in either spoken or
CO2	Exte voca	nd the bulary	eir abi y in wi	lity to ritten	use v and s	ocabu poken	lary fi comr	rom va nunica	arious te ation	xts along	with	GRE and technical
CO3	Com spec	prehe ific foi	nd, ar rms of	nalyze f writte	and e en cor	valua nmun	te text icatior	ts criti n (para	cally. De	emonstra summar	te effe ries, er	ctive writing skills in mail and letters.)
CO4	Appl	y the	strate	gies o	f readi	ing va	rious	texts a	and grap	hs, and o	lescrit	be in prose.
CO5	Relat	te hur	nan va	alues	and p	rofess	ional e	ethics	in their	academi	c, prof	essional and social lives.
CO6	Sum	marız	e the i	main (events	s of the	e litera	ary tex	kts, from	different	SOC10	-cultural contexts, and
Contr	ributio	n o	f Co	ourse	Ou t	tcome	es to	oward	s achi	evemen	t of	Program Outcome
Conti (1 – L	ributio .ow, 2-	n o Medi	f Co um, 3	ourse B – Hig	Out gh)	tcome	es to	oward	s achi	evemen	t of	Program Outcome
Contr (1 – L	ributio ow, 2-	n o Medi PO 2	f Co um, 3 PO 3	PO 4	Ou t gh) PO 5	PO 6	es to PO 7	oward PO 8	s achi PO 9	PO 10	t of PO 11	Program Outcome PO 12
Contr (1 – L CO1	PO 1	n o Medi PO 2	f Co um, 3 PO 3	PO 4	Ou t gh) PO 5	PO 6	es to PO 7	PO 8	s achi PO 9	PO 10 1	t of PO 11	Program Outcome PO 12 2
Conti (1 – L CO1 CO2	PO 1	n o Medi PO 2	f Co um, 3 PO 3	PO 4	Ou t gh) PO 5	PO 6	es to PO 7	PO 8	s achi PO 9	PO 10 1 1	t of PO 11	Program Outcomes PO 12 2 2
Conti (1 – L CO1 CO2 CO3	PO 1	n o Medi PO 2	f Co um, 3 PO 3	PO 4	Ou t gh) PO 5	PO 6	PO 7	PO 8	s achi PO 9	PO 10 1 2	t of PO 11	Program Outcome PO 12 2 2 2
Cont (1 – L CO1 CO2 CO3	PO 1	n o Medi PO 2	f Co um, 3 PO 3	PO 4	Ou t gh) PO 5	PO 6	PO 7	PO 8	s achi PO 9	PO 10 1 1 2 1	t of PO 11	Program Outcome PO 12 2 2 2 2 2 2
Conti (1 – L CO1 CO2 CO3 CO4	PO 1 Image: second secon	n o Medi PO 2	f Co um, 3 PO 3	PO 4	Ou t gh) PO 5	PO 6	PO 7	PO 8	s achi PO 9	PO 10 1 1 2 1	t of PO 11	Program Outcomes PO 12 2 2 2 2 2 2 2 2 2
Conti (1 - L CO1 CO2 CO3 CO4 CO5	PO 1	n o Medi PO 2	f Co um, 3 PO 3	PO 4	Ou t gh) PO 5	PO 6	PO 7	PO 8	s achi PO 9	PO 10 1 1 2 1	t of PO 11	Program Outcome PO 12 2 2 2 2 2 2 2 2 2 2 2
Conti (1 - L CO1 CO2 CO3 CO4 CO5 CO6	PO 1	n o Medi PO 2	f Coum, 3 PO 3	PO 4	Out gh) PO 5	PO 6	PO 7	PO 8	s achi PO 9	PO 10 1 1 2 1	t of PO 11	Program Outcome PO 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Conti (1 – L CO1 CO2 CO3 CO4 CO5 CO6	PO 1	n o Medi PO 2	f Coum, 3 PO 3	PO 4	Out gh) PO 5	PO 6	PO 7	PO 8 1 1 UNIT	s achi PO 9	PO 10 1 1 2 1	t of PO 11	Program Outcome PO 12 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CO1 CO2 CO3 CO4 CO5 CO6 1. Te 2. Ro 3. Ro Lin	PO 1 PO 1 ext: A D eading eading nkers,	Prawer Skin for	f Co um, 3 PO 3 full on ming Writin Posts	f happ g text t ng: P and T	iness for get fransit	from "I the maph W ion Si	PO 7 1 infotec ain ide Vriting gnals;	PO 8 1 UNIT ch Eng ea. Sca g (spe ; Mech	s achi PO 9 <u>I</u> tlish", Ma anning to cific top anics of	PO 10 1 1 2 1 1 vuthi Pub o look for bics) usin Writing	t of PO 11	ProgramOutcomesPO 12222222212211
CO1 (1 - L CO2 CO3 CO4 CO5 CO6 1. Te 2. Ro 3. Ro Lin 4. Vo (A	PO 1 PO 1 eading eading nkers, ocabula	Prawer Skin for Sign ary: 7	f Ca um, 3 PO 3 full of mming Writin Posts Fechnid d Syno	f happ s text t ng: P and T ical vo	iness ransit caragra fransit cabul s, Wor	from "I from "I the ma aph V ion Si lary fr d app	PO 7 1 1 2 2 2 3 2 2 3 2 3 2 3 2 3 3 3 3 3 3	PO 8 1 1 UNIT ch Eng ea. Sca g (spe ; Mech cross ns) Ve	s achi PO 9 I dish", Ma anning to cific top nanics of technica erbal Rea	PO 10 1 1 2 1 2 1 vithi Pub o look for bics) usin Writing 1 branch asoning a	t of PO 11 lication speci- ng sui - Punc les (20 nd Sec	ProgramOutcomesPO 12122222222210111212122131415151616171718181919101010111212131415151617171819191010101011121213141415151617171717171718171717171717171717171717171718181919191010101112131414151516171718181919
CO1 (1 - L CO2 CO3 CO4 CO5 CO6 1. Te 2. Ro 3. Ro Lin 4. Vo (A: 5. G1 Ac	PO 1 PO 1 eading eading eading nkers, ocabuli ntonyn ramma	Prawer Skin for Sign ary: T ns and r: Co Nou	f Ca um, 3 PO 3 full of mming Writin Posts Fechnid d Syncontent ins: 0	f happ s text t ng: P and T ical vo onyms Word Count	iness ransit caragra fransit cabul s, Wor ls and ables	from "I from "I the ma aph V ion Si lary fr d app l Fund and	PO 7 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PO 8 1 1 UNIT ch Eng ea. Sca g (spe ; Mech cross ns) Ve Words puntal	s achi PO 9	PO 10 1 1 2 1 2 1 vruthi Pub o look for bics) usin Writing 1 branch usoning a Forms: V ngular a	t of PO 11 lication speci- ng sui - Punc nes (20 nd Sec Verbs, and F	Program Outcomes PO 12 12 2 2 2 2 2 2 2 2 2 12 2 2 2 12 2 2 2 10 2 11 2 12 2 12 2 12 2 12 2 12 2 12 2 13 5 14 10 15 10 16 10 17 11 18 10 10 GRE Vocabulary (20) 10 10 10 10 11 10 12 10
CO1 CO2 CO3 CO4 CO5 CO6 1. Te 2. Re 3. Re Lin 4. Vc (A 5. GI Ac St	ext: A D eading eading nkers, ocabula intonyr. ramma dverbs;	Prawer PO 2 Prawer Skin for Sign Sign ary: T ns and ur: Co Nou es; Sin	full of mming Writin Posts Fechnid Syncontent uns: 0 mple 0	f happ g text t ng: P and T ical vo Source Quest	iness iness aragra fransit ocabul s, Wor ls and ables ion Fo	from "I from "I the ma aph V ion Si lary fr d app l Fun- and orm - V	PO 7 7 1 1 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO 8 1 1 UNIT Ch Eng ea. Sca g (spe ; Mech cross ns) Ve Words puestion	s achi PO 9 I Hish", Ma anning to cific top nanics of technica erbal Rea s; Word oles; Sin ons; Wor	PO 10 1 1 2 1 2 1 1 vithi Pub o look for bics) usin Writing 1 branch usoning a Forms: V ngular a d Order	t of PO 11 lication speci- ng sui - Punc es (20 nd Sec Verbs, and F in Sen	ProgramOutcomesPO1212222222222122212121212121212121211 </td
CO1 CO2 CO3 CO4 CO5 CO6 1. Te 2. Ro 3. Ro Lin 4. Vo (A 5. Gu Ac St Ph	ext: A D eading eading eading inkers, ocabula antonyn ramma dverbs; tructur hrases)	Prawer PO 2 Prawer Skin for Sign ary: 7 ns and ur: Co Nou es; Sin	f Ca um, 3 PO 3 full of mming Writin Posts Fechnid d Syno ontent uns: 0 mple (f happ g text t ng: P and T ical vo onyms Word Count Quest	iness for get	from "I from "I the ma aph W ion Si lary fr d app l Fund and rrm - V	PO 7 7 1 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PO 8 1 1 UNIT ch Eng ea. Sca g (spe ; Mech cross ns) Ve Words puestion	s achi PO 9	PO 10 1 1 2 1 2 1 2 1 1 vruthi Publo o look for bics) usir Writing Uriting Uriting Soning a Forms: V ngular a d Order	t of PO 11 lication speci- ng sui- - Punc les (20 nd Sec Verbs, and F in Sen	ProgramOutcomesPO 12222222222222101011121212221314151515161717181719191010101112121314141515161717181817 <tr< td=""></tr<>
CO1 CO2 CO3 CO4 CO5 CO6 1. Te 2. Ro 3. Ro Lin 4. Vo (A 5. G1 Ac St Ph 1. Te Pu	ext: A D eading eading inkers, ocabula intonyr ramma dverbs; tructur hrases) ext: Net	Prawer PO 2 Prawer Skin for Sign sance ary: To ns and ur: Co Nou es; Sin nru's lo	f Ca um, 3 PO 3 full on ming Writin Posts Technid Syncontent uns: 0 mple (etter t	f happ g text t ng: P and T ical vo onyms Word Count Quest	iness for get for a ranger for	from "I from "I the ma aph W ion Si lary fr d app l Fund and rrm - V	PO 7 7 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO 8 1 1 UNIT ch Eng ea. Sca g (spe ; Mech cross ns) Ve Words puestion Question UNIT her b	s achi PO 9 9 I Jish", Ma anning to cific top nanics of technica erbal Rea s; Word oles; Sin ons; Wor II irthday f	PO 10 1 1 2 1 2 1 2 1 1 vruthi Publo o look for bics) usir Writing 1 branch usoning a Forms: V ngular a d Order	t of PO 11 lication speci- ng sui- - Punc es (20 nd See Verbs, and F in Sen tech E	Program Outcomes PO 12 12 2 2 2 2 2 2 2 2 2 2 2 12 2 2 2 12 2 2 2 12 2 2 2 10 Reversion Setuation, Capital Letters. 20 Quencing of Words. Nouns, Adjectives and Plural, Basic Sentence Itences. Collocations (30 30 mglish", Maruthi 30

 Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications) Grammar: Use of Articles and Zero Article; Prepositions; Connectives (25 words) UNIT III Text: Stephen Hawking-Positivity "Beachmark" from "Infotech English", Maruthi Publications Reading; Reading at text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical Reading. Reading for Writing; Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Ediquette, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenser; Subject-Verb Agreement; Text: Liking a Tree, Unbowed: Wangari Masthai-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Spe		
 avoiding redundancies and repetitions. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications) Grammar: Use of Articles and Zero Article: Prepositions: Connectives (25 words) UNT II Text: Stephen Hawking-Positivity 'Beachmark' from 'Infotech English', Maruthi Publications Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical Reading. Reading for Writing: Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Etiquette, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; Text: Liking a Tree, Unbowed: Wangari Mathal-biography from 'Inforch English', Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Readuar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms and Synonyms, Word applications] Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms and Synonyms, Word applications] Company: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications] Conserts (Secondary (20 words) (Antonyms and Synonyms, Word applications) Company: Comparing and Contrasting; Use of Antonyms: Reading for Writing T	3.	Reading for Writing : Summarizing - identifying main idea/s and rephrasing what is read;
 4. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications) 5. Grammar: Use of Articles and Zero Article; Prepositions; Connectives (25 words) 1. Text: Stephen Hawking-Positivity * Beaching: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical Reading. 3. Reading for Writing: Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Etiquette, Writing (Vs. 4. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words 5. Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; 1. Text: Liking a Tree, Unbowed: Wangari Mathai-biography from "Infotceh English", Maruthi Publications 2. Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. 3. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. 4. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coe Encounters. 5. Grammar. Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms, Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) 1. TEXT: Stay Hungyy-Stay foolish from "Infotech English", Maruthi Publications 2. R		avoiding redundancies and repetitions.
 Analogies (20 words) (Antonyms and Synonyms, Word applications) Grammar: Use of Articles and Zero Article; Prepositions; Connectives (25 words) UNIT III Text: Stephen Hawking-Positivity "Benchmark' from "Infotech English", Maruthi Publications Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical Reading. Reading for Writing: Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing; Promat and Principles of Letter Writing: E-mail Eliquete, Writing (Vs. Vocabulary: Technical vocabulary from across technical branches (20 words), GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar. Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowed: Wangari Mathal-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/ trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms, Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Read	4.	Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary
 Grammar: Use of Articles and Zero Article; Prepositions; Connectives (25 words)		Analogies (20 words) (Antonyms and Synonyms, Word applications)
 UNIT III Text: Stephen Hawking-Positivity Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical Reading. Reading for Writing: Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Etiquette, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; Text: Liking a Tree, Unbowed: Wangari Maathal-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading: Information transfer; describe, compare, contrast, identify significance/ trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms, Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing Significance, Format and Style of Writing Technica Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) (GRE Vocabulary (5.	Grammar: Use of Articles and Zero Article; Prepositions; Connectives (25 words)
 Text: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical Reading. Reading for Writing: Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Etiquette, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowed: Wangari Matthi-biography from "Infotech English", Maruthi publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/ trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) (Loze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs: Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension, RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writin		UNIT III
 ¹Benchmark' from "Infotech English", Maruthi Publications Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical Reading. Reading for Writing: Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Etiquette, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Repor	1.	Text: Stephen Hawking-Positivity
 Keading: Keading a text in detail by making basic interences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical Reading. Reading for Writing: Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Etiquette, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words 5. Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms, Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Grammar: Charge of Voice; Editing Short Texts - Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) TeXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Grammar: Charge of Voice; Editing Short Texts - Identifying and Correcting Common Errors in grammar and		'Benchmark' from "Infotech English", Maruthi Publications
 specific context clues; strategies to use text clues for comprehension. Critical Reading: Reading for Writing: Summarizing - Identifying main ideas and Rephrasing what is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Etiquette, Writing CVs. Voceabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowed: Wangari Maathai-biography from 'Infotech English', Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance / trends based on information provided in figures / charts / graphs / tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V Text: Stay Hungr-Stay foolish from "Infotech English", Maruthi Publications Reading; Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Grammar: Change of Voice; Editing Short Texts - Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Texts, Stubject-Verb Agreement) Text: Stay Hungr-Stay foolish from "Infotech English", Maruthi Publications. REFERE	2.	Reading: Reading a text in detail by making basic inferences - recognizing and interpreting
 Reading for Writing: Summarizing - Identifying main ideas and Rephrasing What is read; avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Etiquette, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowd: Wangari Maathai-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/ trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungy-Stay foolish from "Infotech English", Maruthi Publications Reading for Writing: Report writing (Significance, Format and Style of Writing Enchical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Encotions. Grammar: Change of Voice; Editing Short Texts - Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Tetchicet EDOKS: Deglish		specific context clues; strategies to use text clues for comprehension. Critical Reading.
 avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter Writing. E-mail Ediquete, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; Text: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications]. Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Dock: "Infotech English", Maruthi Publications. REPERENCE BOOKS: Detionary of Synonyms and Antonyms,	3.	Reading for Writing : Summarizing - Identifying main ideas and Rephrasing what is read;
 Writing, E-mail Etiquette, Writing CVs. Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowed: Wangari Maathal-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UMIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Sole: Grammar, John Eastwood, Oxford University Press. Oxford Practice Grammar, John Eastwood, Oxford Univ		avoiding Redundancies and Repetitions. Letter Writing-types, Format and Principles of Letter
 Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowed: Wangari Maathal-biography from "Infotcch English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotceh English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts - Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: The dost Common Mistakes in English Usage - Th		Writing. E-mail Etiquette, Writing CVs.
 (20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words 5. Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV 1. Text: Liking a Tree, Unbowed: Wangari Maathal-biography from "Infotech English", Maruthi Publications 2. Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. 3. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. 4. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. 5. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V 1. TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications 2. Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. 3. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) 4. Vocabulary: Technical vocabulary from across technical branches (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. 5. Grammar: Change of Voice; Editing Short Texts - Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: 1. Fnglish Grammar in Use, Raymond Murphy, Cambridge University Press. 2. Oxford Practice Grammar, John Eastwood, Oxford University Press. 3. The Most Common Mistakes in English Us	4.	Vocabulary : Technical vocabulary from across technical branches (20 words). GRE Vocabulary
 Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement; UNIT IV Text: Liking a Tree, Unbowed: Wangari Mathai-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts - Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. Repertext Book: Tinfotech English", Maruthi Publications. Ter Book: "Infotech English", Maruthi Publications. Prestext Book: "Infotech English", Maruthi Publications. FerserRCE BOOKS: English Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press.<		(20 words) (Antonyms and Synonyms, Word applications) Association, Sequencing of Words
 UNIT IV Text: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: Dangish Grammar, Matony Murphy, Cambridge University Press. Oxford Practice Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. Distionary of Synonyms and Antonyms, Oxford & IBH, II Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Camb	5.	Grammar: Verbs, Phrasal Verbs - Tenses; Subject-Verb Agreement;
 Text: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFFERCE BOOKS: Dictionary of Synonyms Adnomed Murphy, Cambridge University Press. Onford Practice Grammar, Johne Eastwood, Oxford University Press. Onford Practice Grammar, Agnes V. Martinet and Adurey Jean Thomson, Oxford University Press. Difteriory of Synonyms and Antonyms, Oxford & IH, III Ed A Practical English Grammar, Agnes V. Martinet and Adurey Jean Thomson, Oxford University Press. Engli		UNIT IV
 Publications Reading: Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infortech English", Maruthi Publications. REFERENCE BOOKS: Detionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elilott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Ptt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. The Most Common	1.	Text: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi
 Reading. Studying the use of graphic elements in texts to convey information, reveal trends / patterns / relationships, communicative process or display complicated data. Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading; Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: Denglish Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. Oxford Practice Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. ERESOURCES https://www.ergalishforcammar/index.htm https://www.ergalishforcammar/index.htm https://www.ergalishforcammar/index.htm h	0	Publications Parting Studying the use of graphic elements in texts to convey information
 Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: I. English Grammar, John Eastwood, Oxford University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication SKIIs – Shahini Agarval, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxdord & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. ErgsURCES I. https://www.grammarbank.com/ https://www.englishvocabulary.com/ https://englishplusmagazine.com/ https://englishplusmagazine.com/ 	۷.	Reading . Studying the use of graphic elements in texts to convey information,
 Keading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: Oxford Practice Grammar, John Eastwood, Oxford University Press. Oxford Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English Vocabulary in Use	2	reveal trends / patterns / relationships, communicative process or display complicated data.
 significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: Oxford Practice Grammar, John Eastwood, Oxford University Press. Oxford Practice Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. Fenglish Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English	3.	Reading for writing : Information transfer; describe, compare, contrast, identify
 SOP, writing for media. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Voceabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: Oxford Practice Grammar, John Eastwood, Oxford University Press. Oxford Practice Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Grammar in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. I. English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. PresCOURCES I. https://www.grammarbank.com/ https://writeandimprove.com/ Https://englishforeveryone.org/ Steption Structure (Section Content) 		significance/trends based on information provided in figures/charts/graphs/tables. Writing
 Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: Defish Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press https://www.grammarbank.com/ https://www.grammarbank.com/ https://www.englishvocabularyexercises.com/ https://englishplusmagazine.com/ 		SOP, writing for media.
 (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters. 5. Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V 1. TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications 2. Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. 3. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) 4. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. 5. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: 1. English Grammar in Use, Raymond Murphy, Cambridge University Press. 3. The Most Common Mistakes in English Usage – Thomas Elliott Berry 4. Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. 5. Dictionary of Synonyms and Antonyms, Oxford University Press. 7. English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES 1. https://www.grammarbank.com/ 1. https://writeandimprove.com/ 4. https://www.englishforeveryone.org/ 5. http://englishplusmagazine.com/ 	4.	Vocabulary : Technical vocabulary from across technical branches (20 words) GRE Vocabulary
 Grammar: Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: Oxford Practice Grammar, John Eastwood, Oxford University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press ERESOURCES https://englishforeveryone.org/ https://englishforeveryone.org/ https://englishforeveryone.org/ https://englishforeveryone.org/ 		(20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.
of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic Expressions (25 Idioms) UNIT V 1. TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications 2. Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. 3. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) 4. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. 5. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: 1. English Grammar in Use, Raymond Murphy, Cambridge University Press. 2. Oxford Practice Grammar, John Eastwood, Oxford University Press. 3. The Most Common Mistakes in English Usage – Thomas Elliott Berry 4. Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. 5. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed 6. A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. 8. E-RESOURCES 1. https://www.grammarbank.com/ 4. https://writeandimprove.com/ 4. https://englishforeveryone.org/ 5. http://www.englishvocabularyexercises.com/ 6. https://englishplusmagazine.com/	5.	Grammar : Quantifying Expressions - Adjectives and Adverbs; Comparing and Contrasting; Use
 Expressions (25 Idioms) UNIT V TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: English Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press. https://www.grammarbank.com/ https://www.englishvocabulary.com/ https://englishforeveryone.org/ https://englishforeveryone.org/ 		of Antonyms; Direct and Indirect Speech, Reporting Verbs for Academic Purposes. Idiomatic
 UNIT V 1. TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications 2. Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. 3. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) 4. Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. 5. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: 1. English Grammar in Use, Raymond Murphy, Cambridge University Press. 2. Oxford Practice Grammar, John Eastwood, Oxford University Press. 3. The Most Common Mistakes in English Usage – Thomas Elliott Berry 4. Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. 5. Dictionary of Synonyms and Antonyms, Oxford & BH, III Ed 6. A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press FERESOURCES 1. https://guidetogrammar.org/grammar/index.htm 3. https://www.grammarbank.com/ 4. https://englishforeveryone.org/ 5. http://www.englishyocabulary.exercises.com/ 6. https://englishforeveryone.org/ 		Expressions (25 Idioms)
 TEXT: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: English Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press https://www.grammarbank.com/ https://www.grammarbank.com/ https://www.english/ocabulary.org/grammar/index.htm https://englishforeveryone.org/ https://englishforeveryone.com/ 	UN	
 Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading Techniques. Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: English Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES https://www.grammarbank.com/ https://www.grammarbank.com/ https://www.englishforeveryone.org/ https://englishforeveryone.org/ https://englishforeveryone.org/ 	1.	TEXT: Stay Hungry-Stay foolish from " Infotech English ", Maruthi Publications
 Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: English Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES https://www.grammarbank.com/ https://www.englishforeveryone.org/ https://englishforeveryone.org/ https://englishforeveryone.org/ 	2.	Reading: Reading for Comprehension. RAP Strategy Intensive Reading and Extensive Reading
 Reading for Writing: Report writing (Significance, Format and Style of Writing Technical Reports) Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: English Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. E-RESOURCES https://www.grammarbank.com/ https://guidetogrammar.org/grammar/index.htm https://englishforeveryone.org/ https://englishforeveryone.org/ https://englishforeveryone.org/ 		Techniques.
 4. Vocabulary. Fechnical vocabulary from across termical branches (20 words) GNE vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, Matching Emotions. 5. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: Daford Practice Grammar, John Eastwood, Oxford University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. E-RESOURCES 1. https://www.grammarbank.com/ https://guidetogrammar.org/grammar/index.htm https://englishforeveryone.org/ https://englishforeveryone.org/ https://englishplusmagazine.com/ 	3. ⊿	Reading for Writing : Report writing (Significance, Format and Style of Writing Technical Reports)
 (20 words) (Antonyms and Synonyms, word applications) Conference, Matching Enholders. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Common Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: English Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press https://www.grammarbank.com/ https://www.grammarbank.com/ https://www.englishforeveryone.org/ https://englishforeveryone.org/ https://englishforeveryone.org/ https://englishplusmagazine.com/ 	4.	(20 words) (Antonyma and Synanyma, Word applications) Coherence, Matching Emotions
 S. Grammar: Change of Voice; Editing Short Texts – Identifying and Correcting Continion Errors in grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: English Grammar in Use, Raymond Murphy, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press https://www.grammarbank.com/ https://www.grammarbank.com/ https://www.englishforeveryone.org/ https://www.englishforeveryone.org/ https://englishforeveryone.org/ 	F	(20 words) (Antonyms and Synonyms, word applications) Concretence, Matching Emotions.
grammar and Usage (Articles, Prepositions, Tenses, Subject-Verb Agreement) Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: 1. English Grammar in Use, Raymond Murphy, Cambridge University Press. 2. Oxford Practice Grammar, John Eastwood, Oxford University Press. 3. The Most Common Mistakes in English Usage – Thomas Elliott Berry 4. Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. 5. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed 6. A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES 1. https://www.grammarbank.com/ 2. http://guidetogrammar.org/grammar/index.htm 3. https://writeandimprove.com/ 4. https://englishforeveryone.org/ 5. http://www.englishvocabularyexercises.com/ 6. https://englishplusmagazine.com/	ວ.	Grammar: Change of voice; Editing Short Texts – Identifying and Correcting Common Errors in
Text Book: "Infotech English", Maruthi Publications. REFERENCE BOOKS: 1. English Grammar in Use, Raymond Murphy, Cambridge University Press. 2. Oxford Practice Grammar, John Eastwood, Oxford University Press. 3. The Most Common Mistakes in English Usage – Thomas Elliott Berry 4. Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. 5. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed 6. A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES 1. https://www.grammarbank.com/ 2. http://guidetogrammar.org/grammar/index.htm 3. https://englishforeveryone.org/ 5. http://englishforeveryone.org/ 5. http://englishplusmagazine.com/	_	grammar and usage (Articles, Prepositions, Tenses, Subject-Verb Agreement)
1. English Grammar in Use, Raymond Murphy, Cambridge University Press. 2. Oxford Practice Grammar, John Eastwood, Oxford University Press. 3. The Most Common Mistakes in English Usage – Thomas Elliott Berry 4. Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. 5. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed 6. A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES 1. https://guidetogrammar.org/grammar/index.htm 3. https://www.englishforeveryone.org/ 5. https://englishforeveryone.org/ 6. https://englishplusmagazine.com/	Te	xt Book: "Infotech English", Maruthi Publications.
 Dingisti Grammar in Ose, Raymond Mulpity, Cambridge University Press. Oxford Practice Grammar, John Eastwood, Oxford University Press. The Most Common Mistakes in English Usage – Thomas Elliott Berry Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press https://www.grammarbank.com/ https://guidetogrammar.org/grammar/index.htm https://writeandimprove.com/ https://englishforeveryone.org/ https://englishforeveryone.org/ https://englishplusmagazine.com/ 	1	FERENCE BOURS: English Grammar in Use Raymond Murphy, Cambridge University Press
 3. The Most Common Mistakes in English Usage – Thomas Elliott Berry 4. Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. 5. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed 6. A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES 1. https://www.grammarbank.com/ 2. http://guidetogrammar.org/grammar/index.htm 3. https://writeandimprove.com/ 4. https://englishforeveryone.org/ 5. http://www.englishvocabularyexercises.com/ 6. https://englishplusmagazine.com/ 	$2.^{1.}$	Oxford Practice Grammar, John Eastwood, Oxford University Press.
 4. Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd. 5. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed 6. A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES 1. https://www.grammarbank.com/2 2. https://guidetogrammar.org/grammar/index.htm 3. https://writeandimprove.com/4 4. http://www.englishvocabularyexercises.com/6 6. https://englishplusmagazine.com/6 	3.	The Most Common Mistakes in English Usage – Thomas Elliott Berry
 5. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed 6. A Practical English Grammar, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press. 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES 1. <u>https://www.grammarbank.com/</u> 2. <u>http://guidetogrammar.org/grammar/index.htm</u> 3. <u>https://writeandimprove.com/</u> 4. <u>https://englishforeveryone.org/</u> 5. <u>http://www.englishvocabularyexercises.com/</u> 6. <u>https://englishplusmagazine.com/</u> 	4.	Essential Communication Skills – Shalini Agarwal, Ane Books Pvt Ltd.
 7. English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press E-RESOURCES 1. https://www.grammarbank.com/ 2. http://guidetogrammar.org/grammar/index.htm 3. https://writeandimprove.com/ 4. https://englishforeveryone.org/ 5. http://www.englishvocabularyexercises.com/ 6. https://englishplusmagazine.com/ 	5. 6	Dictionary of Synonyms and Antonyms , Oxford & IBH, III Ed A Practical English Grammar Agnes V. Martinet and Audrey, Jean Thomson, Oxford University Press
E-RESOURCES 1. https://www.grammarbank.com/ 2. http://guidetogrammar.org/grammar/index.htm 3. https://writeandimprove.com/ 4. https://englishforeveryone.org/ 5. http://www.englishvocabularyexercises.com/ 6. https://englishplusmagazine.com/	7.	English Vocabulary in Use, Michael McCarthy and Felicity O'Dell, Cambridge University Press
1. https://guidetogrammar.org/grammar/index.htm 2. http://guidetogrammar.org/grammar/index.htm 3. https://writeandimprove.com/ 4. https://englishforeveryone.org/ 5. https://www.englishvocabularyexercises.com/ 6. https://englishplusmagazine.com/	E -1	RESOURCES
 2. <u>http://guidetogrammar.org/grammar/index.htm</u> 3. <u>https://writeandimprove.com/</u> 4. <u>https://englishforeveryone.org/</u> 5. <u>http://www.englishvocabularyexercises.com/</u> 6. <u>https://englishplusmagazine.com/</u> 	1.	https://www.grammarbank.com/
 3. <u>https://writeandimprove.com/</u> 4. <u>https://englishforeveryone.org/</u> 5. <u>http://www.englishvocabularyexercises.com/</u> 6. <u>https://englishplusmagazine.com/</u> 	2.	http://guidetogrammar.org/grammar/index.htm
 4. <u>https://englishforeveryone.org/</u> 5. <u>http://www.englishvocabularyexercises.com/</u> 6. <u>https://englishplusmagazine.com/</u> 	3.	https://writeandimprove.com/
5. <u>http://www.englishvocabularyexercises.com/</u> 6. <u>https://englishplusmagazine.com/</u>	4.	https://englishforeveryone.org/
o. <u>mups://englisnplusmagazine.com/</u>	5.	http://www.englishvocabularyexercises.com/
	0.	nups://engnsnplusmagazine.com/

	2	OA1100201 ENGINE	ERING MATHEMATICS-I	
Lectu	re – Tutorial:	3-1	Internal Marks:	30
Credi	ts:	3	External Marks:	70
Prere	quisites: Funda	mentals of matrices,	Fundamentals of Trigonome	try and
Calcu	lus.		L	•
Cours	e Objectives:			
	• To instruc	t the concept of Matrice	es in solving linear algebraic equat	ions
	• To elucida	te the different numeric	cal methods to solve nonlinear alge	braic equations
	• To dissen carrying o	uinate the use of differ ut numerical integration	rent numerical techniques for n.	
	 To equip intermedia ability an their appli 	the students with ate to advanced level ma long the students to h ications.	standard concepts and tools athematics to develop the confiden andle various real world problen	at an ce and ns and
Cours	se Outcomes:			
CO1	Student will be	able to develop the u	se of matrix algebra techniques	that is
	needed by engin	neers for practical app	plications (L6)	
	solve system of	linear algebraic equa	tions using Gauss elimination,	Gauss
	Seidel and wri	te Eigen values and e	igenvectors of a matrix (L3)	
CO2	Student will be	able to write diagona	l form and different factorization	ons of a matrix
	(L3), to find inv	erse of a matrix and i	ntegral powers of a matrix by C	ayley-
	Hamilton Theor	rem		
	identify the na definite etc., an characteristics	ture of a Quadratic fo d use this information (L2)	orm such as positive definite, po n to facilitate the calculation of	ositive semi matrix
CO3	Student will be	able to evaluate the	approximate roots of polynomia	al and
	transcendental	equations by differen	t algorithms (L5)	
CO4	Student will be	able to apply Newton	i's forward & backward interpol	ation
	and Lagrange's	tormulae for unequa	ll intervals (L3)	
CO5	Student will be	able to apply numeri	cal integral techniques to differ	rent
006	Engineering pro	Dens (L3)		41
000	Student will be	able to apply differential actu	it algorithms for approximating	ite
	analytical com	utations (I 3)	auons with innual conditions to	110
L				

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	10
CO 1	3	3	2	2	-	-	-	-	-	-	-	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
C05	3	3	2	2	-	-	-	-	-	-	-	-
C06	3	3	2	2	-	-	-	-	-	-	-	-

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non- homogeneous linear equations – Gauss Elimination method – Eigen values and Eigen vectors and properties.

Unit-II:Cayley-HamiltontheoremandQuadraticforms:(10hrs)Cavley-Hamilton theorem (without proof) – Applications – Finding the

inverse and power of a matrix by Cayley-Hamilton theorem – Reduction
to Diagonal form – Quadratic forms and nature of the quadratic forms –
Reduction of quadratic form to canonical forms by orthogonal
transformation
UNIT-III:Iterativemethods: (8 hrs)
Introduction– Bisection method – Method of false position– Iteration
method
Newton-Raphson method (One variable)
Gauss-Jacobi and Gauss-Seidel methods for solving system of equations
numerically
UNIT – IV: Interpolation: (10 hrs)
Introduction – Errors in polynomial interpolation – Finite differences
Forward differences – Backward differences –Central differences –
Relations between operators – Newton's forward and backward
formulae for interpolation – Interpolation with unequal intervals –
Lagrange's interpolation formula
UNIT _V: Numerical integration and Solution of ordinary differential
equations with initial of ordinary differencial
(10 hrs)
Trapezoidal rule- Simpson's 1/3 rd and 3/8 th rule- Solution of initial
value problems by Taylor's series- Picard's method of successive
approximations- Euler's method -Modified Euler's method - Runge-
Kutta method (second and fourth order).
TEXT BOOKS:
1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna
Publishers.
2. B. V. Ramana, Higher Engineering Mathematics, 2007
Edition, Tata Mc. Graw Hill Education.
3. David Poole, Linear Algebra- A modern introduction, 4 th Edition, Cengage.
REFERENCE BOOKS: 1 Storran C. Channellind Numerical Matheda with MATLAD for
Engineering and Science Tata Mc. Graw Hill Education
2. M. K. Jain, S.R.K. Ivengar and R.K. Jain. Numerical Methods for
Scientific and Engineering Computation, New Age International
Publications.
3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.
E-RESOURCES:1. <u>www.nptel</u> videos.com/mathematics/(Math Lectures from MIT Stanford IIT'S
2 nntl ac in/courses/1221104017
2. 190.0001/001/001/

ECE B.TECH. I YEAR NRIA20 REGULATIONS SYLLABUS

20A1100203 : APPLIED PHYSICS (Common to EEE and ECE)

				(Comm	on to l	EEE ai	nd ECI	E)			
Lectu	re – Tı	utorial	: 3-	0]	ntern a	al Mark	xs:	30
Credi	ts:		3					I	Extern	al Marl	ks:	70
Prere	quisite	es: Kno	wledg	e on fi	ındam	ental	conce	pts of	waves,	optics	s, sour	ıd and
magn	etism											
Cours	e Obje	ctives	:									
* The	e cours	se aims	at ma	king s	tudents	to un	derstar	nd the	basic c	concepts	of Pr	inciples of
Ph	ysics in	a broa	der sen	se with	a view	to lay i	oundati	ion for t	the vari	ous eng	gineerir	ig courses.
↓ 10	develop) anaiyi	icai caj	Jabinty	and so	ive vario	Jus eng	,111661 111	g proble	-ms.		
Cours	se Out	comes	:									
CO1	Apply	the i	nterac	tion o	f light	with	matter	throu	ıgh in	terferer	nce, d	iffraction,
	polari	ization	and id	entify	these j	phenor	nena ii	n differ	ent na	tural o	ptical	processes
	and o	ptical i	instrur	nents.								
CO2	Apply	the co	ompreh	nended	know	ledge a	bout la	aser ar	nd fibre	e optic	comm	unication
~ ~ ~ ~	syster	ms in v	various	engin	eering	applica	ations.					
CO3	Interr	oret the	e know	ledge	of diele	ectric a	ind ma	gnetic	materi	als wit	h cha	acteristic
004	utility	<u>' in app</u>	pliance	<u>s.</u>	. ·			1 .			1.	· 1
C04	Apply	the k	nowlec	lge of	basic o	luantu	m mee	chanics	s, to se	et up o	ne di	nensional
COE	Schro	norigo	the in	equal	<u>.1011 an</u>	<u>d its a</u>	pplicat	$\frac{1011}{2}$ to 2	a iiiiiii	ning th	nual v	/ell.
003	metal	s and	under	ipoi tai estand	the or	igin &		of ene	row ha	nde in	class	ifying the
	solids		unuer	Stand		igili u	, 1010		igy ba	1145 111	ciass	liying the
CO6	Unde	rstand	the p	hysics	of Ser	nicond	uctors	and t	heir w	orking	mech	anism for
	their	utility	in sens	sors.						8		
		5										
Contr	ibutio	n of C	ourse	Outco	mes to	wards	achie	vemen	t of Pr	ogram	Outc	omes (1 –
Low,	2- Med	lium, 3	3 – Hig	;h)		n	n	n	n			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO	PO 12
CO1	1	2	3	4	3	0	1	8	9	10	11	12
COI	3				3					3		
CO2	3	3		2	2					3		
CO3	3	3			2							
CO4	3											
CO5	3		2		2							
CO6	3				2							
Unit-l	I: Wave	e Optic	cs									

(12hrs)

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) - Colors in thin films- Newton's Rings- Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating (Qualitative).

Polarization: Introduction-Types of polarization - Double refraction - Nicol's Prism - Half wave and Quarter wave plates.

Unit-II: Lasers and Fiber optics

(8hrs)

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion – Lasing action – Pumping Schemes – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle - Numerical Aperture -

Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers - Applications.

Unit-III: Magnetic and Dielectric Materials (10hrs)

Magnetic Materials: Introduction - Origin of permanent magnetic moment - Classification of

magnetic materials: Dia, para, Ferro, antiferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials.

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field- Clausius- Mossotti equation.

Unit IV: Quantum Mechanics, Free Electron Theory (8hrs)

Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations– Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory– Equation for electrical conductivity based on quantum free electron theory- Fermi-Dirac distribution- Fermi energy-Density of states.

Unit – V: Band theory of Solids &Semiconductors (10hrs)

Band theory of Solids: Bloch's Theorem (Qualitative) - Kronig - Penney model (Qualitative)- E vs K diagram - v vs K diagram - effective mass of electron – Classification of crystalline solids-Concept of hole.

Semiconductors: Introduction- Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – extrinsic semiconductors – density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation- Hall effect – Hall coefficient –Applications of Hall effect.

TEXT BOOKS:

- 1. **M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy**" A Text book of Engineering Physics"- S.Chand Publications, 11th Edition 2019.
- 2. Engineering Physics by **P.K.Palanisamy** SciTech publications

REFERENCE BOOKS:

- 1. Engineering Physics by **M.R.Srinivasan**, New Age international publishers (2009).
- 2. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press
- 3. **B.K. Pandey and S. Chaturvedi**, Engineering Physics, Cengage Learning

E-RESOURCES: <u>www.doitpoms.ac.uk</u>, <u>http://www.itp.uni-hannover.de/~zawischa/ITP/diffraction.html</u>, <u>http://www.coherent.com/products/?834/Lasers</u>, <u>http://plato.stanford.edu/entries/qm/</u>

20A1103301: ENGINEERING GRAPHICS

(Common to EEE and ECE)

Lectu	ıre – I	Practio	cal:	2	- 2 H	ours				Inter	nal Mar	ks:	30
Credi	its:			3						Exter	nal Mar	ks:	70
Prere	quisite	es:											
	1. K	nowled	lge of l	oasic N	lathem	natics							
Cour	2. D	rawing	g skills										
	To ir	trodu	ce the	stude	nts th	11890	re of dr	awing	instrum	ients and	to draw	7	
1.	nolv	gons	Ee ine Engg	Curve	es and	scales		awing	motrum	iento une	i to uraw		
2	To ir	otrodu	ce the	stud	ente ti		'. orthogr	anhic	nroiecti	ons proi	ection of	noints	
4.	8 0 11		ines	, stuu		Juse	nulogi	apine	projecti	ons, proj		points	
3	Ton	nolze t	he st	udente	a draw	the t	aroiect	ions of	the lir	nes inclir	ed to be	oth the	
5.	, 10 11 nlan		.110 50	uuuma	s ulav	v the p	JIOJECI	10115 01	uit iii	ics mem			
4	Ton	nolze t	he ati	idente	drou	, the r	rojecti	one of	the nl	one inclir	ed to b	oth the	
т.	, 10 11 nlon	lant i	ine su	Juent	s urav	uie p	лојеси	0115 01	the pla				
5	To n	.co. notro t	he at	udente	drov	the t	aroient	iona of	the vo	rions tra	ses of sc	lida in	
5.	diffo	ront n	ne su		s urav		of the t		uie va	inous typ		mus m	
6	To re	nresen	t the	no me	in 3D	view th	orough	jianes.	ic views	and to co	nvert the	isomet	ric
0.	view	to orth	lograp	hic vie	w and	vice ver	sa.	150111011				. 15011101	IIC .
Cour	se Ou	tcome	es:										
Upo	n si	ıcce	essfu	ıl co	mpl	letio	n of	the	cours	se. the	e stud	ent	
	ho	ahla	to		F -								
	Unde	avic	d the	aimple	a deom	etric o	onotru	otions	lilze pol	vaona er	rineerin	a 0117770	0
COI	Unue	istan	u uie ;	simple	geom		onstru	cuons	like poi	ygons, ei	Igineerin	gcuive	5.
CO2	Unde	rstand	the or	thogra	phic p	rojectio	ns of po	oints an	d lines				
000	Unde	erstan	d the	orthog	raphi	c proje	ctions	of strai	ght line	es- incline	ed to one	plane	
003	and i	incline	ed to b	oth th	ie plar	nes.			0			-	
	Unde	erstan	d the	orthog	graphi	c proje	ections	of plan	nes and	Planes i	nclined	to both	
CO4	the p	lanes.											
CO5	Unde	erstan	d and	draw	the p	rojectio	ons of	the var	rious ty	pes of so	lids in d	ifferent	
000	posit	ions ir	ncline	d to oi	ne of t	he plar	nes						
C06	Unde	erstan	d the	transf	ormat	ion of	orthog	raphic	views i	into isom	etric vie	ws and	
000	vice v	versa.											
Cont	ributi	on of	Cours	e Out	come	s towa	rds ac	hiever	nent of	' Program	1 Outco1	nes	
(1 – I	.ow, 2	- Med	ium,	3 – Hi	gh)	201	207	200	500	2010	5011	5010	
CO1	2	PO2	PO3	P04	P05	P06	PO7	P08	P09	P010	POII	PO12	
CO1	ວ 2	2 0	-	-	-	-	-	-	-	ວ 2	-	1	
C02	े २	2	-	_	-	-	-	-	-	3	-	1	
CO4	3	2	_	_	2	_	_	_	_	3	_	1	
CO5	3	2	_	_	2	-	-	_	-	3	-	1	
C06	3	2	_	-	2	-	-	-	-	3	-	1	
						1	UNIT I						
Polyg	gons: (Constr	ructing	g regu	lar po	lygons	by gen	ieral m	ethods,	inscribir	ng and de	escribin	g
polyg	ons or	n circle	es.										
Curv	es: Pa	rabola	, Ellip	se an	d Hype	erbola	by gen	eral ar	id speci	al metho	ds, tange	ents &	
norm	als for	the c	urves	•									
Scale	es: Pla	in sca	les, di	agona	l scale	es and	verniei	scales	3				

UNIT II

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane. Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination.

UNIT III

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

UNIT IV

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

UNIT V

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

Note:	in the End Examination there will be no question from CAD.
TEXT BOO	KS:
1.	Engineering Drawing by N.D. Butt, Chariot Publications
2.	Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers
REFERENCI	E BOOKS:
1.	Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
2.	Engineering Graphics for Degree by K.C. John, PHI Publishers

3. Engineering Graphics by PI Varghese, McGrawHill Publishers

4. Engineering Drawing + AutoCad – K Venugopal, V. Prabhu Raja, New Age

20A1105301:-Programming and Problem solving with C (Common to EEE, ME, ECE, CSE, IT, AIML and DS)

Lectur	e – Tu	torial-	3-0-0					In	ternal l	Marks:	3	0
Crodit	sal::		3					r.	storn ol	Mortzer	7	0
Drereg	s. Nicitae	· Basio	J knowl	adra a	n	nutore	Mathe	matics		marks.	1	0
Course	e Objec	tives: '	The obj	ectives	of Prog	rammi	ng for F	Problem	Solving	Using	Ca	re
• '	To learn compute To gain	n abou er progr knowled	t the c am and lge of th	compute Structu le opera	er syste are of a tors, set	ems, co C Progra lection,	mputing am control s	g enviro	onments,	develog	ping n in	of a C
• '	To learn types ar	about d their	the desi usage.	ign cono	cepts of	arrays,	strings	, enume	rated str	ructure a	and	union
•	To assir Preproce	nilate a essor.	bout po	inters, o	dynamio	c memo	ry alloca	ation an	d know	the sign	ifica	nce of
• '	l'o assin	nilate al	bout File	e I/O an	d signif	icance o	of function	ons				
Course	Outco	omes:	C 1		1 . •					1 1	-	
Upor	n suc	cess	iul c	omp	letio	on of	the	cour	se, t	he st	ud	lent
will 1	be ab	le to):									
CO1	Under input-	stand output	the pro statem	gramm lents to	ing ter	minolo simple	gy and problen	implen ns	nent var	rious c-	tok	ens &
CO2	Able t apply	o comp the bes	are and st loopin	d differ ng stru	entiate cture fo	variou or a giv	is loopii en prob	ng & br lem	ranching	g constr	ruct	s and
CO3	Identi functi	fy the on type	necess s	sity of	modu	larity	in prog	grammii	ng and	design	ı va	irious
CO4	Under locatio	stand ons	pointer	s and i	implem	ient the	e progra	ams to	directly	access	s me	emory
CO5	Interp homog	ret an geneou	d imple s and h	ement eteroge	the ne	ed of groups	arrays of data	and st ı	tructure	/union	to	store
CO6	Contra	ast the	need of	f using	files in	progra	mming	and im	plemen	t file op	erat	tions
Low 2	Dution - Medii	$\frac{01}{2}$	irse Ou - High)	tcome	s towa	ras aci	ilevem	ent of l	Progran	n Outco	оте	s (1 –
2011, 2	PO	PO	PO	РО	РО	PO	PO	PO	PO	PO	Р	PO
	1	2	3	4	5	6	7	8	9	10	0 1 1	12
CO1	3		1									
CO2		1	3									
CO3		1	3									
CO4	3		1									
CO5			3									
CO6			3		<u> </u>				•.•			
UNIT	I : O	bjective	e: Noti	on of	Comp	uter L	anguag	ges, alg	gorithm,	, comp	uta	tional
proced	ure, edi	iting ar		uting p	rogram	is and (Decla	rations	1	4.0	Ъ	1
BASIC	S AND	IN I KOI			C: Basi	ICS OI C	ompute	er, intro	auction	to C,	Mac	chine,
Assemi	oly and	High I	evel La	nguage	Freed	mbler,	C D Proc	er and	Interpre	eter, Str	ucti י נו	ure of
	Now Ch	ort Al	nning	Rules,	Execu	ung une	C PIOE	gram, <i>i</i>	Auvania	ges of C	, п	eauer
THES, F		ARATI	NSO T	he C-C	haract	er set	Delim	iters T	whee of	Token	۰ ٦	The C
keywor	ds Ide	ntifiers	Const	ante V	/iariahle	C D	ata type	i initi	alization	type r	s, i nod	ifiers
type or	nversi	ons co	nstant	and \mathbf{v}	olatile	variahl	es. Pro	nerties	of One	rators	On	erator
Priority	COmm	na and	conditi	onal on	erators	s arith	metic r	elation	al assig	nment i	one	rators
and ex	pressio	ns, log	gical, 1	bitwise	operat	tors. In	iput an	d outp	ut in c:	Forma	atteo	1 and
Unform	natted f	unction	is		-		-	1				

UNIT II: Objective: Understanding branching, iteration, data representation using arrays and strings

DECISION STATEMENTS: The if statement, if-else, nested if else, if-else-if ladder, break, continue, goto, Switch statement, nested switch case, Switch case and nested ifs.

LOOP CONTROL: for loop, nested for loop, while, do-while, do-while statement with while loop. ARRAYS: Array initialization, array terminology, characteristics of an array, 1-D array and its operations, 2-D arrays and operations, Multi -dimensional arrays.

STRINGS: Declaration and initialization of string, string standard functions, string conversion functions, memory functions, application of strings.

UNIT III: Objective: Modular programming and recursive solution formulation and storage classes

FUNCTIONS: Basics, function definition, return statement, types of functions, call by value ,call by reference, function as an argument, Functions with operators, Function and Decision Statements, Functions and loop Statements, Functions with arrays and Pointers, Recursion-Types of Recursion, Rules for Recursive Function, Recursion versus Iterations, Advantages and Disadvantages of Recursion, Efficiency of Recursion, Library Functions.

STORAGE CLASS: Variable Lifetime, Automatic Variables, External Variables, Static Variables, Register Variables.

UNIT IV: Objective: Understanding pointers, dynamic memory allocation and Preprocessor Directives.

POINTERS: Features of pointers, pointers and address, pointer declaration, void pointers, arithmetic operations with pointers, pointers and arrays, array of pointers, pointers to pointers, pointers and strings. Dynamic memory allocation

PREPROCESSOR DIRECTIVES: The #define Directive, Defining and Undefining a Macros, The #include Directive

UNIT V: Objective: Understanding derived data types of C and basic of file operations.

STRUCTURE AND UNION: Features of Structures, Declaration and initialization of Structures, Structure within Structure, Arrays of Structure, Pointer to Structure, Structure and functions, typedef, Bit fields, Enumerated Data Type, Unions and Unions Vs Structures.

FILES: Streams and File Types, Steps for File Operations, FILE I/O, Structures Read and Write, Other file function, Command line Arguments.

TEXT BOOKS:

[1] Behrouz A. Forouzan & Richard F. Gilberg , —"Computer Science A Structured Programming Approach using C" , CENGAGE Learning, Third Edition.

REFERENCE BOOKS:

[1]Kernighan and Ritchie , —"The C programming language" , The (Ansi C Version), PHI, second edition.

[2]Yashwant Kanetkar, -"Let us C", BPB Publications, 2nd Edition 2001.

[3]Paul J. Dietel and Dr. Harvey M. Deitel, –"C: How to Program", Prentice Hall, 7 th edition (March 4,2012).

[4]Herbert Schildt, –"C:The Complete reference", McGraw Hill, 4th Edition, 2002.

[5]K.R.Venugopal, Sundeep R Prasad, —"Mastering C", McGraw Hill, 2nd Edition, 2015 **E-RESOURCES:**

1.http://cslibrary.stanford.edu/101/EssentialC.pdf

2. http://nptel.ac.in/courses/106104128/

3.http://www.vssut.ac.in/lecture_notes

<u>20A1100292:- Applied Physics Lab</u> (Common to EEE,ME,ECE,CSE,IT,AIML and DS)

Labs /	Instruc	ctions	0-	0-4					Interne	l Mark	·C•	30
Hours	/Week								11111111			
Credit	s:		1.5	5					Externa	al Mark	ks:	70
Prerec	uisites:	Know	ledge or	ı vernie	er callip	ers, Sci	rew gua	age, con	nmon b	alance		
Cours	e Objec	tives:										
*	The Ol	ojective	of this of	course i	s to mal	ke the st	udents g	gain pra	ctical kı	nowledg	ge to co	-relate
	with th	e theore	etical stu	udies.								
*	To ach	ieve per	rfectnes	s in exp	eriment	al skills	and the	e study o	of practi	cal appl	ications	s will
	bring r	nore con	nfidence	e and ab	ility to	develop	and fab	oricate e	ngineeri	ng and	technic	al
	equipn	nents.										
*	Trainir	ng field	oriented	l Engine	eering g	raduates	s to han	dle insti	ruments	and the	ir desig	n methods
	to imp	rove the	accura	cy of me	easurem	ents.						
Cours	e Outco	mes:										
CO1	Under	stand pr	inciple,	concep	t, worki	ng of ai	n instrur	nent and	d can co	mpare r	esults v	vith
	theore	tical cal	culatior	ıs.								
CO2	Analyz	ze the p	hysical	principl	e involv	ved in th	e variou	us instru	iments;	also rela	te the p	orinciple
	to new	applica	ation.									
CO3	Under	stand de	esign of	an instr	ument v	with targ	geted ac	curacy f	for phys	ical mea	asureme	ents.
CO4	Develo	op skills	s to imp	art pract	tical kno	owledge	in real	time so	lution.			
CO5	The va	arious ex	xperime	nts in th	ne areas	of optic	es, mech	nanics a	nd therm	nal phys	ics will	nurture
	the stu	dents in	n all brai	nches of	f Engine	eering						
CO6	Think	innovat	ively an	id also i	mprove	the crea	ative ski	ills that	are esse	ntial for	engine	ering.
Contr	ibution	of Cou	rse Out	comes	toward	s achiev	ement	of Prog	ram Ou	itcomes	(1 - L)	ow, 2-
Mediu	m, 3 – 1	High)										
	PO 1	PO	PO 2	PO	PO	PO	PO 7	PO	PO	PO 10	PO 11	PO 12
COL	1	2	3	4	5	0	/	ð	9	10	11	12
	5											
CO2	3	3		3					3			
CO3	3	3	1	3					3			
CO4	3	3		3								
CO5	3											
CO6	3	3	2	3								

List of Experiments

- 1. Study of variation of magnetic field along the axis of a current carrying circular coil by Stewart & Gee's method.
- 2. Determination of numerical aperture and acceptance angle of an optical fiber.
- 3. Determination of thickness of thin object by wedge method.
- 4. Determination of radius of curvature of given plano convex lens by Newton's rings.
- 5. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 6. Determination of dispersive power of the prism.
- 7. Sonometer: Verification of laws of string.
- 8. Study of I/V Characteristics of Semiconductor diode.
- 9. I/V characteristics of Zener diode.
- 10. Melde's experiment-Longitudinal and Transverse mode.
- 11. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 12. Estimation of Planck's constant using photoelectric effect.
- 13. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall Effect
- 14. Determination of wavelength of Laser light using diffraction grating.
- 15. Rigidity modulus of material of a wire-dynamic method (Torsional pendulum).

Note: Any 8 experiments out of 15 should be done in the laboratory and 2 experiments in virtual lab.

TEXT BOOKS:

S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

REFERENCE BOOKS:

Engineering Physics / Applied Physics Lab Manual – Spectrum Publications

E-RESOURCES: www.vlab.co.in

20A1105391-Programming and Problem Solving with C Lab (Common to EEE,ME,ECE,CSE,IT,AIML and DS)

		10	· · · · · · · · · · · · · · · · · · ·		,	202,0	<u>, , , , , , , , , , , , , , , , , , , </u>		<u>na 201</u>			
Lectur Practio	e – Tu cal::	torial-	0-0-4					In	ternal	Marks:		30
Credit	s:		1.5					Ez	ternal	Marks:		70
Prereq	uisites	:										
Course	e Objec	tives:										
1. To n	nake th	e stude	nt lear	n a pro	gramm	ing lang	guage.					
2. To le	earn pro	oblem s	olving	technic	lues.	_						
3. To te	each th	e stude	nt to w	rite pro	ograms	in C an	d to so	lve the	probler	ns		
Course	Outco	omes:										
Upon s	success	ful cor	npletic	on of th	ie cour	se, the	stude	nt will	be able	to:		
CO1	Under	stand l	basic S	tructur	re of the	e C-PR	OGRAM	IMING,	declara	ation ai	nd usag	ge of
	variab	oles										
CO2	Exerci	ise cond	litional	and it	erative	stateme	ents to	inscrib	e C pro	grams		
CO3	Exerci	ise user	define	d funct	tions to	solve r	eal time	e probl	ems			
CO4	Inscri	be C pr	ograms	using	Pointer	s to acc	cess ari	rays, st	rings ar	nd func	tions	
CO5	Inscri	be C pr	ograms	s using	pointer	rs and a	allocate	memo	ry usiną	g dynan	nic mer	nory
	manag	gement	functio	ons								
CO6	Exerci	ise use	r defir	ned da	ta type	es inclu	iding s	structu	res and	l unior	ns to s	solve
	proble	ems										
CO7	Exerci	lse files	concep	ot to sh	ow inpu	ut and o	output	of files	in C			
Contri	bution	of Cou	irse Oi	itcome	es towa	rds ac	hievem	ent of	Progra	m Out	comes	(1 –
Low, 2	- Medi	um, 3 -	· High)									
	PO 1	PO 2	PO 2	PO 4	PO 5	PO	PO 7	PO °	PO	PO 10	PO 11	PO 12
CO1	1	4	3	4	5	0	1	0	9	10	11	12
001	1	-	3	-	-	-	-	-	-	-	-	-
CO2	-	-	2	-	-	-	-	-	-	-	-	-
CO3	-	-	3	-	-	-	-	-	-	-	-	-
CO4	-	-	2	-	-	-	-	-	-	-	-	-
CO5	-	-	3	-	-	-	-	-	-	-	-	-
CO6	-	2	3	-	-	-	-	-	-	-	-	-
CO7	-	1	3	-	-	-	-	-	-	-	-	-
Exercis	se 1:											

1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.

2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.

3. Write a C program to display multiple variables.

Exercise 2:

1. Write a C program to calculate the distance between the two points.

2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3:

1. Write a C program to convert a string to a long integer.

2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.

3. Write a C program to calculate the factorial of a given number

Exercise 4:

1. Write a program in C to display the n terms of even natural number and their sum.

2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.

3. Write a C program to check whether a given number is an Armstrong number or not. Exercise 5:

1. Write a program in C to print all unique elements in an array.

2. Write a program in C to separate odd and even integers in separate arrays.

5. write a program in C to sort elements of array in ascending order.

Exercise 6:

1. Write a program in C for multiplication of two square Matrices.

2. Write a program in C to find transpose of a given matrix.

Exercise 7:

1. Write a program in C to search an element in a row wise and column wise sorted matrix.

2. Write a program in C to print individual characters of string in reverse order. Exercise 8:

1. Write a program in C to compare two strings without using string library functions.

2. Write a program in C to copy one string to another string.

Exercise 9:

1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation

2. Write a program in C to demonstrate how to handle the pointers in the program. Exercise 10:

1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.

2. Write a program in C to add two numbers using pointers.

Exercise 11:

1. Write a program in C to add numbers using call by reference.

2. Write a program in C to find the largest element using Dynamic Memory Allocation. Exercise 12:

1. Write a program in C to swap elements using call by reference.

2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

1. Write a program in C to show how a function returning pointer.

2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs

2. Write a program in C to convert decimal number to binary number using the function. Exercise 15:

1. Write a program in C to check whether a number is a prime number or not using the function.

2. Write a program in C to get the largest element of an array using the function. Exercise 16:

1. Write a program in C to append multiple lines at the end of a text file.

2. Write a program in C to copy a file in another name.

3. Write a program in C to remove a file from the disk.

TEXT BOOKS:

[1] Behrouz A. Forouzan & Richard F. Gilberg , —"Computer Science A Structured Programming Approach using C" , CENGAGE Learning, Third Edition.

REFERENCE BOOKS:

 $[1]\mbox{Kernighan}$ and Ritchie , —"The C programming language" , The (Ansi C Version), PHI, second edition.

[2]Yashwant Kanetkar, -"Let us C", BPB Publications, 2nd Edition 2001.

[3]Paul J. Dietel and Dr. Harvey M. Deitel, –"C: How to Program", Prentice Hall, 7 th edition (March 4,2012).

[4]Herbert Schildt, –"C:The Complete reference", McGraw Hill, 4th Edition, 2002.

[5]K.R.Venugopal, Sundeep R Prasad, —"Mastering C", McGraw Hill, 2nd Edition, 2015 **E-RESOURCES:**

1.http://cslibrary.stanford.edu/101/EssentialC.pdf

2. http://nptel.ac.in/courses/106104128/

3.http://www.vssut.ac.in/lecture_notes

I-II SEM

	_			-	(Comn	non to	All Br	anche	s)		. 1	•
Lectu	<u>ire – T</u>	utoria	1: 3	-1]	Intern	al Mar	ks:	30
Credi	its:		3					I	Extern	al Mar	ks:	70
Prere Calcu	quisite ilus.	es: Fu	ndame	entals o	of mat	rices,	Funda	menta	ls of 1	rigono	ometr	y and
Cours	se Obje	ective	s:									
	• T	o famil	iarize a	a variety	v of wel	l-know	n sequ	ences a	nd ser	ies, wit	h a de	eveloping
	ir _	ituition	about	the beh	aviour	of new of	ones.					
	• To	o enlig alculus	hten tl	ne learr	ners in	the co	ncept	of diffe	rential	equatio	ns an	d multivariable
	 To ao st 	o equip dvance cudents	o the s d level s to har	students mathe idle vari	s with matics lous rea	standaı to dev ıl world	rd cond velop tl proble	cepts and ne cont ms and	nd tool fidence their a	s at ar and a pplicati	n inter bility ions.	rmediate to among the
Cours	se Out	comes	5:				•			••		
CO1	Stude	ent wil	l be ab	le to fi	nd the	Gener	al/Par	ticular	soluti	ons of t	first o	rder and first
	degre	e ordi	nary di	ifferent	ial equ	ations	by app	ply diff	erent 1	nethod	s (L3)	, know the
	appli	cation	s of Ne	wton's	law of	coolin	g, natu	ral gro	wth ar	nd deca	y pro	blems and
000	find	orthog	onal tr	ajector	ies of t	he give	en fam	ily of c	urves.	<u>(L3)</u>	•	1:00 / 1
CO2	Stude	ent wil	I be at	ole to 10	lentity	the es	sentia	l chara	icterist	ICS OF L	inear	differential
	const	ant co	efficie	nts hv i	annron	riate m	rethod	ve une (L3)	mear	umere	nual (quations with
CO3	Stude	$\frac{1}{2}$ and $\frac{1}{2}$	$\frac{1}{1}$ be at	$\frac{1}{100}$ by $\frac{1}{100}$	nd con	vergen	$\frac{1000}{100}$	diverg	ance of	o serie	a (T.3	1
$\frac{CO3}{CO4}$	Stude	ent wil	<u>1 be at</u> 1 be at	le to u	tilize m	vergen lean va	lue th	eorems	to rea	a serie	rohler	/ <u>/</u> ms(I.3)
CO5	Stude	nt wil	1 be at	ole to fi	nd par	tial der	ivative	s num	ericall	v and s	vmbo	lically and
000	use t	hem to	analy	ze and	l interp	oret the	e way a	funct	ion vai	ies. (L	4)acq	uire the
	Кпоч	ledge	maxim	a and :	minima	a of fur	nctions	s of sev	eral va	riable	(Ĺ1)Ū	tilize
	Jacol	bian of	a coor	rdinate	transf	ormati	on to c	leal wit	th the	probler	ns in	change of
	varia	bles (L	,3)									
CO6	Stude surfa	ent wil ce area	l be at a of so	ole to fi lid of re	nd lengevolution	gth of 1 on (L3)	the ar	c, volu	me of s	solid of	revolu	ution and
~ .											<u> </u>	
Conti		n of C	ourse	Outco	mes to	owards	s achie	vemer	it of P	rogran	1 Out	comes (1 –
LOW,		PO	$\frac{5 - m}{PO}$	<u>911)</u> PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	2								
CO2	3	3	2	2								
CO3	3	3	2	2								
CO4	3	3	2	2								
CO5	3	3	2	2								
CO6	3	3	2	2								
l												
U			erenti	al equa	tions	of first	t orde	r and f	irst de	gree:		(10hrs)
L	inear	differe	ential	equati	ons-	Bernou	ıllı´s	equation	ons –	Exact	equa	tions and
- PI	quation	1s red	ucible	to exac	Orthog	. Appl	ication	s: new	ton's	Law of	C00111	ng- Law oi
5	oturol	PIOWL	i anu u	iecay-	Orthog	gonar ti	ajecto	1165.				
n	atural	8-01102										
n	atural	II:	Line	ar	Differ	ential	e	uatio	ns	of	hiơł	ner order:
n (10hr	unit unit	II:	Line	ar	Differ	ential	e	quatio	ns	of	higł	ner order:
n (10hr H	unit unit s)	II: neous	Line and I	ar Non-ho:	Differ	ential eous d	eo lifferen	quatio tial eq	ns uation	of s of hi	high gher	her order: order with
(10hr H	unit unit s) lomoge	II: neous t coeff	Line and I icients	ar Non-ho: – with	Differ mogen non-h	ential eous d .omoge	ed lifferen meous	quatio tial eq term o	ns uation of the t	of s of hi ype e ^w	high gher , sin ;	her order: order with ax, cos ax,
n (10hr H co p	UNIT UNIT (s) lomoge onstan olynom	II: neous t coeff nials ir	Line and I icients	ar Non-ho: – with ^w V(x) a	Differ mogen non-h nd x ⁿ V	ential eous d omoge (x) – M	ed lifferen neous lethod	quatio tial eq term o of Var	ns uation of the t iation	of s of hi ype e ^{ax} of para	high gher , sin ; imeter	ner order: order with ax, cos ax, rs, Cauchy
(10hr H ca p a:	unit- unit- s) lomoge onstan olynon nd Leg	II: neous t coeff nials ir endre?	Line and I icients x^n , e^a s linea	ar - with ^w V(x) a <u>r equat</u>	Differ mogen non-h nd x ⁿ V tions.	ential eous d omoge (x) – M	ed lifferen neous lethod	tial eq term c of Var	ns uation of the t iation	of s of hi ype e ^{ax} of para	high gher , sin ; meter	ner order: order with ax, cos ax, rs, Cauchy
n (10hr H co p a: U	unit- unit- s) lomoge onstan olynon nd Leg	II: neous t coeff nials ir endre'	Line and I icients x^n , e^a s linea III:	ar Non-ho: ∼with ¤V(x) a r equat Seque	Differ mogen non-h nd x ⁿ V ions.	ential eous d omoge (x) – M Se	ed lifferen neous lethod ries	tial eq term of of Var and	ns uation of the t iation Me a	of s of hi ype e ^{ax} of para	high gher , sin meter	her order: order with ax, cos ax, rs, Cauchy theorems:
(10hr (10hr H co p at U (1	unit- cs) lomoge onstan olynom nd Leg NIT lOhrs)	II: neous t coeff nials ir endre'	Line and I icients x^n , eo s linea III:	ar Non-ho: - with ^w V(x) a <u>r equat</u> Seque	Differ mogen non-h nd x ⁿ V ions. ences,	ential eous d omoge (x) – M Se	ed lifferen neous lethod ries	tial eq term of of Var and	ns uation of the t iation Mea	of s of hi ype e^{ax} of para	high gher , sin ; imeter value	ner order: order with ax, cos ax, rs, Cauchy theorems:
(10hr H ca p a: U (1 S	unit- cs) lomoge onstan olynom nd Leg NIT lOhrs) equence	II: neous t coeff nials ir endre?	Line and I icients x^n , eo s linea III: d Seri	ar Von-ho: – with ^{III} V(x) a <u>r equat</u> Seque es: Con	Differ mogen non-h nd x ⁿ V tions. ences,	ential eous d omoge (x) – M Se nces at	ed lifferen neous lethod ries nd div	tial eq term of Var and ergenc	ns uation of the t iation Me a e – Ra	of s of hi ype e ^{av} of para	high gher an eter meter value t - C	her order: order with ax, cos ax, rs, Cauchy theorems: omparison
(10hr (10hr H co p a: U (1 S te M	unit- s) Iomoge onstan olynom nd Leg NIT IOhrs) equence ests – I Iequence	•II: neous t coeff nials ir <u>endre'</u> - ces an ntegra	Line and I icients x^n , eo s linea III: d Seri l test - heorer	ar Von-ho: - with ^w V(x) a r equat Seque es: Con - Cauch ns (with	Differ mogen non-h nd x ⁿ V ions. ences, nvergen y's roc	ential eous d omoge (x) – M Se nces a: ot test	ed lifferen neous lethod ries nd div - Alter: Rolle's	tial eq term of of Var and ergenc nate se	ns uation of the t iation Mea e - Ra eries- I	of s of hi ype e ^{ax} of para of para an ttio tes eibnitz	high gher , sin meter value t - C z's rul	ner order: order with ax, cos ax, rs, Cauchy theorems: omparison e.

remainders	Problems and	applications on	the above theorem	
Temamuers,	i i i i i i i i i i i i i i i i i i i	applications on		
UNIT	-	IV:	Partial	differentiation:
(10hrs)				
Introduction	n – Homogeneou	us function – Eu	ler's theorem– Total	derivative– Chain
rule– Jacobi	ian – Functiona	l dependence –T	aylor's and MacLau	rin's series
expansion o	of functions of tw	wo variables.App	lications: Maxima a	nd Minima of
functions of	two variables v	vithout constrain	nts and Lagrange's n	nultiplied method.
UNIT – V: M	Iultiple integra	als:		
(8hrs)				(8
hrs)				
Double and	Triple integrals	a – Change of orce	ler of integration in o	double integrals –
Change of v	ariables to pola	r, cylindrical an	d spherical coordina	tes.
Application	ns: Finding Area	as and Volumes		
TEXT BOOKS:				
1. B. S. Grewa	1, Higher Engin	neering Mathema	tics, 44 th Edition, K	hanna Publishers.
2. B. V. Rama	na, Higher Engi	neering Mathem	atics, 2007 Edition,	Tata Mc. Graw Hill
Education.				
REFERENCE B	OOKS:			
1. Erwin Krey	szig, Advanced	Engineering Ma	thematics, 10th Edit	tion, Wiley-India.
2. Joel Hass, C	Christopher He	il and Maurice	D. Weir, Thomas ca	lculus, 14 th Edition,
Pearson.				
3. Lawrence T	uryn, Advanced	l Engineering Ma	athematics, CRC Pre	ess, 2013.
4. Srimantha P	al, S C Bhunia	, Engineering Ma	athematics, Oxford U	University Press.
E-RESOURCES	:	• • • • •		
1. <u>www.nptel</u> vi	deos.com/mat	hematics/(Mat	h Lectures from MI	T,Stanford,IIT'S
2. nptl.ac.in/co	urses/1221104	017		

20A1200205: APPLIED CHEMISTRY (Common to EEE and ECE)

ECE B.TECH. I YEAR NRIA20 REGULATIONS SYLLABUS

Credi	ts:		3					E	xterna	l Mark	s: 7	0
Prere	quisite	es:										
Cours	e Obje	ectives	:								•.	(555) :
Cours Cours CO1 CO2	Impor aeros Outlir cells. Expla applic Recall are s techn switch switch s e Out Analy the m Predi- engin pheno	rtance of pace ar ne the l Unders in the cations I the in tudied iques a Outlin nes comes rze the nechani ct poter eering omena.	of usag of usag of auto basics : stand t prepa of nan crease due t tre intra tre intra tre intra differen setting	ge of pl omotive for the he med aration o mate in der o depl oduced basics nt type conduc omplica	astics i constr chanisr chanisr of se erials, s mand f leting 1. s of con ction in ations f ategori	in hous tries. ruction n of co emicon superco or pow source omputa mposit <u>n condu</u> from co ze mat	sehold of elec rrosion ductor onductor er and s of fo ational e plast acting pombinin erials s	applia: etroche a and h s and ors and ors and chence ossil fu chem ic mate polyme ng varie	nces an mical c ow it c nanor l liquid altern nels. A istry a erials a rs. ous Ch releva	nd com cells, ba an be p materia l crysta ative so dvance and mo nd inte emicals nt to co	posites tteries prevent ls, en ls, en ls. ources d inst d inst decula rpret	s (FRP) in s and fuel ted. gineering of power trumental r als in n
CO3 CO4	Apply societ Analy appli	y new n ty need rze the cations	nateria s and e princip	ls with enviror bles of o	excelle nment. differer	ent eng nt anal	ineerir ytical i	ng prop nstrum	erties t	to take	care o	f
CO5	Desig	n mode	els for	energy	by diff	erent r	atural	Source	2S			
C06	Unde	rstand	the kn	owledg	ze of co	mputa	tional	chemis	trv and	1 molec	ular	
	mach	ines			,	1			- J			
Cont	ibutio	n of Co	ourse (Jutcon	mes to	wards	achiev	vement	of Pro	ogram	Outco	mes (1 –
Low,		PO			PO	PO	PO	PO	PO	PO	PO	PO
	10	2	3	4	5	6	7	8	9	10	11	10
0.0.1	-	_	-	0		-	-	-	-			
COI	3	3	3	2	-	-	2	-	-	-	-	-
CO2	3	3	2	1	-	-	2	-	-	-	-	-
CO3	3	2	2	-	-	-	2	-	-	-	-	-
CO4	3	3	2	2	-	-	2	-	-	-	-	-
CO5	3	2	2	2	-	-	2	-	-	-	-	-
CO6	3	3	3	3	-	-	3	-	_	_	-	-
UNIT Polym mecha Plastic injecti	- I: Pe erisati anical j cs:The on, Tr	DLYME on:- In propert rmopla ransfer	Troducties.	ermose extrus	,OGY nethod etting, ion), p	s of p Con prepara	olymer npound	ization ling, proper	(emul fabric ties ar	sion ar cation nd app	nd sus (com	pension), pression, ns (PVC,

and polyurethanes). Composite materials: Fibre reinforced plastics, conducting polymers, biodegradable polymers..

Unit - II: ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential, electrochemical series and uses of series, standard hydrogen electrode, calomel electrode, batteries (Dry cell, liquid Li ion battery), fuel cells (H2-O2).

Corrosion:-Definition, theories of corrosion (chemical and electrochemical), galvanic corrosion, differential aeration corrosion, factors influencing rate of corrosion, corrosion control method- Protective coatings (Galvanizing, tinning, electroplating and electroless plating [nickel])

UNIT - III: MATERIAL CHEMISTRY
Semiconductors: Preparation of semi conductors by zone refining, Czochralski crystal
pulling – applications
Super conductors:-Type –I, Type II and applications
Nano materials:- Introduction, sol-gel method & Chemical reduction method of
preparation, transmission electron microscopy [TEM], applications of fullerenes, carbon
nanotubes (types, preparation and applications)
Liquid crystals:- Introduction-types-applications.
UNIT - IV :SPECTROSCOPIC TECHNIQUES & NON-CONVENTIONAL ENERGY
SOURCES
SPECTROSCOPIC TECHNIQUES: Electromagnetic spectrum-UV laws of ab:sorption,
instrumentation, theory of electronic spectroscopy, Frank-condon principle,
chromophores and auxochromes, applications, FT-IR Basic principle, instrumentation
and IR stretching of functional groups (alcohols, carbonyls, amines) applications,
NON-CONVENTIONAL ENERGY SOURCES Design, working, schematic diagram,
advantages and disadvantages of photovoltaic cell, hydropower, geothermal power, tidal
and wave power, ocean thermal energy conversion.
UNIT -V: ADVANCED CONCEPTS/TOPICS IN CHEMISTRY
Computational chemistry: Introduction to computational chemistry, molecular
modelling and docking studies.
Molecular switches: characteristics of molecular motors and machines,
Rotaxanes and Catenanes as artificial molecular machines, prototypes –
linear motions in rotaxanes, an acid-base controlled molecular shuttle,
a molecular elevator, an autonomous light-powered molecular motor
TEXT BOOKS:
1. P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai &
Sons, Delhi, (Latest edition).
2. Shikha Agarwal, "Engineering Chemistry", Cambridge University Press, New
Delhi, (2019).
3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co.
(Latest edition).
REFERENCE BOOKS:
1. K. Sesha Maheshwaramma and Mridula Chugh, "Engineering Chemistry",
Pearson India Edn.
2. (a) O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education
Private Limited, (2009).
(b) CNR Rao and JM Honig (Eds) "Preparation and characterization of
materials" Academic press, New York (latest edition)
3. B. S. Murthy, P. Shankar and others, "Textbook of Nanoscience and
Nanotechnology ". University press (latest edition)
E-RESOURCES:
E-RESOURCES: 1. https://en.wikipedia.org >wiki> Conductive polymers
E-RESOURCES: 1. https://en.wikipedia.org >wiki> Conductive polymers 2. www.sae.org/fuel cells/fuelcells-types.htm

- 4. <u>https://en.wikipedia.org >wiki> Electrochemical cell</u>
 5. <u>https://en.wikipedia.org >wiki> Spectroscopy</u>

20A1205302: JAVA PROGRAMMING (ECE&EEE)

Lectu Pract	cture – Tutorial- 2-0-2 Internal Marks: 30									30					
Credi	its:		3					E	xternal	Mark	5:	70			
Prere	Prerequisites:														
C Pro	C Programming														
Course Objectives:															
To introduce the object oriented programming concepts.															
To understand object oriented programming concepts, and apply them in solving															
Probl	Problems.														
To introduce the principles of inheritance and polymorphism; and demonstrate how															
they relate to the design of abstract classes															
To introduce the implementation of packages and interfaces															
To introduce the concepts of exception handling and multithreading.															
To in	To introduce the design of Graphical User Interface using applets.														
Course Outcomes:															
Upon successful completion of the course, the student will be able to:															
CO1	Able t	to solv e	e real v	world p	oroblem	ıs usin	ng OOP	techni	ques.						
CO2	Able t	o unde	erstan	d the u	ise of a	bstrac	t classe	es and	Packag	ges in j	ava.				
CO3	Able t	o deve	elop ar	nd und	erstan	d exce	ption h	andlin	g and I	nterfac	es in j	ava			
CO4	Able t	o unde	erstand	l multi	thread	ed app	licatior	ns with	svnch	ronizat	ion an	d design			
	GUI b	ased a	pplica	tions a	nd dev	elop a	pplets	for wel	o applio	cations					
Cont	ributio	n of C	ourse	Outco	omes to	oward	s achie	veme	nt of P	rogran	n Outo	comes (1			
– Low	v, 2- M	edium	, 3 – H	ligh)						0		•			
	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	РО			
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	3	-	-	-	-	-	-	-	-	-	3			
CO2	3	3	3	-	-	-	-	-	-	-	-	3			
CO3	3	3	3	2	-	-	-	-	2	-	-	3			
CO4	3	3	3	2	-	-	-	-	2	-	-	3			
UNIT	, I														
The H	History	and E	volutio	on of J	lava: Ja	ava's L	ineage	, Java	's Magi	c: The	Byte o	code, The			
Java	Buzzw	ords. A	An ove	rview	of Java	ı: Obje	ct-Orie	ented I	Program	ıming,	A Fire	st Simple			
Progr	am, A	Secon	d Sho	rt Prog	gram, T	wo Co	ontrol S	Statem	ents. D	ata Ty	vpes, V	Variables,			
and	Arrays	: Java	Is a	Stron	gly Ty	ped La	anguag	ge, Int	egers,	Floatin	ıg-Poir	nt Types,			
Chara	acters,	The P	rimitiv	е Туре	es, Boo	leans,	Variab	oles, Ty	vpe Cor	nversio	n and	Casting,			
Autor	natic T	ype Pr	omotic	on in E	xpressi	ons, A	rrays.								
UNIT	II														
Intro	ducing	Class	ses: C	lass I	Fundan	nentals	s, Dec	laring	Objec	ts, As	signing	g Object			
Refer	ence V	ariable	es, Inti	roducir	ng Metl	hods, (Constru	uctors,	The th	nis Key	word,	Garbage			
Collee	ction,	A Stac	ck Cla	iss. A	Close	r Look	at M	lethod	s and	Classe	s: Ov	erloading			
Metho	ods, Us	sing Ob	ojects a	as Para	ameters	s, A Clo	oser Lo	ok at <i>I</i>	Argume	nt Pas	sing, F	Returning			
Objects, Introducing Access Control, Understanding static, Introducing final, Using															
Comr	nand-l	ine Arg	gumen	ts.											
UNIT		<u> </u>	•.			•					• ••	.			
INHE	RITAN	CE: Inf	neritan	ice bas	acs, Us	ing su	per key	word,	metho	d overr	ıdıng,	Dynamıc			
meth	od disp	atch u	lsıng fi	nal wit	n inhei	ritance	, abstr	act cla	sses		-				
Packa	ages: I	Jetining	g a pa	ickage,	, Findi	ng pao	ckages	and c	class pa	ath, Ez	xample	e, Access			
prote	ction, i	mporti	ng pac	kages.	protection, importing packages.										
Interf	protection, importing packages.														
	Interfaces: Defining Interface, Implementing Interface, Nested Interfaces, Applying											Applying			
interf	aces, V	Definir	ng Inte es in ir	erface, nterfac	Impler e, Inter	mentin faces c	ng Inte can be o	rface, extend	Nested ed.	Interf	aces,	Applying			

Exception handling: Fundamentals, Exception types, uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws, finally, Java's built-in exceptions, Creating your own exception subclasses.

Multithreaded Programming: The Java thread model, The Main thread, Creating a thread, creating multiple threads, Using isalive() and Join(), thread priorities, Synchronization, Inter thread communication.

UNIT V

APPLETS: Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets.

Lab Programs:

- 1. Create a java application that implements the concept of classes and objects.
- 2. Develop Java Application using inheritance.
- 3. Use interfaces and develop a java application.
- 4. Create a package and access members from a package.
- 5. Develop Java Application using Method overloading and method overriding.
- 6. Create a java application to copy content from one file to another using IO streams.
- 7. Develop Java Application to use String and String Buffer classes
- 8. Implement Exception handling in a given application.
- 9. Develop java application using Multithreading
- 10. GUI Application using applets

TEXT BOOKS:

1. The Complete Reference Java, 8th edition, Herbert Schildt, TMH.

2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson

Education.

REFERENCE BOOKS:

- 1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons.
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.
- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
- 5. Java Programming and Object oriented Application Development, R. A. Johnson, Cengage Learning.

E-RESOURCES:

http://www.javatpoint.com/ java.sun.com/docs/books/tutorial/java/TOC.html http://www.learnjavaonline.org/ http://www.tutorialspoint.com/java/ www.java.com/en/download/faq/develop.xml www.oracle.com > Java > Java SE www.w3schools.com

20A1204301: NETWORK ANALYSIS

Lectur	re – Tu	torial:	3-	0 Hour	s				Interr	nal Mar	ks:	30
Credit	s:		4						Extern	nal Maı	ks:	70
Prereg	luisites	5:										
Basics geome mecha	of Ci try and nics, B	rcuit e d calcu asic pa	elemen ulus, rticles	ts, sou Fundai such a	urces, mental s electr	Basic know on and	algebr ledge electri	aic ec of phy c char	uation /sics i ges.	s, Fund ncludir	lamer 1g ba	itals of sics of
Course	e Objec	tives:										
1. To	unders	stand th	ne basi	c conce	epts on	RLC c	ircuits.					
2. To	know tl	ne beha	avior of	the ste	eady sta	ates an	d trans	sients s	states i	n RLCo	rcuit	s.
3. To	know tl	ne basi	c Lapla	ce tran	sforms	s techn	iques ir	nperiod	ls'wave	forms.		
4. To	unders	stand th	ne two	port ne	twork	parame	eters.					
5. To	unders	tand th	e prop	erties o	of LC ne	etworks	and fi	lters.				
Cours	e Outco	omes:			_							
Upon	succes	sful con	mpleti	on of t	he cou	rse, th	e stud	ent wi	ll be a	ble to:		
CO1	Identi	fy the	main	circuit	eleme	ents ar	nd app	ly Kiro	chhoff's	s Laws	to c	alculate
	curren	nts, vol	tages a	and po	wers ir	n typica	al DC e	electric	circui	ts usin	g a va	iriety of
C02	Synthesize driving point functions of RL_PC and PLC networks											
02	Synthesize driving point functions of RL, RC and RLC networks											
CO3	Infer a	and eva	luate t	ransier	nt resp	onse, S	teady s	state re	sponse	e, netwo	ork fu	nctions
CO4	Analy	ze the s	series r	esonar	it and j	parallel	resona	ant circ	uits			
CO5	Gain tl	ne knov	vledge	in char	acteris	tics of	two poi	rt netw	ork pa	ramete	rs	
CO6	Deter	mining	two po	ort netv	vork pa	aramete	ers an	d one	param	eter int	erms	of other
	paran	neters.	_		_				_			
Contri	i bution	of Cou	irse Oi	itcome	es towa	ards ac	hieven	nent o	f Progi	am Ou	tcom	es
(1 – Lo	ow, 2- I	Aedium	1, 3 – F	ligh)								
	PO 1	PO 2	PO 2	PO	PO 5	PO	PO 7	PO	PO	PO	PO	PO
	1	4	3	4		U	/	0	9	10	11	12
CO1	3	2	3	2	_	_	_	_	_	_	_	-
CO2		3	3	2								
CO3	-	5	5	2	-	-	-	-	-	-	-	-
<u> </u>	2	3	2	3	-	-	-	-	-	-	-	Z
C04	-	2	3	3	-	-	-	-	-	-	-	-
~~~~	2	-	3	3	-	-	-	-	-	-	-	2
CO6	-	3	3	2	-	-	-	-	-	-	-	-
					I	UNIT I						

### INTRODUCTION TO ELECTRICAL CIRCUITS:

Network elements classification, Electric charge and current, Electric energy and potential, Resistance parameter – series and parallel combination, Inductance parameter – series and parallel combination, Capacitance parameter – series and parallel combination. Energy sources: Ideal, Non-ideal, Independent and dependent sources, Source transformation, Kirchoff's laws, Mesh analysis and Nodal analysis problem solving with resistances only including dependent sources also.

### FUNDAMENTALS AND NETWORK TOPOLOGY:

Definitions of terms associated with periodic functions: Time period, Angular velocity and frequency, RMS value, Average value, Form factor and peak factor- problem solving, Phase angle, Phasor representation, Addition and subtraction of phasors, mathematical representation of sinusoidal quantities, explanation with relevant theory, problem solving. Principal of Duality with examples.

### **NETWORK TOPOLOGY:**

Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule.

### UNIT -II

### TRANSIENTS:

First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogenous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method.

### UNIT III

### STEADY STATE ANALYSIS OF A.C CIRCUITS:

Impedance concept, phase angle, series R-L, R-C, R-L- C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-LC problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving. **COUPLED CIRCUITS :** 

Coupled Circuits: Self-inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

UNIT

### IV

### **RESONANCE:**

Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti-resonance, Bandwidth of parallel resonance, general case-resistance present in both branches, anti-resonance at all frequencies.

### **NETWORK THEOREMS:**

Thevenin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegens- problem solving using dependent sources also.

### UNIT V

#### **TWO-PORT NETWORKS:**

Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h-parameters, Inverse h-parameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, cascading of two port networks, series connection of two port networks, problem solving including dependent sources also.

### **TEXT BOOKS:**

- 1. Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rdEdition,2000.
- 2. Network Analysis by K.Satya Prasad and S Sivanagaraju, Cengage Learning
- 3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

### **REFERENCES:**

- 1. Network lines and Fields by John. D. Ryder 2 ndedition, Asiapublishinghouse.
- 2. Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.
- 3.Network Analysis and Filter Design by Chadha, UmeshPublications.

# 20A1202302: BASIC ELECTRICAL ENGINEERING (Electronics and Communication Engineering)

Lectur	re – T	utoria	l:	3-1 H	Hours				Internal I	Marks:	30		
Credit	S			3					External	Marks:	70		
Prerec	quisite	s: Thi	s cour	se cov	ers va	rious t	opics	relate	d to princi	ple of oper	ration a	nd perfor	mance of
variou	s elect	rical n	nachin	es.									
Cours	e Obj	ectives	5										
•		To uno	derstar	nd the	princi	ple of	operat	ion, c	onstructio	nal details	and op	erational	
	characteristics of DC generators.												
•	To understand the principle of operation, characteristics of DC motor. Methods of starting and speed control methods of DC motors												
•	Methods of starting and speed control methods of DC motors.												
•	transformers												
•		To stu	dy the	princi	iple of	opera	tion, c	onstru	ction and	details of	synchro	onous	
		machi	nes.	1	1	r 4	, •				,		
•		To lea	rn the	e princ	ciple o	of oper	ration,	cons	tructional	details, pe	erforma	nce, and	
	torqu	e – slij	p char	acteris	stics an	nd star	ting m	ethod	s of 3- pha	ase inducti	on mot	ors.	
Cours	e Out	comes											
Upon	succes	ssful c	omple	etion o	of the o	course	e, the s	studer	nt will be	able to:			
CO1	Able	to ex	plain 1	the op	eratio	n of D	OC ger	nerato	r and ana	lyze the cl	haracter	ristics of	
	DC g	generat	tor.										
CO2	Able	to e	xplain	the	princi	ple of	f oper	ation	of DC	motor and	analy	ze their	
	chara	acterist	tics. A	cquire	the sl	- kills to	analy	ze the	e starting a	and speed	control	methods	
	of D	C moto	ors.	_			-		_	_			
CO3	Able	to exp	olain tl	he ope	ration	of trai	nsform	ner.					
CO4	Abili	ty to a	analyz	e the p	erform	nance	and sp	beed -	torque ch	naracteristi	cs of a	3- phase	
	induc	ction n	notor a	and un	dersta	nd star	rting n	nethoo	ls of 3-ph	ase inducti	on mot	or.	
CO5	Able	to exp	olain tl	he ope	ration	of Syı	nchron	ious N	Iachines				
CO6	Capa	bility	to und	lerstan	d the	operati	ion of	variou	is special	machines.			
Contr	ibutio	n of	f Co	urse	Out	comes	tov	vards	achiev	ement o	of Pro	ogram	Outcomes
(1 - L)	ow, 2-	Medi	um, 3	– Hig	h)								
	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO		PO
	1	2	3	4	5	6	7	8	9	10	11		12
C01	3	2		1									2
CO2	3	2		1									2
CO3	3	2		1									2
CO4	3	2		1									2
CO5	3	2		1							-		2
CO6	3	2		1									2
							U.	NIT I					
L													

DC Machines
Principle of operation of DC generator – emf equation – types of DC machines – torque
equation of DC motor – applications – three point starter
- losses and efficiency - swinburne's test - speed control methods - OCC of DC
generator- Brake test on DC Shunt motor- numerical problems
UNIT II
Transformers
Principle of operation of single phase transformer constructional features – EMF equation
- Losses and efficiency of transformer- regulation of transformer - OC & SC tests
predetermination of efficiency and regulations
– Sumpner's test- NumericalProblems.
UNIT III
Synchronous Generators
Principle of operation and construction of alternators – types of alternators Regulation of
alternator by synchronous impedance method-EMF equation of three phase alternator
Synchronous Motors
Construction of three phase synchronous motor - operating principle –equivalent circuit
ofsynchronous motor.
UNIT IV
<b>Induction Machine:</b> Principle of operation and construction of three-phase induction motors
-slip ring and squirrel cage motors – slip-torque characteristics – efficiency calculation –
starting methods-Brake test on 3-Phase Induction Motor.
UNIT V
Special Machines:
• Deinsiele of energy is an elementation of the element in desting models where the desting of the sectors of the
Principle of operation and construction - single phase induction motor -shaded pole motors –
Capacitor motors and AC servomotor.
Text Book: Infoteen English, Marutin Publications.
REFERENCE BOOKS:
1. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH
Publications
2. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI
Publications, 2 nd edition
3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications,
2 nd edition
E-RESOURCES
1. http://nptel.ac.in/courses.php
2. http://jntuk-coeerd.in/
3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

#### 20A1200801: ENVIRONMENTAL Sciences (Common to CE,EEE,ME and ECE

			(Com	mon t	O CE,E	/CC,IVIC	s and i	LCE				
Lectu	re – Ti	utorial	: 2-	0				I	nterna	al Mark	s:	30+70
Credi	ts:		0					E	Externa	al Marl	s:	
Prere	quisite	es:	•					•			•	
Cours	e Obje	ctives	:									
The of	bjective	es of th	e cour	se are	to impa	art:						
*	<ul> <li>Overall understanding of the natural resources.</li> </ul>											
*	<ul> <li>Basic understanding of the ecosystem and its diversity.</li> </ul>											
*	Acquaintance on various environmental challenges induced due to unplanned											
	anthropogenic activities.											
*	An un	dersta	nding	of the e	enviror	nmenta	l impa	ct of de	evelopr	nental	activit	ies.
*	Aware	eness o	n the s	social i	ssues,	enviro	nmenta	al legis	lation a	and glo	bal tre	eaties.
Cours	se Out	comes	:									
CO1	$\succ$	Illust	rate th	e impo	rtance	of sus	tainabi	ility in	the pro	ogress (	of a na	ation.
		(L2)										
CO2	$\succ$	Infer	the exi	stence	of ecos	system	s in m	aintain	ing eco	ological	balar	ice.
		(L2)										
CO3	$\checkmark$	Recal	l the ir	nporta	nce of	biodive	ersity a	nd its	conser	vation.	(L1)	
CO4	$\checkmark$	Sumn	narize	the ro	le of n	atural	resour	ces for	the su	ustenai	nce of	life on
		earth	and re	ecogniz	the r	need to	conse	rve the	m. (L2)			
CO5	≻	Identi	fy the	enviro	nmenta	al pollu	itants a	and the	e abate	ement d	levices	s to be
		used.	(L3)									
CO6	$\succ$	Interp	oret en	vironm	iental 1	related	acts a	nd soci	ial issu	les. (L2	)	
Contr	ributio	n of Co	ourse	Outco	mes to	wards	achiev	vemen	t of Pr	ogram	Outco	omes
(1 – L	ow, 2-	Mediu	m, 3 -	· High)		-						
	PO	РО	PO	РО	PO	PO						
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2	-	-	2	3	2	-	-	2	2
CO2	3	2	2	-	-	2	3	2	-	-	2	2
CO3	3	2	2	-	-	2	3	2	-	-	2	2
CO4	3	2	2	-	-	2	3	2	-	-	2	2
CO5	3	2	2	-	-	2	3	2	-	-	2	2
CO6	3	2	2	-	-	2	3	2	-	-	2	2

#### UNIT I

### (6hrs)

**Sustainability**: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains, ozone layer depletion, population growth and explosion, effects. Role of information technology in environment and human health.

**Ecosystems:** Concept of an ecosystem. - Structure and function of an ecosystem; Producers, consumers and decomposers. - Energy flow in the ecosystem - Food chains, food webs and ecological pyramids- Ecological succession.

### UNIT II

### (4hrs)

**Biodiversity and its conservation:** Definition: genetic, species and ecosystem diversity- classification - Value of biodiversity: consumptive use, productive use, social value. India as a mega diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. Endangered and endemic species of India – Conservation of biodiversity.

### UNIT III

#### (7hrs)

Natural Resources: Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy

sources.

Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

UNIT IV

**Environmental Pollution:** Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being.

**Solid Waste Management:** Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT V

(6hrs)

**Social Issues and the Environment:** Urban problems related to energy, rain water harvesting. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act - Wildlife Protection Act -Forest Conservation Act. Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS. Ecotourism, Green Campus – Green business and Green politics.

### **TEXT BOOKS:**

1) Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014

2)Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada 3) Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.

4) Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

### **REFERENCE BOOKS:**

1) Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.

2) A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi3) Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi

E-RESOURCES: 1. <u>http://nptel.ac.in/courses.php.</u> 2. http://jntuk-coeerd.in/ (5hrs)

### 20A1200191: Communicative English LAB (Common to All Branches (CE, EEE, MECH, ECE, CSE, IT, AIML, DS)

Labs	/ Ins	struc	tion	5	3 Hour	<u>s</u>	Int	ternal	30	,	_,,	
Hour	s/We	ek					Μ	arks:				
Credi	ite				1.5		Ex	ternal	70			
Cicui							Μ	arks:				
PREF	REQU	UISIT	ES: I	None								
COUR	RSE (	OBJE	ECTI	VES								
1.	To 1	earn	the s	sound s	ystems o	of Englis	h and	unders	tand wor	rd stress	of Eng	lish.
2.	. To train the students in the art of conversation and discussion											
3.	To e	equip	o the	student	s with go	ood com	muni	cation sl	cills.			
4.	To e	emph	asize	e the ne	ed of Eng	glish in ⁻	the te	chnical v	world.			
5.	То	impr	ove t	heir pre	esentation	n and pa	articiț	pation sk	cills			
6.	To j	prepa	are th	em for	interview	vs and fi	<u>ature</u>	job envi	ronment	s.		
COUR	RSE (	OUTO	COM	ES								
Upon	suc	cessf	ul co	mpleti	on of the	e cours	e, the	studen	t will be	able to	:	
CO1	Den	nonst	trate	better u	indersta	nding of	the n	uances	of spoke	n Englis	h to pu	it into
	use	in va	ariou	s situati	ion and e	events.						
CO2	Арр	ly th	e rul	es of ph	onetics-j	pronunc	ciation	i, accent	and into	onation-	in the	ir
	ever	yday	r com	munica	tion							
CO3	Rela	ate th	neir u	ndersta	inding of	the imp	ortan	ce of spo	oken skil	lls and t	he need	1 for
	life-	long	learn	ing in d	lay-to-da	y comm	unica	tion.				
CO4	Con	stru	ct str	ategies	like critio	cal and	analy	tical skil	ls to par	ticipate	effectiv	ely in
	grou	ıp di	scuss	sions ar	nd debate	es.						
CO5	Den	nonst	trate	their id	eas accu	rately a	nd eff	ectively i	n preser	ntations.		
CO6	Bui	ld res	spons	ses to th	ne questi	ons by l	isteni	ng to she	ort audio	o texts a:	nd ider	ntify
	the	conte	ext a	nd spec	ific piece	s of info	rmati	on.				
Cont	ribut	ion o	of Co	urse Ou	utcomes	toward	s ach	ieveme	nt of Pro	ogram O	utcom	es
(1 – L	ow,	2- M	ediuı	n, 3 – I	ligh)	1			1	1	1	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
001	I	2	3	4	5	6	7	8	9	10	11	12
												2
CO2												2
CO3												2
CO4									1	1		2
CO5										2		2
CO6										1		2

τινιτ τ	]											
• Making Inquiries on the phone Thanking and Perpending	to Thoples											
• Making inquiries on the phone, manking and Responding Responding to Requests and Asking for Directions	to manks,											
<ul> <li>Vowels, Consonants, Pronunciation, Phonetic Transcription, Comm Pronunciation</li> </ul>	on Errors in											
UNIT II												
Asking for Clarifications, Inviting, Expressing Sympathy, Congratula	ating,											
Apologising, Advising, Suggesting, Agreeing and Disagreeing	0,											
Word stress - Di-Syllabic Words, Poly-Syllabic Words, Weak and Strong Forms,												
Contrastive Stress (Homographs)	Contrastive Stress (Homographs)											
UNIT III												
• Debating												
Stress in Compound Words, Rhythm, Intonation, Accent Neutralizat	ion.											
UNIT IV												
Group Discussions												
• Listening to Short Audio Texts, and Identifying the context and spec	ific pieces of											
information to answer a series of questions in speaking.												
UNIT V												
Presentation Skills and Interview Skills												
• Newspapers reading; Understanding and identifying key terms and s	structures											
useful for writing reports.												
Lab Manual: "Infotech English", Maruthi Publications.												
Software: k-van solutions Multimedia language lab												
REFERENCE BOOKS:												
1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.												
2. English Pronunciation in use - Mark Hancock, Cambridge Univer	rsity Press.											
3. English Phonetics and Phonology-Peter Roach, Cambridge Unive	ersity Press.											
4. English Pronunciation in use- Mark Hewings, Cambridge Univer	sity Press.											
5. English Pronunciation Dictionary- Daniel Jones, Cambridge Uni	versity											
Press.	C C											
6. English Phonetics for Indian Students- P. Bala Subramanian, M	ac Millan											
Publications												
E-RESOURCES												
1. https://learnenglish.britishcouncil.org/												
2. <u>https://rachelsenglish.com/</u>												
3. <u>https://www.bbc.co.uk/learningenglish/</u>												
4. <u>https://www.engvid.com/</u>												
5. <u>https://bbclearningenglish.com</u>												

# 20A1200294: Applied Chemistry Lab

Labs / Hours	/ Instru /Week	uction	<b>s</b> 3						Interna	al Marks:	30
Credit	ts:	•	1.	5					Externa	al Marks:	70
Prerec	uisite	s: Kno	wledge	e on Vo	olumet	ric ana	lysis.				-
Course Objectives:											
To provide knowledge of chemistry practicals.											
*	• It enables the students to analyze the different parameters of water sample like										
	hardn	ess and	l alkali	nity ar	nd diffe	rent vo	lumetri	c titrat	ions.		
<ul> <li>It makes the students to obtain basic knowledge of instrumentation based on</li> </ul>											
different Engineering applications.											
Course Outcomes:											
CO1	Students of Engineering should understand and apply polymers and plastic technologies along with their utilization to solve the problems of the society.										
CO2	*	Know	ledge	of cell	ls and	senso	ors uti	lized	in mai	ny instrur	nents is
		neces	sary to	o engin	leering	studer	its in s	olving	and ap	oplying to	batteries
		and fi	iel cella	s.							
CO3	*	Know	ledge o	f electr	ochem	ical cel	ls is es	sential	in und	erstanding	
004	•	corros	sion alo	ong wit	h the n	nethod	s of cor	trollin	g to bue	dding engi	neers.
CO4	*	Stude	nts sh	ould h	ave the	e know	ledge c	ot wate	r and 1	ts hardnes	ss, boiler
	troubles and problems associated with the environment and its sustainability.										
CO5	*	Know	ledge o	of fuel	s and	energy	, their	adv	antage	s & disad	vantages
		shoul	d be k	nown ł	by the	studen	ts to so	olve an	ld unde	erstand en	gineering
		proble	ems.		c .						0
CO6	*	Know the Er	ledge, 1gineer	design ring stu	and a idents	nalysis in solvi	of ma ng the	terials comple	should ex prob	l be under lems of the	stood by society.
Contr	ibutio	n of Co	urse O	outcon	nes tow	vards a	chieve	ment	of Prog	ram Outco	omes (1
- Low	, 2- Me	dium,	3 – Hi	gh)							
	PO 1	PO	PO 2	PO	PO 5	PO	PO 7	PO	PO	PO P	0 PO
CO1	3	1	1	1	3	U	/	0	9		1 12
CO2	3	3	1	-							
CO3	3	2	2	_							
CO4	3	1	-	1							
CO5	3	2	2	1							
CO6	3	1	1	1							
	•			•	List of	Exper	iments				
1.Intro	oductio	n to Cł	nemisti	ry labo	ratory -	– Molar	ity, No:	rmality	, Prima	ary, second	lary
standa	ard solu	utions,	Volum	letric ti	itration	s, Qua	ntitativ	e analy	vsis, Qu	alitative a	nalysis,
etc.											
2. Det	ermina	tion of	HCl us	sing sta	andard	Na ₂ CO	3 solut	ion.			
3. Det	ermina	tion of	alkalir	nty of a	a samp	le conta	aining ]	$Na_2CO$	$_{3}$ and N	aOH.	
4. Det	ermina	uon of	KMnO	4 US1N8	g stand	ard Ox		a solut		alation	
5. Det	ermina	tion of	Iron I	arunes	ss of Wa	LICE USI	ng star	iuara I		orution.	
7  Fet	imatior	uon of vite	min C	sing st	anuard	$\mathbf{K}_{2}\mathbf{C}\mathbf{I}_{2}\mathbf{V}$	J7 SOIU	1011			
7. 131 8 Dot	ermino	tion of	Iron b		orimet	ric met	nod usi	ng thi	ovenet	es as read	ent
9  Correct	nducto	metric	titratio	y a COI in hetu	veen eti	rong av	id and	strong	hase	is as itage	
10 Po	tentior	netric t	itration	n betwe	een stro	ong aci	d and s	strong	base		
11. Pr	eparati	on of F	Bakelite	2.					~~~~		
12. De	etermin	ation of	of pH	of wat	er sam	ple					
			L			1 ⁻					
#### **EQUIPMENT REQUIRED:**

PH meters, Potentiometers, Conductometers, colorimeters.

#### **APPARATUS**

Burettes, Pipettes, Conical flask, Beakers, Volumetric flask.

#### **REFERENCE BOOKS:**

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

2. Dr. JyotsnaCherukuri (2012) Laboratory Manual of engineering chemistry-II, VGSTechno Series

3. Chemistry Practical Manual, Lorven Publications

4. K. Mukkanti (2009) Practical Engineering Chemistry, B.S. Publication

# 20A1202392: BASIC ELECTRICAL ENGINERING LAB (Electronics and Communication Engineering)

-	Practical:3 HoursInternal Marks:30											
	Crea	lits			1.5		Exte	rnal M	arks:		70	
Pre	erequi	sites:	This lat	oratory	covers	variou	is exper	iments	related	to pr	inciple	of
ope	ration	and per	rtorman	ce of vai	rious ele	ctrical i	machines	5.				
					Cours	se Obje	cuves					
* To p of se	To plot the magnetizing characteristics of DC shunt generator and understand the mechanism of self-excitation.											
* To co	✤ To control the speed of DC motors.											
* To d	✤ To determine and predetermine the performance of DC machines.											
* To p	✤ To predetermine the efficiency and regulation of transformers and assess their performance.											
✤ To an	To analyse performance of three phase induction motor.											
*	To understand the significance of regulation of an alternators using											
sync	synchronous impedance method.											
	Course Outcomes											
	Upon successful completion of the course, the student will be able to:											
CO1	1 Determine and predetermine the performance of DC machines											
CO2	Determine and predetermine the performance of transformers.											
CO3	Con	trol the	DC shur	nt machi	nes							
CO4	Con	pute the	e perfori	nance of	f 1-phas	e transf	ormer					
C05	Perf	orm test	s on 3-r	hase ind	luction r	notor to	determi	ne thei	r perforr	nance		
005	char	acteristi	cs.						r			
CO6	Perf	orm test	s on alte	ernator to	o determ	nine the	ir perfor	mance	characte	ristics.		
(	Contr	ibution	of Cou	rse Outo	comes to	owards	achieve	ment o	f Progra	am Out	comes	
				(1 – 1	Low, 2-	Mediu	m, 3 – H	igh)				
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	2	1					1			
CO2	3	3	2	1					1			
CO3	3	2	1	1					1			
CO4	3	3	2	2					1			
CO5	3	2	2	1					1			

CO6	3	3	1	1					1		
List of Experiments											
Any ten of the following experiments are to be conducted											
1. Mag	netiza	tion cha	racterist	ics of D	.C. Shu	nt gener	ator.				
2. Spee	ed cont	trol of E	O.C. shur	nt motor							
3. Brał	ke test	on DC s	shunt mo	otor.							
4. Swin	nburne	's test o	on DC m	achine							
5. Loa	d test o	on DC sl	hunt gen	erator							
6. Loa	d test o	on DC s	eries ger	erator.							
7. Sepa	aration	of losse	es in DC	Shunt 1	notor						
8. OC	& SC 1	tests on	single-p	hase tra	nsforme	r					
9. Sum	pner's	test on	single p	hase tra	nsforme	r					
10. Bra	ake tes	t on 3-p	hase Ind	uction r	notor.						
11. Re	gulatio	on of alto	ernator b	y synch	ronous	impedar	nce meth	od.			
REFERENCE BOOKS:											
1. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah											
2. Ba	sic Ele	ctrical H	Engineer	ing by N	M.S.Nai	du and S	S.Kamak	shiah			

3. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah

4. Principles of Electrical Machines by V.K. Mehta & RohitMehta

5. Principles of Electrical Machines by V.K. Mehta & RohitMehta

# 20A1204391: ELECTRONIC WORKSHOP LAB

Lecture – Tutorial:	3	<b>Internal Marks:</b>	30
Credits:	1.5	<b>External Marks:</b>	70

#### **Prerequisites:**

Basic Electronics concepts

#### **Course Objectives:**

- To create interest on Identification of Active and Passive components
- To identify the list of Laboratory Equipment
- To gain the knowledge of soldering and desoldering
- To obtain the knowledge for Preparation of layout and artwork layout planning.
- To learn testing of active and passive components.
- To Know the operation of CRO

#### **COURSE OUTCOMES:**

Upon successful completion of the course, the student will be able to:

- CO1 Identify Active and Passive components: Resistor, Capacitor, Inductors, Diode and Transistor
- CO2 Identify the Laboratory Equipment: Multi meters, Function generators, Power Supply, different types of transformers
- CO3 Develop the practice of soldering and desoldering of different Electronic components
- CO4 Design the simple printed circuit board layout

CO5 Test active and passive components: Resistor, Capacitor, Inductors, Diode and TransistorCO6 Demonstrate the study the operation of CRO

Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2- Medium, 3 – High)

	РО	PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	-	-	-	-	-	-	-	-	-
CO2	3	1	1	-	-	-	-	-	-	-	-	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-
CO4	3	2	2	1	-	-	-	-	-	-	-	-
CO5	3	2	1	1	-	-	-	-	-	-	-	-
CO6	3	1	2	1	-	-	-	-	-	-	-	-

#### **SYLLABUS**

#### I. Identification of components:

- Resistors:- Types of Resistors, Value of Resistance using color code, DRBS.
- Capacitors:- Types of capacitors, value of capacitance using color code, DCBS.
- Inductors:- Types of Inductors, DLB
- Rheostats:- Types of Rheostats, Types of potentiometers, Relays.
- Switches:- Types of Switches.
- Cables: Types of Cables.
- Types of Instruments used.

#### Identification of active elements.

(Two Terminal, Three Terminal Devices)

- (SC diode, Zener diode, D.AC)
- Three Terminal Devices: BJT, UJT, SCR, FET, MOSFET, TRIAC.
- Digital and Analog ICs. (TO and Flat packages) IC regulators types.

• Testing of above components using Multimeter.

#### II. Laboratory Equipment:

A) Meters:-

- Types of Voltmeters, Types of Ammeters both Analog and Digital.
- Types of Multi meters (Analog & Digital)
- AVO Meters.
- FET input Voltmeter.

B) Laboratory Function Generators and Audio Oscillators.

C) Power Supplies.

D) RF generators.

#### E) Different Types of Transformers. (Power, AF, RF, etc.)

#### III. Soldering practice

Tools kit including soldering iron

Tools Kit:

- Insulated nose player
- Insulated cutting player
- Screw driver kit
- Electrical tester
- Soldering iron, Lead, Flex

# IV. PCB layout and Design.

- Materials required, centimeter graph sheets, marker.
- V. Testing of Components.
  - Active and Passive Components

VI. CRO

- Acquaintance with CRO
- Measurements on CRO

# **EQUIPMENT REQUIRED:**

- Analog and Digital Voltmeter, Ammeter.
- Multimeters.
- Power Supply

# **COMPONENTS REQUIRED:**

- Resistors
- Inductors
- Capacitors
- Switches.



# NRI INSTITUTE OF TECHNOLOGY

An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### COURSE STRUCTURE FOR II YEAR B.TECH PROGRAMME-R20 Reg **II B.TECH I-SEMESTER**

S. No	СС	Title of the Course	Sch (P	eme o eriod	of Inst s Per V	ruction Week)	Schem (Ma)	e of Exam ximum Ma	ination rks )	No. of Credits
	00		L	Т	Р	Total	CIA	SEA	Total	
1	BS	Vector Calculus, Complex variables and Partial differential Equations	3	-	-	3	30	70	100	3
2	PC	Electronic Devices and Circuits	3	-	-	3	30	70	100	3
3	PC	Switching Theory and Logic Design	3	-	-	3	30	70	100	3
4	PC	Signals and Systems	3	-	-	3	30	70	100	3
5	PC	Random Variables and Stochastic Processes	3	-	-	3	30	70	100	3
6	PC Lab	Electronic Devices and Circuits Lab	-	-	3	3	15	35	50	1.5
7	PC Lab	Switching Theory and Logic Design Lab	-	-	3	3	15	35	50	1.5
8	PC Lab	Basic Simulation Lab	-	-	3	3	15	35	50	1.5
9	SC	Electronic Circuit Design	1	-	2	3	-	50	50	2
10 MC Indian Constitution			2	-	-	2	30	70	100	0
		Total	18	0	11	29	225	575	800	21.5

#### **II B.TECH II-SEMESTER**

S.	СС	Title of the Course	Sch (P	eme o eriods	of Insti s Per V	ruction Veek)	Schem (Max	e of Exami ximum Ma	ination arks )	No. of Credits
INO			L	Т	Р	Total	CIA	SEA	Total	
1	ES	Linear Control	2			2	20	=0	100	2
		Systems	3	-	-	3	30	70	100	3
2	BS/	Analog and Pulse								
2	² PC	Circuits	3	-	-	3	30	70	100	3
2	DC	Analog								
3 PC		Communications	3	-	-	3	30	70	100	3
4	DC	Electromagnetic waves								
4	PC	and Transmission Lines	3	-	-	3	30	70	100	3
5	5 110	Managerial Economics								
3	нз	and Financial Analysis	3	-	-	3	30	70	100	3
6	PC	Analog and Pulse								
0	Lab	Circuits Lab	-	-	3	3	15	35	50	1.5
	PC	Analaa								
7	Lab	Analog								
		Communications Lab	-	-	3	3	15	35	50	1.5
	PC									
8	Lab	VHDL Programming								
		Lab	-	-	3	3	15	35	50	1.5
9 SC Python Programming		1	-	2	3	-	50	50	2	
Total			16	0	11	27	195	505	700	21.5

# **B.TECH (ECE) II-I SEMESTER**

#### II Year - I Semester L T P C 3 0 0 3 VECTOR CALCULUS, COMPLEX VARIABLES & PARTIAL DIFFERENTIAL EQUATIONS

	EQUATIONS										
Lecture	- Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30							
Credits		3	<b>External Marks:</b>	70							
Prerequ	isites: 1.Knowledge of	f complex numbers, Trigonoi	netric relations, Differentiation, Integra	ration and							
co-ordina	te Geometry. 2. Conve	ergence of series									
Course	Course Objectives:										
• T	o furnish the learners	with basic concepts and te	chniques at plus two level to lead	them into							
ac	lvanced level by hand	lling various real world app	lications.								
• T	o familiarize the tech	niques in complex variable	5.								
• T	o familiarize the tech	niques in partial differentia	l equations.								
• Te	o equip the students to	o solve application problem	is in their disciplines.								
			-								
Course	Outcomes:										
Upon su	ccessful completion	of the course, the studen	will be able to:								
CO1	Interpret the physica	l meaning of different ope	rators such as gradient, curl and o	livergence							
000	(L5).										
CO2	Estimate the work do	ne against a field, circulatio	n and flux using vector calculus (L5	)							
CO3	Apply Cauchy-Riema continuous function i	ann equations to complex fusion s analytic (L3).	nctions in order to determine wheth	er a given							
CO4	Find the differentiation	ion and integration of com	plex functions used in engineering	problems							
	(L5) and make use of	the Cauchy residue theorem	n to evaluate certain integrals (L3)								
CO5	Write the infinite se	eries expansion of complex	k function by apply Taylor's/ Ma	claurin's /							
Laurent's series(L3)											
CO6	Identify solution met	hods for partial differential	equations that model physical proces	sses (L3)							
Course	Content(Syllabus)										

UNIT I

#### Vector calculus

Vector Differentiation: Gradient –Directional derivative–Divergence–Curl–Scalar Potential.

**Vector Integration:** Line integral–Workdone–Area–Surface and volume integrals Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof).

#### <u>UNIT II</u>

#### **Complex Variable – Differentiation & Integration:**

Complex function, Real and Imaginary parts of Complex function, Limit, Continuity and Derivative of complex function, Cauchy-Riemann equations, Analytic function, entire function, singular point, conjugate function, Harmonic functions, Milne-Thomson method.(In all cases Cartesian form only) Line integral of a complex function, Cauchy's theorem (only statement), Cauchy's Integral Formula.

#### <u>UNIT III</u>

#### **Complex Variable- Series expansion, Residue Theorem & Evaluation of Real Integrals**

Absolutely convergent and uniformly convergent of series of complex terms, Radius of convergence, Taylor's series, Maclaurin's series expansion, Laurent's series. Zeros of an analytic function, Singularity, Isolated singularity, Removable singularity, Essential singularity, pole of order m, simple pole, Residues, Residue theorem, Calculation of residues, Residue at a pole of order m, Evaluation of real definite integrals: Integration around the unit circle, Integration around semi circle.

#### <u>UNIT IV</u>

#### PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lag range) equation and nonlinear (standard types) equations.

UNIT V

#### Solutions of Second order PDE:

Second order PDE: Solutions of linear partial differential equations with constant coefficient – RHS term of the type  $e^{ax+by}$ , sin(ax + by), cos(ax + by),  $x^my^n$ 

Method of separation of Variables – introduction.

#### **TEXT BOOKS:**

#### 1. B.S.Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.

2. B.V.Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc.Graw HillEducation.

### **REFERENCES:**

- 1. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7/e, Mc-GrawHill, 2004.
- 2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, LaxmiPublications, 2008.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, 10thEdition, Wiley-India.
- 4. Dean. G. Duffy, Advanced Engineering Mathematics with MATLAB, 3rdEdition, CRCPress.
- 5. Peter O'Neil, Advanced Engineering Mathematics, Cengage.
- Srimantha Pal, SCBhunia, Engineering Mathematics, Oxford University Press.

# Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

•					/		/	U /						
	РО	РО	РО	РО	РО	PSO	PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-	-	-
CO6	3	3	2	2	-	-	-	-	-	-	-	-	-	-

# **Electronic Devices and Circuits**

	L	accuonic Device	s and Che	ulto						
Lecture	- Tutorial:	3-0 Hours		<b>Internal Marks:</b>	30					
Credits		3		<b>External Marks:</b>	70					
Prerequ	isites: Semiconducto	r physics, Basic mather	natics.							
Course	Objectives:									
• To character	• Study the physical structure of different diod	phenomena such as o es.	conduction, trai	nsport mechanism and	electrical					
• Study the physical phenomena such as conduction, transport mechanism and electrical characteristics of different diodes.										
• T fil	• The application of diodes as rectifiers with their operation and characteristics with and without filters are discussed.									
• Ti Ti	• The principal of working and operation of Bipolar Junction Transistor and Field Effect Transistor and their characteristics are explained.									
• T	ne need of transistor b	biasing and its significat	nce is explained	l. The quiescent point of	or					
OI	perating point is expla	ined.	•	1 1						
• S1	nall signal equivalent	circuit analysis of BJT	and FET transi	istor amplifiers in diffe	rent					
cc	onfiguration is explain	ed.		I I I						
Course	Outcomes:									
Upon si	ccessful completion	of the course, the stud	lent will be abl	le to:						
CO1	Understand the oper	ation. V-I characteristic	s. parameters of	of P-N diode in differen	t modes.					
CO2	Understand the oper diodes in different n	ations, V-I characteristi odes.	ics and applicat	ions of Zener diode and	d special					
CO3	Evaluate the perform	nance of various rectifie	ers and filters w	vith relevant expression	S					
CO4	Know the construction with their V-I characteristics	on, principle of operation eteristics in different co	on of Transiston nfigurations.	rs and Field Effect Tra	nsistors					
CO5	Analyze the biasing expressions.	and stabilization techni	ques for BJT a	nd JFET with necessary	У					
CO6 Know the construction, principle of operation of MOS Field Effect Transistors with their V- I characteristics in different configurations.										
Course	Course Content(Syllabus)									
		TINITTI	r							

UNIT I

**Review of Semi Conductor Physics:** Semi conductor's classification, electrons and holes in intrinsic and extrinsic semi conductors, law of junction, Fermi level in intrinsic and extrinsic Semiconductors.

**Junction Diode Characteristics :** Energy band diagram of PN junction Diode, Biased p-n junction, current components in PN junction Diode, diode equation, V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance.

#### <u>UNIT II</u>

**Special Semiconductor Devices**: Zener Diode, Breakdown mechanisms, Zener diode applications, LED, Varactor Diode, Photodiode, Tunnel Diode, PIN Diode. Construction, operation and V-I characteristics.

**Rectifiers and Filters:** Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms, Filters, Inductor filter(Series inductor), Capacitor filter (Stunt inductor),  $\pi$ -Filter, comparison of various filter circuits in terms of ripple factors.

#### UNIT III

**Transistor Characteristics:** Junction transistor, transistor current components, transistor equation, transistor configurations, transistor as an amplifier, characteristics of transistor in Common Base, Common Emitter and Common Collector configurations, punch through/ reach through.

**FET:** FET types, construction, operation, characteristics  $\mu$ ,  $g_m$ ,  $r_d$  parameters, MOSFET-types, construction, operation, characteristics, comparison between JFET and MOSFET.

#### <u>UNIT IV</u>

**Transistor Biasing:** Need for biasing, operating point, DC load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias.

**Stabilization:** Stabilization against variations in  $V_{BE}$ , Ic, and  $\beta$ , Stability factors, (S,S',S''), Bias compensation, Thermal runaway, Thermal stability.

#### UNIT V

**Small Signal Low Frequency Transistor Amplifier Models:** Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters.

**Special Transistors:** Operation and characteristics of Uni Junction Transistor, Photo Transistor, Sillicon Controlled Rectifiers, UJT as Relaxation Oscillator.

#### **TEXT BOOKS:**

 Electronic Devices and Circuits- J. Millman, C. Halkias, Tata Mc-Graw Hill, SecondEdition,2007
 Electronic Devices and Circuits-K. Lal Kishore, BS Publications, FourthEdition,2016.
 Electronics devices & circuit theory- Robert L.Boylestad andLouiNashelsky, Pearson/Prentice hall, tenth edition,2009

#### **REFERENCES:**

1. Integrated Electronics-J. Millman, C. Halkias, Tata Mc-Graw Hill, SecondEdition, 2009

2. Electronic Devices and Integrated Circuits - B.P. Singh, Rekha, Pearson publications,

3.Electronic Devices and Circuits-Salivahanan, Kumar, Vallavaraj, Tata Mc-Graw Hill, 4thEdition,2008.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program
Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	-	-	-	-	-	-	3	-	-	-	3	-
CO2	3	2	-	-	3	2	-	-	-	-	-	-	2	
CO3	2	3	-	2	-	-	-	3	-	-	3	3		2
CO4	3	-	-	-	-	-	2	-	-	-	-	-	3	
CO5	-	3	2	-	-	3	-	-	-	3	-	-		-
CO6	-	3	1	2	-	-	-	-	-	-	2	-	3	-

# Switching Theory and Logic Design

Lecture	– Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30							
Credits	:	3	<b>External Marks:</b>	70							
Prerequ	isites: Set theory (Ma	athematics), Basic logic ope	rations like bit wise operation	is, Shift							
operatio	ns, flow charts, ASCI	I codes, etc.									
Course	Course Objectives:										
• T	• To solve a typical number base conversion and analyze new error coding techniques.										
• T	• To study theorems and functions of Boolean algebra and behavior of logic gates.										
• T	• To optimize logic gates for digital circuits using various techniques.										
• B	Boolean function simplification using Karnaugh maps and Quine-McCluskey methods.										
• T	o understand concepts	s of combinational circuits.									
• T	o develop sequential c	circuits.									
Course	Outcomes:										
Upon su	ccessful completion	of the course, the student	will be able to:								
CO1	Classify different nur	nber systems and apply to ge	nerate various codes.								
CO2	Use the concept of B	oolean algebra in minimizati	on of switching functions								
CO3	Design different type	s of combinational logic circ	uits.								
<b>CO4</b>	Design combinationa	l logic circuits using differen	t types of Programmable Logic	2.							
CO5	Apply knowledge of	flip-flops in the design of Re	gisters and counters.								
CO6 Construct the state diagrams with the knowledge of Mealy and Moore conversions, state											
	machines using varie	ous flip flops.									
Course	Content(Syllabus)										
	UNIT I										

# Part-A:

**REVIEW OF NUMBER SYSTEMS & CODES:** Representation of numbers of different radix, conversation from one radix to another radix, r-1's compliments and r's compliments of signed numbers.Binary arithmetic, Gray code ,4 bit codes : BCD, Excess-3, 2421, 8-4-2-1 code etc. Error detection & correction codes: parity checking, even parity, odd parity, Hamming code.

# <u>Part-B:</u>

**BOOLEAN THEOREMS AND LOGIC OPERATIONS:** Boolean theorems, principle of complementation & duality, De-morgan theorems. Logic operations : Basic logic operations -NOT, OR, AND, Universal Logic operations-NAND,NOR, EX-OR, EX- NOR operations. Standard SOP and POS Forms, NAND-NAND and NOR-NOR realizations.

#### <u>UNIT II</u>

<u>**Part A: MINIMIZATION TECHNIQUES: Minimization and realization of switching functions</u> using Boolean theorems, K-Map (up to 5 variables) and tabular method (Quine-mccluskey method) with only four variables and single function.</u>** 

# <u>Part-B:</u>

**COMBINATIONAL LOGIC CIRCUITS DESIGN:** Design of Half adder, full adder, half subtractor, full subtractor, applications of full adders; 4-bit adder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit and carry look-a-head adder circuit, Design code converters using

Karnaugh method and draw the complete circuit diagrams.

### UNIT III

# Part-A:

**COMBINATIONAL LOGIC CIRCUITS DESIGN USING MSI &LSI:** Design of encoder ,decoder, multiplexer and de-multiplexers, Implementation of higher order circuits using lower order circuits . Realization of Boolean functions using decoders and multiplexers. Design of Priority encoder, 4-bit digital comparator and seven segment decoder.

# Part-B:

# **INTRODUCTION OF PLD's:**

PLD's : PROM, PAL, PLA -Basics structures, realization of Boolean functions.

#### <u>UNIT IV</u>

# Part-A:

**SEQUENTIAL CIRCUITS I:** Classification of sequential circuits (synchronous and asynchronous), operation of NAND & NOR Latches and flip-flops; truth tables and excitation tables of RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals. Conversion from one flip-flop to another flip- flop.

# <u>Part-B:</u>

**SHIFT REGISTERS AND COUNTERS:** Design of ripple counters, design of synchronous counters, Johnson counter, ring counter. Registers - Buffer register, control buffer register, shift register, bidirectional shift register, universal shift register.

#### UNIT V

# Part-A:

**SEQUENTIAL CIRCUITS II :** Finite state machine: state diagrams, state tables, reduction of state tables. Analysis of clocked sequential circuits.

# Part-B:

MEALY AND MOORE MACHINES: Introduction to Mealy and Moore machines, Mealy to Moore conversion and vice-versa, Realization of sequence generator. TEXT BOOKS:

1. Switching and finite automata theory Zvi.KOHAVI,Niraj.K.Jha 3rd Edition,Cambridge UniversityPress,2009

2. Digital Design by M.Morris Mano, Michael D Ciletti, 4th edition PHIpublication, 2008

3. Switching theory and logic design by Hill and Peterson, Mc-Graw Hill TMH edition, 2012.

# **REFERENCES:**

1. Fundamentals of Logic Design by Charles H. Roth Jr, JaicoPublishers, 2006

2. Digital electronics by R S Sedha.S.Chand & companylimited, 2010

3. Switching Theory and Logic Design by A. Anand Kumar, PHI Learning pvtltd, 2016.

4. Digital logic applications and design by John M Yarbough, Cengage learning, 2006.

5. TTL 74-Series data book.

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 Jaw 2 Medium 3 High)													
Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	3	-	-	-		-	-	-	-	-	-	3	-
CO2	3	2	-	-	-	3	-	-	-	-	-	-	2	-
CO3	3	-	2	-		-	-	3		-	-	-	-	2
CO4	2	-	-	-	3	-	-		-	3	-	-	3	-
CO5	-	3	2	3	-	-	2	-	2	-	2	-	-	3
CO6	-	-	3	2	-	-		-	-	-	-	2	2	-

# Signals and Systems

Lectur	e – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30
Credit	s:	3	<b>External Marks:</b>	70
Prereq	uisites: Engineering N	Iathematics –I, Engineering Mathema	atics –II.	
Course	e Objectives:			
• 7	To introduce the termin	ology of signals and systems.		
• 7	To study Fourier tools	to convert signal from time domain	to frequency domain and	d analyze
t	he spectral characteris	tics.		-
• 7	To analyze the linear	systems in time and frequency doma	ains and understand impo	rtance of
	convolution, correlation	n.		
• 7	To understand the conc	ept of sampling and reconstruction of	f signals.	
• 7	Го study Laplace-tran	sform as mathematical tool to conv	ert signals from time do	main to
comple	ex frequency domain,	and also study Z-transform as mathe	ematical tool to analyze of	discrete-
time si	gnals and systems.			
Course	e Outcomes:			
Upon s	successful completion	of the course, the student will be al	ole to:	
CO1	Learn the basic conc	epts of signals and systems and diffe	erentiate various classifica	tions of
~~~~	signals and systems.			
CO2	Analyze the frequency	y domain representation of signals using	g Fourier concepts.	
CO3	Classify the systems	based on their properties and determ	nine the response of LTI	systems
	through the concept of	of convolution and correlation.		
CO4	Know sampling-reco	nstruction process and various types of	of sampling techniques.	
CO5	Apply Laplace transf	forms to analyze continuous time sign	als and systems.	
CO6	Apply Z-transforms t	o analyze discrete time signals and sy	vstems.	
Course	e Content(Syllabus)			
UNIT	I			
INTRO	DUCTION: Definiti	on of Signals and Systems Classific	ation of Signals, Classific	ation of
System	s. Operations on signa	als: time-shifting, time-scaling, ampl	itude- shifting, amplitude	-scaling.
related	problems. Complex	exponential and sinusoidal signals,	Singularity functions and	related
functio	ons: impulse function,	step function, signum function and	ramp function. Orthogona	al signal
space,	Signal approximation u	using orthogonal functions, related pr	oblems.	U
		UNIT II		
FOURI	ER SERIES: Fourier	series representation of continuous ti	me periodic signals, prop	erties of
Fourier	series. Dirichlet's con	ditions. Trigonometric Fourier serie	s and Exponential Fourie	r series.
Relation	between Trigonometr	ic and Exponential Fourier series, Co	mplex Fourier spectrum.	,
	8	I ,	1 1	
FOUR	IER TRANSFORM:	Deriving Fourier transform from Fo	ourier series, Fourier trans	form of
arbitrai	ry signal, Fourier tra	nsform of standard signals, Fourie	r transform of periodic	signals,
propert	ties of Fourier transform	ms. related problems.		-
UNIT	III			
LINEA	R SYSTEM ANALYS	SIS: Linear system, impulse response	, Response of a linear syst	em,
Linear t	ime invariant (LTI) sys	stem, Linear time variant (LTV) syste	m, Transfer functions of a	LTI
system.	Filter characteristics of	f linear systems. Distortion less transi	nission through a system.	Signal
bandwic	lth, system bandwidth.	Ideal LPF, HPF and BPF characterist	tics.	

CONVOLUTION OF SIGNALS: Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Convolution property of Fourier transforms, related

problems

UNIT IV

CORRELATION: Auto-correlation and cross-correlation of functions, properties of correlation function, Energy density spectrum, Parseval's theorem, Power density spectrum, properties, Relation between auto correlation function and energy/power spectral density function, Relation between convolution and correlation.

SAMPLING THEOREM: Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling – Aliasing.

<u>UNIT V</u>

LAPLACE TRANSFORMS: Introduction, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.T's, Inverse Laplace transform, Partial fraction expansion, Relation between L.T and F.T. of a signal.

Z–TRANSFORMS: Concept of Z- Transform of a discrete sequence. Region of convergence in Z-Transform, constraints on ROC for various classes of signals, Inverse Z- transform, properties of Ztransforms. Distinction between Laplace, Fourier and Z transforms.

TEXT BOOKS:

1. Signals, Systems & Communications - B.P. Lathi, BS Publications, 2003.

2. Signals and Systems - A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI,2nd Edn,1997

3. Signals & Systems- A.Anand Kumar –2nd Edition, PHI, 2012.

REFERENCES:

1. Principles of Linear Systems and Signals - BP Lathi, Oxford University Press, 2015

2. Signals and Systems – T K Rawat, Oxford University press, 2011

3. Signals & Systems - Simon Haykin and Van Veen, Wiley, 2nd Edition.

 Signals and Systems - K R RajeswariB.VisvesvaraRao, "Signals & Systems" –1st Edition, PHI, 2009.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

_					/		/	U /						
	РО	РО	РО	РО	РО	PS	PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	2	-	-	-	-	-	2	-	-	2	-	3
CO2	2	3	-	3	-	-	2	-	-	-	-	-	2	-
CO3	3	-	2	-	-	2	-	-	-	-	-	2	-	-
CO4	3	2	-	2	2	-	-	3	-	-	2	-	-	-
CO5	3	2	3	2	-	-	-	-	-	2	-	-	-	3
CO6	3	2	3	2	2	-	-	-	-	2	-	-	-	3

Random Variables and Stochastic Processes

Lectur	e – Tutorial:	3-0 Hours	In	ternal Marks:	30
Credits	5:	3	E	xternal Marks:	70
Prereq	uisites: Calculus skills,	Solution of ordinary diff	erential equation	ns, Fourier transform	, Linear
System	S.				
Course	e Objectives:				
•]	To introduce the element	tary probability theory, ir	preparation to l	earn the concepts of	statistical
analysis	, random variables and s	tochastic processes.			
•]	To mathematically model	the random phenomena v	with the help of pr	obability theory Cond	cepts.
• 7	To introduce the important	nt concepts of random var	iables and stochas	stic processes.	
• 7	To analyze the LTI system	ns with stationary random	process as input.		
			1 I		
Course	e Outcomes:				
Upon s	successful completion of	of the course, the studer	t will be able to	:	
CO1	Mathematically model	the random phenomena	and solve simple	e probabilistic proble	ms.
CO2	Identify different types variables.	s of random variables and	d compute statist	ical averages of thes	e random
CO3	Characterize the random	n processes in the time an	d frequency doma	ains.	
CO4	Analyze the LTI syste	ms with random inputs.			
CO5	Understand the concept	ot of random processes, s	pectral density o	f stationary random	processes
	and cross power densit	ty spectrum, apply the ab	ove knowledge t	o solve basic problem	ns.
CO6	Apply the theory of s	tochastic processes to an	alyze linear syst	tems with random ir	puts and
	the systems in the pres	ence of different types of	f noise sources.		
Course	e Content(Syllabus)				
		TINITT T			

<u>UNIT I</u>

THE RANDOM VARIABLE: Introduction, Review of Probability Theory, Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variables, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Conditional Density, Properties.

<u>UNIT II</u>

OPERATION ON ONE RANDOM VARIABLE - EXPECTATIONS: Introduction,

Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic Transformations for a Continuous Random Variable, Non-monotonic Transformations of Continuous Random Variable.

<u>UNIT III</u>

MULTIPLE RANDOM VARIABLES: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density, Statistical Independence.

OPERATIONS ON MULTIPLE RANDOM VARIABLES: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variables case, Properties.

<u>UNIT IV</u>

RANDOM PROCESSES – TEMPORAL CHARACTERISTICS: The Random Process

Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, Concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second-order and Wide-Sense Stationarity, Nth-order and Strict-Sense Stationarity, Time Averages and Ergodicity, Autocorrelation Function and its Properties, Cross- Correlation Function and its Properties, Covariance Functions.

<u>UNIT V</u>

RANDOM PROCESSES - SPECTRAL CHARACTERISTICS: The Power Density

Spectrum: Properties, Relationship between Power Density Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Density Spectrum and Cross-Correlation Function.

LINEAR SYSTEMS WITH RANDOM INPUTS: Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, Autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross- Power Density Spectra of Input and Output.

TEXT BOOKS:

1. Probability, Random Variables & Random Signal Principles, Peyton Z. Peebles, TMH, 4th Edition, 2001.

2. Probability, Random Variables and Stochastic Processes, Athanasios Papoulisand S.Unnikrisha, PHI, 4th Edition, 2002.

3. Probability and Random Processes with Applications to Signal Processing, HenryStark and John W. Woods, Pearson Education, 3rdEdition,2001.

REFERENCES:

1. Schaum's Outline of Probability, Random Variables, and Random Processes, 1997.

2. An Introduction to Random Signals and Communication Theory, B.P. Lathi, International Textbook, 1968.

3. Probability Theory and Random Processes, P. Ramesh Babu, McGrawHill, 2015.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program
Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

-		()	/ /		/		/	U /						
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	3	-	2	-	-	-	-	-	-	-	-	2	-
CO2	-	-	3	2	-	-	-	2	-	-	-	-	-	3
CO3	3	-	-	3	-	-	2	-	-	2	-	3	-	-
CO4	2	2	-	-	3	-	-	-	-	-	3	-	-	3
CO5	2	-	-	3	-	-	-	-	-	2	-	-	-	-
CO6	-	2	2	-	-	-	-	-	-	2	-	-	2	3

Electronic Devices and Circuits Lab

Lectur	e – Tutorial:	0-0 Hours	Internal Marks:	15
Credits	5:	1.5	External Marks:	35
Prereq	uisites: Electron Devi	ces and circuits.		
Course	Objectives:			
• T	o measure the voltage	, current and frequency using C	RO.	
• 1	o observe experimenta	ally the V-I characteristics of PN	V junction diode & zener diode	e.
• T	o observe experimenta	lly the V-I characteristics of BJ	T in CB, CE and CC configura	ation.
• 1	o observe experimenta	ally the characteristics of FET, U	JJT, SCR.	
• 1	o observe experimenta	ally the characteristics of CE,CC	c and CS amplifier.	
Course	e Outcomes:			
Upon s	uccessful completion	of the course, the student will	be able to:	
	Determine the voltage	ge, current and frequency using	CRU.	
02	Plot the characteristi	cs of PN Diode and Zener Diod	le.	
CO3	Plot the characteristi	cs of transistor in CB, CE and C	CC configurations.	
CO4	Compute the V-I cha	aracteristics of FET,UJT and SC	CR.	
CO5	Compute the charact	teristics of CE, CC and CS amp	lifier.	
CO6	Verify the operation o	f CRO and its measurements.		
		LIST OF EXPERIMEN	TS:	
(Minin	num of Ten Experiment	ts has to be performed)		
Part A: Part B: 2.Zener Part A: Part B: 3.Rectif Part A: Part B: 4. BJT Part A: Part B: 5. FET Part A: Part A: Part B: 6. SCR 7. UJT	Germanium Diode (For Silicon Diode (Forward DiodeCharacteristics V-ICharacteristics Zener Diode as Voltage fiers (without and withc Half-waveRectifier Full-wave Rectifier Characteristics(CEConf InputCharacteristics Output Characteristics Characteristics(CSConf DrainCharacteristics Transfer Characteristics Characteristics	ward bias& Reverse bias) Bias only) Regulator -filter) Figuration)		
7. UJIC 8. Trans	sistorBiasing			
9. CRO	Operation and itsMeas	urements		
10. BJT	CEAmplifier			
11. Emi	tter Follower-CCAmpl	ifier		
12. FET	C-CSAmplifier			
		EOUIPMENT REOUIR	RED	
		<u> </u>		

- Equipment required: 1. Regulated Powersupplies 2. Analog/Digital StorageOscilloscopes
- 3. Analog/Digital FunctionGenerators
- 4. DigitalMulti-meters
- 5. Decade RésistanceBoxes/Rheostats
- 6. Decade CapacitanceBoxes
- 7. Ammeters (Analog orDigital)
- 8. Voltmeters (Analog orDigital)
- 9. Active & Passive Electronic Components.

Contr Speci	ribution fic outo	n of Cou comes (1	irse Ou PSOs) (itcome (1 – Lov	s towar w, 2- M	ds achi ledium	ieveme , 3 – Hi	nt of P igh)	rogram	Outco	omes (P	Os) an	d Prog	ram
	DO	DO	DO	BO	DO	BO	DO	BO	BO	DO	DO	DO	DC	DCO

	PO	РО	РО	PS	PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO2	-	3	-	2	-	-	-	-	-	-	-	-	2	-
CO3	3	3	-	-	-	-	-	2	-	-	3	-	3	-
CO4	3	2	-	-	-	-	3	-	-	-	-	-	-	3
CO5	3	-	2	-	3	-	-	-	-	-	-	-	-	2
CO6	-	-	3	3	-	-	-	-	-	-	-	2	-	2

	Sw	itching Theory and Logi	c Design Lab	
Lectur	e – Tutorial:	0-0 Hours	Internal Marks:	15
Credits	S:	1.5	External Marks:	35
Prereq	uisites: Switching the	eory and Logic Design.		
Course	e Objectives:			
• ′	To understand the basi	c building blocks of digital elect	ronics.	
• 7	Γo introduce the operat	ion of various combinational and	d sequential circuits.	
• 7	To analyze the combination	tional and sequential circuits an	d to perform functional verification	on.
Course	e Outcomes:			
Upon s	successful completion	of the course, the student wi	ill be able to:	
CO1	Verify truth tables	of basic and Universal gates.		
CO2	Design combination	nal circuits, obtain minimal expr	ession and to verify the truth table	es using
CO3	Perform logic funct	tion verification of various stand	lard combinational circuits.	
CO4	Verify the function	al tables of various flip-flops		
CO5	Design various seq	uential circuits using flip-flops a	and to verify their functionality.	
CO6	Perform functional	verification of various standard se	quential circuits.	
LIST O	F EXPERIMENTS:		quentiai en curto.	
(Minim	um of Twelve Experi	ments has to be performed)		
1. Verifi	cation of truth tables of	f Logic gates		
Two inpu	ut (i) OR (ii) AND (iii)	NOR (iv) NAND (v) Exclusive	OR (vi) Exclusive NOR	
2. Design	n a simple combination	al circuit with four variables and	d obtain minimal SOP expression	and verify
the truth	table using Digital Tra	iner Kit	*	•
3. Verifi	cation of functional tab	ble of 3 to 8 line Decoder /De-m	ultiplexer	
4. 4 varia	able logic function veri	fication using 8 to 1 multiplexer.		
5. Desigi	n full adder circuit and	verify its functional table.		
6. Verifi	cation of functional tab	les of		
(i) J K E	dge triggered Flip –Flo	p		
(ii) J K N	Master Slave Flip – Flo	p (iii)D Flip -Flop		
7. Desigi	n a four bit ring counte	r using D Flip – Flops / JK Flip	Flop and verify output	
8. Design	n a four bit Johnson's c	counter using D Flip-Flops / JK	Flip Flops and verify output	
9. Verify	the operation of 4-bit	Universal Shift Register for diff	erent Modes of operation.	
10. Draw	the circuit diagram of	MOD-8 ripple counter and con	struct a circuit using T-Flip- Flops	s and Test
II WIII a	an MOD 8 supervision	in Sketch the output waveforms	A varify the regult and Skatch the	output
11. Desig	gn MOD – 8 synchrono	bus counter using 1 Filp-Flop an	id verify the result and Sketch the	output
12. (a) D	ns. Traw the circuit diagran	n of a single bit comparator and	test the output.	
(\mathbf{b}) Cons	truct 7 Segment Displa	w Circuit Using Decoder and 7.5	Segment LED and test it	
ADD O	N EXPERIMENTS:	ly Circuit Using Decoder and 7	Segment LED and test it.	
1. Desig	n BCD Adder Circuit	and Test the Same using Relevan	nt IC .	
2. Design	n Excess-3 to 9-Compl	ement convertor using only four	Full Adders and test the Circuit.	
3. Design	n an Experimental mod	lel to demonstrate the operation	of74154 De-Multiplexer using LE	EDs for
outputs.	-	-	- -	
FOUR				
EQUIPI	MENT KEQUIKED:	Vite		
1	1. Digital Framer	IXII S		

- Digital Trainer Kits
 ICs of various Logic gates
 Standard Combinational and sequential circuit ICs.

Contr Speci	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)													
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	3	-	-	-		-	-	-	-	3	-	3	-
CO2	3	2	-	-	-	2	-	-	-	-	-	-	2	-
CO3	3	-	2	-	-	-	-	3	-	-	-	-	-	2
CO4	2	-	-	-	3	-	-		-	2	-	-	3	-
CO5	-	3	2	-	-	-	-	-	-	-	-	-	2	-
CO6	-	-	3	2	-	-		-	-	-	-	2	-	3

Basic Simulation Lab

		Dasic Simulation Lab		
Lectur	e – Tutorial:	0-0 Hours	Internal Marks:	15
Credit	s:	1.5	External Marks:	35
Prereq	uisites: Signals and S	ystems, MATLAB		
Course	e Objectives:			
• U	Inderstand basics of M Senerate and character	ATLAB syntax, functions and programize various continuous and discrete time	mming. ne signals.	
• Р • Г	erform the basic operation of the basic operation and analyze line	ations on the signals.	ompute its response	
• A	analyze the systems us	ing Laplace transform and Fourier tran	nsform.	
Course	e Outcomes:			
Upon s	successful completion	of the course, the student will be al	ole to:	
CO1	Understand mather signals and systems	natical description and representation.	of continuous and disc	rete time
CO2	Develop input out convolution operato	put relationship for linear shift inva or for continuous and discrete time system	riant system and under tem.	stand the
CO3	Understand and rest transforms.	olve the signals in frequency domain	using Fourier series an	d Fourier
CO4	Understand the lindevelop the ability	nitations of Fourier transform and to analyze the system in s- domain	need for Laplace transf	form and
CO5	Perform waveform	synthesis using Laplace transforms.		
CO6	Verify sampling theo	rem and identification of poles and zeroes	for a given transfer function	on.
LIST (OF EXPERIMENTS			
• 1. 2. Step, S 3. Comp	All the experiments are Minimum of ten exper- Basic Operations on Ma Generation of Various S Square, Saw Tooth, Tria Operations on Signals A utation of Energy And A	e to be simulated using MATLAB or eq iments are to be completed. trices. Jignals and Sequences (Periodic And Ape ngular, Sinusoidal, Ramp, Sinc. And Sequences such as Addition, Multip Average Power.	uivalent software. riodic) such as Unit Impul lication, Scaling, Shifting,	se, Unit Folding,
4.	Finding the Even and O	dd Parts of Signal/ Sequence and Real and	Imaginary Parts of Signal	
5.	Convolution between Si	gnals and Sequences.		
6.	Autocorrelation and Cro	ss Correlation between Signals and Seque	ences.	
7.	Verification of Linearity	and Time Invariance Properties of a give	n Continuous/Discrete Sys	tem.
8.	Computation of Unit Sa	mple, Unit Step and Sinusoidal responses	of the given LTI system.	

9. Finding the Fourier Transform of a given signal and plotting its magnitude and phase spectrum.

10. Waveform Synthesis Using Laplace Transforms.

11. Locating the Zeros and Poles and plotting the Pole-Zero Maps in S-Plane and Z-Plane for the given Transfer Function.

12. Sampling Theorem Verification.

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 Jaw 2 Modium 3 High)														
Specific outcomes (FSOS) (1 – Low, 2- Medium, 5 – High)															
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	01	2	
CO1	3	2	2	-	-	-	-	-	2	-	-	-	-	3	
CO2	2	3	-	3	-	-	2	-	-	-	2	-	2	-	
CO3	3	-	2	-	3	-	-	-	-	-	-	2	-	-	
CO4	3	-	-	2	-	-	-	3	-	-	-	-	-	3	
CO5	-	2	-	-	-	-	-	-	3	-	-	-	-	-	
CO6	3	2	-	3	-	-	-	-	-	-	3	-	-	3	

Electronic Circuit Design (Skill Course)

Lectu	re – Practical:	1-2 Hours	Internal Marks:	0
Credi	ts:	2	External Marks:	50
Prere	quisites: Fundamer	ntals of Electronics.		
Cours	se Objectives:			
•	To familiarize the ele	ectronic circuit rules and its parameter cal	culations.	
•	To make familiar wit	h PCB design and various processes invo	lved.	
•	To provide in-depth	core knowledge in the fabrication of Print	ed Circuit Boards.	
• Cours	To provide the know	ledge in assembling and testing of the PC	B based electronic circuits	
Unon	successful complet	tion of the course, the student will b	e ahle to:	
CO1	Analyze the electro	nic circuit rules and its parameter calcula	tions	
CO1	Develop the simula	tion process in the design of Electronic C	ircuits.	
CO3	Interpret the PCB d	esign and various processes involved		
CO4	Explore in-depth co	pre knowledge in the and fabrication of Pt	inted Circuit Boards	
CO5	Apply assembling a	and testing of the PCB based electronic ci	rcuits	
CO6	Design single side	PCB for power supplies of various dev	ices.	
		Course Content(Syllabus)		
		<u>UNIT I</u>		
Funda	mentals of Circuit	Design:		
Basic	circuit laws, Curre	ent & voltage division Rules, Introd	uction to Linear and N	Non-linear
elemen	nts, Equivalent Imp	edance Calculations in series & para	llel circuits, Current, vo	ltage and
Power	calculations in a cire	cuit, Classification of sources.		
		<u>UNIT II</u>		
Schem	atic Capture Tools	:		
Introdu	uction to schematic of	capture tools, Simulation of simple elec	tronic circuits, Schematic	to layout
transfe	er, Layout Printing.			
		<u>UNIT III</u>		
PCB E	Design Process :			
Conce	ption Level Introduc	ction: Specifying Parts, Packages and F	in Names, Libraries and	Checking
foot p	rints of the compone	ents, Partlist, Netlist, Making Netlist Fi	les, Placing Parts, Routir	ng Traces,
Modif	ying Traces, Mounti	ng Holes, Adding Text, PCB Layout.		
		<u>UNIT IV</u>		
PCB F Classif machin and dr	Fabrication Process fication of Printed nes, ultraviolet expo illing.	: Circuit Boards (SSB, DSB and multi osure and developing Copper clad prej	layer board), PCB man paration, Etching, cleanir	ufacturing ng, drying
		<u>UNIT V</u>		

Power Supply design:

Introduction to low power design techniques and methodologies. Introduction to various types of power supplies. Estimation of power supply requirements and power loss in electronic products. Selection of appropriate power supplies for the given primary power sources (230VAC/Battery/SMPS).

TEXT BOOKS:

- 1. Printed Circuit Boards: Design, Fabrication, and Assembly (McGraw-Hill Electronic Engineering) by Raghbir Singh Khandpur.
- 2. Printed Circuits Handbook" by Clyde F Coombs and Happy Holden.

REFERENCES:

PCB Design/TINA/ORCAD.PADS software User manuals.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	3	-	-	-	-	-	-	-	-	3	-	3	2
CO2	-	3	-	-	-	3	-	-	3	-	-	3	2	-
CO3	3	-	2	-	-	-	-	-	-	-	-	-	-	3
CO4	2	-	-	-	3	-	-	-	-	2	-	-	3	2
CO5	-	3	2	-	-	-	-	-	3	-	3	-	2	-
CO6	-	-	3	2	-	3	-	-	-	3	-	-	-	3

L T P C 3 0 0 0

INDIAN CONSTITUTION (MANDATORY COURSE)

Lootur	a Tutorial.		Intornal Marka	20
Credit	e – Tutoriai:	0	Eutomal Marks:	30 70
Crean	S:	0	External Marks:	/0
Prereq	uisites: NIL			
Course	Objectives:			
•10	understand the importa	ince of constitution.		
•10	understand the structur	e of executive, legislature and judiciary.		
•10 •T•	understand philosophy	of fundamental rights and duties.	and the stand in a	
•10	understand the central	and state relations, financial and administr	rative duties.	
Course	e Outcomes:			
Upon s	successful completio	on of the course, the student will be a	ble to:	
COL	Understand the mear	ing, history, features and characteristics o	f Indian Constitution.	
CO2	Gain knowledge on f	undamental rights duties and Principles and	nd importance of State Poli	icy.
CO3	Understand the powe	ers of Union, the States and Indian Preside	nt.	
CO4	Know about amendn	nents of the constitution and Emergency P	rovisions.	
CO5	Understand the fund judiciary.	ctioning of three wings of the governm	ient i.e., executive, legisl	ative and
CO6	Analyze the decentra	lization of power between central, state an	nd local self-government.	
		Course Content(Syllabus)		
		<u>UNIT I</u>		
Meanin	g of the constitu	tion law and constitutionalism,	Historical perspectiv	e of the
constitı	ution of India, Salie	ent features and characteristics of	the constitution of Inc	dia .
		<u>UNIT II</u>		
Fundar Scheme certain Article	nental Rights unde e of the fundament freedoms under A 21.	er Indian constitution, scheme of the al Right to Equality, Scheme of the rticle 19 Scope of the right to life a	he fundamental Right e fundamental Right to nd personal Liberty u	s, o nder
		<u>UNIT III</u>		
Federal and the status of The his govern	structure and dis states, Parliamen of the President of torical perspective nent-Constitutiona	tribution of legislative and financia tary form of government in India-t India, Amendment of the constitut s of the constitutional amendment al Scheme in India.	l powers between the he constitution power ional powers and proc s in India, Local self	union s and cedure,
0		<u>UNIT IV</u>		
Emerge Statute Commi	ency Provisions, Na ory Institutions : 1 ssion, National Con	tional Emergency, President Rule, Elections-Election Commission of mmission for Women.	Financial Emergency India, National Huma	ın Rights
		UNIT V		
Evolut i Functio Fundar	ion : 1909 Act, 19 ons; Fundamental nental Duties.	19 Act and 1935 Act. Constituen features of the Indian Const	t Assembly: Composi titution, Directive p	tion and rinciples,
техт і	BOOKS:			
1. Dr. S 2015.	8. N. Busi, Dr. B. R	. Ambedkar, <i>—Framing of Indian C</i>	onstitution∥, 1st Editio	on,

REFERENCES:

- 1.M. P. Jain, -Indian Constitution Law, 7th Edition., Lexis Nexis, 2014.
- 2.D.D. Basu, –Introduction to the Constitution of Indial, Lexis Nexis, 2015.
- 3. SubhashKashyap, Our Parliament, National Book Trust, New Delhi
- 4. Peu Ghosh, Indian Government &Politics, Prentice Hall of India, New Delhi

5. B.Z. Fadia&KuldeepFadia, Indian Government &Politics, Lexis Nexis, New Delhi

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

(1 - Low, 2 - meanin, 5 - mgn)														
	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	-	-	-	-	-	3	-	3	-	2	-	-	-	-
CO2	-	-	-	-	-	-	-	-	2	-	-	-	-	-
CO3	-	-	-	-	-	2	2	-	-	-	1	-	-	-
CO4	-	-	-	-	-	-	-	3	2	2	-	-	-	-
CO5	-	-	-	-	-	-	-	2	-	-	-	-	-	-
CO6	-	-	-	-	-	-	2	-	3	-	-	-	-	-

B.TECH (ECE) II-II SEMESTER

LINEAR CONTROL SYSTEMS

Lectur	e – Tutorial:	3-0 Hours	Internal Marks:	30									
Credit	s:	3	External Marks:	70									
Prereq	uisites: Nil												
Course	e Objectives:												
• '	To introduce the co	oncepts of open loop and closed	loop systems, mathe	ematical									
1	models of mechanica	l and electrical systems, and conce	epts of feedback										
• 1	Fo study the charact	eristics of the given system in tern	ns of the transfer func	tion and									
i	ntroducing various a	approaches to reduce the overall sy	vstem for necessary an	alysis									
•	• To develop the acquaintance in analyzing the system response in time-domain and frequency domain in terms of various performance indices												
f	frequency domain in terms of various performance indices												
• 7	• To analyze the system in terms of absolute stability and relative stability by different												
6	approaches												
•	• To design different control systems for different applications as per given												
5	specifications												
• 1	To introduce the con	cepts of state variable analysis, de	esign and also the con	ncepts of									
C	controllability and ob	oservability.											
Course	e Outcomes:												
Upon s	successful completion	of the course, the student will be abl	e to:										
COI	This course introd	uces the concepts of feedback an	nd its advantages to v	various									
~~~	control systems.												
CO2	The performance	metrics to design the control s	ystem in time-domai	in and									
GOA	frequency domain a	are introduced.		1 .									
CO3	Control systems to	or various applications can be c	lesigned using time-o	domain									
<u> </u>	analysis.	• • • • • • • • • • • •	1	1 •									
C04	Control systems for	c various applications can be desig	gned using frequency of	lomain									
005	analysis.		- 1: f 1 t	· · · · · ·									
C05	In addition to the	conventional approach, for the af	nalysis of control syst	ems is									
COC	also introduced.	toto anono on manach for the enclu	ais of control anotoms	ia alaa									
00	in addition to the s	state space approach for the analy	sis of control systems	is also									
Course	Content(Syllabus)												
Course	Content(Synabus)	UNIT I											
INTRO	DUCTION Concept	s of System. Control Systems: (	Open Loop and close	ed loop									
contro	l systems and their	differences. Different examples of	f control systems, Fee	d-Back									
Chara	cteristics, Effects of t	feedback. Mathematical models, D	ifferential equations, I	mpulse									
Respo	nse and transfer fun	ctions. Translational and Rotationa	al mechanical systems	5.									
		<u>UNIT II</u>											
TRAN	SFER FUNCTION R	<b>EPRESENTATION</b> Transfer Funct	tion of DC Servo moto	or - AC									
Servo	motor- Synchro-tran	ems as examples –Block diagram	am representation of s	tion by									
Signal	Signal flow graph-Reduction using mason's gain formula. TIME RESPONSE ANALYSIS												
Standa	ard test signals – Tir	ne response of first order systems	– Characteristic Equa	ation of									
Feedba	ack control systems	, Transient response of second or	rder systems – Time	domain									
specifi	cations – Steady stat	te response - Steady state errors a	nd error constants.										

#### UNIT III

**STABILITY ANALYSIS IN S-DOMAIN** The concept of stability – Routh's stability criterion – qualitative stability and conditional stability – limitations of Routh's stability100 Root Locus Technique: The root locus concept - construction of root loci-effects of adding poles and zeros to G(s) H(s) on the root loci.

#### UNIT IV

**Frequency response analysis:** Introduction, Correlation between time and frequency response, Polar Plots, Bode Plots, Nyquist Stability Criterion.

#### <u>UNIT V</u>

**CLASSICAL CONTROL DESIGN TECHNIQUES** Compensation techniques – Lag, Lead, Lead-Lag Controllers design infrequency Domain, PID Controllers. State Space Analysis of Continuous Systems Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization Solving the Time invariant state Equations- State Transition Matrix and it's Properties – Concepts of Controllability and Observability.

#### **TEXT BOOKS:**

1. Automatic Control Systems 8th edition- by B.C.Kuo - Johnwiley and son's, 2003.

2. Control Systems Engineering –by I. J.Nagrathand M.Gopal, New Age International (P) Limited, Publishers, 2nd edition, 2007

3. Modern Control Engineering-by Katsuhiko Ogata-Pearson Publications, 5th edition, 2015.

### **REFERENCES:**

1 Control Systems by A.Nagoorkani, RB Apublications, 3 edition, 2017.

2. Control Systems by A.Anandkumar, PHI, 2 Edition, 2014.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program
Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

$\sim \mathbf{r}$														
	РО	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	-	-	-	-	-	-	-	1	-	-	-
CO2	3	2	1	-	-	-	-	-	-	-	1	-	-	-
CO3	3	2	1	-	-	-	-	-	-	-	1	-	-	-
CO4	3	2	1	-	-	-	-	-	-	-	1	-	-	-
CO5	3	2	1	-	-	-	-	-	-	-	1	-	-	-
CO6	3	2	1	-	-	-	-	-	-	-	1	-	-	-

# **Analog and Pulse Circuits**

Lectu	re – Tutorial:	3-0 Hours	Internal Marks:	30								
Credit	ts:	3	<b>External Marks:</b>	70								
Prerec	quisites: Electronic de	vices and circuits, Basic mathemati	es, Circuit Analysis.									
Cours	e Objectives:											
•	To learn hybrid-pi paran	neters a high frequency and compare w	ith low frequency parameters	5.								
•	Learn and understand th	ne purpose of cascading of multi stage a	mplifiers andderive the over	all voltage								
	gain.											
•	Analyze the effect of ne	egative feedback on amplifier character	istics and derive thecharacter	istics.								
•	• Learn and understand the basic principle of oscillator circuits and perform theanalysis of different oscillator circuits.											
•	Compare and analyze d types of amplifiers.	ifferent Power amplifiers like Class A,	Class B, Class C, Class AB a	nd other								
•	Analyze various waves	shaping circuits.										
٠	Analyze different types	of multivibrator circuits.										
Cours	e Outcomes:											
Upon	successful completion	n of the course, the student will be	able to:									
CO1	Design and analysis of	small signal high frequency transistor a	mplifier using BJT.									
CO2	Design and analysis of	multistage amplifiers using BJT.										
CO3	Derive the expression oscillators and their am	s for frequency of oscillation and co plitude and frequency stability concept	ondition for oscillation of H	RC and LC								
<b>CO4</b>	Know the classification	of the power amplifiers and their analy	siswith performance compar	rison.								
CO5	Derive the expressions	for RC circuits for various inputs.										
<b>CO6</b>	Design and analysis of	different types of multivibrators.										
Cours	e Content(Syllabus)											
		<u>UNIT I</u>										
UNIT-I	Small Signal High Fre	quency Transistor Amplifier models										
<b>BJT:</b> T	ransistor at high freque	ncies, Hybrid- $\pi$ common emitter tra	insistor model, Hybrid $\pi$ co	onductance,								

Hybrid  $\pi$  capacitances, CE short circuit current gain, current gain with resistive load, cut-off frequencies. **Multistage Amplifiers:** Classification of amplifiers, methods of coupling, analysis of two stage RC coupled amplifier.

### <u>UNIT II</u>

**Feedback Amplifiers:** Feedback principle and concept, types of feedback, classification of amplifiers, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers.

#### <u>UNIT III</u>

**Oscillators:** Oscillator principle, condition for oscillations, types of oscillators, RC- phase shift and Wien bridge oscillators with BJT and their analysis, Generalized analysis of LC Oscillators, Hartley and Colpitt's oscillators using BJT.

**Power Amplifiers:** Classification of Power amplifiers Class A power Amplifiers, Class B Push-pull amplifiers, Complementary symmetry push pull amplifier, Class AB power amplifier, Class-C power amplifier.

#### UNIT IV

#### Linear wave shaping:

High pass, Low pass RC circuits, their response expressions for sinusoidal, step, pulse, square, ramp and exponential inputs

#### Non linear wave shaping:

Diode clippers, Transistor clippers, clipping at two independent levels, Emitter coupled clipper; Clamping operation, Clamping circuit theorem, practical clamping circuits.

#### <u>UNIT V</u>

#### Multivibrators:

Bistable Multi Vibrator: Analysis and Design of Fixed Bias Bistable Multi Vibrator, Schmitt trigger.

Monostable Multi Vibrator: Analysis and Design of Collector Coupled Monostable Multi Vibrator.

Astable Multi Vibrator: Analysis and Design of Collector Coupled Astable Multi vibrator. **TEXT BOOKS:** 

1. Integrated Electronics- J.Millman and C.C.Halkias, Tata McGraw-Hill, 1972.

2. Electronic Devices and CircuitsTheory–Robert L.Boylestad and Louis Nashelsky, Pearson/Prentice Hall, Tenth Edition, 2009.

3.Electronic Devices and Integrated Circuits – B.P. Singh, Rekha, Pearson publications,2006 4.Pulse and Digital Circuits – A. Anand Kumar, PHI, 2005

#### **REFERENCES:**

- 1. Electronic Circuit Analysis and Design Donald A. Neaman, Mc Graw Hill.
- 2. Electronic Devices and Circuits Theory Robert L. Boylestad and Louis Nashelsky, Pearson/Prentice Hall, Tenth Edition.
- 3. Electronic Circuit Analysis A.P.Godse, Technical Publications
- 4. Pulse and Digital Circuits B.Yoganarsimhan
- 5. Pulse & Digital Circuits by Venkata Rao, K, Ramasudha K, Manmadha Rao, G., Pearson, 2010
- 6. Pulse, Digital and Switching Waveforms J. Millman and H. Taub, McGraw-Hill, 1991

# Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

101					,= =:=		,	/						
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	2	-	-	3	-	-	-	-	-	-	-	2	-	3
CO2	3	3	2	-	-	-	-	3	-	-	-	-	3	3
CO3	3	-	-	-	-	-	-	-	-	3	-	-	-	-
CO4	3	3	-	3	-	-	2	-	3	-	-	3	-	-
CO5	-	-	2	2	-	3	-	-	-	-	2	-	2	-
CO6	2	3		-	-	-	-	-	-	-	-	-	3	-

# **Analog Communications**

Analog Communications													
Lectur	e – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30									
Credit	s:	3	<b>External Marks:</b>	70									
Prereq	uisites: Basics of Com	munications, signals and systems.											
Course	e Objectives:												
• F	Familiarize with the fund	damentals of analog communication sys	tems.										
• I	• Familiarize with various techniques for analog modulation and demodulation of signals.												
• I	• Distinguish the figure of merits of various analog modulation methods.												
• I	• Develop the ability to classify and understand various functional blocks of radio transmitters and												
r	receivers.												
• F	• Familiarize with basic techniques for generating and demodulating various pulse modulated												
S	ignals.												
Course	e Outcomes:		• •										
Upon s	successful completion	of the course, the student will be ab	le to:										
CO1	Demonstrate knowled	ge of various blocks of communicatio	n system and to analyze	various									
	modulation and demod	dulation schemes.											
CO2	Understand the concept	pts of DSB-SC, SSB-SC, and VSB and	to distinguish different a	mplitude									
	modulation schemes w	with their merits, demerits and applicatio	ns.										
CO3	Analyze the concept of	of generation and detection of FM sign	al and to compare ampli-	tude and									
	angle modulation sche	mes.											
CO4	Know the effect of no	bise on the performance of communica	tion systems by computi	ng noise									
	figure of various analo	g and Frequency modulation techniques	5.										
CO5	Explore the characteri	stics of AM and FM transmitters and r	eceivers and to analyze the	he effect									
	of feedback on the performance of AM and FM transmitters.												
<b>CO6</b>	Demonstrate the gener	ation and detection of various pulse mo	dulation techniques.										
(	Course Content(Syllab	ous)											

#### UNIT I

**AMPLITUDE MODULATION :** Introduction to communication system, Need for modulation, Frequency Division Multiplexing, Amplitude Modulation, Definition, Time domain and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, square law Modulator, Switching modulator, Detection of AM Waves; Square law detector, Envelope detector.

#### <u>UNIT II</u>

**DSB & SSB MODULATION:** Double side band suppressed carrier modulators, time domain and frequency domain description, Generation of DSBSC Waves, Balanced Modulators, Ring Modulator, Coherent detection of DSB-SC Modulated waves, COSTAS Loop. Frequency domain description, Frequency discrimination method for generation of AM SSB Modulated Wave, Time domain description, Phase discrimination method for generating AM SSB Modulated waves. Demodulation of SSB Waves, Vestigial side band modulation: Frequency description.

#### <u>UNIT III</u>

**ANGLE MODULATION**: Basic concepts, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM, Wide band FM, Constant Average Power, Transmission bandwidth of FM Wave - Generation of FM Waves, Detection of FM Waves: Balanced Frequency discriminator, Zero crossing detector, Phase locked loop. Comparison of FM & AM.

#### <u>UNIT IV</u>

**TRANSMITTERS & RECEIVERS: Radio Transmitter** - Classification of Transmitter, AM Transmitter, Effect of feedback on performance of AM Transmitter, FM Transmitter – Variable reactance type and phase modulated FM Transmitter, frequency stability in FM Transmitter. **Radio Receiver** - Receiver Types - Tuned radio frequency receiver, Super hetero dyne receiver, RF section an Characteristics - Frequency changing and tracking, Intermediate frequency, AGC, FM Receiver, Comparison with AM Receiver.

#### <u>UNIT V</u>

**NOISE:** Review of noise and noise sources, noise figure, Noise in Analog communication Systems, Noise in DSB& SSB System, Noise in AM System, Noise in Angle Modulation Systems, Threshold effect in Angle Modulation System, Pre-emphasis & de-emphasis

**PULSE MODULATION:** Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation & demodulation of PWM, PPM, Generation and demodulation of PPM, Time Division Multiplexing, TDM Vs FDM

#### TEXT BOOKS:

1.Principles of Communication Systems – H Taub & D. Schilling, Gautam Sahe, TMH, 3rd Edition, 2007.

2. Principles of Communication Systems - Simon Haykin, John Wiley, 2nd Edition, 2007.

3. Modern Digital and Analog Communication Systems –B.P.Lathi,Zhi Ding,Hari Mohan Gupta,Oxford University Press,4th Edition,2017

#### **REFERENCES:**

**1**. Electronics & Communication System – George Kennedy and Bernard Davis, TMH 2004.

2. Communication Systems– R.P. Singh, SP Sapre, Second Edition TMH,2007.

3. Electronic Communication systems – Tomasi, Pearson, fourth Edition, 2007.

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program														
Speci	Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	01	2	
CO1	-	3	-	-	2	-	-	-	-	-	-	2	2	3	
CO2	2	3	2	-	-	-	-	3	-	-	-	-	-	3	
CO3	3	-	2	-	-	-	-	-	-	3	-	-	-	-	
CO4	-	2	-	3	-	-	2	-	-	-	-	3	-	2	
CO5	-	2	2	-	-	3	-	-	-	-	2	-	2	-	
CO6	2	2	-	-	-	-	-	-	-	-	-	-	-	3	

# **Electromagnetic Waves and Transmission Lines**

Lecture – Tutorial:		3-0 Hours	<b>Internal Marks:</b>	30
Credit	s:	3	<b>External Marks:</b>	70
Prerequisites: Coordinate Systems, Vector Calculus.				
Course Objectives:				
1. To understand the fundamentals of steady electric and magnetic fields using various laws.				
2. To Formulate Maxwell equations in Time varying fields and power flow by using pointing theorem.				
3. To impart the knowledge of electric and magnetic fields in real time applications.				
4. To learn Wave Propagation characteristics in different media.				
5. To impart Reflections and refractions of EM Waves in different media at oblique and normal incidence.				
6. To study the Transmission line parameters and Characteristics using network theory concepts.				
Course Outcomes:				
Upon successful completion of the course, the student will be able to:				
CO1	Interpret and Apply the static electrostatic fields with respect to coordinate systems.			
CO2	Analyze and Demonstrate the static magnetic fields in real time applications.			
CO3	Formulate the Maxwell's Equations in different forms with time considerations.			
<b>CO4</b>	Formulate the theory of electromagnetic waves in free space with practical applications.			
CO5	Evaluate and Relate wave propagation characteristics in different conducting and non- conducting media.			
CO6	Demonstrate the reflection and Refraction of EM waves at normal and oblique incidences.			
Course Content(Syllabus)				
<u>UNIT-I</u>				

#### <u>Part-A:</u>

**Electrostatics:** Review of Co-ordinate Systems, Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss Law and Applications, Electric Potential, Maxwell's Two Equations for Electrostatic Fields, Illustrative Problems.

# Part-B:

**Fields in Materials** :Convection, Conduction and Displacement Current Densities, Dielectric Constant, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations..Illustrative Problems.

# <u>UNIT-II</u>

# Part-A:

**Magneto Statics :** Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials. Illustrative Problems.

# Part-B:

**Maxwell's Equations (Time Varying Fields):** Faraday's Law and Transformer emf, Inconsistency of Ampere's Law, Maxwell's Equations in Different Final Forms and Word Statements. Conditions at a Boundary Surface: Dielectric-Dielectric and Dielectric-Conductor Interfaces. Illustrative Problems.

# <u>UNIT-III</u>

#### <u>Part-A:</u>

EM Wave Characteristics – 1a: Characterization of conductor and dielectric media, Wave Equations
for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations Between E & H,

# <u>Part-B:</u>

# EM Wave Characteristics – 1b:

Sinusoidal Variations, Wave Propagation Characteristics in dielectric and conductor media, Wave Propagation Characteristics in good dielectric and good conductor media, skin depth..Illustrative Problems.

# <u>UNIT-IV</u>

# <u>Part-A:</u>

**EM Wave Characteristics – 2a:** Polarization & Types, Brewster Angle, Critical Angle, Total Internal Reflection, Surface Impedance. Poynting Vector and Poynting Theorem – Applications Illustrative Problems.

# <u>Part-B:</u>

**EM Wave Characteristics – 2b:** Reflections and Refractions of uniform plane waves by a perfect dielectric at normal & Oblique incidence, Reflections and Refractions of uniform plane waves by a perfect conductor at normal & Oblique incidence.

# <u>UNIT-V</u>

**Transmission Lines-I:** Types, Parameters,  $T\&\pi$  Equivalent Circuits, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line, Lossless lines, distortion less lines, Illustrative Problems.

**Transmission Lines-II:** Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. Low loss radio frequency lines and UHF Transmission lines, UHF Lines as Circuit Elements; ImpedanceTransformations, $\lambda/8$ , $\lambda/4$  and  $\lambda/2$  Lines. Quarter wave transformer, Single Stub Matching, Illustrative Problems.

# **TEXT BOOKS:**

- 1. Elements of Electromagnetic Mathew N.O. Sadiku, Oxford Univ. Press, 3rd ed., 2001.
- 2. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd Edition, 2000.
- 3. Transmission Lines and Networks–Umesh Sinha, Satya Prakashan (Tech. India Publications), New Delhi, 2001.

# **REFERENCE BOOKS:**

- 1. Electromagnetics- J.D. Kraus, "Electromagnetics", 4th Edition, Mc Graw-Hill. Inc, 1992.
- 2. Engineering Electromagnetics:Nathan Ida, Springer(India)Pvt.Ltd., New Delhi, 2nd ed., 2005.
- 3. Engineering Electromagnetics William H. Hayt Jr. and John A. Buck, TMH, 7th ed., 2006.
- 4. Electromagnetic Field Theory and Transmission Lines: G Sasi Bhushana Rao, Wiley India 2013.
- 5. Networks, Lines and Fields John D. Ryder- Second Edition, PearsonEducation, 2015.

Contr Speci	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	PO         PS         PSO														
	1	2	3	4	5	6	7	8	9	10	11	12	01	2	
CO1	3	-	2	-	-	-	-	-	3	-	-	-	-	3	
CO2	-	3	-	3	-	-	-	-	-	-	2	-	2	-	
CO3	-	-	3	-	-	-	-	-	-	-	-	3	-	-	
CO4	3	-	-	-	2	-	-	-	-	-	-	-	-	3	
CO5	-	3	-	-	-	-	3	-	-	-	-	-	-	-	
CO6	-	2	-	3	-	-	-	-	-	-	-	-	3	-	

# Managerial Economics and Financial Analysis

Lectu	re – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30
Credi	ts:	3	<b>External Marks:</b>	70
Prere	quisites: Basics of ma	nagement, Basics of Economics.		
Cours	se Objectives:			
•	To familiarize with the	process of management, principles, lead	dership styles and basic co	ncepts on
	Organization.			
•	To provide conceptua	al knowledge on functional manager	nent that is on Human	resource
	management and Mark	eting management.		
•	To provide basic in	sight into select contemporary man	agement practices and	Strategic
	Management.			
•	To learn theories of r	notivation and also deals with individ	ual behavior, their person	ality and
	perception of individua	us.	moto of ontino onconizatio	na which
•	helps employees in stre	organizations groups that affect the chi	mate of entire organizatio	ons which
Cour	neips employees in sue	ess management.		
	se Outcomes:	n of the course the student will be a	ala ta	
CO1	Equip with the knowled	day of estimating the Demand and demand	l electicitics for a product	
		dge of estimating the Demand and demand		
CO2	Understand the Input-	Output-Cost relationships and estimation	on of the least cost combi	ination of
CO3	Understand the nature	of different markets and Price Output	determination under vario	us market
005	conditions and also to l	have the knowledge of different Business	Units.	us market
<b>CO4</b>	Prepare Financial State	ments and the usage of various Accounting	g tools for Analysis.	
CO5	Evaluate various inve	stment project proposals with the help	of capital budgeting techr	niques for
	decision making.		1 0 0	•
<b>CO6</b>	Understand and analyz	e the traditional methods and modern methods	hods of capital budgeting.	
Cours	se Content(Syllabus)			
<u>UNIT</u>	I: Introduction to Man	agerial Economics and demand Analys	is:	
Introd	luction to Managerial I	Economics and demand Analysis: Def	inition of Managerial Eco	onomics
-Scop	e of Managerial Ecor	nomics and its relationship with other	subjects –Concept of I	Demand,
Types	of Demand, Determin	nants of Demand, Demand schedule,	Demand curve, Law of I	Demand
and it	ts limitations- Elastic	ity of Demand, Types of Elasticity	of Demand and Measu	rement-
Dema	nd forecasting and Me	thods of forecasting, Concept of Suppl	y and Law of Supply.	
<u>UNIT</u>	II: Theories of Product	tion and Cost Analysis:		
Theori	es of Production function	on- Law of Variable Proportions-Isoquar	its and Isocosts and choice	e of least
cost fa	actor combination-Conc	epts of Returns to scale and Economies	of scale, Different cost c	concepts:
Profit	Analysis Determination	of Breakeven point(problems)-Manager	is and Total costs –Cost –	volume-
Breake	even point.	of Dreakeven point(problems)-Manager	iai significance and innita	
UNIT	III: Introduction to Ma	arkets, Theories of the Firm & Pricing I	Policies:	
Marke	t Structures: Perfect Co	mpetition, Monopoly, Monopolistic comp	petition and Oligopoly – Fe	eatures –
Price a	and Output Determination	on – Managerial Theories of firm: Marri	s and Williamson's models	s – other
Metho	ds of Pricing: Average of	cost pricing, Limit Pricing, Market Skimi	ning Pricing, Internet Prici	ng: (Flat
Rate P	ricing, Usage sensitive p	pricing) and Priority Pricing, Business Cyc	cles: Meaning and Features	– Phases
OF a J	Business Cycle. Feature	es and Evaluation of Sole Trader, Par	thership, Joint Stock Cor	npany –
	IV. Introduction to Ac	counting & Financing Analysis.		
Introdu	uction to Double Entry S	votom Journal Ladgar Trail Balanca and	Propagation of Final Accou	into with
adjust	ments – Prenaration of F	inancial Statements-Analysis and Interpre	tation of Financial Stateme	nts-Ratio
Analys	sis – Preparation of Fund	ls flow and cash flow analysis (Problems)	auton of I manolal Datollio	

### UNIT V: Capital and Capital Budgeting:

Capital Budgeting: Meaning of Capital-Capitalization Meaning of Capital Budgeting-Time value of money-Methods of appraising Project profitability: Traditional Methods (payback period, accounting rate of return) and modern methods (Discounted cash flow method, Net Present Value method, Internal Rate of Return Method and Profitability Index)

# **TEXT BOOKS:**

1. Subba Rao P., Organizational Behaviour, Himalaya Publishing House, Mumbai.

- 2. Fred Luthans Organizational Behaviour, TMH, NewDelhi.
- 3. Robins, Stephen P., Fundamentals of Management, Pearson, India.
- 4. Kotler Philip & Keller Kevin Lane: Marketing Mangement 12/e, PHI, 2007
- 5. Koontz & Weihrich: Essentials of Management, 6/e, TMH, 2007
- 6. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2007.

# Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

	iie out				,	l v ai ai ii	,	<b></b> /						
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	3	2	-	-	-	-	-	3	-	-	-	2	-
CO2	3	-	-	-	-	-	-	-	2	3	-	-	-	2
CO3	3	-	2	2	-	-	-	-	-	-	1	-	-	-
CO4	-	2	-	3	-	3	-	-	-	-	-	-	3	-
CO5	3	2	-	-	-	-	-	-	3	-	2	-	-	3
CO6	3	3	-	-	-	-	-	-	-	-	3	-	-	-

# II Year - II Semester

# L T P C 0 0 3 1.5

# Analog and Pulse Circuits Lab

Lectu	re – Tutorial:	0-0 Hours	<b>Internal Marks:</b>	15								
Credit	Credits: 1.5 External Marks: 35											
Prerec	<b>quisites:</b> Analog an	d Pulse Circuits.										
Cours	e Objectives:											
•	To design RC phase	shift oscillator using transistors for differe	ent frequencies.									
•	To design Wien Brid	ge oscillator using transistors for different	frequencies.									
•	To obtain frequency	response of two stage RC coupled amplifi	er.									
•	To design single tune	ed voltage amplifier.										
•	To design double tun	ed voltage amplifier.										
Cours	e Outcomes:											
Upon	successful complet	tion of the course, the student will be	e able to:									
CO1	Construct the RC p	hase shift oscillator using transistors for di	ifferent frequencies.									
CO2	Design Colpitt's os	cillator using transistors for different frequ	iencies.									
CO3	Estimate frequency	response of two stage RC coupled amplif	ier.									
CO4	Understand the char	racteristics of power amplifiers and multiv	vibrators.									
CO5	Draw the characteri	stics of series and shunt feedback amplifie	ers.									
<b>CO6</b>	Understand the char	racteristics of linear and non linear wave s	haping circuits.									
List of	<b>Experiments</b> :											
Note:	The students are re-	equired to design the circuit and perfor	rm the simulation using	Multisim/								
Equiva	alent Industrial Stand	lard Licensed simulation software tool. Fu	urther they are required to	o verify the								
result	using necessary hard	ware equipment.										
( Mini	mum of Ten Exper	iments has to be performed)										
1. Volt	age-Series Feedback	Amplifier										
2. Curr	ent-Shunt Feedback	Amplifier										
3.  RC	Phase Shift Oscillator	ſ										
4. Colp	Steep DC Complete	A										
5. Two	Stage RC Coupled A	Amplifier										
7 Clas	a A Series feedback											
7. Clas	or Waya shaning Cir											
9 Non	Linoar Waya shapin	a Circuita Clippora										
10 Non	Linear Wave shapin	g Circuits – Clampors										
10.Non	ble Multivibrator	g cheuns – clampers										
11.Asta 12 Mon	ostable Multivibrator	r										
Equipr	nent required:											
Softwar	•e:											
i. Multis	sim/ Equivalent Indu	ustrial Standard Licensed simulation soft	tware tool.									
ii. Com	outer Systems with r	required specifications										
Hardwa	are Required:	• •										
1. Regul	ated Power supplies											
2. Analo	g/Digital Storage Os	cilloscopes										
3. Analo	g/Digital Function G	enerators										
4. Digita	I Multi meters											
5. Decad	le Resistance Boxes/	Kneostats										
0. Decad	eters (Analog or Dia	s ital)										
7. Allill 8. Voltre	eters (Analog of Dig	nai) vital)										
9. Activ	e & Passive Electron	ic Components										

# Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

opeer	ne out			, LU		culum	,	<b>5</b> 11/						
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	2	3	-	-	-	-	2	-	-	-	-	-	3	-
CO2	-	3	3	-	-	3	-	-	-	-	3	-	3	-
CO3	2	-	-	-	2	-	-	-	-	-	-	3	3	-
CO4	2	-	2	-	-	-	-	2	-	3	-	-	-	3
CO5	-	2	3	-	3	-	2	-	-	-	-	-	-	2
CO6	3	-	3	-	-	-	3	-	-	-	-	-	-	2

# II Year - II Semester

# Analog Communications Lab

Lecture -	- Tutorial:	0-0Hours	Internal Marks:	15
<b>Credits:</b>		1.5	<b>External Marks:</b>	35
Prerequi	sites: Analog Com	munications.		
Course (	)bjectives:			
• Far	miliarize the studen	ts with basic analog con	nmunication systems.	
• Int	egrate theory with	experiments so that the	students appreciate the knowledge g	ained from
the theory	y course, e.g., ampli	tude and frequency mod	lulation, pulse modulation.	
Course (	Dutcomes:			
Upon suc	ccessful completion	n of the course, the stud	lent will be able to:	
CO1	Analyze the outpu	it waveforms of AM & I	FM.	
CO2	Perform spectral a	nalysis of modulated sign	al using spectrum analyzer.	
CO3	Understand the wo	rking of diode detector, A	AGC and to analyze their outputs.	
<b>CO4</b>	Perform verificati	on of sampling theorem.		
CO5	Analyze the output	waveforms of various pu	alse modulation techniques.	
CO6	Understand the oper	ration of PLL using IC 56	5.	
List of Ex	xperiments:			
(a. Hardw A. Amplit B. AM - I C. Diode D. Pre-em E. Freque F. AGC C G. Verific H. Pulse I. PWM, I J. Radio D <b>Experim</b> 1. Amplit 2. Freque <b>Note:</b> The abov and Simul	are, b. MATLAB Si rude Modulation - M DSB SC - Modulatio Detector Characteris phasis& De-emphas ncy Modulation – M Circuits Characteristi ration of Sampling T Amplitude Modulation PPM –Modulation & receiver characteristi ents to be conduct ude Modulation – M ncy Modulation – M ncy Modulation – M se two experiments a ink.	mulink, c. MATLAB Co lodulation &Demodulation stics sis lodulation &Demodulation cs 'heorem on & Demodulation c Demodulation ics ed beyond the syllabus odulation &Demodulation lodulation &Demodulation are to be executed/comp	nmunication toolbox) on on leted using MATLAB Communication	n toolbox
	· · · · · · · · · · · · · · · · · · ·			
i)Comput ii) Connect iii) Opera iv) Simula <b>Equipme</b> 1. RPS - ( 2. CRO - 3. Function 4. Compos 5. Multime 6. Spectru	ter Systems with la cted in LAN(Optionating system(Window ations software (Sim <b>nt:</b> 0 - 30V 0 - 20 M Hz. on Generators - $0 - 1$ nents and Breadboar eters and other meto m Analyzer	test specifications al) vs/Linux software) ulink & MATLAB) MHz rds ers		

# Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

		(-		<u> </u>	,= =		,	8/						
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	-	-	3	-	-	2	-	-	-	-	3	-	-	3
CO2	-	-	3	-	2	-	-	-	-	-	3	-	3	-
CO3	3	3	-	-	-	-	-	2	-	-	-	-	-	3
CO4	-	-	3	-	-	-	-	-	-	-	-	3	-	-
CO5	2	-	-	3	-	-	3	-	-	3	-	-	-	3
CO6	-	3	-	-	3	-	-	-	-	-	-	-	-	2

# II Year - II Semester

# VHDL Programming Lab

	0 0	
Practice:	3	Internal Marks: 15
Credits:	1.5	External Marks: 35

**Prerequisites:** Switching Theory and Logic Design, C Language, Pulse & Digital Circuits Laboratory

### **Course Objectives:**

- To introduce the basic HDL languages and their importance in digital design.
- To analyze digital system design blocks using VHDL fundamentals.
- To model digital systems at several levels of abstractions such as dataflow, behavioral, structural & mixed signal modeling.
- To analyze and design basic digital circuits with combinatorial and sequential logic using VHDL.
- To understand the VHDL compilers, simulators and synthesis tools which are used to verify digital systems in a technology-independent fashion.

# **Course Outcomes:**

# Upon successful completion of the course, the student will be able to:

- **CO1** Understand the three different modeling styles of digital circuits.
- CO2 Design various combinational circuits using VHDL.
- **CO3** Develop a VHDL source code for comparators and code converters.
- **CO4** Perform simulation of various sequential circuits using VHDL.
- **CO5** Analyze the obtained simulation results.
- **CO6** Verify the logic with the necessary hardware.

# List of Experiments: ( Minimum of ten experiments has to be performed)

**Note:** The students are required to develop VHDL source code, perform simulation using a relevant simulator, and analyze the obtained simulation results using a necessary synthesizer. All the experiments are required to verify and implement the logical operations on the latest FPGA Hardware in the Laboratory.

- 1. Realization of logic gates using three models.
- 2. Design of full adder and develop VHDL code using three models.
- 3. Design 3 to 8 decoders and develop VHDL code.
- 4. Design 8 to 3 encoder and develop VHDL code.
- 5. Design 8 x 1 multiplexer and develop VHDL code.
- 6. Design 4- bit magnitude comparator and develop VHDL code.
- 7. Design 4-bit binary to grey code converter and develop VHDL code.
- 8. Design D-flip-flop and develop VHDL code.
- 9. Design decade counter and develop VHDL code
- 10. Design universal shift registers and develop VHDL code.
- 11. Design an 8-bit serial in-parallel out and parallel in-serial out shift register and develop VHDL code.
- 12. Design ALU and develop VHDL code.

# **Equipment Required:**

- 1. Xilinx Vivado software / Equivalent Industry Standard Software.
- 2. Xilinx Hardware / Equivalent hardware.
- 3. Personal computer system with necessary software to run the programs and implement.

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low 2 Medium 3 – High)														
Speci	Specific outcomes (FSOS) (1 – Low, 2- Medium, 5 – High)														
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	01	2	
CO1	3	2	-	-	2	-	-	-	1	-	-	-	-	-	
CO2	3	2	2	-	-	-	-	2	-	-	-	-	2	3	
CO3	3	2	-	3	3	-	-	-	-	3	-	-	-	3	
CO4	3	2	2	-	-	-	3	-	2	-	-	-	-	-	
CO5	3	2	-	-	-	3	-	-	-	-	2	-	2	3	
CO6	3	3	2	-	3	-	-	-	-	-	-	3	-	-	

# **II Year - II Semester** LTPC 1022 PYTHON PROGRAMMING (Skill Course) Lecture – Practice: 1-2 Hours **Internal Marks:** 0 **Credits:** 2 **External Marks:** 50 Prerequisites: Adequate exposure to Programming ,A basic understanding on various computer concepts, C programming basic syntax **Course Objectives:** • To understand the PYTHON environment and make numerical computations and analysis. **Course Outcomes:** Upon successful completion of the course, the student will be able to: Know comprehensions, generators in python. **CO1 CO2** Understand the exception handling in python **CO3** Know the usage of file I/O **CO4** Understand various data types like lists, tuples, strings etc Know the usage of various pre-defined functions on the above data types CO5 **Course Content(Syllabus) Exercises** 1. a. Write a program to get the list of even numbers upto a given number. b. Write a program to get the ASCII distance between two characters. c. Write a program to get the binary form of a given number. d. Write a program to convert base 36 to octal. 2. a. Write a program to get the number of vowels in the input string (No control flow allowed) b. Write a program to check whether a given number has even number of 1's in its binary representation (No control flow, the number can be in any base) c. Write a program to sort given list of strings in the order of their vowel counts. 3. a. Write a program to return the top 'n' most frequently occurring chars and their respective counts. E.g. aaaaaabbbbcccc, 2 should return [(a5) (b 4)] b. Write a program to convert a given number into a given base. Note: Convert the given number into a string in the given base. Valid base is $2 \le 36$ Raise exceptions similar to how int ("XX", YY) does (play in the console to find what errors it raises). Handle negative numbers just like bin and oct do. 4. a. Write a program to convert a given iterable into a list. (Using iterator) b. Write a program to implement user defined map() function. Note: This function implements a map. It goes through the iterable and applies funcon each of the elements and returns a list of results. Don't use a for loop or the built-in map function. Use exceptions, while loop and iter. c. Write a program to generate an infinite number of even numbers (Use generator) d. Write a

program to get a list of even numbers from a given list of numbers. (use only comprehensions)

5. Write a program to implement round robin.

Note: This routine to take a variable number of sequences and return elements from them in round robin till each sequence is exhausted. I fone of the input sequences is infinite, this is also infinite. e.g if input is [1,2,3],  $(4,5) \rightarrow$  yield 1,4,2,5,3 one after the other. Use exception control and comprehensions to write elegant code. Hint: This requires you to use understand variable arguments, lists, list copy, comprehensions, iterators, generators, exception handling, control flow etc.

6. a. Write a program to sort words in a file and put them in another file. The output file should have only lower case words, so any upper case words from source must be lowered. (Handle exceptions)

b. Write a program return a list in which the duplicates are removed and the items are sorted from a given input list of strings.

7. a. Write a program to test whether given strings are anagrams are not.

b. Write a program to implement left binary search.

Note: Left binary search returns the left most element when a search key repeats. Fore.gif input is [1,2,3,3,4,4,5] and I search 3, it should return 2 as index 2 is the left most occurrence of 3.

8. a. write a class Person with attributes name, age, weight (kgs), height (ft) and takes them through the constructor and exposes a method get_bmi_result() which returns one of "underweight", "healthy", "obese"

b. Write a program to convert the passed in positive integer number into its prime factorization form.

Note: If number = a1 ^ p1 * a2 ^ p2 ... where a1, a2 are primes and p1, p2 are powers >=1 then were present that using lists and tuples in pythonas [(a1,p1),(a2,p2), ...] e.g.[(2,1),(5,1)] is the correct prime factorization of 10

#### **TEXT BOOKS:**

1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson

2. Learning Python, Mark Lutz, Orielly

3.Mark Lutz & David Ascher, "Learning Python", Oreilly Publications, 5th edition

#### **REFERENCE BOOKS:**

1. Think Python, Allen Downey, Green Tea Press

#### **E-RESOURCES:**

1. <u>https://www.tutorialspoint.com/python/</u>

2. <u>https://docs.python.org/3/tutorial/</u>

3. <u>https://www.w3schools.com/python/</u>

4. https://www.javatpoint.com/python-tutorial

Contr Speci	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	PO 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	PO 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	
CO1	3	-	-	-	3	_	_	-	3	-	3	-			
CO2	-	3	2	-	-	_	_	-	-	-	-	-			
CO3	-	-	-	2	3	_	_	_	3	_	-	-			
CO4	-	-	-	3	3	_	_	_	3	_	-	-			
CO5	-	3	2	-	-	_	_	-	-	-	-	-			



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### COURSE STRUCTURE FOR III YEAR B.TECH PROGRAMME-NRIA20 REG III B.TECH I-SEMESTER

SI. No	Course	Title of the Course	Sch (P	eme ( eriod	of Ins s Per	struction Week)	Exa	Scheme minatio Marks	of n (Max ; )	No. of Credits
110	Coue		L	Т	Р	Total	CIA	SEA	Total	Cicuits
1	PC	Linear and Digital Integrated Circuits	3	-	-	3	30	70	100	3
2	PC	Antennas and Wave Propagation	3	-	-	3	30	70	100	3
3	PC	Digital Communications	3	-	-	3	30	70	100	3
4	OE	Open Elective	3	-	-	3	30	70	100	3
5	PE	<ul> <li>i) Computer architecture and Organization</li> <li>ii) Biomedical Engineering</li> <li>iii) Electromagnetic Interference and Electromagnetic Compatibility</li> </ul>	3	-	-	3	30	70	100	3
6	PC LAB	Linear and Digital Integrated Circuits Lab	-	-	3	3	15	35	50	1.5
7	PC LAB	Digital Communications Lab	-	-	3	3	15	35	50	1.5
8	SC*	Internet of Things	1	-	2	3	-	50	50	2
9	MC	Intellectual Property Rights and Patents	-	-	2	3	30	70	100	0
(	Summer In (mandatory) evaluated	nternship two months after second year (to be I during V semester)	0	0	0	0	15	35	50	1.5
		Total	16	-	10	27	255	595	850	21. 5



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### COURSE STRUCTURE FOR III YEAR B.TECH PROGRAMME-NRIA20 REG III B.TECH II-SEMESTER

SI.	Course	Title of the Course	Sch (P	eme ( eriod	of Ins s Per	truction Week)	Exa	No. of Credits		
110	Couc		L	Т	Р	Total	CIA	SEA	Total	Cituits
1	РС	Microprocessors and Microcontrollers	3	-	-	3	30	70	100	3
2	PC	Digital Signal Processing	3	-	-	3	30	70	100	3
3	PC	VLSI Design	3	-	-	3	30	70	100	3
4	PE	<ul> <li>i) Optical Communications</li> <li>ii) Embedded Systems</li> <li>iii) Radar Systems</li> </ul>	3	-	-	3	30	70	100	3
5	OE	Open Elective	3	-	-	3	30	70	100	3
6	PC LAB	VLSI Lab	-	-	3	3	15	35	50	1.5
7	PC LAB	Microprocessors and Microcontrollers Lab	-	-	3	3	15	35	50	1.5
8	PC LAB	Digital Signal Processing Lab	-	-	3	3	30	70	100	1.5
9	SC*	Sensors and Instrumentation	2	-	-	2	-	50	50	2
10	MC	Professional Ethics and Human Values	2	-	-	2	30	70	100	0
		Total	19	-	9	28	240	630	900	21. 5
	Honors/Min distribution	nor Courses(the hours can be 3-0-2 or 3-1-0)	4	-	-	4	30	70	100	4

Industrial / Research Internship(Mandatory) 2 Months during summer vacation



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

III Year - I Semester	
<b>Professional Course (PC)</b>	

#### L T P C 3 0 0 3

# LINEAR & DIGITAL IC APPLICATIONS

Lectur	e – Tutorial:	3-0 -0 Hours	<b>Internal Marks:</b>	30	
Credits: 3 External Marks			<b>External Marks:</b>	70	
Prereq	uisites: Basic Electroni	cs, Digital Electronics, Electronic Circ	uit Analysis.		
Course	e Objectives:				
•	<ul> <li>To understand the basic operation &amp;performance parameters of differential amplifiers illustrate the measuring techniques, performance parameters of OP-AMP.</li> <li>To infer the linear and non-linear applications of operational amplifiers and different waveform generators.</li> </ul>				
٠	To understand the anal	ysis & design of different types of activ	ve filters using OP-AMP	,	
•	To understand the inte converters.	rnal structure, operation and applicati	ons of different analog	ICs and	
•	To Acquire skills requi	red for designing and testing integrated	l circuits		
Course	e Outcomes:				
Upon s	successful completion of	of the course, the student will be able	e to:		
CO1	Analyze different type	es of differential amplifiers and its appl	ication.		
CO2	Utilize different circuit	s for various applications of Operation	al amplifiers.		
CO3	Experiment with vario	us active filters and timer circuits.			
<b>CO4</b>	Conclude the application	ons of PLL and A/D and D/A converted	ers.		
CO5	<b>CO5</b> Identify the importance and applications of digital ICs.74x151,155,138				
Course Content(Syllabus)					
		<u>UNIT I</u>			
DIDDD					

#### DIFFERENTIAL AMPLIFIERS

Introduction, DC and AC analysis of Dual input Balanced output Configuration, Properties of other differential amplifier configurations, Integrated circuits-Types, Classification, Package Types and Temperature ranges, Power supplies.

#### **OP-AMPS**

Introduction to OP-amp, Characteristics of OP-Amps, Op-amp Block Diagram, ideal and practical Opamp Specifications, DC and AC characteristics, 741 op-amp & its features, Op-Amp parameters & Measurement, Input & Output Off set voltages & currents, Slew rate, CMRR, PSRR, drift.

UNIT II

# **OP-AMP APPLICATIONS**

Inverting and Non-Inverting amplifiers, Difference Amplifier, Instrumentation Amplifier, AC Amplifier, Differentiator and Integrator, Comparator.

#### WAVE FORM GENERATORS

Triangular, Saw-tooth and Square Wave generators, Schmitt Trigger, Log and Anti log Amplifiers.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### <u>UNIT III</u>

# **OP-AMP FILTERS& TIMERS**

Introduction to Active Filters, Characteristics of Low pass, high pass, band pass, band reject and all pass filters, Design and analysis of Butterworth active filters--1st - 2nd order LPF, HPF,BPF,BRF and All pass filters.

# TIMERS

Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger.

UNIT IV

# PHASE LOCKED LOOPS

PLL - introduction, block schematic, principles and description of individual blocks, 565 PLL, Applications of PLL: frequency multiplication, frequency translation and Amplitude Modulation.

# D/A and A/D CONVERTERS

Introduction, Basic DAC techniques, Different types of DACs-Weighted resistor DAC, R-2R ladder DAC, Inverted R-2R DAC, Different Types of ADCs - Parallel Comparator Type ADC, Counter Type ADC, Successive Approximation ADC and Dual Slope.

# UNIT V

# COMBINATIONAL & SEQUENTIAL LOGIC DESIGN ICs

Decoders-74x138, 74x139, Encoders-74x148, Priority Encoder, Multiplexers-74x151 MUX, Demultiplexers -74X155, Barrel shifter

# SEQUENTIAL LOGIC DESIGN ICs

8-Bit Latch 74x373, Flip Flops-D Flip Flop74X74, JK Flip Flop74X109, Counters- 74x163 4-Bit Binary Counter, 74X163 as Modulus-N Counter, Universal Shift Register 74x194.

# **TEXT BOOKS:**

1. Linear Integrated Circuits, D. Roy Chowdhury, New Age International (p) Ltd.

2. Op-Amps & Linear ICs, Ramakanth A. Gayakwad, PHI

# **REFERENCES:**

1. Operational Amplifiers & Linear Integrated Circuits, R.F. Coughlin & Fredrick F. Driscoll, PHI.

2.Operational Amplifiers & Linear Integrated Circuits: Theory & Applications, Denton J. Daibey, TMH.

3. Design with Operational Amplifiers & Analog Integrated Circuits, Sergio Franco, McGraw Hill.

4. Digital Fundamentals - Floyd and Jain, Pearson Education.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

LTPC

3 0 0 3

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# III Year - I Semester Professional Course (PC)

# ANTENNAS AND WAVE PROPAGATION

Lectur	e – Tutorial:	3-0-0 Hours	Internal Marks:	30
Credit	S:	3	<b>External Marks:</b>	70
Prere	quisites: Vector Calcul	us, Electromagnetic Fiel	d Theory.	
Course	e Objectives: Students	will be able to:		
• To des	introduce the fundame ign	ntal principles of antenn	a theory and to apply them for the a	nalysis and
• To	understand the radiation	on mechanism of variou	s types of antennas and also to lear	n about the
bas	ic parameters of antenr	as and their measureme	nt	ii about the
• To	understand the wave p	copagation over ground a	and through different layers of atmos	phere
Course	e Outcomes:	<u> </u>		<u>r</u>
Upon s	uccessful completion	of the course, the stude	nt will be able to:	
C01	Understand the basic two wire antennas w	c antenna radiation parar ith current distribution a	neters and radiation mechanism ofsignalysis	ngle wire &
CO2	Quantify the radiati radiation characteris	on fields and power rad tics using a mathematica	iated bydipole antennas and also and also and also and also and approach	nalyze their
CO3	Illustrate the differe and geometrical ana	nt types of arrays and typis	heir radiation patterns with both m	athematical
CO4	<b>CO4</b> Analyze the geometry and working principle of operation of non-resonant radiators and Microstrip antennas with qualitative analysis			
CO5	CO5 Design Microwave antennas and analyze antenna measurements to assess antenna performance			
<b>CO6</b> Identify and distinguish the characteristics of different modes of radio wave propagation in the atmosphere with both qualitative and quantitative treatment				
	L	Course Content	(Syllabus)	
		UNIT 1		

**ANTENNA FUNDAMENTALS**: Introduction, Radiation Mechanism – Single wire, Two wire, Antenna Parameters - Radiation Patterns, Patterns in Principal Planes, Main Lobe and Side Lobes, Beamwidths, Beam Area, Radiation Intensity, Beam Efficiency, Directivity, Gain, Antenna Apertures, Aperture Efficiency, Effective Height, illustrated Problems

**THIN LINEAR WIRE ANTENNAS**: Retarded Potentials, Dipoles, Current Distribution on a thin wire antenna, Radiation from Small Electric Dipole, Quarter wave Monopole and Half-wave Dipole – Directivity, Effective Area. Natural current distributions and patterns of Thin Linear Center-fed Antennas of different lengths.

# UNIT II

**ANTENNA ARRAYS - I:** 2 element arrays – different cases, Principle of Pattern Multiplication, N element Uniform Linear Arrays – Broadside, End-fire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison, Directivity Relations (no derivations). Related Problems



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANTENNA ARRAYS-II: Concept of Scanning Arrays. Binomial Arrays, Effects of Uniform and Non-

Uniform Amplitude Distributions, Design Relations. Arrays with Parasitic Elements, Yagi - Uda Arrays.

#### UNIT III

**NON-RESONANT RADIATORS**: Introduction, Traveling wave radiators – basic concepts, Long wire antennas –field strength calculations and patterns, Helical Antennas – Significance, Geometry, basic properties; Design considerations for monofilar helical antennas in Axial Mode and Normal Modes (Qualitative Treatment)

**MICROSTRIP ANTENNAS**: Introduction, Definition, Basic geometry, Features; Advantages and Limitations, Different Shapes of patch elements, Rectangular Patch Antennas –Geometry and Parameters, Radiation Mechanism of Microstrip antenna. Characteristics of Microstrip antennas, Impact of different parameters on characteristics.

# <u>UNIT IV</u>

**MICROWAVE ANTENNAS:** Paraboloidal Reflectors – Geometry, characteristics, types of feeds, Spill Over, Back Lobes, Aperture Blocking, Cassegrain Feeds. Horn Antennas - Types, Optimum Horns, Design Characteristics of Pyramidal Horns; Antenna Measurements - Directivity and Gain Measurements

**MICROWAVE MEASUREMENTS:** Antenna Measurements – Patterns Required, Set Up, Distance Criterion, Directivity and Gain Measurements (Comparison, Absolute and 3-Antenna Methods

#### UNIT V

**WAVE PROPAGATION-I:** Concepts of Propagation – frequency ranges and types of propagations. Ground Wave Propagation–Characteristics, Parameters, Wave Tilt. Sky Wave Propagation – Formation of Ionospheric Layers and their Characteristics, Mechanism of Reflection and Refraction, Critical Frequency, MUF and Skip Distance, Virtual Height

**WAVE PROPAGATION-II:** Concepts of Propagation – frequency ranges and types of propagation. Fundamental Equation for Free-Space Propagation, Space Wave Propagation– Mechanism, LOS and Radio Horizon. Effective Earth's Radius, Field Strength Calculations, Duct Propagation, Tropospheric Scattering.

# **TEXT BOOKS:**

1. Antennas and Wave Propagation– John D. Kraus and Ronald J. Marhefka, 4th Edition, TMH, 2010.

2. Electromagnetic Waves and Radiating Systems – E.C. Jordan and K.G. Balmain, PHI, 2nd Edition, **REFERENCES:** 

1. Antenna Theory - C.A. Balanis, John Wiley and Sons, 2nd Edition, 2001.

2. Antennas and Wave Propagation – K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.

3. Micro strip Antenna Design Hand Book – Ramesh Garg, Prakash Bhartia, InderBahl, ApisakIttipiboon, Artech House, second edition 2001

4. Transmission and Propagation – E.V.D. Glazier and H.R.L. Lamont, The Services Text Book of Radio, vol. 5, Standard Publishers Distributors, Delhi.

5. Electronic and Radio Engineering – F.E. Terman, McGraw-Hill, 4th Edition, 1955.

6. Antennas – John D. Kraus, McGraw-Hill, 2nd Edition, 1988



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

LTPC

3

3 0 0

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### III Year - I Semester Professional Course (PC)

# **DIGITAL COMMUNICATIONS**

Lecture – Tutorial:	3-0-0 Hours	Internal Marks•	30
Credits:	3	External Marks:	70
<b>Prerequisites:</b> Basics of Con	munications Signals and	Systems and Probability and Rand	lom
processes.	innumententions, orginale and	by stems and rice and rand	iom
Course Objectives:			
• To acquire basic knowledge	e of digital communication sy	stems and its advantages.	
• To analyze various pulse of	ligital and digital modulation	n techniques and their error performation	ance.
• To understand and analyze	various source coding and	channel coding techniques.	
Course Outcomes:			
Upon successful completion	of the course, the studer	t will be able to:	
CO1 Apply the knowled	ge of statistical theory of con	nmunication and understand the basic	s of digital
communication syst	ems.		
CO2 Analyze the perform	nance of digital modulation	techniques for generation, detection	and digital
representation of the	e signal.		
CO3 Explore the probab	bility of error for various d	igital modulation techniques with th	he help of
random variables ar	d filters.		
CO4 Integrate and apply information rate of the second sec	the basics of information the he source.	ory to the communication and compu	te entropy,
CO5 Understand and anal	yze the source coding technic	ques and channel capacity.	
CO6 Compute and analy information over the	ze different error control coo e channel.	ling schemes for reliable transmission	n of digital
	Course Content (Syl	labus)	
	<u>UNIT I</u>		
PULSE DIGITAL MODULA	TION: Elements of digital	communication systems, Advantage	s of digital
communication systems, Eler	nents of PCM: Sampling,	Quantization & Coding, Quantization	tion error,
Companding in PCM systems	. Differential PCM systems	(DPCM), Delta modulation, its Dra	aw backs,
Adaptive delta modulation, Con	nparison of PCM and DM sy	stems, Noise in PCM and DM systems	s.
	<u>UNIT II</u>		

**DIGITAL MODULATION TECHNIQUES:** Introduction, Line Codes, ASK, FSK, PSK, DPSK, DEPSK, QPSK, Coherent detection, Non-coherent detection, M-ary PSK, ASK, FSK.

# UNIT III

**DATA TRANSMISSION:** Base band signal receiver, Probability of error, The optimum filter, Matched filter, Probability of error using matched filter, Coherent reception, Non-coherent detection of FSK, Calculation of error probability of ASK,BPSK,BFSK,QPSK.

# <u>UNIT IV</u>

**INFORMATION THEORY**: Discrete messages, Concept of amount of information and its properties. Average information, Entropy and its properties, Information rate, Mutual information and its properties **SOURCECODING:** Introductions, Advantages, Shannon's theorem, Shanon-Fano coding, Huffman coding, efficiency calculations, channel capacity of discrete and analog Channels, capacity of a Gaussian channel, bandwidth–S/N trade off.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# <u>UNIT V</u>

**LINEAR BLOCKCODES:** Introduction, Matrix description of Linear Block codes, Error detection and error correction capabilities of Linear block codes, Hamming codes, Binary cyclic codes, Algebraic structure, encoding, syndrome calculation, BCH Codes.

**CONVOLUTIONCODES**: Introduction, encoding of convolution codes, time domain approach, transform domain approach. Graphical approach: state, tree and trellis diagram decoding using Viterbi algorithm.

#### **TEXT BOOKS:**

- 1. Digital communications Simon Haykin, John Wiley, 2005
- 2. Principles of Communication Systems H. Taub and D. Schilling, TMH, 2003

#### **REFERENCES:**

1 Digital and Analog Communication Systems - Sam Shanmugam, John Wiley, 2005.

2. Digital Communications – John Proakis, TMH, 1983. Communication Systems- Analog & Digital – Singh & Sapre, TMH, 2004.

3. Modern Analog and Digital Communication - B.P.Lathi, Oxford reprint, 3rd edition, 2004.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# III Year - I Semester Professional Course (PC)

### L T P C 3 0 0 3

# COMPUTER ARCHITECTURE AND ORGANIZATION

Lecture	– Tutorial:	3-0-0 Hours	<b>Internal Marks:</b>	30	
Credits: 3 External Marks: 70					
Prerequi	sites: Digital logic d	esign.			
Course (	Objectives:				
• Un	derstand the princip	oles and the implementati	on of computer arithmetic and ALU	J.	
• Un	derstand the fundation	mentals of different instr	ruction set architectures and their re-	elationship	
to	the CPU design.				
• Un	derstand the operat	ion of modern CPUs inc	cluding interfacing, pipelining, me	mory	
sys	stems and buses.				
• Un	derstand the memor	ry system, I/O organizatio	on.		
• Un	derstand the princip	oles of operation of multip	processor systems		
Course (	<b>Dutcomes:</b>				
Upon su	ccessful completion	n of the course, the stude	ent will be able to:		
CO1	Understand the bas	ics, evolution and archite	ecture of the computer.		
CO2	Analyze the mach	ine instructions and to	write programs and to calculate the	he effective	
	address of an opera	nd by addressing modes.			
CO3	Demonstrate the re	elationship between the	software and the hardware and to	understand	
~~ <b>/</b>	concepts of contro	l unit and all arithmetic o	perations.		
CO4	Analyze the concept	ot of I/O organization and	design how to interface i/o devices	•	
CO5	Demonstrate the r	nemory organization an	d understand the concept of cach	ne mapping	
<u> </u>	techniques.				
CO6	<b>CO6</b> Understand the principles of operation of multiprocessor systems.				
Course Content (Syllabus)					
		<u>UNIT</u> ]	[		
BASIC S'	TRUCTURE OF	COMPUTERS: Compu	ter Types, Functional unit, Basic	Operational	

**BASIC STRUCTURE OF COMPUTERS:** Computer Types, Functional unit, Basic Operational concepts, Bus structures, Software, Performance, The history of computer development.

**REGISTER TRANSFER AND MICRO OPERATIONS** – Register transfer language, Register Transfer, Bus and Memory transfers, Three-state Bus Buffers, Arithmetic Micro operations, Logic Operations, Shift Micro operations, Arithmetic Logic shift unit.

# UNIT II

**BASIC COMPUTER ORGANIZATION AND DESIGN:** Instruction codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory reference instructions, Input Output and Interrupts.

**CENTRAL PROCESSING UNIT:** Introduction, General register organization, Stack organization, Instruction formats, Addressing modes, Data transfer and Manipulation, Program control, reduced Instruction set computer (RISC).

#### <u>UNIT III</u>

MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, Micro program



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# example, Design of control unit.

**COMPUTER ARITHMETIC:** Introduction, Addition and Subtraction, Multiplication algorithms, Division algorithms, Gloating point Arithmetic operations, Decimal Arithmetic Unit, Decimal Arithmetic operations.

# <u>UNIT IV</u>

**INPUT OUTPUT ORGANIZATION:** Peripheral devices, Input-Output Interface, Asynchronous data transfer, Modes of Transfer, priority interrupt, Direct Memory Access (DMA), Input output Processor (IOP), Serial Communication.

# UNIT V

**MEMORY ORGANIZATION:** Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Associative Memory, Cache Memory, Virtual Memory, Memory Management Hardware.

**MULTIPROCESSORS:** Characteristics of multiprocessors, Interconnection structures, Interprocessor Arbitration, Interprocessor communication and synchronization.

### **TEXT BOOKS:**

1. Morris M. Mano, Computer Systems Architecture.3 Ed, Pearson/PHI, 2013

2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th Edition, Tata McGraw Hill, 2002.

# **REFERENCES:**

1. John P.Hayes, 'Computer architecture and Organisation', Tata McGraw-Hill, Third edition, 1998.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# III Year - I Semester Professional Elective (PE)

# L T P C 3 0 0 3

# **BIOMEDICAL ENGINEERING**

Lecture – Tutorial:	3-0-0 Hours	Internal Marks:	30			
Credits:	3	<b>External Marks:</b>	70			
Prerequisites: Basics of	instrumentation.					
Course Objectives:						
•To explain the importa	nce of various sources of bio-el	ectric potentials in human body.				
•To enhance the knowle	edge of various electrodes and the	ransducers used for measuring bioelectri	ical			
potentials.						
<ul> <li>To familiarize mechan</li> </ul>	iisms of cardiovascular and resp	iratory systems and their measuring equi	ipments.			
•To introduce elements	of patient care & monitoring sy	stem and various therapeutic & prosthet	tic devices.			
• To provide fundamen	tals of various diagnostic techni	iques and introduce the concepts of bio-t	telemetry.			
Course Outcomes:						
Upon successful compl	etion of the course, the stud	ent will be able to:				
CO1 Identify various	sources of bio-electric potentia	ls in man-instrumentation system.				
CO2 Interpret how el	ectrodes and transducers are inv	volved in biomedical engineering concep	ots.			
CO3 Outline the anat	omy of Cardiovascular and resp	viratory system and their measuring instr	uments.			
CO4 Summarize the	functionality of patient care &	monitoring equipments used to identify	y the			
malfunction of I	numan body.	and aligned laboratory instruments and	hiomotorials			
used for patient	care.	ces, clinical laboratory instruments and	biomaterials			
CO6 Identify the diff prevention meth	erent diagnostic imaging techni ods.	ques and monitors, recorders and electri	ical accident			
	<b>Course Content (Syl</b>	labus)				
	UNIT	I				
INTRODUCTION TO	BIOMEDICAL INSTRUM	<b>MENTATION:</b> Age of Biomedical E	engineering,			
Development of Biomed	ical Instrumentation, Man Ins	strumentation System, Components of	the Man-			
Instrument System, Physic	iological System of the Body	, Problems Encountered in Measuring	g a Living			
System, Sources of Bioel	ectric Potentials, Muscle, Bioe	electric Potentials, Resting and Action	Potentials,			
Propagation of Action Pot	ential, Bioelectric Potentials-EC	CG, EEG and EMG, Envoked Responses	S.			
	UNITI	I				
<b>ELECTRODES AND</b>	TRANSDUCERS: Introduc	ction, Electrode Theory, Biopotential	Electrodes,			
Examples of Electrodes,	Basic Transducer Principles,	Biochemical Transducers, The Tran	sducer and			
Transduction Principles.	Transduction Principles Active Transducers Passive Transducers Transducers for Biomedical					
Applications. Pulse Sensors, Respiration Sensor, Transducers with Digital Output.						
	UNITI	II				
CARDIOVASCULAR S	SYSTEM AND MEASUREN	<b>—</b> <b>IENTS:</b> The Heart and Cardiovascul	ar System			
Electro Cardiography RI	ood Pressure Measurement M	[easurement of Blood Flow and Cardi	iac Output			
Measurement of Heart So	ind. Plethysmography.	tensitement of proof flow and card	ue Suipui,			
MEASUREMENTS IN	THE RESPIRATORY S	<b>SYSTEM:</b> The Physiology of The R	Respiratory			

System, Tests and Instrumentation for The Mechanics of Breathing, Respiratory Therapy Equipment.

<u>UNIT IV</u>



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**PATIENT CARE AND MONITORING:** Elements of Intensive-Care Monitoring, Patient Monitoring Displays, Diagnosis, Calibration and Repair ability of Patient-Monitoring Equipment, Other Instrumentation for Monitoring Patients, Organization of the Hospital for Patient-Care Monitoring, Pacemakers, Defibrillators, Radio Frequency Applications of Therapeutic use.

**THERAPEUTIC AND PROSTHETIC DEVICES:** Audiometers and Hearing Aids, Myoelectric Arm, Laparoscope, Ophthalmology Instruments, Anatomy of Vision, Electrophysiological Tests, Ophthalmoscope, Tonometer for Eye Pressure Measurement, Diathermy, Clinical Laboratory Instruments, Biomaterials, Stimulators.

# UNIT V

**DIAGNOSTIC TECHNIQUES AND BIO-TELEMETRY:** Principles of Ultrasonic Measurement, Ultrasonic Imaging, Ultrasonic Applications of Therapeutic Uses, Ultrasonic Diagnosis, X-Ray and Radio-Isotope Instrumentations, CAT Scan, Emission Computerized Tomography, MRI, Introduction to Biotelemetry, Physiological Parameters Adaptable to Biotelemetry, The Components of Biotelemetry System, Implantable Units, Telemetry for ECG Measurements during Exercise, Telemetry for Emergency Patient Monitoring.

**MONITORS, RECORDERS AND SHOCK HAZARDS:** Bio potential Amplifiers, Monitors, Recorders, Shock Hazards and Prevention, Physiological Effects and Electrical Current, Shock Hazards from Electrical Equipment, Methods of Accident Prevention, Isolated Power Distribution System.

# **TEXT BOOKS:**

"Bio-Medical Electronics and Instrumentation", Onkar N. Pandey, Rakesh Kumar, Katson Books.
 "Bio-Medical Instrumentation", Cromewell, Wiebell, Pfeiffer.

# **REFERENCES:**

1."Introduction to Bio-Medical Equipment Technology", 4th Edition, Joseph J. Carr, John M. Brown, 2.Pearson Publications. 2. "Hand Book of Bio-Medical Instrumentation", Khandapur. McGrawHill.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# III Year - I Semester Professional Elective (PE)

#### L T P C 3 0 0 3

# **Electromagnetic Interference and Electromagnetic Compatibility**

Lectur	e – Tutorial:	3-0 -0 Hours	Internal Marks:	30	
Credit	s:	3	<b>External Marks:</b>	70	
Prerequisites: EM Waves & Transmission Lines, Wave Propagation, Antennas.					
Cours	e Objectives: Students	will be able to:			
• Fa	miliarize with the fun	damentals that are essen	ntial for the electronics industry in	the field of	
EI	MI and EMC.				
• U	nderstand the lightning	discharge and electrostat	ic discharge.		
• Le	earn electromagnetic en	nissions from systems, ap	ppliances, and circuits.		
• U	nderstand the various te	chniques for electromag	netic compatibility.		
• U	nderstand EMI measure	ement in Anechoic Cham	ber.		
• D	iscuss electromagnetic i	interference measuremen	ts		
Course	e Outcomes:				
Upon s	successful completion	of the course, the stude	nt will be able to:		
CO1	Describe the concept	of electromagnetic interf	erence and sources of EMI.		
CO2	Interpret the concept	of EMC related to produc	ct design & development.		
CO3	Demonstrate various	Open area test site measu	rement techniques.		
CO4	Analyze electromagne	etic emission systems and	d noise from relays and switches.		
CO5	<b>CO5</b> Utilize the techniques like grounding, shielding, bonding, and EMI filters in the usage of cables, connectors, and components.				
CO6	Quantify the various 1	adiated and conducted in	nterference and measurements.		
Course Content (Syllabus)					
		<u>UNIT I</u>			
INTRO	DUCTION, NATURA	AL AND NUCLEAR SO	<b>DURCES OF EMI AND EMC:</b> Co	ncepts of	

EMI and EMC and Definitions, Practical experiences and concerns, Natural and Nuclear sources of EMI, Lightning Discharge: Cloud-to-Ground Discharge, Cloud-to-Cloud Discharge, EM field produced by Lightning, Effects of Lightning Discharge on Transmission Lines, Electro Static Discharge: Charge accumulation and discharge, Model MSD waveform, ESD equivalent circuit, Radiated field from ESD.

### <u>UNIT II</u>

**EMI FROM APPARATUS AND CIRCUITS, OPEN AREA TEST SITES:** Electromagnetic emissions: Systems, Appliances, Noise from Relays and Switches, Nonlinearities in circuits, Cross talk in transmission lines, Transients in power supply lines, Electromagnetic interference (EMI), Open area test sites measurements: Measurement of RE and RS, Open area test site: Stationary EUT, Stationary Antenna, EUT-Antenna separation.

# UNIT III



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**RADIATED AND CONDUCTED INTERFERENCE MEASUREMENTS, ESD:** Anechoic chamber, TEM cell, GH TEM Cell, Characterization of conduction currents/voltages (CM & DM interference), Conducted EM noise on power lines, Conducted EMI from equipment, Immunity to conducted EMI detectors and measurements, ESD, Electrical fast transients/bursts, Electrical surges.

#### UNIT IV

**GROUNDING, SHIELDING, BONDING:** Principles and types of grounding, Shielding, and bonding, Characteristics of filters, **Power line filter design:** common-mode, differential mode, and combined CM & DM filters, EMI suppression cables, EMC connectors, EMC gaskets, Isolation Transforms, Opto-Isolators.

# UNIT V

**CABLES, CONNECTORS, COMPONENTS, AND EMC STANDARDS:** EMI suppression cables, EMC **Connectors:** Pigtail effect, Connector shielding, Connector testing, Intermodulation Interference, **EMC gaskets:** Knitted Wire-mesh gaskets, Wire screen gaskets, Oriented wire mesh, Isolation transformers, Opto-isolators, Standers for EMI/EMC, MIL-STD- 461/462, IEEE /ANSI standards.

# **TEXT BOOKS:**

- 1. Engineering Electromagnetic Compatibility Dr. V.P. Kodali, IEEE Publication, Printed in India by S. Chand & Co. Ltd., New Delhi, 2000.
- 2. Electromagnetic Interference and Compatibility IMPACT series, IIT Delhi, Modules 1-9.

# **REFERENCES:**

- 1. Introduction to Electromagnetic Compatibility Ny, John Wiley, 1992, by C.R. Pal.
- 2. Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons Inc, Newyork, 2009.
- 3. Daryl Gerke and William Kimmel, "EDN"s Designer"s Guide to Electromagnetic Compatibility", Elsevier Science & Technology Books, 2002.
- 4. W Scott Bennett, "Control and Measurement of Unintentional Electromagnetic Radiation", John Wiley & Sons Inc., (Wiley Interscience Series) 1997.
- 5. Dr Kenneth L Kaiser, "The Electromagnetic Compatibility Handbook", CRC Press 2005.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

LTPC

0 0 3 1.5

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# III Year - I Semester Professional Course (PC Lab) Linear & Digital IC Applications Lab

Pract	ical:	0-0-3 Hours	<b>Internal Marks:</b>	15	
Cred	redits: 1.5 External Marks:			35	
Prere	Prerequisites: Circuit Analysis, Basic Electronics.				
Cour	Course Objectives:				
٠	To Gain the practical ha	nds-on experience on 741 Op-Amp ap	plications.		
•	To Gain the practical has	nds-on experience on 555 Timer appli-	cations.		
•	To Gain the practical has	nds-on experience on IC 565 – PLL A	pplications.		
• •		inds-on experience on different digital	10.5.		
Linon	se Outcomes:	of the source the student will be able	. to.		
	Understand the basics of	of $\Omega_{p-Amp}(IC 741)$ timer (IC 555) and	d PL I (IC 565)		
CO1	Design: analyze various	s applications of Opamp 741 IC	d I LL(IC 505).		
CO3	Designs the Multivibrat	tor circuits using IC555 and determine	the frequency of oscill	ation and	
005	time delay.	tor encurs using resss and determine	the frequency of osenia	ation and	
<b>CO4</b>	Understand the characte	eristics of PLL.			
CO5	Design various combination	ational circuits using various Digital In	ntegrated IC's.		
CO6	Design various sequent	ial circuits using various Digital Integr	ated IC's.		
		List of Experiments			
Minim	um Ten Experiments to b	e conducted:			
1.	Introduction - Study Of	IC-741, IC-555 & IC-565			
2.	Op-Amp Applications –	Adder, Sub tractor, Comparator			
3.	Integrator And Differen	tiator Using IC-741 Op-Amp			
4.	Active Filter Applicatio	ns – LPF And HPF(1st Order)			
5.	IC-741 Waveform Gener	rators – Sine, Square And Triangular	Waves		
6.	IC-555 Timer – Monosta	able And Astable Multivibrators			
7.	Schmitt Trigger Circuit	Using IC-741			
8.	IC 565 – PLL Applicatio	ons			
9.	Realization Of All Logic	e Gates			



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

- 10. Design Of 2-To-4 Decoder
- 11. Design Of 8-To-1 Multiplexer
- 12. Design Of Flip Flops (SR,JK,D,T)

### Equipment required:

- 1. RPS
- 2. CRO
- 3. Function Generator
- 4. Multi Meters
- 5. IC Trainer Kits (Optional)
- 6. Bread Boards
- 7. Components:- IC741, IC555, IC565, IC1496, IC723, 7805, 7809, 7912 and other essential components.
- 8. Analog IC Tester



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# III Year - I Semester Professional Course (PC lab)

# L T P C 0 0 3 1.5

# DIGITAL COMMUNICATIONS LAB

Practical:	0-0-3 Hours	Internal Marks:	15
Credits:	1.5 credits	External Marks:	35

**Prerequisites:** Basics of Communications, Signals & Systems and Probability & Random Processes.

**Course Objectives:** 

- To acquire practical knowledge of digital communication systems.
- To implement different modulation and demodulation techniques.
- To analyze the outputs of various digital modulation techniques.
- To perform and interpret various source coding and error control coding techniques.

#### **Course Outcomes:**

### Upon successful completion of the course, the student will be able to:

- **CO1** Understand the Time-Division Multiplexing systems, and verify the output of pulse code modulation and demodulation.
- **CO2** Analyze the output of differential pulse code modulation and demodulation and verify the delta modulation.
- CO3 Analyze the outputs of different digital modulation techniques-FSK, PSK.
- **CO4** Interpret the outputs of DPSK modulation and demodulation.
- **CO5** Analyze the outputs of source encoder and decoder, linear block codes, convolution codes and binary cyclic codes.
- **CO6** Perform and analyze the output of companding circuit.

# List of Experiments: Minimum Twelve Experiments to be conducted

- 1. Time division multiplexing.
- 2. Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Delta modulation.
- 5. Frequency shift keying.
- 6. Phase shift keying.
- 7. Differential phase shift keying.
- 8. Companding
- 9. Source Encoder and Decoder
- 10. Linear Block Code-Encoder and Decoder
- 11. Binary Cyclic Code Encoder and Decoder



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

- 12. Convolution Code Encoder and Decoder
- 13. BCH Codes

# **Equipment Required:**

- 1. RPS 0 30 V.
- 2. CRO 0 20 M Hz.
- 3. Function Generators -0 1 M Hz.
- 4. RF Generators -0 1000 M Hz. /0 100 M Hz.
- 5. Multimeters.
- 6. Lab Experimental kits for Digital Communication Components.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

III Year - I Semester
Skill Course (SC)

#### L T P C 1 0 2 2

### **INTERNET OF THINGS**

Lecture – Practical:	1-2 Hours	<b>Internal Marks:</b>	15	
Credits:2External Marks:35				
Prerequisites: Embedded Syste	ems, Microcontrollers, Operating Syste	ems, Programming.		
<b>Course Objectives:</b>				
• To Understand Smart Ob	jects and IoT architecture.			
• To introduce the concept	of M2M (machine to machine) with n	ecessary protocols.		
• To acquaint with the vari	ous security concepts in IoT architectu	ire.		
• To build simple IOT syst	em using Arduino and Raspberry PI pl	atform.		
• To understand data analy	tics and cloud in the context of IOT.			
Course Outcomes:				
Upon successful completion o	f the course, the student will be able	to:		
<b>CO1</b> Summarize on the terr	n 'internet of things' in different conte	xts and to learn about I	nternet of	
Things with the help o	f Arduino and Raspberry Pi.			
CO2 Comprehend and analy	yze Software defined networks.			
CO3 Understand the commu	inication between microcontroller and	pc using serial commun	nication.	
CO4 Analyze various protoc	cols for IoT.			
CO5 Acquire knowledge to	o interface sensors and actuator with	microcontroller based	Arduino	
platform.				
<b>CO6</b> Apply data analytics a	Apply data analytics and use cloud offerings related to design and develop a solution for a			
given application using APIs and test for errors in the application.				
	Course Content(Syllabus)			
	<u>UNIT I</u>			

**Introduction to IoT:** Introduction to IoT, Architectural Overview, Design principles and needed capabilities, Basics of Networking, M2M and IoT Technology Fundamentals- Devices and gateways, Role of Cloud in IoT, Security aspects in IoT, Elements of IoT Hardware Components- Computing-Arduino, Raspberry Pi.

#### UNIT II

**IOT and M2M:** Software defined networks, Network Function Virtualization, Difference between SDN and NFV for IOT, Basics of IOT system management with NETCONF, YANG-NETCONF, YANG, NETOPEER.

#### <u>UNIT III</u>



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**IoT Application Development:** Communication, IoT Applications, Sensing, Actuation, I/O interfaces. Software Components- Programming API's (using Python/Node.js/Arduino) for Communication Protocols-MQTT, ZigBee, CoAP, UDP, TCP, Bluetooth overview, Bluetooth Key Versions, Bluetooth Low Energy (BLE) Protocol, Bluetooth, Low Energy Architecture, PSoC4 BLE architecture and Component Overview.

# UNIT IV

**BUILDING IOT APPLICATIONS:** Introduction to Arduino IDE – writing code in sketch, compiling-debugging, uploading the file to Arduino board, role of serial monitor. Embedded 'C' Language basics. Interfacing sensors – The working of digital versus analog pins in Arduino platform, interfacing LED, Button, Sensors-DHT, LDR, MQ135 interfacing HC-05(Bluetooth module) Control/handle 220v AC supply – interfacing relay module.

# <u>UNIT V</u>

**Cloud Analytics for IoT Application**: Introduction to cloud computing, Difference between Cloud Computing and Fog Computing: The Next Evolution of Cloud Computing, Role of Cloud Computing in IoT, Connecting IoT to cloud, Cloud Storage for IoT Challenge in integration of IoT with Cloud.

**IoT Case Studies:** IoT case studies and mini projects based on Industrial automation, Transportation, Agriculture, Healthcare, Home Automation.

# **TEXT BOOKS:**

- 1. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1stEdition, McGraw HillEducation, 2017.
- 2. The Definitive Guide to the ARM Cortex-M0 byJosephYiu,2011
- 3. Vijay Madisetti, Arshdeep Bahga, Internet of Things, "A Hands on Approach", University Press, 2015.

# **REFERENCES:**

# Cypress Semiconductor/PSoC4BLE (Bluetooth Low Energy)Product Training Modules.

- 1. Pethuru Raj and AnupamaC.Raman, "The Internet of Things:EnablingTechnologies,Platforms, and Use Cases", CRC Press, 2017.
- 2. Macro Schwartz, "Internet of Things with Arduino", Open Home Automation

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**III Year - II Semester Professional Course (PC)** 

LTPC 3 0 0 3

# MICROPROCESSORS AND MICROCONTROLLERS

Lectu	re – Tutorial:	3-0 Hours	Internal Marks:	30
Credi	its:	3	<b>External Marks:</b>	70
Prere	quisites:Digital Electror	nics, Computer Organization.		
Cour	se Objectives:			
	• Learn concepts of m	icroprocessor, different addressing m	odes and programming	of 8086.
	• Learn assembly lang	guage Programming of 8086.		
	• Understand interfact	ing of 8086, with memory and other p	eripherals.	
	• Study the features of	f 8051 Microcontroller, its instruction	set and also other contro	ollers.
	• Learn Architecture of	letails and Real time applications of A	ARM processor.	
Cour	se Outcomes:			
Upon	successful completion	of the course, the student will be ab	le to:	
CO1	Understand the archite	cture of 8086 microprocessor and their	r operation.	
CO2	Demonstrate programm	ning skills in assembly language for 8	086 microprocessors.	
CO3	Analyze various intersystems.	facing techniques and apply them f	or the design of proce	ssor based
<b>CO4</b>	Interface external perip	herals and I/O devices and program the	ne 8086 microprocessor.	
CO5	Understand the archite skills for 8051.	ecture of 8051 microcontroller and	their operation and pro	ogramming
<b>CO6</b>	Understand the concep	ts of ARM processor.		
Course Content(Syllabus)				
		<u>UNIT I</u>		
8086 N	AICROPROCESSOR:	Evolution of Microprocessor, Feature	s of 8086, Register Orga	anization of
8086,	Architecture, 8086 Pin	Diagram/Description, Physical Me	emory Organization, G	eneral Bus

Operation,8086 System Timing, Minimum Mode And Maximum Mode Configuration.

UNIT II

**INSTRUCTIONS AND PROGRAMMING OF 8086:** Program Development Steps, Assembly Language Program Development Tools, Addressing Modes, Instruction Set, Assembler Directives, Interrupts and Interrupt Service Routine, Interrupt Cycle of 8086, Writing Simple Programs with An Assembler.

# UNIT III

**I/O INTERFACING:**Intel 8255 Programmable Peripheral Interface, Modes of Operation of 8255, Intel 8251 USART Architecture, Intel 8257 DMA Controller,Interfacing Switches And LEDS, Seven Segment Displays, Interfacing A/D And D/A Converters, Stepper Motor Interfacing.

# UNIT-IV

**8051MICROCONTROLLER:**Introduction to Microcontrollers, Architecture of 8051, Signal Description of 8051, Register Set of 8051, PSW, Memory Organization, Interrupts and Stack of 8051, Addressing Modes of 8051, Instruction Set of 8051,Simple Programs Using Assembly Language, Keyboard and Traffic Light Control Interfacing.

# <u>UNIT V</u>

**ARM PROCESSOR**: Introduction to 16/32 Bit Processors, ARM Families, ARM Architecture, ARM Organization, ARM / Thumb Instruction Set, Exception Handling in ARM, Development Tools.

# **TEXT BOOKS:**

- 1. Advanced Microprocessor and Peripherals", A.K Ray, K.M.Bhurchandhi, Tata McGraw Hill Publications, 2000.
- 2. The 8051 Microcontrollers and Embedded systems Using Assembly and C, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; Pearson 2-Edition, 2011.
- 3. Microcontrollers Architecture, Programming, Interfacing and System Design, Rajkamal, Pearson, 2nd Edition.

# **REFERENCES:**

- 1. Microprocessors and Interfacing Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3 rdEdition, 1994.
- 2. The Intel Microprocessors, Barry B.Brey, PHI, 7th Edition, 2006.

#### Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

(1 1)														
	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	-	3	-	2	-	3	-	-	-	2	-	-	-	-
CO2	2	2	-	2	-	-	-	3	-	-	-	-	3	-
CO3	-	3	3	-	2	-	-	-	-	-	3	-	3	-
CO4	3	2	-	2	-	-	-	-	3	-	-	-	-	2
CO5	2	-	-	3	-	-	3	-	-	-	3	2	3	-
CO6	-	2	-	2	-	-	-	-	-	2	-	-	-	-



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### III Year - II Semester Professional Course (PC)

# L T P C 3 0 0 3

# **DIGITAL SIGNAL PROCESSING**

Lecture – Tutorial:		3-0-0 Hours	Internal Marks:	30						
Credits:		3	<b>External Marks:</b>	70						
Prerec	Prerequisites: Mathematics-I, Mathematics-II and Signals & Systems.									
Course Objectives:										
٠	• To analyze the Discrete Time Signals and Systems.									
• To know the importance of FFT algorithm for computation of Discrete Fourier Transform.										
• To understand the various implementations of digital filter structures.										
• To learn the FIR and IIR Filter design procedures.										
• To learn the concepts of DSP Processors.										
Cours	Course Outcomes:									
Upon successful completion of the course, the student will be able to:										
CO1	Understand the representation of different Discrete time signals and apply the difference equations concept in the analysis of Discrete Time Systems.									
CO2	Interpret and explore the concepts of Discrete Fourier Series and Transforms on various discrete time signals									
CO3	Use FFT algorithm for solving DFT of sequences									
CO4	Design the Digital IIR Filters from the analog filters using frequency transformations and FIR filters using windowing techniques									
CO5	Construct the basic structures of Digital FIR and IIR systems.									
CO6	5 Apply the signal processing concepts on programmable Digital Signal Processors.									
		UNIT	<u>T</u>							
INTR	ODUCTION TO I	DIGITAL SIGNAL PRO	<b>CESSING:</b> Discrete time signals &	k sequences,						
Classif	fication of Discrete	e time systems, stability	of LTI systems, Response of LTI	systems to						
arbitrary inputs. Solution of Linear constant coefficient difference equations. Frequency domain										
representation of discrete time signals and systems. Review of Z-transforms, solution of difference										
equation	equations using Z-transforms, System function.									
<u>UNIT II</u>										
DISCRETE FOURIER SERIES AND FOURIER TRANSFORMS: Properties of Discrete										
Fourier series, DFS representation of periodic sequences. Discrete Fourier Transforms, Properties										
of DFT, linear filtering methods based on DFT. Fast Fourier Transforms (FFT) - Radix-2										
decimation in time and decimation in frequency FFT Algorithms, Inverse FF										
DESIGN OF IIK DIGITAL FILTERS & REALIZATIONS: Analog filter approximations –										
Analog and Digital frequency transformations. Pagia realization structures of IID systems Direct										
form_1	form-1 Direct form-2 Transposed forms									
INIT IV										
UNITY										


(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**DESIGN OF FIR DIGITAL FILTERS & REALIZATIONS:** Characteristics of FIR Digital Filters, linear phase FIR filters, Design of FIR Digital Filters using rectangular, triangular, hamming and hanning window techniques and Frequency Sampling technique, Comparison of IIR & FIR filters, Basic realization structures of FIR systems-Direct form, cascade and parallel forms.

#### UNIT V

**INTRODUCTION TO DSP PROCESSORS:** Introduction to programmable DSPs: Multiplier and Multiplier Accumulator, Modified bus structures and memory access schemes in P-DSPs, Multiple Access Memory, Multiported memory, VLIW architecture, Pipelining, Special addressing modes, On-Chip Peripherals. Architecture of TMS320C5X: Introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary Register ALU, Index Register, Block Move Address Register, Parallel Logic Unit, Memory mapped registers, program controller, some flags in the status registers, On- chip memory, On-chip peripherals.

### **TEXT BOOKS :**

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G.Manolakis, Pearson Education /PHI, 2007.
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PHI.
- 3. Digital Signal Processors Architecture, Programming and Applications, B.Venkataramani, M.Bhaskar, TATA McGraw Hill, 2002.
- 4. Digital Signal Processing K Raja Rajeswari, I.K. International Publishing House.

### **REFERENCE BOOKS:**

- 1. Digital Signal Processing: Andreas Antoniou, TATA McGraw Hill, 2006.
- 2. Digital Signal Processing: MH Hayes, Schaum's Outlines, TATA Mc-Graw Hill, 2007.
- 3. DSP Primer C. Britton Rorabaugh, Tata McGraw Hill, 2005.
- 4. Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling, Sandra L. Harris, Thomson, 2007.
- 5. Digital Signal Processing Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006.
- 6. Digital Signal Processing P.Ramesh babu, Sci Tech publications.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - DESCARENTATENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Professional Course (PC) 3 0 0 3

#### VLSI DESIGN

Lecture	e – Tutorial:	3-0 Hours	Internal Marks:	30
Credits	•	3	<b>External Marks:</b>	70
Prerequ	isites: Basic electrica	l properties of MOSFET, Digital electron	ic circuits.	
Course	<b>Objectives:</b>			
<ul> <li>U</li> <li>el</li> <li>L</li> <li>N</li> </ul>	se mathematical me ectronics circuits, ind earn the various fat IOSFET.	thods and circuit analysis models in cluding logic components and their int prication steps of IC and come acro	analysis of CMOS digita erconnects. ss basic electrical prope	al erties of
• A in	pply CMOS technolog terconnect and to verif	y-specific layout rules in the placement a y the functionality, timing, power and par	and routing of transistors a asitic effects.	nd
• U	nderstand the design	for testability.		
• K	now the FPGA archi	tecture and design flow, CPLD and sy	stem on chip.	
• H m	ighlight the circuit des echanism.	ign issues in the context of VLSI techno	logy, power calculations a	and clock
Course	Outcomes:			
Upon su	accessful completion	of the course, the student will be at	ole to:	
CO1	Demonstrate a clea	r understanding of CMOS fabrication	flow and technology scal	ling.
CO2	Apply the design R	ules and draw layout of a given logic o	circuit.	
CO3	Understand the sca circuits in silicon.	ling factors determining the characte	eristics and performance	of MOS
<b>CO4</b>	Understand the swi	tch logic and gate logic.		
CO5	Apply the concepts	in testing which can help them design	a better yield in IC desig	gn.
CO6	Analyze the FPGA a	architecture, design flow and CPLD arc	hitecture.	
		<b>Course Content (Syllabus)</b>		
		<u>UNIT I</u>		
INTRO	<b>DUCTION AND B</b>	ASIC ELECTRICAL PROPERTIE	S OF MOS CIRCUIT	S: VLSI
Design	Flow, Introduction to	o IC technology, Fabrication process:	nMOS, pMOS and CM	IOS. Ids
versus V	Vds Relationships, A	spects of MOS transistor Threshold	Voltage, MOS transisto	or Trans,
Output (	Conductance and Fig	ure of Merit.		

nMOS Inverter, Pull-up to Pull-down Ratio for nMOS inverter driven by another nMOS inverter, and through one or more pass transistors. Alternative forms of pull-up, The CMOS Inverter, Latchup in CMOS circuits, Bi-CMOS Inverter, Comparison between CMOS and BiCMOS technology.

#### UNIT II

**DESIGN RULES, STICK AND LAYOUT DIAGRAMS:** MOS Layers, Stick Diagrams, Design Rules and Layout, Layout Diagrams for MOS circuits.

**BASIC CIRCUIT CONCEPTS:** Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, some area Capacitance Calculations, The Delay Unit, Inverter Delays, driving large capacitive loads, Propagation Delays, Wiring Capacitances, Choice of layers.

### UNIT III

**SCALING OF MOS CIRCUITS:** Scaling models and scaling factors, Scaling factors for device parameters, Limitations of scaling, Limits due to sub threshold currents, Limits on logic levels and supply voltage due to noise and current density. Switch logic, Gate logic.

### UNIT IV

**INTRODUCTION TO TESTING:** Testing Philosophy, Role of Testing, VLSI Testing, VLSI Technology Trends affecting Testing, Types of Testing, Fault Modeling: Defects, Errors and Faults, Functional Versus Structural Testing, Levels of Fault Models, Single Stuck-at Fault.

#### <u>UNIT V</u>

**FPGA DESIGN:** FPGA design flow, Basic FPGA architecture, FPGA Technologies, Introduction to FPGA Families, CPLD.

**INTRODUCTION TO ADVANCED TECHNOLOGIES:** Short channel effects, High–k, Metal Gate Technology, Fin-FET, TFET.

#### **TEXT BOOKS:**

1. Essentials of VLSI Circuits and Systems – Kamran Eshraghian, Douglas and A.Pucknell and Sholeh Eshraghian, Prentice-Hall of India Private Limited, 2005 Edition.

2. Design of Analog CMOS Integrated Circuits by Behzad Razavi, McGraw Hill, 2003

3. Digital Integrated Circuits, Jan M.Rabaey, Anantha Chandrakasan and Borivoje Nikolic, 2nd edition, 2016.

#### **REFERENCES:**

1. "Introduction to VLSI Circuits and Systems", John P.Uyemura, John Wiley&Sons, reprint 2009.

2. Integrated Nano electronics: Nano scale CMOS, Post-CMOS and Allied Nano technologies Vinod Kumar Khanna, Springer India, 1stedition, 2016.

3. Fin-FETs and other multi-gate transistors, Colinge JP, Editor NewYork, Springer, 2008.

## Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and ProgramSpecific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

$(\mathbf{I} - \mathbf{L})$														
	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	-	-	-	3	3	-	-	-	-	-	-	3	2
CO2	-	-	3	2	-	-	3	-	-	-	-	3	-	-
CO3	3	3	2	-	-	-	-	2	-	-	3	-	3	-
CO4	-	2	-	-	3	-	-	3	-	3	-	-	-	2
CO5	3	2	3	-	-	-	-	-	3	-	-	-	3	-
CO6	2	3	3	-	-	-	-	-	-	-	-	3	-	-



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

III Year - II Semester Professional Elective (PE)

## L T P C 3 0 0 3

## **OPTICAL COMMUNICATIONS**

Lectur	e – Tutorial:	3-0 -0 Hours	<b>Internal Marks:</b>	30
Credit	s:	3	<b>External Marks:</b>	70
Prerec	uisites: Engineering Pl	nysics, Analog Communicati	ion, Digital Communication.	
Course	<b>Objectives:</b> Students w	vill be able to:		
•	Analyze and design of	ptical communication and fi	ber optic sensor systems.	
•	Understand the proper and types of fiber mat	rties of optical fiber that affe erials with their properties a	ect the performance of a communed the losses that occur in fibers	nication link
•	Analyze the principles	s of single and multi-mode o	ptical fibers and their characteria	stics.
•	Working with semico	onductor lasers, and differen	tiating direct modulation and ex	xternal
	electro-optic modulati	on.	-	
•	Analyze the operation	n of LEDs, laser diodes, an	nd PIN photodetectors (spectral	l properties,
	bandwidth, and circui	ts) and apply them in optical	l systems.	
•	Design the functional	ity of each of the component	ts that comprise a fiber optic con	nmunication
	system, the models of	analog and digital receivers		
Course	e Outcomes:			
Upon s	successful completion	of the course, the student <b>v</b>	vill be able to:	
CO1	Understand the basic s	structure and operation of op	otical fiber communication system	m.
CO2	Design the optical fibe	ers using various materials a	nd illustrate various attenuation	losses.
CO3	Illustrate various disp	ersion models and splicing to	echniques.	
CO4	Analyze different type	es of optical sources and pho	otodetectors.	
CO5	Evaluate the power co	oupled intoStep-Index and G	raded-Index optical fibers.	
<b>CO6</b>	Estimate the optical li	nk power and Rise time bud	gets.	
		Course Content(Syl	labus)	
		<u>UNIT I</u>		

**OVERVIEW OF OPTICAL FIBER COMMUNICATION:** Historical development, The general system, advantages, disadvantages, and applications of optical fiber communications, **Optical Fiber Waveguides** - Introduction, Ray theory transmission, **Basic Optical Laws** - Refractive Index, Reflection and Refraction, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays.

**CYLINDRICAL FIBERS:** Modes, V-number, Mode coupling, Step Index fibers, Graded Index fibers, **Single Mode Fibers -** Cut off wavelength, Mode Field Diameter, Effective Refractive Index, Related problems **Fiber Materials -** Glass, Halide, Active glass, Chalgenide (or *Chalcogenide*) glass, Plastic optical fibers.

#### UNIT II



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**FIBER LOSSES:** Attenuation, Absorption, Scattering, and Bending losses, Core and Cladding losses, Information capacity determination, Group delay.

**TYPES OF DISPERSION:** Material dispersion, Wave-guide dispersion, Polarization-Mode dispersion, Intermodal dispersion, Pulse broadening in Graded index fiber, Related problems.

### UNIT III

**OPTICAL FIBER CONNECTORS:** Connector types, Single-mode fiber connectors, Connector return loss, Fiber Splicing-Splicing techniques, Splicing single-mode fibers,

FIBER ALIGNMENT AND JOINT LOSS: Multimode fiber joints, single-mode fiber joints.

## UNIT IV

**OPTICAL SOURCES :** LEDs, Structures, Materials, Quantum efficiency, Power, Modulation, Power bandwidth product, **Laser Diodes**- Types, Fabry Perot resonator cavity Laser diode, Distributed feedback (DFB) Laser diode, External quantum efficiency, Reliability of LED & ILD,

**OPTICAL DETECTORS:** Physical principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Comparison of Photodetectors, Related problems.

## <u>UNIT V</u>

**OPTICAL RECEIVER OPERATION:** Fundamental receiver operation, Digital signal transmission, Error sources in optical pulse detection mechanism, Receiver configuration, Digital receiver performance, Probability of Error, Quantum limit, Analog receivers, **Source to Fiber Power Launching** - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Laser diode to fiber coupling.

**OPTICAL SYSTEM DESIGN: Point-to-point links-** Component choice and considerations, Link power budget with examples, Rise time budget with examples, Line coding in Optical links, WDM, Necessity, Principles, Measurement of Attenuation and Dispersion, Eye pattern.

## **TEXT BOOKS:**

1. Optical Fiber Communications - Gerd Keiser, Mc Graw-Hill International edition, 3rd Edition, 2000.

2. Optical Fiber Communications - John M. Senior, PHI, 2nd Edition, 2002.

## **REFERENCES:**

- 1. Fiber Optic Communications D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005.
- 2. Text Book on Optical Fiber Communication and its Applications S.C.Gupta, PHI, 2005.
- 3. Fiber Optic Communication Systems Govind P. Agarwal, John Wiley, 3rd Edition, 2004.
- 4. Fiber Optic Communications Joseph C. Palais, 4th Edition, Pearson Education, 2004.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## III Year - II Semester

#### L T P C 3 0 0 3

**Professional Elective (PE)** 

## **EMBEDDED SYSTEMS**

		ENIDEDDED S.							
Lecture	e – Tutorial:	3-0-0 Hours	<b>Internal Marks:</b>	30					
Credits	:	3	<b>External Marks:</b>	70					
Prerequ	uisites: Computer Arch	tecture And Organizatio	n, Microprocessors And Microcontr	ollers					
Course	<b>Objectives:</b>								
• ]	Introduce the basic cond	epts of embedded syster	n.						
• 1	Understand the various	elements of embedded h	ardware and their design principles.						
• ]	Design and develop firm	nware for embedded syst	ems.						
• ]	Familiarize with differe	nt IDEs for firmware dev	velopment.						
• ]	Implement the embedde	d systems and discuss th	e testing tools.						
Course	Outcomes:								
Upon su	accessful completion o	f the course, the studen	t will be able to:						
CO1	Understand the basic of	concepts of embedded sy	stem.						
CO2	Design an approach of	an embedded hardware.							
CO3	Design various approa	ches for embedded firm	ware.						
<b>CO4</b>	Design RTOS and dis	cuss fundamental issues	in hardware software co design.						
CO5	Understand how to int	egrate hardware and firm	ware of embedded system.						
CO6	Understand the variou	s tools used in implemen	ting the embedded systems						
		Course Content(S	Syllabus)						
		<u>UNIT I</u>							
INTRO	NTRODUCTION: Embedded system-Definition history of embedded systems classification of								

**INTRODUCTION:** Embedded system-Definition, history of embedded systems, classification of embedded systems, major application areas of embedded systems, purpose of embedded systems, the typical embedded system-core of the embedded system, Memory, Sensors and Actuators, Communication Interface, Embedded firmware, Characteristics of an embedded system, Quality attributes of embedded systems, Application-specific and Domain-Specific examples of an embedded system.

### UNIT II

**EMBEDDED HARDWARE DESIGN:** Analog and digital electronic components, I/O types and examples, Serial communication devices, Parallel device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock.

## <u>UNIT III</u>

**EMBEDDED FIRMWARE DESIGN:** Embedded Firmware design approaches, Embedded Firmware development languages, ISR concept, Interrupt sources, Interrupt servicing mechanism, Multiple interrupts, DMA, Device driver programming, Concepts of C versus Embedded C and Compiler versus Cross-compiler.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## UNIT IV

**REAL TIME OPERATING SYSTEM:** Operating system basics, Types of operating systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling, Task communication, Task synchronization. **HARDWARE SOFTWARE CO-DESIGN:** Fundamental Issues in Hardware Software Co- Design, Computational models in embedded design, Hardware software Trade-offs, Integration of Hardware and Firmware.

## <u>UNIT V</u>

**EMBEDDED SYSTEM DEVELOPMENT, IMPLEMENTATION AND TESTING:** The integrated development environment, Types of files generated on cross-compilation, De- assembler/ De-compiler, Simulators, Emulators and Debugging, Target hardware debugging, Embedded Software development process and tools, Interpreters, Compilers and Linkers, debugging tools, Quality assurance and testing o the design, Testing on host machine, Simulators, Laboratory Tools.

**Case Study:** digital camera hardware and software architecture, embedded systems in automobile, embedded system for a smart card, mobile phone software for key inputs.

### **TEXT BOOKS:**

- 1. Embedded Systems Architecture- By Tammy Noergaard, Elsevier Publications, 2013.
- 2. Embedded Systems-By Shibu.K.V-Tata McGraw Hill Education Private Limited, 2013.

### **REFERENCES:**

- 1. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley Publications, 2013.
- 2. Embedded Systems-Lyla B.Das-Pearson Publications, 2013.

#### III Year - II Semester Professional Elective (PE)

#### L T P C 3 0 0 3

		RADAR SY	STEMS		
Lecture -	- Tutorial:	3-0 Hours		<b>Internal Marks:</b>	30
<b>Credits:</b>		3		<b>External Marks:</b>	70
Prerequis	sites: Analog Com	munication, Digital Co	mmunication, e	lectromagnetic theory a	nd
Antennas	and wave propagat	ion.			
Course O	bjectives:				
•	To understand the	basic concepts, applica	tions, frequenc	ies used and types of RA	ADARs.
•	To study CW rada	r and FM-CW radar and	d their applicati	ons.	
•	To gain knowledge	e about the basics of RA	ADAR and its p	arameters.	
•	To understand the	concepts of Doppler ef	fect and its app	lication to pulse Dopple	er radar.
•	To learn about diff	Ferent types of Radars a	and their applica	tions.	
Course O	utcomes:				
Upon suc	cessful completion	n of the course, the stu	ıdent will be al	ole to:	
CO1	Acquire the know	ledge of Radar system	to apply and to	design required parameters	eters for a
	RADAR system a	and to derive the RAD	AR Equation.		
CO2	Analyze the wor applications.	king principle of CW	and Frequent	cy Modulated Radar a	and their
CO3	Understand the parameters and the	principle of MTI and neir limitations.	pulse Doppler	Radar and analyze M	TI Radar
CO4	Acquire the know RADAR.	vledge of phase array a	antennas used f	for transmission and rec	ception in
CO5	Analyze differen receivers and disp	t types of tracking Rablays.	ADARs and to	study different types	of Radar
CO6	Explore the dete	ction of Radar signal	ls in the prese	ence of noise and ana	alyze the
	performance of m	natched filter receiver a	nd its character	istics.	
		<b>Course Conten</b>	t (Syllabus)		
		UNI	ГТ		

**BASICS OF RADAR**: Introduction, Maximum Unambiguous Range, simple Radar range Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Illustrative Problems.

**RADAR EQUATION :** Modified Radar Range Equation, SNR, probability of detection, probability of False Alarm, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets - sphere, cone-sphere), Creeping Wave, Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment), Illustrative Problems.

### UNIT II

**CW AND FREQUENCY MODULATED RADAR :** Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar. Illustrative Problems.

**FM-CW RADAR:** Range and Doppler Measurement, Block Diagram and Characteristics, FM-CW altimeter, Multiple Frequency CW Radar.

#### <u>UNIT III</u>

**MTI AND PULSE DOPPLER RADAR:** Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Nth Cancellation Staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler Radar.

#### <u>UNIT IV</u>

**TRACKING RADAR:** Tracking with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking Radar – Amplitude Comparison Mono pulse (one- and two- coordinates), Phase Comparison Mono pulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

#### <u>UNIT V</u>

**DETECTION OF RADAR SIGNALS IN NOISE :** Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation detection and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise, Noise Figure and Noise Temperature.

**RADAR TRANSMITTERS & RECEIVERS** –Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers, Series versus parallel feeds, Applications, Advantages and Limitations. Radomes.

### **TEXT BOOKS:**

1. Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2nd Ed., 2007.

#### **REFERENCES:**

1. Radar: Principles, Technology, Applications – Byron Edde, Pearson Education, 2004.

2. Radar Principles – Peebles, Jr., P.Z., Wiley, New York, 1998.

3. Principles of Modern Radar: Basic Principles – Mark A. Richards, James A. Scheer, William A. Holm, Yesdee, 2013

4. Radar Engineering – GSN Raju, IK International.

#### Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

(1 1)														
	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	2	-	-	-	-	-	-	2	-	-	-	2
CO2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO3	2	2	2	-	-	-	-	-	-	2	-	-	-	3
CO4	3	2	2	-	-	-	-	-	-	3	2	3	3	3
CO5	3	2	2	-	-	-	-	-	-	2	-	-	3	2
CO6	3	2	2	-	-	-	-	-	-	2	-	-	-	-

### **III Year - I Semester Professional Course (PC Lab)**

## VI CI D

#### LTPC 0 0 3 1.5

	v LSI Desiş	gn Lab	
Lecture-Practical:	0-3 Hours	Internal Marks:	15
Credits:	1.5	<b>External Marks:</b>	35
Prerequisites: CMOS techno	logy, Digital Electronic	Circuits.	
<b>Course Objectives:</b>			
• To analyze digital syste	m design blocks using V	HDL fundamentals.	
• To understand the physical statement of th	ics and modeling of MO	SFET.	
• To understand fabrication	on steps and layout of C	MOS integrated circuits.	
• To analyze the perform	ance of CMOS inverter a	and various circuits.	
To design CMOS circuit	its using various design 1	rules.	
<b>Course Outcomes:</b>			
Upon successful completion	of the course, the stude	ent will be able to:	
CO1 Design CMOS logic cir	cuits.		
CO2 Simulate the circuit with	h tanner EDA tools.		
<b>CO3</b> Apply the design rules t	to get the layout of the cir	cuits.	
CO4 Apply lambda based de	sign rules and solve the pr	roblem in the design of CMOS logic cir	rcuits.
CO5 Design various gates, ad	lders, encoders and flip-f	lops.	
CO6 Understand various des	ign rules to obtain the CN	IOS logic circuits.	
	LAB EXPERIMENTS	5	
Back-end Level Design and Im	plementation (Any Ten	Experiments)	
Note: The students need to des	sign the following experi-	iments at schematic level using CMO	S logic and
verify the functionality. Further	students need to draw the	e corresponding layout and verify the f	unctionality
including parasites. Available st	ate of the art technology	libraries can be used while simulating	the designs
using Industry standard EDA To	ols.		

- 1. Implementation of an inverter using CMOS logic.
- 2. Implementation of the universal gates using CMOS logic.
- 3. Implementation XOR gate using CMOS logic.
- 4. Full Adder using CMOS logic.
- 5. Full subtractor using CMOS logic.
- 6. Implementation of SR latch using CMOS logic.
- 7. Implementation of D latch using CMOS logic.
- 8. Design of Decoder using CMOS logic.
- 9. Design of Static RAM cell using CMOS logic.
- 10. Design of Differential Amplifier using CMOS logic.
- 11. Design of flip flop using CMOS logic.

#### EDA Tools/Hardware Required:

- Mentor Graphics Software / Cadence/Synopsys/Tanner or Equivalent Industry Standard/CAD Tool. •
- Desktop computer with appropriate Operating System that supports the EDA tools.

## Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
	3	-	-	3	-	-	3	-	-	-	-	-	3	-
CO1														
CO2	-	2	-	2	-	-	-	3	-	2	-	-	•	2
CO3	-	-	3	-	-	2	-	-	2	-	3	3	-	-
CO4	2	-	-	-	-	-	-	-	-	3	-	-	2	-
CO5	-	2	-	2	3	-	2	-	-	-	2	3	-	-
CO6	-	3	-	-	-	-	-	-	-	-		-	3	-

## MICROPROCESSOR AND MICROCONTROLLERS LAB

Lectu	re-Practical:	0-3 Hours	Internal Marks:	15
Cred	its:	1.5	<b>External Marks:</b>	35
Prere	equisites: CMOS technol	ogy, Digital Electronic Circuits.		
Cour	se Objectives:			
•	To develop assembly la interfacing various perip	anguage program skills and providing herals to 8086 microprocessor and 80	g the basic knowledge 51 Microcontroller.	of
Cour	se Outcomes:			
Upon	successful completion of	of the course, the student will be able	e to:	
CO1	Develop the assembly 1	anguage Programmes for 8086 Microj	processor	
CO2	Use the cross compiler	such as MASM to verify and simulate	the 8086 codes	
CO3	Develop the assembly I	anguage Programmes for 8051 Microo	controller.	
CO4	Use Kell to verify and s	imulate the 8051 Programming	nnligations	
C05	Ose various internacing	circuits for Rear world and practical F		
000	Analyze the performance	ce of various interface techniques for t	ne computing circuits.	
PART	<b>A</b> · (Minimum of 5 Expe	riments has to be performed) 8086 As	sembly Language Progr	ammino
1	Multi Ryte Arithmetic O	operations	semory Language 110gr	amming
2	Programs for 16-bit Add	lition of n-BCD numbers		
3	String Instructions (Inse	rting Deleting)		
4	Program for Sorting an	Array		
5	Program for Factorial of	given N-Numbers		
6	Sum of Squares/Cubes of	f a given N-Numbers		
PART	<b>-B</b> : (Minimum of 5 Expe	riments has to be performed) 8051 As	sembly Language Progr	amming
1.	Finding Number of 1's a	and Number of 0's in a given 8-bit Nu	mber.	
2.	Addition Of Even Numb	pers From A Given Array.		
3.	Average of N-Numbers.	, j		
4.	Ascending / Descending	order.		
5.	Serial Communication.			
6.	Square Wave Generator	using Timers.		
PAR	<b>Γ-C:</b> (Minimum of 2 Exp	eriments has to be performed) Conduc	t the following experim	ents using
interf	ace devices with 8086 and	d 8051		-
1.	Interfacing ADC to 808	6 / 8051.		
2.	Interfacing DAC to 8080	5 / 8051.		
3.	Interfacing Stepper Mot	or to 8086 / 8051.		
4.	Interfacing Traffic Light	Controller to 8051.		
Equip	ment Required:			
1. Re	gulated Power supplies			
2. An	alog/Digital Storage Osci	lloscopes		
3.808	36 Microprocessor kits			
4. 805	51 microcontroller kits			

- 5. ADC module, DAC module
- 6. Stepper motor module
- 7. Traffic Light Controller.
- 9. Digital Multi-meters

## Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	2	3	-	2	-	-	-	-	-	3	-	-	-	3
CO2	-	3	-	2	-	-	-	-	-	2	-	-	-	2
CO3	3	-	3	-	3	-	-	-	-	-	2	-	-	-
CO4	-	3	3	-	-	2	-	-	2	-	-	-	2	3
CO5	2	-	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	2	-	2	-	-	-	3	-	2	-	-	3	-



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### III Year - I Semester Professional Course (PC Lab)

### L T P C 0 0 3 1.5

## DIGITAL SIGNAL PROCESSING LABORATORY

Lectur	re-Practical:	0-0-3 Hours	Internal Marks:	15
Credit	ts:	1.5	<b>External Marks:</b>	35
Prerec	quisites: Signals an	d Systems and Basic Simu	ulation Lab	
Cours	e Objectives:			
• • •	To acquire the kn on them using MA To understand the Transforms. To analyze the fre To perform decim	owledge of generation of ATLAB tool concept and importance quency response of IIR an ation and interpolation pro	various signals and perform differe of Discrete Fourier Transforms and d FIR digital filters. ocesses on a sequence.	nt operations Fast Fourier
Cours	e Outcomes:			
Upon	successful comple	tion of the course, the stu	ident will be able to:	
CO1	Make use of a sort operations on the	ftware tool to generate van n.	rious discrete time signals and perf	orm different
CO2	Examine Linear a	nd Circular Convolution of	of discrete time signals.	
CO3	Evaluate the Disc	rete Fourier Transform of	a signal and its inverse.	
CO4	Analyze the Freque Approximations.	lency response of IIR Filt	ers using Butterworth and Chebysh	ev
CO5	Analyze the Frequ	ency Response of FIR file	ters using windowing techniques.	
CO6	Illustrate the Deci	mation and Interpolation	processes on a given Sequence.	
		LIST OF EXP	ERIMENTS	

# Note: All the following experiments are to be simulated using MATLAB or equivalent software.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

- 1. Generation of discrete time signals.
- 2. Addition of sinusoidal signals.
- 3. Computation of Linear Convolution.
- 4. Computation of Circular Convolution.
- 5. Computation of DFT and IDFT.
- 6. Computation of N-Point FFT.
- 7. Frequency response of IIR low pass and high pass Butterworth filter.
- 8. Frequency response of IIR low pass and high pass Chebyshev filter.
- 9. Frequency response of FIR low pass and high pass filter using Rectangular window.

10. Frequency response of FIR low pass and high pass filter using Triangular window.

## Experiments to be conducted beyond the syllabus

1. Implementation of Decimation and Interpolation on a sequence/signal.

2. Verification of Linear Convolution and Circular Convolution of sequences using Code Composer Studio (CCS).

#### III Year - II Semester Skill Course (SC)

L T P C 1 0 2 2

#### SENSORS AND INSTRUMENTATION

(Skill Course)

Lecture-Practical:	1-2	<b>Internal Marks:</b>	15
Credits:	2	<b>External Marks:</b>	35

**Prerequisites:** Basic electrical and electronics engineering, basics of measuring systems and method of measurement.

#### **Course Objectives:**

- To make students familiar with the constructions and working principle of different types of sensors and transducers.
- To make students aware about the measuring instruments and the methods of measurement and the use of different transducers.
- To make students aware of the latest trends in sensor technology.
- To make the students identify the necessary sensor for various applications.

#### **Course Outcomes:**

#### Upon successful completion of the course, the student will be able to:

- CO1 Understanding the concept of measurement system
- CO2 Identifying concepts in common methods for converting a physical parameter into an electrical quantity.
- CO3 Applying concepts in advances in transducers for various engineering applications.
- CO4 Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc.
- CO5 Applying knowledge on advanced sensor which related to detect the enhanced parameters using sensors.
- CO6 Set up testing strategies to evaluate performance characteristics of different types of sensors and transducers and develop professional skills in acquiring and applying the knowledge outside the classroom through design of a real-life instrumentation system.

#### **Course Content (Syllabus)**

#### <u>UNIT I</u>

**INTRODUCTION TO INSTRUMENTATION:** Functional elements of the Measurement system, Static and dynamic characteristics, Errors in measurements - systematic, gross, random; Loading effect, Calibration.

#### UNIT II

**Transducers-1:** Introduction to transducers, Classification, Characteristics, working principles of strain gauge, Displacement measurement using Potentiometer and LVDT, Temperature measurement using thermocouple, RTD and thermistor.

#### <u>UNIT III</u>

**Transducers-2:** Piezoelectric transducer for force and pressure measurement, Speed measurement, Capacitive transducer and Inductive transducers.

#### <u>UNIT IV</u>

#### SENSORS-1:

Introduction to sensors, Light sensors using LDR and photo diode, Level and distance measurement using Ultrasonic sensor, Accelerometer.

#### UNIT V

**SENSORS-2:** Proximity sensor, Humidity sensor, Analog, soil moisture sensor, Digital data acquisition, Single channel, multi-channel data acquisition, PC based data acquisition.

## Experiments:

- 1. Strain gauge.
- 2. Linear Displacement using LVDT
- 3. Temperature calibration using thermocouple.
- 4. Pressure measurement.
- 5. Speed measurement.
- 6. Capacitance trainer module.
- 7. Light sensor.
- 8. Distance measurement using ultrasonic sensor.
- 9. Accelerometer.
- 10. Proximity sensor.
- 11. Humidity measurement.
- 12. Soil moisture sensor.

#### **TEXT BOOKS:**

Doebelin, E.O., "Measurement systems – Application and Design", McGraw Hill.
 D. Patranabis, "Sensors and Transducers", PHI, 2nd Edition.

#### **REFERENCES:**

1. Instrumentation Measurement & Analysis, by B.C. Nakra, K.K. Choudry, (TMH).

2. Transducers and Instrumentation, by D.V.S. Murthy (PHI).

## Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

	<b>J v v y Z</b> = 1	lun	,5 11	isii)										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	-	-	3	-	-	-	-	-	-	-	3	-
CO2	-	3	-	-	3	-	-	3	-	3	-	-	-	-
CO3	2	-	-	-	-	-	-	-	3	-	-	3	-	-
CO4	-	-	-	2	-	3	-	-	-	-	-	-	3	-
CO5	3	3	-	2	-	-	3	-	-	-	2	-	-	2
CO6	3	-	3	-	-	-	-	-	-	-	-	-	2	-



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR FOURTH YEAR B.TECH PROGRAMME-NRIA-20 Reg IV YEAR I SEMESTER

Sl. No	Course Code		Title of the Course	Sch (1	ieme Perio	of In ds Pe	struction r Week)	Exa	Scheme minatior Marks	of n (Max )	No. of
				L	Т	Р	Total	CIA	SEA	Total	Credits
		i)	Low Power VLSI Design								
1	PE III	ii)	Data Communications & Computer Networks	3	-	-	3	30	70	100	3
		iii)	Electronic Measurements and Instrumentation								
2	PE IV	i) ii)	Digital Image Processing Digital IC Design using CMOS	3	-	-	3	30	70	100	3
		iii)	Satellite Communications								
3	PE V	i) ii) iii)	Soft Computing skills Machine learning Cellular Mobile Communications	3	-	-	3	30	70	100	3
4	OE		<b>Open Elective - III</b>	3	-	-	3	30	70	100	3
5	OE		<b>Open Elective - IV</b>	3	-	-	3	30	70	100	3
6	HSE	τ	Jniversal Human Values	3	-	-	3	30	70	100	3
7	SC*	Micro	wave & RF Communication Laboratory	1	-	2	3	15	35	50	2
8	8MCEmployability Skills				-	-	2	30	70	100	0
Ind aft	Industrial / Research Internship(Mandatory) after third year to be evaluated during VII semester				-	-	2	-	50	50	2
	Total				-	2	25	225	575	800	22
	Honors/M distributio	linor C n can b	ourses(the hours be 3-0-2 or 3-1-0)	4	-	_	4	30	70	100	4



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR FOURTH YEAR B.TECH PROGRAMME- NRIA-20 Reg IV YEAR II SEMESTER

SI.	Course	Title of the Course	Sch (P	eme o eriods	of Ins s Per	truction Week)	Exa	Scheme minatio Marks	of n (Max )	No. of Credits
110	Coue		L	Т	Р	Total	CIA	SEA	Total	Creans
1		Major Project work	-	I	-	-	40	60	100	8
2		Community Service Project	-	I	-	I	-	50	50	4
Total										12



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **IV Year - I Semester**

LTPC 3003

## **PROFESSIONAL ELECTIVE - III**

LOW POWER VLSI DESIGN Lecture – Tutorial: 3-0 Hours **Internal Marks:** 30 **Credits:** 3 **External Marks:** 70 Prerequisites: VLSI Design, Scaling Techniques, Digital Logic Design, Knowledge of Digital ICs **Course Objectives:** The students will be able to Understand the need for low power in VLSI Categorize various dissipation types in CMOS Infer the impact of power on system performance Estimate about different Design Approaches Exemplify the concept of low voltage and low power logic circuits. **Course Outcomes:** Upon successful completion of the course, the student will be able to: CO1 Capability to recognize advanced issues in VLSI systems, specific to the deep submicron silicon Technologies. CO2 Understand deep submicron CMOS technology and digital CMOS design styles. **CO3** Design chips used for battery powered systems and high performance circuits. **CO4** Categorize the design of various CMOS dynamic logic circuits. CO5 Infer the design techniques of low voltage and low power CMOS circuits for various applications. **CO6** Exemplify the different types of memory circuits and their design. **Course Content(Syllabus)** UNIT I Sources of Power Dissipation - Introduction, Short-Circuit Power Dissipation, Switching Power Dissipation, Dynamic Power for a Complex Gate, Reduced Voltage Swing, Switching Activity, Leakage Power Dissipation, p-n Junction Reverse-Biased Current, Band-to-Band Tunneling Current, Subthreshold Leakage Current, Short-Channel Effects UNIT II Supply Voltage Scaling for Low Power -Device Feature Size Scaling, Constant-Field Scaling, Constant-Voltage Scaling, Architectural-Level Approaches: Parallelism for Low Power, Pipelining for Low Power, Combining Parallelism with Pipelining, Voltage Scaling Using High-Level Transformations: Multilevel Voltage Scaling Challenges in MVS Voltage Scaling Interfaces, Static Timing Analysis Dynamic Voltage and Frequency Scaling

### UNIT III

Switched Capacitance Minimization -Probabilistic Power Analysis: Random logic signals, probability and frequency, probabilistic power analysis techniques, signal entropy, Bus Encoding: Gray Coding, One-Hot Coding, Bus-Inversion, T0 Coding, Clock Gating, Gated-Clock FSMs Glitching **Power Minimization** 

### **UNIT IV**

Leakage Power Minimization - Fabrication of Multiple Threshold Voltages, Multiple Channel Doping, Multiple Oxide CMOS, Multiple Channel Length, Multiple Body Bias, VTCMOS Approach, MTCMOS Approach, Power Gating, Clock Gating Versus Power Gating, Power-Gating Issues, Isolation Strategy, State Retention Strategy, Power-Gating Controller, Power Management, Combining **DVFS** and Power Management



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## <u>UNIT V</u>

Low power clock distribution & Simulation Power Analysis - Low power clock distribution: Power dissipation in clock distribution, single driver versus distributed buffers, Zero skew versus tolerable skew, chip and package co design for clock network. Simulation Power Analysis: SPICE circuit simulators, gate level logic simulation and capacitive power estimation.

### **TEXT BOOKS:**

- 1. Low-Power VLSI Circuits and Systems, Ajit Pal, SPRINGER PUBLISHERS @ 2015.
- 2. Practical Low Power Digital VLSI Design, Gary Yeap Motorola, Springer Science Business Media, LLC, 1st edition @1998

#### **REFERENCES:**

- 1. Low Power CMOS Design Anantha Chandrakasan, IEEE Press/Wiley International, 1998.
- 2. Massoud Pedram, Jan M. Rabaey, "Low power design methodologies", Kluwer Academic Publishers.
- 3. Low Power CMOS VLSI Circuit Design A. Bellamour, M. I. Elamasri, Kluwer Academic Press, 1995.

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program														
Spec	Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	PO1	РО	PSO1	PS											
		2	3	4	5	6	7	8	9	10	11	12		02	
CO1	3	2	2	-	-	-		-	-	-	-	-	2	-	
CO2	2	3	-	-	-	-	-	-	-	-	-	-	3	-	
CO3	2	-		-		-	-	-	-	-	-	2	2	-	
CO4	3	2		2	-	-		2	-	-	-	-	-	3	
CO5	2	3		-	-	-	-	-	-		-	-	-	2	
CO6	2		2	-	-	-	-		-	-	-	2	-	2	

SK. Ashraf Ali Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **IV Year - I Semester**

#### LTPC 3003

**PROFESSIONAL ELECTIVE - III DATA COMMUNICATIONS & COMPUTER NETWORKS** Lecture – Tutorial: 3-0 Hours **Internal Marks:** 30 **Credits: External Marks:** 3 70 **Prerequisites:** Computer Architecture and organization, Data Structures. **Course Objectives:** To provide insight about networks, topologies, and the key concepts. To gain comprehensive knowledge about the layered communication architectures (OSI and TCP/IP) and its functionalities. To design and analyze various error detection techniques. To know the basic concepts of network services and mechanism of routing. To know the functioning of various application layer protocols **Course Outcomes:** Upon successful completion of the course, the student will be able to: **CO1** Demonstrate different network models for networking links OSI, TCP/IP and get knowledge about various communication techniques, methods and protocol standards. **CO2** Analyze data link layer services, compare and classify medium access control protocols **CO3** Demonstrate network service models, virtual circuits and routing mechanism **CO4** Analyze the internet protocol addressing in internet using IPV4 & IPV6 format **CO5** Determine the relationship between transport and network layer, understand connection and connection less services in transport layer. **CO6** Determine application layer services and client server protocols **Course Content(Syllabus) UNIT I** Introduction to Data Communications: Components, Data Representation, Data Flow, Networks-Distributed Processing, Network Criteria, Physical Structures, Network Models, Categories of Networks Interconnection of Networks, The Internet - A Brief History, The Internet Today, Protocol and Standards - Protocols, Standards, Standards Organizations, Internet Standards. Network Models, Layered Tasks, OSI model, Layers in OSI model, TCP/IP Protocol Suite, Addressing Introduction, **UNIT II** Data Link Layer - Introduction to the Link Layer, The Services Provided by the Link Layer, Types of errors, Error-Detection and Correction Techniques, Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC), Multiple Access control- Random Access, ALOHA, CSMA,

CSMA with collision detection, CSMA with collision avoidance, Wireless Links and Network Characteristics, WiFi: 802.11 Wireless LANs - The 802.11 Architecture, 802.11 MAC Protocol, IEEE 802.11 Frame

#### **UNIT III**

The Network Layer - Introduction, Forwarding and Routing, Network Service Models, Virtual Circuit and Datagram Networks-Virtual-Circuit Networks, Datagram Networks, Origins of VC and Datagram Networks, Inside a Router-Input Processing, Switching, Output Processing, Queuing, The Routing Control Plane, The Internet Protocol(IP):Forwarding and Addressing in the Internet-Datagram format, Ipv4 Addressing, Internet Control Message Protocol(ICMP), IPv6

### **UNIT IV**



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**Transport Layer -** Introduction and Transport Layer Services : Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet, Multiplexing and Demultiplexing, Connectionless Transport: UDP -UDP Segment Structure, UDP Checksum, Principles of Reliable Data Transfer- Connection Oriented Transport: TCP - The TCP Connection, TCP Segment Structure, Flow Control, TCP Connection Management, Principles of Congestion Control - The Cause and the Costs of Congestion, Approaches to Congestion Control

### <u>UNIT V</u>

**Application Layer** - Principles of Networking Applications – Network Application Architectures, Processes Communicating, Transport Services Available to Applications, FTP,- FTP Commands and Replies, Electronic Mail in the Internet- STMP, Comparison with HTTP, DNS-The Internet's Directory Service – Service Provided by DNS, Overview of How DNS Works, DNS Records and messages.

## **TEXT BOOKS:**

1. Computer Networking A Top-Down Approach – Kurose James F, Keith W, 6th Edition, Pearson.

2. Data Communications and Networks – Behrouz A. Forouzan, Fifth Edition TMH.

### **REFERENCES:**

- 1. Data Communications and Networks- Achut S Godbole, Atul Kahate.
- 2. Computer Networks, Mayank Dave, CENGAGE.
- 3. Computer Networks Andrew S Tanenbaum, Fifth Edition. Pearson Education/PHI

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

	PO1	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO1	PSO2
		2	3	4	5	6	7	8	9	10	11	12		
CO1	3	2	-	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-	-	-
CO3	2	-	-	2	-	-	-	-	-	-	-	-	-	-
CO4	-	2	-	-	2	-	-	-	-	2	-	-	-	-
CO5	3	-	-	3	2	-	-	-	-	-	-	-	-	-
CO6	2	2	2	-	2	-	-	1	-	2	-	2	2	2

Ch.Swathi Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### **IV Year - I Semester**

#### L T P C 3 0 0 3

#### **PROFESSIONAL ELECTIVE - III**

#### ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Lectu	re – Tutorial:	3-0 Hours	Internal Marks:	30
Credi	its:	3	<b>External Marks:</b>	70
Prere	quisites: Electrical circu	its, Electronic Devices and circuits.		
Cours	se Objectives:			
•				Ι
ntrodu	ice the basic concepts rel	ated to the operation of electronic measure	ring instruments.	
•	Acquire a sound underst	anding theory and performance character	istics of instruments and	
	errors in measurement a	nd apply to DC voltmeters, ammeters, oh	mmeters.	
•	To analyze fundamental concepts.	characteristics of Micro strip lines through	gh electromagnetic field	
•	Compare and contrast d	ifferent types of oscilloscopes.		
•	Select different types of	D.C and A.C bridges for measurement of	f passive components.	
•	Study the principles beh	ind various transducers and their applicat	ions in the measurement of	
	various parameters.			
Cours	se Outcomes:			
Upon	successful completion	of the course, the student will be able to	):	
CO1	Understand the fundam	nental concepts of instrumentation and ch	aracteristics of measuring s	ystems.
	Describe different types	s of meters and understanding the operation	on of meters.	
CO2	Analyze Different type	s of signal generators and signal analyzer	s and their working principle	es.
CO3	Interpret the basic pu understand different typ	rinciple of Oscilloscope, measurement bes of CRO probes.	of parameters using CR	O and
<b>CO4</b>	Understand the working	g of different types of special purpose osc	eilloscopes.	
CO5	Explore the different ty	pes of A.C. and DC Bridges, Q meters, C	counters and their operations	5
<b>CO6</b>	Demonstrate the different	ent types of transducers and their principle	es and operations.	
Cour	se Content(Syllabus)			
		<u>UNIT I</u>		
Pe	rformance characterist	ics of instruments, Static characteristic	es:	
Ac	curacy, Resolution, Pre-	cision, Expected value, Error, Sensitivity	y. Dynamic Characteristics;	speed
of	response, Fidelity, Lag	and Dynamic error, Types of errors in	measurements and their an	alysis,
De	esign of multi-range AC	C, DC meters (voltmeter & ammeter) ar	nd ohmmeter(series &shunt	type)
us	ing D'arsonval movemer	nt. True rms meter.		
		<u>UNIT II</u>		
Sp	ecifications and design	ing aspects of Signal Generators		
AI	F sine and square wave s	ignal generators, Function Generators, R	andom noise generators, Ar	bitrary
wa	weform generators. Way	eAnalyzers, Harmonic Distortion Analy	zers, Spectrum Analyzers, I	Digital
Fo	urier Analyzers.			
		<u>UNIT III</u>		
Os Os	scilloscopes			
Ge	eneral purpose CROs, ecifications, various con	block diagram, functions and imp trols and their functions, types of probe	lementation of various t s used in CROs, Measurem	plocks, ent of

frequency and phase difference using Lissajous patterns Special purpose CROs; sampling

oscilloscone analog storage oscilloscone digital storage oscilloscone



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## <u>UNIT IV</u>

**Bridge circuits** - Wheat stone bridge, measurement of very low resistance, Measurement of inductance- Maxwell's bridge, Anderson bridge. Measurement of capacitance-Schearing Bridge, Wien Bridge, Errors and precautions in using bridges Q-meter, principle of operation, measurement methods and sources of errors Counters : principle of operation -modes of operation- totalizing mode, frequency mode and time period mode-sources of errors.

## <u>UNIT V</u>

#### Transducers

Active & passive transducers: Resistance, Capacitance, inductance, Strain gauges, LVDT, Piezo Electric transducers. Measurement of physical parameters temperature, force, pressure, velocity, acceleration and displacement

### **TEXT BOOKS:**

1. Electronic Instrumentation, second edition-H.S.Kalsi, Tata McGraw Hill, 3rd edition.

2. Modern Electronic Instrumentation and Measurement Techniques- A.D.Helfrick and W.D.Cooper, PHI, 5th Edition, 2002.

### **REFERENCES:**

- 1. Electronic Instrumentation & Measuements- David A. Bell, PHI,2nd Edition,2003.
- 2. Electronic Measurements and Instrumentation by K.Lal Kishore, Pearson Education-2005.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

			(	(	)		<i>)</i> -	0 /						
	PO	PO 2	PO 3	PO 4	PO 5	PO	PO 7	PO 8	PO	PO	PO	PO	PSO1	PSO2
CO1	3	3	-	-	3	-	-	3	-	3	-	-	3	-
CO2	2	-	-	-	-	-	-	-	3	-	-	3	-	-
CO3	-	-	-	2	-	3	-	-	-	-	-	-	3	-
CO4	-	-	-	2	-	3	-	-	-	-	-	-	3	-
CO5	3	3	-	2	-	-	3	-	-	-	2	-	-	2
CO6	3	-	3	-	-	-	-	-	-	-	-	-	2	-

B.V. R. V Prasad Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### IV Year - I Semester

L T P C 3 0 0 3

## PROFESSIONAL ELECTIVE - IV

		DIGITAL IMAGE PROC	ESSING	
Lectu	ıre – Tutorial:	3-0 Hours	Internal Marks:	30
Cred	its:	3	<b>External Marks:</b>	70
Prer	equisites: Mathematics,	Engineering physics, Linear inte	grated circuits, Signals and system	s, Digital
Signa	ll Processing.			
Cour	se Objectives:			
•	To understand the fundar	nentals of Image Processing.		1. 0
•	To introduce different in image.	itensity filtering techniques in spat	al and frequency domain to enhance	quality of
•	To introduce different fil	tering techniques to estimate degrac	ation and restoration of images.	
•	To explain the concept of	t color image processing.		
•	To discuss various comp	ression techniques.		
Cour	To apply morphological	and segmentation techniques for pro	cessing images.	
Upor	successful completion	of the course, the student will	he able to:	
	La denstande the fanden	of the course, the student will		
COI	Understands the fundam	inentals of image processing.		
CO2	Differentiate different quality of image.	intensity filtering techniques in	spatial and frequency domain to	) enhance
CO3	Implement different filt	ering techniques to estimate deg	adation and restoration of images.	
CO4	Demonstrate techniques	s to convert color images to black	and white or vice versa.	
CO5	Implement various com	pression techniques.		
CO6	Morphological and Seg	mentation techniques for process	ing images.	
Cour	se Content(Syllabus)			
		<u>UNIT I</u>		
Intro Funda acqui betwe	<b>eduction:</b> Introduction t amental steps in digital sition, Image sampling een pixels, An introducti	o digital image processing, Prin- l image processing, Component and quantization, Representin on to Mathematical tools in Digi	cipal fields using Digital Image P s of Image Processing, Image se g digital images, Some basic rel tal image processing.	rocessing, nsing and ationships
		UNIT II		
Imag	ge transforms: Need f	for image transforms, Discrete	Fourier transform (DFT) of one	variable,
Exter	sion to functions of two	o variables, some properties of t	ne 2-D Discrete Fourier transform,	Discrete
cosin	e transform			
Inter	sity transformations, S	Spatial domain filtering: Back	ground, Some basic intensity trans	formation
funct	ions – Image Negative	s, Log Transformations, Power	- Law Transformation, piece-w	vise linear
transf	formation functions, His	stogram – Processing, equalizati	on and matching, Smoothing spat	ial filters,
Sharp	ening spatial filters			
	<b>1</b> • 011. •	<u>UNIT III</u>	1 1 /11,	
F requ	ency domain filtering	: Image smoothing using freque	ency domain filters – Ideal, Butte	rworth and
Jaussi	ian Low Pass Inters, It	nage Snarpening using Frequer	cy Domain Filters – Ideal, Butte	rworth and

Gaussian High Pass filters, Selective filtering

**Image Restoration:** A model of image degradation / Restoration process, Noise models, Restoration in the presence of Noise only- Spatial filtering, Periodic Noise Reduction by frequency domain filtering, Linear Position invariant degradation, Estimation of degradation function



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## <u>UNIT IV</u>

**Color image processing:** Color fundamentals, Color models, Pseudo color image processing, Basics of full color image processing, Color transformations, Color image smoothing, Color image sharpening **Image Compression:** Types of redundancies, Image compression models, Huffman coding, Arithmetic coding, LZW coding, Run length coding, Block transform coding, Predictive coding, Wavelet coding.

### <u>UNIT V</u>

**Morphological image processing:** Preliminaries, Erosion and Dilation, opening and closing, Hit or miss transformations, Some basic morphological algorithms, Gray scale morphology, Some basic gray scale morphological algorithms

**Image segmentation:** Fundamentals, Point detection, Line detection, Basic edge detection, Edge models, Thresholding, Region based segmentation.

### **TEXT BOOKS:**

1. R.C. Gonzalez and R.E. WOODS, Digital Image Processing – 3rd edition, Prentice Hall, 2008

2. Jayaraman, S. Esakkirajan and T. Veerakumar, "Digital Image Processing"., Tata McGraw Hill Education, 2011.

## **REFERENCES:**

- Anil K Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 9th Edition, Indian Reprint, 2002
- 2. B. Chanda, D. Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2009.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

				-	,		<i>)</i> -	0 /						
	РО	РО	РО	РО	РО	РО	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	-	-	-		-	-	-	-	-	3
CO2	3	3	2	3	-	-	-		-	-	3	-	-	3
CO3	3	3	2	2	-	-	-		-	-	3		-	3
CO4	2	3	3	3	-	-			-	-	3	-	-	3
CO5	3	3	3	2	-	-	-	3	-	-	3	-	-	3
CO6	3	3	3	3	-	-	-	3	-	-	3	-	-	3

Dr. R. Sunitha

Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **IV Year - I Semester** LTPC 3003 **PROFESSIONAL ELECTIVE - IV DIGITAL IC DESIGN USING CMOS** Lecture – Tutorial: 3-0 Hours **Internal Marks:** 30 Credits: 3 **External Marks:** 70 Prerequisites: STLD, Digital Communications, VLSI **Course Objectives:** 1. Introduce the fundamentals of MOS logic circuits with time response 2. Understand the design of combinational circuits 3. Understand the basic design of sequential circuits 4. Extending the design of various sequential circuits 5. Relating the dynamic CMOS logic operations 6. Define the concepts of memory related MOS circuits **Course Outcomes:** Upon successful completion of the course, the student will be able to: **CO1** Understand the concepts of MOS Design. **CO2** Design and analysis of Combinational MOS Circuits. CO3 Design and analysis of sequential MOS Circuits. **CO4** Extend the Digital IC Design to Different Applications. **CO5** Analyze the principle and behavior of high performance dynamic CMOS circuits. **CO6** Understand the Concepts of Semiconductor Memories, various memory architectures and building blocks. **Course Content (Syllabus)** UNIT I MOS Design: Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic. **UNIT II** Combinational MOS Logic Circuits: MOS logic circuits with NMOS loads, Primitive CMOS logic gates -NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates, AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates. UNIT III Sequential MOS Logic Circuits: Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop. **UNIT IV** Dynamic Logic Circuits: Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits. UNIT V Interconnect: Capacitive Parasitics, Resistive Parasitics, Inductive Parasitics, Advanced Interconnect Techniques. Semiconductor Memories: Memory Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NAND flash. Designing Memory and Array Structures: Introduction,

Memory Classification, Memory Architectures and Building Blocks, The Memory Core, Read Only Memories, Non-volatile Read-Write Memories, Read-Write Memories (RAM), Contents Addressable or



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Associative Memory (CAM), Memory Peripheral Circuitry, The Address Decoders, Sense Amplifiers, Voltage References, Drivers/Buffers, Timing and Control.

## **TEXT BOOKS:**

- Digital Integrated Circuits A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, 2nd Ed., PHI.
- 2. Digital Integrated Circuit Design Ken Martin, Oxford University Press, 2011.

### **REFERENCES:**

1. CMOS Digital Integrated Circuits Analysis and Design – Sung-Mo Kang, Yusuf Leblebici, TMH, 3rd Ed., 2011. 2. CMOS VLSI Design – Neil H.E Weste, David harris, Ayan Banerjee 3rd Edition, Pearson.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

-		· · · · ·		<b>`</b>	/		/	0 /						
	PO1	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO2
		2	3	4	5	6	7	8	9	10	11	12	1	
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	3
CO2	3	3	-	3	-	-	-	3	-	-	-	-	-	-
CO3	2	3	3	2	-	-	-	-	-	3	-	-	-	3
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	2
CO5	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	-	2	-	-	-	-	-	-	-	-	-	-	-	2



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### **IV Year - I Semester**

### LTPC 3 0 0 3

Lecture – Tutorial:       3-0 Hours       Internal Marks:       30         Credits:       3       External Marks:       70         Prerequisites: Analog Communications, Digital Communications, Optical Communications.       Internal Marks:       70         Prerequisites: Analog Communications, Digital Communications, Optical Communications.       Internal Marks:       70         Prerequisites: Analog Communications, Digital Communications, Optical Communications.       Internal Marks:       70         Prerequisites: Analog Communications, Digital Communications, Optical Communication and frequency allocations.       By the end of the course, student will be familiar with the most important methods in satellite launching.         • To explain the tools necessary for the calculation of basic parameters in a satellite communication system.       • To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.         Course Outcomes:       Upon successful completion of the course, the student will be able to:         CO1       Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.         CO2       Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.         CO3       Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications. <th></th> <th>c</th> <th>PROFESSIONAL EL</th> <th>ECTIVE - IV</th> <th></th>		c	PROFESSIONAL EL	ECTIVE - IV	
Credits:       3       External Marks:       70         Prerequisites: Analog Communications, Digital Communications, Optical Communications.       70         Course Objectives:       •       70         •       This course will introduce the basic concepts and techniques of Satellite communication and frequency allocations.       •         •       By the end of the course, student will be familiar with the most important methods in satellite launching.       •         •       To explain the tools necessary for the calculation of basic parameters in a satellite communication system.       •         •       To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.         Course Outcomes:       Upon successful completion of the course, the student will be able to:         Upon successful completion of satellite communication of satellite orbits, orbital effects and launching methods.       •         C01       Ability to develop AOCS, commands, monitoring power systems and developments of antennas.       •         C03       Ability to develop AOCS, commands, monitoring power system and GPS location principles, DGPS.       •         C04       Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.       •         C05       Ability to learn the concepts of Radio and Satellite Navigation s	Lectu	re – Tutorial:	3-0 Hours	Internal Marks	30
<ul> <li>Correction of the course, the student will be able to:</li> <li>Course Objection of the course, the student will be able to:</li> <li>Course Outcomes:</li> <li>Upon successful completion of the course, the student will be able to:</li> <li>Course Outcomes:</li> <li>Upon successful completion of the course, the student will be able to:</li> <li>Course Outcomes:</li> <li>Upon successful completion of the course, the student will be able to:</li> <li>Course Outcomes:</li> <li>Upon successful completion of the course, the student will be able to:</li> <li>Course Outcomes:</li> <li>Upon successful completion of the course, the student will be able to:</li> <li>Coil Understand the historical background of satellite communication and analyze different frequency allocations.</li> <li>Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>Coil Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>Coil Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>Coil Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>Coil Ability to coloupt of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)</li> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications.</li> <li>Contract And and control systems and develop satellite Communications.</li> <li>Contant the concepts of Radio and Satellite Navigation system sperformance.</li> <li>UNIT II</li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and and price and orbit control system.</li> </ul>	Credi	ts.	3	Evternal Marks	70
<ul> <li>Course Objectives:         <ul> <li>This course will introduce the basic concepts and techniques of Satellite communication and frequency allocations.</li> <li>By the end of the course, student will be familiar with the most important methods in satellite launching.</li> <li>To explain the tools necessary for the calculation of basic parameters in a satellite communication system.</li> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> </ul> </li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> </ul> </li> <li>Cota Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>Cota Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>Cota Ability to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>Cota Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>Cotrese Content(Syllabus)         <ul> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications.</li> <li>DRBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital serturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> </ul> </li> </ul>	Prereo	uisites: Analog Comm	unications Digital Commun	ications Optical Communications	10
<ul> <li>This consecutives:         <ul> <li>This course will introduce the basic concepts and techniques of Satellite communication and frequency allocations.</li> <li>By the end of the course, student will be familiar with the most important methods in satellite launching.</li> <li>To explain the tools necessary for the calculation of basic parameters in a satellite communication system.</li> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> </ul> </li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>CO1</li> <li>Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> <li>CO2</li> <li>Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3</li> <li>Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4</li> <li>Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6</li> <li>Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)</li> <li>UNIT I</li> </ul> </li> <li>NTRODUCTION : Origin of Satellite Communications, Future Trends of Satellite Communications.</li> <li>DRBITAL MECHANICS AND LAUNCHERS: Orbital effects in communication systems performance.</li> <li>UNIT II</li> </ul> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, track</li>	Cour	a Objectivez		icutions, optical communications.	
<ul> <li>This course will introduce the basic concepts and techniques of Satellite communication and frequency allocations.</li> <li>By the end of the course, student will be familiar with the most important methods in satellite launching.</li> <li>To explain the tools necessary for the calculation of basic parameters in a satellite communication system.</li> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>CO1</li> <li>Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> </ul> </li> <li>CO2</li> <li>Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3</li> <li>Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4</li> <li>Ability to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, FDMA.</li> <li>CO5</li> <li>Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)         <ul> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications.</li> <li>DRBTAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital serturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> </ul> </li> </ul>	Cours	This source will inter	duce the basis serverts	and tashrismas of Catallita as more	action and
<ul> <li>By the end of the course, student will be familiar with the most important methods in satellite launching.</li> <li>To explain the tools necessary for the calculation of basic parameters in a satellite communication system.</li> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>CO1</li> <li>Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> </ul> </li> <li>CO2</li> <li>Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3</li> <li>Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4</li> <li>Ability to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5</li> <li>Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)         <ul> <li>UNIT I</li> </ul> </li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, ³requency allocations for Satellite Services, Applications, Future Trends of Satellite Communications, ³requency allocation systems performance.</li> <li>UNIT II</li> </ul> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and Control system.</li>	•	finis course will intro	souce the basic concepts	and techniques of Satellite communic	cation and
<ul> <li>By the end of the course, student will be familiar with the most important methods in satellite launching.</li> <li>To explain the tools necessary for the calculation of basic parameters in a satellite communication system.</li> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>CO1</li> <li>Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> </ul> </li> <li>CO2</li> <li>Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3</li> <li>Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4</li> <li>Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5</li> <li>Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO4</li> <li>C05</li> <li>Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)         <ul> <li>UNIT I</li> </ul> </li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Prequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications, Prequency allocation systems performance.</li> <li>UNIT II</li> </ul> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and and point control system,</li>		frequency allocations.			
<ul> <li>To explain the tools necessary for the calculation of basic parameters in a satellite communication system.</li> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>CO1 Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> </ul> </li> <li>CO2 Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3 Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4 Ability to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)         <ul> <li>UNIT I</li> </ul> </li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, requency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.</li> <li>DRBTAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital serturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>	•	By the end of the cou	urse, student will be family	ar with the most important methods	in satellite
<ul> <li>To explain the tools necessary for the calculation of basic parameters in a satellite communication system.</li> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> </ul> </li> <li>CO2 Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3 Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4 Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)         <ul> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications.</li> <li>DRBITAL MECHANICS AND LAUNCHERS: Orbital effects in communication systems performance.</li> <li>UNIT II</li> </ul> </li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>		launching.			
<ul> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>COI Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> </ul> </li> <li>CO2 Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3 Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4 Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)         <ul> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Services, Applications, Future Trends of Satellite Communications.</li> <li>DRBITAL MECHANICS AND LAUNCHERS: Orbital effects in communication systems performance.</li> <li>UNIT II</li> </ul> </li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>	•	To explain the tools no	ecessary for the calculation	of basic parameters in a satellite com	nunication
<ul> <li>To produce graduates who understand how to analyze and manipulate digital signals and to determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.</li> <li>Course Outcomes:         <ul> <li>Upon successful completion of the course, the student will be able to:</li> <li>CO1</li> <li>Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> </ul> </li> <li>CO2 Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3 Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4 Ability to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)         <ul> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Services, Applications, Future Trends of Satellite Communications.</li> <li>DRBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital erturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> </ul> </li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>		system.			
determine the orbital issues to have the fundamental knowledge to do so, for navigation and GPS.         Course Outcomes:         Upon successful completion of the course, the student will be able to:         CO1       Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.         CO2       Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.         CO3       Ability to develop AOCS, commands, monitoring power systems and developments of antennas.         CO4       Ability to develop AOCS, commands, monitoring power systems and developments of antennas.         CO5       Ability to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.         CO5       Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.         CO6       Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.         Course Content(Syllabus)       UNIT I         NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications.         DRBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital serturbations, launches and launch vehicles, Orbital effects in communication systems performance.         UNIT II       SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	•	To produce graduates	who understand how to	analyze and manipulate digital signa	als and to
Course Outcomes:         Upon successful completion of the course, the student will be able to:         CO1         Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.         CO2         Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.         CO3         Ability to develop AOCS, commands, monitoring power systems and developments of antennas.         CO4         Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.         CO5         Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.         CO4         Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.         Course Content(Syllabus)         UNIT I         NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, requency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.         ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, launches and launch vehicles, Orbital effects in communication systems pe		determine the orbital is	sues to have the fundamenta	l knowledge to do so, for navigation and	1 GPS.
Upon successful completion of the course, the student will be able to:         CO1       Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.         CO2       Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.         CO3       Ability to develop AOCS, commands, monitoring power systems and developments of antennas.         CO4       Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.         CO5       Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.         CO6       Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.         Course Content(Syllabus)       UNIT I         NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications.         ORBITAL MECHANICS AND LAUNCHERS: Orbital effects in communication systems performance.         UNIT II         SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	Cours	se Outcomes:			
<ul> <li>CO1 Understand the historical background of satellite communication and analyze different frequency allocation of satellites communication.</li> <li>CO2 Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3 Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4 Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)</li> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.</li> <li>DRBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>	Upon	successful completion	of the course, the student	will be able to:	
<ul> <li>CO2 Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3 Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4 Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)</li> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.</li> <li>DRBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>	CO1	Understand the histori	cal background of satellite	communication and analyze different f	requency
<ul> <li>CO2 Ability to calculate the orbital mechanics, determination of satellite orbits, orbital effects and launching methods.</li> <li>CO3 Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4 Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)</li> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications.</li> <li>ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>	CON	allocation of satellites	communication.	mainstion of sotallite orbite orbitel of	Fasta and
<ul> <li>CO3 Ability to develop AOCS, commands, monitoring power systems and developments of antennas.</li> <li>CO4 Ability to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)</li> <li>INTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.</li> <li>ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital berturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>	02	Adding to calculate the	ne orbitar mechanics, deter	initiation of satellite orbits, orbital er	lects and
<ul> <li>CO4 Able to design antennas to provide Uplink and Down link Frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.</li> <li>CO5 Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.</li> <li>CO6 Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.</li> <li>Course Content(Syllabus)</li> <li>UNIT I</li> <li>NTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.</li> <li>DRBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, launches and launch vehicles, Orbital effects in communication systems performance.</li> <li>UNIT II</li> <li>SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and</li> </ul>	CO3	$\Delta \text{ bility to develop } \Delta \Omega$	S commands monitoring r	ower systems and developments of ante	nnas
Cost       Able to design antennas to provide oprink and bown mix frequency and analyze multiple access techniques like TDMA, CDMA, FDMA.         CO5       Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.         CO6       Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.         Course Content(Syllabus)       UNIT I         INTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.         ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital verturbations, launches and launch vehicles, Orbital effects in communication systems performance.         UNIT II         SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	CO4	Able to design antenn	as to provide Unlink and D	own link Frequency and analyze multir	le access
CO5       Ability to design different kinds of transmitter and receiver antennas, design and develop Satellite for real time applications.         CO6       Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.         Course Content(Syllabus)       UNIT I         INTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.         ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital berturbations, launches and launch vehicles, Orbital effects in communication systems performance.         UNIT II         SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	004	techniques like TDMA	A. CDMA. FDMA.	own mik rrequency and analyze multip	ne access
for real time applications.         CO6       Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS.         Course Content(Syllabus)       UNIT I         INTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.         ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, launches and launch vehicles, Orbital effects in communication systems performance.         UNIT II         SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	CO5	Ability to design diffe	rent kinds of transmitter and	d receiver antennas, design and develor	Satellite
CO6       Ability to learn the concepts of Radio and Satellite Navigation system and GPS location principles, DGPS. <b>Course Content(Syllabus) UNIT I NTRODUCTION :</b> Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications. <b>ORBITAL MECHANICS AND LAUNCHERS:</b> Orbital Mechanics, Look Angle determination, Orbital berturbations, launches and launch vehicles, Orbital effects in communication systems performance. <b>UNIT II SATELLITE SUBSYSTEMS:</b> Altitude and orbit control system, telemetry, tracking, Command and		for real time applicatio	ons.		
DGPS. Course Content(Syllabus) UNIT I INTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications. DRBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital Derturbations, launches and launch vehicles, Orbital effects in communication systems performance. UNIT II SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	CO6	Ability to learn the con	ncepts of Radio and Satellite	Navigation system and GPS location p	orinciples,
Linit I         INTRODUCTION : Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.         ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital berturbations, launches and launch vehicles, Orbital effects in communication systems performance.         UNIT II         SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	a	DGPS.			
<b>UNIT 1</b> <b>INTRODUCTION :</b> Origin of Satellite Communications, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications. <b>ORBITAL MECHANICS AND LAUNCHERS:</b> Orbital Mechanics, Look Angle determination, Orbital perturbations, launches and launch vehicles, Orbital effects in communication systems performance. <u>UNIT II</u> <b>SATELLITE SUBSYSTEMS:</b> Altitude and orbit control system, telemetry, tracking, Command and	Cours	se Content(Syllabus)	TINITA		
Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications. <b>DRBITAL MECHANICS AND LAUNCHERS:</b> Orbital Mechanics, Look Angle determination, Orbital berturbations, launches and launch vehicles, Orbital effects in communication systems performance. <u>UNIT II</u> SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	ыто		<u>UNIT I</u>	Basic Concepts of Sotellite Comm	
ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, launches and launch vehicles, Orbital effects in communication systems performance.         UNIT II         SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	IIN I KU Freque	<b>DUCTION</b> : Origin	of Satellite Communication	Future Trends of Satellite Communicati	unications,
Derturbations, launches and launch vehicles, Orbital effects in communication systems performance. <u>UNIT II</u> SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	ORBI'	FAL MECHANICS A	<b>ND LAUNCHERS:</b> Orbit:	al Mechanics, Look Angle determination	ons. on. Orbital
<u>UNIT II</u> SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and	perturb	ations, launches and lau	unch vehicles. Orbital effects	s in communication systems performance	e.
SATELLITE SUBSYSTEMS: Altitude and orbit control system, telemetry, tracking, Command and		·····, ····	<u>UNIT I</u>	<u>I</u>	
	SATE	LLITE SUBSYSTEM	S: Altitude and orbit con	trol system, telemetry, tracking, Com	mand and
nonitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space	monito	ring, power systems, co	ommunication subsystems,	Satellite antenna Equipment reliability	and Space
jualification.	qualific	cation.			
			UNIT II	<u>1</u>	·
SATELLITE LINK DESIGN: Basic transmission theory, system noise temperature and G/T ratio, Design of down links, up link doging Design of actallite links for angeified C/N. System design oversals	SATE	LLITE LINK DESIGN	N: Basic transmission theory	y, system noise temperature and G/T rat	.10, Design
MULTIPLE ACCESS: Erequency division multiple access (EDMA). Calculation of C/N. Time division	MUIT T	TIPLE ACCESS. From	Design of satellite links for s	Specified C/N, System design example.	e division
Multiple Access (TDMA) Frame structure, Code Division Multiple access (CDMA). Spread spectrum	Multip	le Access (TDMA) Fr	ame structure. Code Divis	ion Multiple access (CDMA). Spread	spectrum

transmission and reception.

### **UNIT IV**



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**EARTH STATION TECHNOLOGY:** Introduction, Transmitters, Receivers, Antennas, Tracking systems, Terrestrial interface, Primary power testing methods.

**LOW EARTH ORBIT AND GEO-STATIONARY SATELLITE SYSTEMS:** Orbit consideration, coverage and frequency considerations, Delay & Throughput considerations, System considerations, Operational NGSO constellation Designs.

<u>UNIT V</u>

**SATELLITE NAVIGATION & THE GLOBAL POSITIONING SYSTEM:** Introduction, GPS Position Location principles, Satellite signal acquisition, GPS Navigation Message, GPS receiver operation, GPS C/A code accuracy, Differential GPS.

### **TEXT BOOKS:**

1. Satellite Communications – Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003.

2. Satellite Communications Engineering – Wilbur L. Pritchard, Robert A Nelson and Henri G.Suyderhoud, 2nd Edition, Pearson Publications, 2003.

### **REFERENCES:**

- 1. Satellite Communications: Design Principles M. Richharia, BS Publications, 2nd Edition, 2003.
- 2. Satellite Communication D.C Agarwal, Khanna Publications, 5th Ed.
- 3. Fundamentals of Satellite Communications K.N. Raja Rao, PHI, 2004.
- 4. Satellite Communications Dennis Roddy, McGraw Hill, 2nd Edition, 1996.

Cont	ributio	n of Co	urse Ou	utcome	s towa	rds ach	ieveme	ent of P	rogran	n Outc	omes (l	POs) ai	nd Pro	gram	
	Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	PO1 PO														
	POI	2	3	4	5	6	7	8	9	10	11	12	1	2	
C01	2	-	2	-	-	2	-	-	-	-	-	-	-	-	
CO2	3	2	2	-	-	-	-	-	-	-	-	-	-	3	
CO3	-	-	3	-	-	-	-	-	-	-	-	-	-	-	
CO4	-	3	3	-	-	-	-	-	-	-	2	-	-	-	
CO5	2	-	3	-	-	-	-	-	-	-	-	2	-	2	
CO6	-	3	3	-	-	-	2	-	-	-	-	2	-	-	

A. Satti Babu

Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IVY	Year - I Semester				LTPO	С			
					300	3			
	-	PROFESSIONAL EI	LECTIVE - V						
T		OFT COMPUTING T	ECHNIQUES	T ( 137 1		20			
	ecture – Tutorial	3-0 Hours		Internal Marks:		30			
Credi		3		External Marks:		/0			
Prere	quisites: Basics of Neu	iral Networks.							
Cours	se Objectives:			1 11 .1 0	0				
1.	To provide an introduc	tion to the basic principle	s, techniques, and	applications of so	ft compu	iting.			
2.	To understand the bas	sic areas of Soft Compu	ting including A	rtificial Neural Ne	tworks,	Fuzzy			
	Logic and Genetic Alg	orithms.							
3.	To provide the mathem	natical background for ca	rrying out the op	timization associate	ed with	neural			
	network learning.								
4.	To develop some fai	miliarity with current r	esearch problem	s and research me	ethods i	in Soft			
~	Computing by working	g on a research or design	project.						
Cours	se Outcomes:								
Upon	successful completion	of the course, the stude	nt will be able to	):					
CO1	Develop intelligent sy	stems leveraging the para	digm of soft com	puting techniques.					
CO2	Implement, evaluate a	and compare solutions by	various soft com	puting approaches	for findi	ng the			
CO3	Recognize the feasibi	lity of applying a soft co	nputing methodo	logy for a particula	r probler	n.			
CO4	Design the methodology to solve optimization problems using fuzzy logic, genetic algorithms								
	and neural networks.								
CO5	Relate with neural n	networks that can learn	from available e	xamples and gener	alize to	form			
	appropriate rules for	inference systems.							
<b>CO6</b>	Design hybrid system	to revise the principles of	f soft computing i	n various application	on.				
Cours	se Content(Syllabus)								
		UNIT	<u>I</u>						
Introdu	iction to soft computir	ng: Introduction, Artifici	al Intelligence, A	Artificial Neural Ne	etworks,	Fuzzy			
System	ns, Generic Algorithm	s And Evolutionary Pr	ogramming, Swa	arm, Intelligent S	ystems,	Expert			
System	s, Comparison Among	Intelligent Systems							
		UNIT	II						
Artifici generat Back p networ	ial Neural Networks: I tion neural networks, p ropagation neural netw k, radial basis function	Introduction to Artificia berceptron network, Adali orks, Hop field neural ne neural networks, spike ne	l Neural Networ ne, Madaline, Se tworks, Kohonen uron models	ks, Classification of cond generation Non- neural networks, H	of ANN eural net lamming	s, First tworks, g neural			
		UNIT	III						
Fuzzy	Logic System: Introduction to fuzz	ction to crisp sets and fuz	zzy sets, basic fuz	zzy set operation an	nd appro	oximate			
Fuzzy	knowledge and rule h	ases Fuzzy modeling	and control sche	mes for nonlinear	systems	Self-			
organiz	zing fuzzy logic control	Fuzzy logic control for t	onlinear time del	av system	system	, ben			
organiz	ing fuzzy logic control			ay system.					
	- A1	<u>UINII</u>	<u> </u>			- 6 6			
genetic parame technic	c Algorithm: Basic con eters, Solution of typica uues like Tabu search ar	al control problems using al ant D-colony search te	m and detail algo g genetic algorith chniques for solvi	m, Concept on son	ustment ne other oblems.	of free search			
			1	<u> </u>					



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## <u>UNIT V</u>

Applications: GA application to power system optimization problem, Case studies: Identification and control of linear and nonlinear dynamic systems using MATLAB-Neural Network toolbox, Stability analysis of Neural Network interconnection systems, Implementation of fuzzy logic controller using MATLAB fuzzy-logic toolbox, Stability analysis of fuzzy control systems.

#### **TEXT BOOKS:**

1. Introduction to Artificial Neural Systems - Jacek.M.Zurada, Jaico Publishing House, 1999.

2. Neural Networks and Fuzzy Systems - Kosko, B., Prentice-Hall of India Pvt. Ltd., 1994.

#### **REFERENCES:**

 Fuzzy Sets, Uncertainty and Information - Klir G.J. &Folger T.A., Prentice-Hall of India Pvt. Ltd., 1993.
 Fuzzy Set Theory and Its Applications - Zimmerman H.J. Kluwer Academic Publishers, 1994. Introduction to Fuzzy Control - Driankov, Hellendroon, Narosa Publishers.

3. Artificial Neural Networks - Dr. B. Yagananarayana, 1999, PHI, New Delhi.

4. Elements of Artificial Neural Networks - KishanMehrotra, Chelkuri K. Mohan, Sanjay Ranka, Penram International.

5. Artificial Neural Network – Simon Haykin, 2nd Ed., Pearson Education.

6. Introduction Neural Networks Using MATLAB 6.0 - S.N. Shivanandam, S. Sumati, S. N. Deepa,1/e, TMH, New Delhi.

## Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

Specific outcomes (1505) (1 200, 2 filourum, c 1151)														
	PO1	РО	PSO1	PSO2										
		2	3	4	5	6	7	8	9	10	11	12		
CO1	3	3	-	-	-	-	-		-	-	-	-	-	3
CO2	3	-	2	-	-	-	-		-	-	-	-	-	3
CO3	3	3	2	2	-	-	-		-	-	-		3	-
CO4	2	3	3	3	-	-			-	-	3	-	3	-
CO5	3	-	3	-	-	-	-	3	-	-	-	-	-	3
CO6	3	3	3	3	-	-	-	3	-	-	-	-	-	3

SK. Ashraf Ali

Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### IV Year – I Semester

#### L T P C 3 0 0 3

## **PROFESSIONAL ELECTIVE - V**

**MACHINE LEARNING** 

Credits:3External Marks:70Prerequisites:Linear algebraProbability and statistics								
<b>Prerequisites:</b> Linear algebra Probability and statistics								
Prerequisites: Linear algebra, Probability and statistics.								
Course Objectives:								
1. Able to know about data preprocessing and its uses in prediction.								
2. Understands the natural language processing.								
3. Able to know how linear models are learning from the data.								
4. Able to understand how to Improve efficiency of the models using nonlinearity and ensembles.								
5. Explain now neural networks help in mercasing efficiency.								
Upon successful completion of the course, the student will be able to:								
<b>CO1</b> Understanding the machine learning basics and how data is preprocessed.								
CO2 Understands the natural language processing.								
CO3 Able to form clusters based on Distance models								
CO4 Understands the Probabilistic models								
CO5 Understands Nonlinear models and ensembles to improve efficiency.								
<b>CO6</b> Learn how neural network provide nonlinearity.								
Course Content(Syllabus)								
<u>UNIT I</u>								
The Ingredients of Machine Learning: Introduction to Machine Learning, deep learning, applications	s of							
machine learning								
Statistical learning: Introduction, supervised Learning, unsupervised Learning and Reinforceme	nt							
Learning, training and Test loss, tradeoffs in statistical learning, estimating risk statistics, Empirical ri	sk							
Minimization.								
Models: Geometric models, Probabilistic models, Logical models, Grouping and Grading								
<u>UNIT II</u>								
Supervised Learning(regression/classification): Basic methods: Distance based methods- Distan	ce							
Measures (Euclidean, Manhattan and Minkowski) Nearest Neighbours (KNN), Decision Trees								
<b>Linear Models:</b> Binary class and multiclass classification, Finding minimum and maximum of a function	on,							
Gradient Descent, Linear Regression, Least Square method, Multiple Regression, Logistic Regression	1 -							
Sigmoid function in logistic regression, Loss functions in logistic regression, Effect of Outliers and Noi	sy							
data. Drababilistic model. Noive Davies electrichen for electification. Lonloss empething								
<b>Probabilistic model:</b> Naive Bayes algorithm for classification, Laplace smoothing.								
<u>UNIT III</u>								
Ensemble Learning and Random Forest: Introduction, Random Forest, bagging, Boosting, Stacki	ing,							
Overfitting and Underfitting models, K-fold cross validation, confusion matrix	-							
Support Vector Machine (SVM): Linear SVM Classification, Non Linear SVM Classification								
UNIT IV								

**Unsupervised Learning Techniques:** Clustering, K-Means, Limits of K-Means, DBSCAN, Hierarchical Clustering, Agglomerative Clustering

**Dimensionality Reduction:** The Curse of Dimensionality, Main Approaches for Dimensionality Reduction , Principal Component Analysis (PCA), Implementation and demonstration.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## <u>UNIT V</u>

**Artificial Neural Networks:** Introduction, Neural network representation, training a single and Multilayer networks, MLPs and Back propagation chain rule, Epochs, Batch Normalization Activation functions – sigmoid, Tanh, ReLu, **Optimizers** – GD,SGD.

## **TEXT BOOKS:**

- 1. Machine Learning: The art and science of algorithms that make sense of data, Peter Flach, Cambridge.
- 2. Machine Learning, Tom M. Mitchell, MGH.
- 3. Introduction to Machine Learning Nils J. Nilsson, Standford University

### **REFERENCES:**

1. Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz, Shai Ben- David, Cambridge.

2. Machine Learning in Action, Peter Harington, 2012, Cengage.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

Dpeer	Specific values (1505) (1 200, 2 meaning 5 mgn)													
	PO1	РО	PSO	PS										
		2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	1	-	2	3	3	-	-	-	-	-	-	-	1	2
CO2	-	-	2	2	2	-	-	-	-	-	-	-	I	2
CO3	-	-	2	3	1	-	-	-	-	-	-	-	I	1
CO4	2	-	3	1	1	-	-	-	-	-	-	-	-	3
CO5	2	-	1	2	2	-	-	-	-	-	-	-	2	-
CO6	1		2		2	-	-	-	-	-	-	-	-	2

SK. Ashraf Ali Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

### **IV Year - I Semester**

#### L T P C 3 0 0 3

#### **PROFESSIONAL ELECTIVE - V**

#### **MOBILE AND CELLULAR COMMUNICATIONS**

Lectu	re – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30					
Credi	its:	3	<b>External Marks:</b>	70					
Prere	quisites: Analog Comm	unications, Digital Communication	ations.						
Course	e Objectives: Students	will be able to:							
• To understand cellular communication system block diagram, functioning, various cellular mobile									
standards.									
	• To acquire Knowledg	ge on Cellular concept, Frequen	cy reuse, Hand-off strategies, cell splitti	ing, cell					
	sectoring, Cellular str	uctures.							
	• To know the different	co-channel and non co-channel	interference methods.						
	• To understand the co	ncept of frequency management	, Channel assignment with fixed and no	on-fixed					
	channels.								
	• 5. To distinguish the r	nultiple access techniques FDM	A, TDMA, CDMA and OFDMA.						
Cours	se Outcomes:								
Upon	successful completion	of the course, the student wil	be able to:						
COI	Demonstrate an unde	rstanding on cellular comm	unication system, architecture, funct	ioning,					
COA	various standards and	different evolution of cellular	communication systems up to 5G.	•					
CO2	Measure Co-Channel	and Non-Co-Channel interfer	ences for various mobile radio propa	agation					
<u>CO3</u>	models and interpret the C/I measurements for different antenna systems.								
	Design nequency mana	agement chart and need for sen							
CO4	Compare different char	inel assignments, Channel shar	ing and Channel borrowing techniques						
CO5	Design the Omni-direct	tional and directional antennas	used at cell sites and their synthesis me	ethods.					
CO6	Demonstrate the funda multiple accessing met	mental techniques to assign a hods.	handoff without termination of call, d	ifferent					
Course	e Content (Syllabus)								
		<u>UNIT I</u>							
In mo sys	troduction to Cellular obile radio environment, stem, Hexagonal shaped	<b>Mobile Systems:</b> Introductio operation of cellular systems, cells, Analog and Digital Cellu	n to Cellular Mobile System, uniquer consideration of the components of C alar systems.	less of ellular					
El	ements of Cellular Mo	bile Radio System Design: C	oncept of frequency reuse channels. Fr	equency					
rei	use schemes. Frequency	reuse distance. Number of cus	tomers in the system. Permanent and I	Dynamic					
ce	ll splitting, cell sectoring	. Cellular structures: macro. m	icro, pico and femto cells.	<i>j</i>					
	<u> </u>	UNIT II							
In	terference: Co-channel	Interference at the mobile unit	and cell site, Design of Omni- directi	onal and					
Di int	rectional antenna system erference, Neighboring	ns. Non-co channel Interferenc channel interference, Near-Enc	e: Adjacent channel interference: Next I-Far-End Interference.	channel					
Ce po for mo	ell Coverage for Signal int-to-point model (Lee rmula for mobile radio p obile transmission over v	and Traffic: Signal reflection Model), Phase difference betw propagation between two fixed vater, Foliage loss. UNIT III	is in flat and hilly terrain, obtaining the reen direct and ground reflected paths, a stations over water or flat open area,	e mobile General Land to					


(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**Frequency Management:** Numbering the channels and grouping into subsets, Frequency spectrum utilization, Setup, access and paging channels, Self-location scheme at the mobile unit.

**Channel Assignment:** Channel assignments to cell sites and travelling mobile units, Fixed channel assignment: Adjacent-channel assignment, Channel sharing, Channel borrowing and Underlay-overlay cells, non-fixed channel assignment algorithms.

#### UNIT IV

**Cell Site and Mobile Antennas:** Sum and difference patterns and their synthesis, Antennas at cell site: Omni directional and Directional antennas: Start-up and Abnormal antenna configurations, Space diversity antennas, Umbrella pattern antennas, unique situations of cell site antennas, Mobile antennas: Roof-mounted and Glass-mounted antennas, Mobile high gain antennas, horizontally oriented and vertically oriented space-diversity antennas.

#### <u>UNIT V</u>

**Handoff and Dropped calls:** Concept of Handoff, Types of handoffs: Based on signal strength and based on carrier to interference Ratio, Handoff initiation, Delaying handoff, Forced handoff, Power-difference handoff, mobile assigned handoff, soft and hard handoff, cell site handoff only, Intersystem handoff, Dropped call rates- introduction and formula for Dropped call rate.

**Digital Cellular Systems:** Global System for Mobile (GSM): GSM architecture, OSI model of GSM, GSM channels, Multiple Access schemes: FDMA, TDMA CDMA, OFDMA, concepts of LTE and LTE-advanced standards, 5G & 6G features and challenges.

#### **TEXT BOOKS:**

- 1. Mobile Cellular Telecommunications W.C.Y. Lee, Tata McGraw Hill, 2rd Edn, 2006.
- 2. Mobile cellular communication- G. Sasibhushan Rao, Pearson Education.

#### **REFERENCES:**

- 1. Principles of Mobile Communications–Gordon L. Stuber, Springer International 2nd Edt. 2007.
- 2. Wireless Communications Theodore. S. Rapport, Pearson education, 2nd Edn., 2002.
- 3. Wireless Communication and Networking Jon W. Mark and Weihua Zhqung, PHI, 2005.
- 4. Wireless Communication Technology R. Blake, Thompson Asia Pvt. Ltd., 2004.
- 5. Wireless and Mobile Communications Lee McGraw Hills, 3rd Edition, 2006.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

	РО	PO	РО	РО	РО	РО	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	-	-	-	-	1	-	-	2	-	-	3	-
CO2	3	2	3	1	-	-	-	-	-	2	ŀ	2	3	2
CO3	3	1	2	1	-	-	-	-	-	1	-	1	3	1
CO4	3	-	1	1	-	-	-	-	-	-	-	-	3	-
CO5	-	-	-	-	2	_	2	-	1	3	2	2	-	-
CO6	-	1	2	-	1	-	1	-	-	2	1	1	-	1

Dr. S.V. Ramarao Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### IV Year - I Semester

#### LTP C 0 0 1 1

### **MICROWAVE AND RF COMMUNICATIONS**

(Skill Course)

Lecture – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30							
Credits:	3	<b>External Marks:</b>	70							
Prerequisites: Transmission	Lines, Electromagnetic Field The	eory.								
Course Objectives:										
• Measure the parameter	s using microwave components.									
<ul> <li>Analyze the generation and propagation of microwaves in waveguides.</li> </ul>										
• Evaluate scattering parameters of different microwave junctions.										
Determine characterist	ic parameters of Microwave Sour	rces								
<b>Course Outcomes:</b>										
Upon successful completion	of the course, the student will b	be able to:								
<b>CO1</b> Describe the microwave	e bench set-up with different bloc	ks and their features.								
<b>CO2</b> Determine the measure	ments of microwave power, atten	uation, frequency, VSWR and im	pedance.							
CO3 Understand Wave guide	e parameter measurements.									
CO4 Understand the types of	f cavity resonators and determine	the dominant mode.								
<b>CO5</b> Analyze the waveguide	multiport junctions.									
CO6 Understand the velocity	y modulation process and power of	output in Reflex Klystron.								
Course Content(Syllabus)										
	<u>UNIT I</u>									
Microwave Sources, and C	components-Microwave Bench	Setup or Experimental arrange	ement for							
Microwave Communication.										
List of Experiments:	on of microwaya components									
2. Demonstration of Microway	ve Bench setup									
2. Demonstration of Wheroway	UNIT II									
Mianowaya Daviaga VSWD m	UNII II	Mianowaya Dawan Supply (VI V	TDON							
and GUNN Power supplies)	nd Power Meter	Microwave Power Supply (KL13	TRON							
List of Experiments.	nd i owei weter.									
1. Calibration of VSWR meter	· Precision Frequency Meter and	Power Meter.								
2. Demonstration & Calibratio	n of Microwave Power supplies.									
	<u>UNIT III</u>									
Characteristics of Microwav	e and Optical Sources, freque	ency bands for Microwave an	d Optical							
communications.			_							
List of Experiments:										
1. Study of the characteristics	of Klystron tube and to determine	its electronic tuning range.								
2. Study of following character	ristics of Gunn Diode.									
a) Output power and frequency	y as a function of voltage.									
b) Square wave modulation the	rough PIN diode.									
3. LED Characteristics.										
4. LASER GIOGE CHAFACIERISTIC	28. TINIT IV									



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Microwave Passive components: Directional Coupler, Wave-guide T-Junctions, Magic Tee, Attenuator, Circulator, Isolator.

#### List of Experiments:

- 1. Determine the frequency & wavelength in a rectangular waveguide working in TE10 mode.
- 2. Study of function of multi hole directional coupler by measuring the following parameters:
- a) Insertion Loss
- b) Coupling factor and directivity.
- 3. Determine the standing wave ratio and reflection coefficient of a given Microwave Component.
- 4. Measurement of Attenuation of a given Attenuator.
- 5. Measure S-Parameters of Magic Tee Junction.
- 6. Measure Input VSWR, Insertion loss of circulator.

#### <u>UNIT V</u>

Introduction to Radio Receivers, Frequency Bands, Applications, Introduction to spectrum Analyzer, Frequency Range, Applications.

#### List of Experiments:

- 1. Introduction to spectrum analyser and measurement of spectrum of given signal using the same.
- 2. Demonstration of antenna radiation parameters

#### **TEXT BOOKS:**

1. Microwave Devices and Circuits – Samuel Y. Liao, PHI, 3rd Edition, 1994.

2. Dennis Roddy - Microwave Technology, PHI.

3. Annapurna Das, Sisir K.Das- Microwave engineering, (TMG).

**REFERENCES:** 

Foundations for Microwave Engineering – R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.
 Microwave Engineering -David M. Pozar, Wiley publications, 4th Edition.

3. Microwave Principles – Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS Publishers and Distributors, New Delhi.

## Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

specific outcomes (1 505) (1 Low, 2- metrum, 5 – mgn)														
	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2
CO1	2	2	-	2	-	-	-	-	-	-	-	-	2	2
CO2	2	2	-	2	-	-	-	-	2	2	-	-	2	2
CO3	3	3	-	-	-	-	-	-	2	2	2	-	3	3
CO4	3	3	-	2	-	-	-	-	2	-	2	-	3	3
CO5	2	2	-	2	-	-	-	-	-	-	2	-	2	2
CO6	-	2	-	2	-	-	-	-	-	2	-	-	-	2

Dr. S. A. Rahiman Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### IV Year - I Semester

L T P C 2 0 0 0

### **EMPLOYABILITY SKILLS**

(Mandatory Course)

		(manuatory Course									
Lectu	ure – Tutorial:	2-0 Hours	<b>Internal Marks:</b>	30							
Cred	lits:	0	<b>External Marks:</b>	70							
Prer	equisites: None										
Cour	Course Objectives: The students will be able										
٠	To learn skills for di	scussing and resolving problems on the	work site.								
٠	<ul> <li>To assess and improve personal grooming EMPLOYABILITY.</li> </ul>										
٠	• To promote safety awareness including rules and procedures on the work site.										
٠	To develop and prac	tice self management skills for the worl	k site.								
•	Students will be intr	oduced to various Arithmetic and Reaso	oning Problems.								
Cour	rse Outcomes:										
Upor	n successful completi	on of the course, the student will be a	ble to:								
CO1	Recite the corporate	etiquette.									
CO2	Make presentations e	effectively with appropriate body langua	.ge.								
CO3	Be composed with pe	ositive attitude.									
<b>CO4</b>	Apply their core com	petencies to succeed in professional and	d personal life.								
CO5	Solve the Arithmetic	and Reasoning Problems as fast as pos-	sible and as simple as po	ossible. Exhibits							
	good analytical skills	and aptitude skills.									
CO6	Perform well in all	competitive exams like RRB, SSC, G	ROUPS, and BANKIN	G and clear the							
	aptitude section of ex	ams for higher education like CAT, GN	AT, and GRE etc								
Cour	rse Content(Syllabus										
		<u>UNIT I</u>									
COM	MUNICATION SKI	ILLS:	~								
Types	of Communication –	Verbal Communication – Hierarchy of	Communication, Upwa	rd, Downward,							
Horizo	ontal, Vertical; Non	-Verbal Communication – Kinesics	– Proximics – Hapti	cs - Vocalics							
(Paral	anguage) Physiologic	al changes, facial expression, Handshak	e.								
COFT											
SUF I Intern	SKILLS: ersonal Communicati	on Adaptability Stress Management	Time Management I	eadership Skills							
Goal	Setting Conflict Reso	lution Team Building and Team Work	, This Management, La	sauersnip Skins,							
Intran	ersonal Communicat	ion – Self Confidence Resilience	Self Discipline Emr	oathy Attitude							
Motiv	ation. Emotional Intel	ligence and Social Skills.	Sen Diserprine, Emp	, and the second s							
Etique	ettes - Social Etiquette	e, Telephone Etiquette, Dining Etiquette	and Business Etiquette.								
1	I		1								
PERC	<b>CENTAGES:</b> Basics	of Percentages, Percentage Change, Sim	ple Interest and Compo	und Interest							
Data A	Arrangements – Linea	r, Circular and Multi Dimensional Arra	ngements.								
		<u>UNIT IV</u>									
NUM	BER SYSTEM: Clas	ssification of Numbers, Divisibility Rul	es, Factors and Multiple	es, Power Cycle							
and Re	emainder Cycle metho	od, LCM & HCF, Coding & Decoding,	Alphabet & Number Se	ries.							
		UNIT V									
TECH	INICAL WRITING	: Resume and Cover Letter, Types o	f Letters, Email Writir	ng, Agenda and							
Minut	es of Meeting, Memo	and Report Writing.									

**TEXT BOOKS:** 



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

- 1. Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011.
- 2. APTIPEDIA, WILEY.
- 3. Quantitative Aptitude, RS AGARWAL, S.Chand Publishers.

#### **REFERENCES:**

1)Rizvi Ashraf M, Effective Technical Communication, Tata Mc Graw - Hill, 2007.

2)Raman Meenakshi & Sangeeta Sharma, Technical Communication – Principles and Practice, Oxford University Press, 2011.

3)Bhatnagar Nitin & Bhatnagar Mamata, Effective Communication & Soft Skills – Strategies for Success, Pearson Publishers, 2011.

4) Mitra Barun, Personality Development & Soft Skills, Oxford University Press, 2016.

5)Rao M.S, Soft Skills-Enhancing Employability; Connecting Campus with Corporate, IK International Publishing House Pvt. Ltd, 2010.

6) HOW TO PREPARE FOR Quantative Aptitude, ARUN SHARMA, Mc GRAW HILL.

E-RESOURCES For Aptitude.

Indiabix.

Faceprep.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

8				( .= =)		,		) -	0 /					
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	Р
	1	2	3	4	5	6	7	8	9	10	11	12	1	s
														0
														2
CO1	2	-	-	3	-	-	2	-	-	2	-	2	2	-
CO2	-	-	-	3	-	-	-	-	2	-	-	-	-	-
CO3	-	3	-	-	-	2	-	-	-	3	-	-	-	3
CO4	-	-	-	3	-	-	-	-	2	3	-	2	2	-
CO5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Dr. T. Sreelatha Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IV Year - I Semester

L T P C 3 0 0 3

### ENVIRONMENTAL PROJECT MANAGEMENT (Open Elective)

Lecture – Tutorial:	3-0 Hours	Internal Marks:	30							
Credits:	3	<b>External Marks:</b>	70							
Prerequisites:	·	1	'							
Course Objectives:										
• Acquire knowledge about steps involved in project management.										
Advantages of Netw	ork analysis by understanding the elem	ents.								
Methods of project n	nanagement – PERT & CPM.									
Cost Management an	nd optimization.									
Course Outcomes:										
Upon successful completion	on of the course, the student will be a	ble to:								
CO1 Attain knowledge on	planning and scheduling of various pro	jects.								
CO2 Learn and apply the k	nowledge of Networks in project plann	ning.								
CO3 Analysis by PERT.										
CO4 Analysis by CPM.										
CO5 Optimization of the c	ost.									
CO6 Evaluation of the pro	ject by using various methodologies.									
Course Content(Syllabus)										
	<u>UNIT I</u>									
PROJECT MANAGEMEN	<b>T</b> : Introduction, objectives of Project Pl	lanning, Scheduling, con	trolling, role of							
decision in project managemen	it, methods of planning and programming -	- bar charts and milestone	charts.							
	UNIT II									
PROJECT MANAGEMENT	THROUGH NETWORKS: Objectives	s of network techniques,	Fundamentals of							
development of Network	cuvities, Dummies, Networks Rules, N	fumbering the events, C	-yeles, steps in							
	UNIT III									
PROGRAM EVALUATION	AND REVIEW TECHNIQUE (PERT	F): Introduction, Time es	stimates, Earliest							
expected time, Latest allowabl	e occurrence time, Slack, Critical path, Pro	bability of completion tin	ne for a project.							
	<u>UNIT IV</u>									
CRITICAL PATH METHO	<b>D</b> ( <b>CPM</b> ): Introduction, Difference between	een CPM and PERT, Ear	liest event time,							
Latest event time, Activity tim	e, Float, Critical activities and critical path									
	UNITV									
<b>COST CONTROL:</b> Direct co	st, Indirect cost, Total project cost, Op	timization of cost throu	igh networks,							
TEXT BOOKS.										
1 Project Planning and cor	otrol with PERT and CPM by Dr B C P	unmia and K K Khande	Jwal							
2. Bhattachariee, S.K. Fund	lamentals of PERT/CPM and Project N	anagement.Khanna. N	DLS. 1996.							
<b>REFERENCES:</b>										
1. PERT & CPM Principles	s and applications by L. S. Srinath: Affi	iliated East West Press.								
2. Construction Manageme	ent & Planning by B. Sengupta& H. G	uha; Tata Mc Graw –	Hill Publishing							
Co. Ltd., New Delhi.			2							

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Contri	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and													
Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	Р
	1	2	3	4	5	6	7	8	9	10	11	12	1	s
														0
														2
CO1	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO2	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO3	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO4	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO5	2	2	2	2	-	-	-	-	-	-	-	2	-	-
CO6	2	2	2	2	-	-	-	-	-	-	-	-	-	-

Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### IV Year - I Semester

L T P C 3003

### DATABASE MANAGEMENT SYSTEMS

**(Open Elective)** 

Lectu	ıre – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30							
Cred	its:	3	<b>External Marks:</b>	70							
Prere	Prerequisites: C- Programming.										
Cour	se Objectives:										
• T	• To understand the basic concepts and the applications of database systems.										
• T	To learn and practice data modelling using the entity-relationship and developing database designs.										
• T	o master the basics of	SQL and construct queries using SQL									
• 7	Fo apply normalization	n techniques to normalize the database									
• T	o understand the need	s of database processing and learn tech	nniques for controlling th	e consequences							
0	of concurrent data access.										
• T	o learn the concepts o	f transaction management and how the	ey provide security and co	onsistency.							
• T c	o topics include data	a models, database design, relational ontrol, storage structures and access tec	model, relational algel	ora, transaction							
Cour	se Outcomes:		•								
Upor	successful completion	on of the course, the student will be a	able to:								
CO1	Ability to define, une	derstand the database management sys	tem structure.								
CO2	Ability to apply as rel	ational algebra to find solutions to a b	coad range of queries.								
CO3	Ability to create appl	ications using various normal forms,	functional dependencies,	validating and							
	identifying anomalies										
CO4	Will be able to expla	in the principle of transaction manager	ment design.								
CO5	Understands and app	lies indexing mechanisms in databas	es.								
CO6											
Cour	se Content(Syllabus)										
		<u>UNIT I</u>									
DATA	BASE SYSTEM AP	PLICATIONS:									
Databa	ase System Applicatio	ns, Purpose of Database Systems, File	Systems versus a DBMS	5, View of Data							

- Data Abstraction, Instances and Schemas, Data Models, Data Independence, Database Users and

Administrators, Structure of a DBMS.

### INTRODUCTION TO DATABASE DESIGN:

Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model.

#### UNIT II

#### INTRODUCTION TO THE RELATIONAL MODEL:

Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data

base design, introduction to views, Destroying/altering tables and views.

#### **RELATIONAL ALGEBRA AND CALCULUS:**

Relational Algebra – Selection and Projection, Set operations, Renaming, Joins, Division, Examples of Algebra Queries, Relational calculus – Tuple relationalCalculus – Domain relational calculus.



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### <u>UNIT III</u>

#### SQL: QUERIES, CONSTRAINTS, TRIGGERS:

Form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators,

NULL values, complex integrity constraints in SQL, Triggers and active data bases.

### SCHEMA REFINEMENT:

Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH normal form, FIFTH normal Form.

#### UNIT IV

#### **OVERVIEW OF TRANSACTION MANAGEMENT:**

The ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions - Lock Based

Concurrency Control, Deadlocks – Performance of Locking – Transaction Support in SQL.

#### **CONCURRENCY CONTROL:**

Serializability, and recoverability – Introduction to Lock Management – Lock Conversions, Dealing with

Dead Locks, Specialized Locking Techniques – Concurrency Control without Locking.

#### CRASH RECOVERY:

Introduction to Crash recovery, Introduction to ARIES, the Log, and Other Recovery related Structures, the Write-Ahead Log Protocol, Check pointing, recovering from a System Crash, Media recovery.

#### <u>UNIT V</u>

#### **OVERVIEW OF STORAGE AND INDEXING:**

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning, Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

#### **TEXT BOOKS:**

- Data base Management Systems, Raghu Ramakrishnan, Johannes Gehrke, TMH, 3rd Edition, 2003.
- Data base System Concepts, A.Silberschatz, H.F. Korth, S.Sudarshan, McGraw hill, VI edition, 2006.
- 3. Fundamentals of Database Systems 5th edition., Ramez Elmasri, Shamkant .Navathe,Pearson Education,2008.

#### **REFERENCES:**

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education.
- 3. Introduction to Database Systems, C. J. Date, *Pearson Education*.
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

#### e-Resources:



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

1.https://www.javatpoint.com/dbms-tutorial

2.https://www.tutorialspoint.com/dbms/index.htm

3.https://www.geeksforgeeks.org/dbms/

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and														
Progra	Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)													
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	Р

	PO	PS0	r											
	1	2	3	4	5	6	7	8	9	10	11	12	1	S
														0
														2
CO1	2	2	2	-	2	-	-	-	-	-	-	2	2	2
CO2	3	3	3	-	-	-	-	-	-	-	2	2	2	2
CO3	3	3	-	-	3	2	-	-	-	-	2	2	3	2
CO4	2	2	3	-	2	2	-	-	-	-	2	3	2	2
CO5	3	3	3	-	2	3	-	-	-	-	2	2	2	2
CO6	2	2	2	-	2	-	-	-	-	-	-	2	2	2

Signature of faculty



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **IV Year - I Semester**

L	Т	Р	С
3	0	0	3

### **Universal Human Values**

		(HSF										
Lect	ure – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30								
Cred	lits:	3	<b>External Marks:</b>	70								
Prer	equisites: None											
Cou	rse Objectives: Th	e students will be able										
•	• To help the student to see the need for developing a holistic perspective of life.											
•	To sensitize the society and natur	student about the scope of life re/existence strengthening self-	- individual, family (inter-perso reflection.	onal relationship),								
•	To develop more	confidence and commitment t	o understand, learn and act accord	rdingly.								
Cou	rse Outcomes:											
Upor	n successful comp	letion of the course, the stude	ent will be able to:									
CO1	Describe more aw	vare of themselves, and their su	irroundings (family, society, natu	ıre.)								
CO2	Illustrate more re keeping human re	sponsibility in life, and in har lationships and human nature	ndling problems with sustainable in mind.	e solutions, while								
CO3	Show better critic	al ability.										
CO4	Exhibit sensitivit human relationshi	y to their commitment towa p and human society).	rds what they have understood	l (human values,								
CO5	Apply what they beginning would	have learnt to their own self in be made in this direction.	different day-to-day settings in	real life, at least a								
Cou	rse Content(Syllal	bus)										
		UNIT	<u>I</u>									
Introd for the and p Contin Relati being of the harmo	duction - Need, Ba e course, recapitula rocess; 'Natural A nuous Happiness onship and Physica with their correct p current scenario, ony at various level	usic Guidelines, Content and P ation from Universal Human V acceptance' and Experiential ' and Prosperity- A look at b al Facility- the basic requirem priority, Understanding Happin Method to fulfil the above the	rocess for Value Education: pose alues-I, Self-Exploration–what i Validation- as the process for s basic Human Aspirations, Righ ents for fulfilment of aspirations ness and Prosperity correctly- A human aspirations: understandin	e and motivation s it? - Its content self- exploration, t understanding, of every human critical appraisal ng and living in								
		UNI	<u>Г II</u>									
Under a co-e 'Body doer, Under needs	rstanding Harmon existence of the se " - happiness and seer and enjoyer) rstanding the harm meaning of Prosp	ny in the Human Being - Har ntient 'I' and the material 'B physical facility, Understandin ,Understanding the character nony of I with the Body: Sar erity in detail, Programs to ens <u>UNIT</u>	mony in Myself! Understanding ody', Understanding the needs ng the Body as an instrument or istics and activities of 'I' and nyam and Health; correct appra- sure Sanyam and Health <u>III</u>	human being as of Self ('I') and f 'I' (I being the harmony in 'I', aisal of Physical								
Under Under relation found and co	rstanding Harmo rstanding values in onships) and progrational values of re ompetence, Unders	<b>ny in the Family and Soc</b> n human-human relationship; am for its fulfilment to ensu elationship. Understanding the tanding the meaning of Respec	<b>Tety-</b> Harmony in HumanHuma, meaning of Justice (nine uniter re mutual happiness; Trust and meaning of Trust; Difference b ct,Difference between respect an	an Relationship: versal values in l Respect as the etween intention d differentiation;								

the other salient values in relationship, Understanding the harmony in the society (society being an



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

extension of family): Resolution, Prosperity, fearlessness (trust) and co- existence as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family

#### UNIT IV

**Understanding Harmony in the Nature and Existence** - Whole existence as Coexistence: Understanding the harmony in the Nature, Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all- pervasive space, Holistic perception of harmony at all levels of existence

#### <u>UNIT V</u>

**Implications of the above Holistic Understanding of Harmony on Professional Ethics:** Natural acceptance of human values, Definitiveness of Ethical Human Conduct, Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order, Competence in professional ethics: Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. Case studies of typical holistic technologies, management models and production systems, Strategy for transition from present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations

#### **TEXT BOOKS:**

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

#### **REFERENCES:**

- 1. JeevanVidya: Ek Parichaya by A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. HumanValues by A.N.Tripathi, New Age Intl.Publishers, NewDelhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karam chand Gandhi

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 - Low, 2- Medium, 3 - High) PO1 РО PSO PSO2 РО 5 6 7 2 3 4 8 9 10 11 12 1 2 CO1 ------___ -----2 --------------2 2 **CO2** ------------------------2 2 --**CO3** ------------___ ----2 2 **CO4** ----___ ----------2 2 CO5 -----------------------------

**Signature of Faculty** 



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### OPEN ELECTIVES NRIA20 REGULATION

S.No	Name of the Course	L – T - P	Credits
1	IoT & Applications	3 – 0 - 0	3
2	Image Processing	3 – 0	3
3	Bio Medical Mechanisms	3 – 0	3
4	Transducers and Sensors	3 – 0	3
5	Industrial Electronics	3 – 0	3
6	Micro Processors and Applications	3 – 0	3
7	Principles of Communications	3 – 0	3
8	IC Applications	3 – 0	3



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

> L T P C 3 0 0 3

**DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING** 

#### **Open Elective**

### IoT & APPLICATIONS

Lecture	e – Tutorial:	3-0 Hours	Internal Marks:	: 30						
Credits	•	3	External Marks	: 70						
Prerequ	uisites: Embedded Syst	ems, Microcontrollers, C	perating Systems, Programming	3.						
Course	<b>Objectives:</b>									
• T	o understand Smart Ob	jects and IoT architecture	2.							
• T	o introduce the concept	of M2M (machine to ma	chine) with necessary protocols	3.						
• T	o acquaint with the vari	lous security concepts in	IoT architecture.							
• T	o build simple IOT syst	tem using Arduino and R	aspberry PI platform.							
• T	o understand data analy	tics and cloud in the con	text of IOT.							
Course	Outcomes:									
Upon s	uccessful completion o	f the course, the studen	t will be able to:							
<b>CO1</b>	Summarize on the terr	m 'internet of things' in d	ifferent contexts and to learn ab	bout Internet of						
	Things with the help of	of Arduino and Raspberry	/ Pi.							
CO2	Comprehend and anal	yze Software defined net	works.							
CO3	Acquire knowledge to i	interface sensors and actu	ator with microcontroller based	l Arduino						
	plationii.									
CO4	Understand the commu and to analyze various	nication between microc protocols for IoT.	ontroller and pc using serial con	nmunication						
CO5	Apply data analytics given application usin	and use cloud offerings g APIs and test for errors	related to design and develop a s in the application.	a solution for a						
CO6	<b>CO6</b> Implement real field problem by gained knowledge of Industrial applications with IoT capability.									
		Course Content(S	Syllabus)							
	<u>UNIT I</u>									

**INTRODUCTION TO IOT:** Introduction to IoT, Architectural Overview, Design principles and needed capabilities, Basics of Networking, M2M and IoT Technology Fundamentals- Devices and gateways, Role of Cloud in IoT, Security aspects in IoT, Elements of IoT Hardware Components-Computing- Arduino, Raspberry Pi.

#### UNIT II

**IOT and M2M:** Software defined networks, Network Function Virtualization, Difference between SDN and NFV for IOT, Basics of IOT system management with NETCONF, YANG-NETCONF, YANG, NETOPEER.

#### UNIT III



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**IOT APPLICATION DEVELOPMENT:** Communication, IoT Applications, Sensing, Actuation, I/O interfaces. Software Components- Programming API's (using Python/Node.js/Arduino) for Communication Protocols-MQTT, ZigBee, CoAP, UDP, TCP, Bluetooth overview, Bluetooth Key Versions, Bluetooth Low Energy (BLE) Protocol, Bluetooth, Low Energy Architecture, PSoC4 BLE architecture and Component Overview.

#### <u>UNIT IV</u>

**CLOUD ANALYTICS FOR IOT APPLICATION**: Introduction to cloud computing, Difference between Cloud Computing and Fog Computing: The Next Evolution of Cloud Computing, Role of Cloud Computing in IoT, Connecting IoT to cloud, Cloud Storage for IoT Challenge in integration of IoT with Cloud.

**IOT CASE STUDIES:** IoT case studies and mini projects based on Industrial automation, Transportation, Agriculture, Healthcare, Home Automation.

#### UNIT V

**INTRODUCTION TO INDUSTRY 4.0 AND II0T:** Defining Industry 4.0, Characteristics of Industry 4.0, and Benefits to Business, Industry 4.0 Design Principles, and Building blocks of Industry 4.0, Industry 4.0 Reference Architecture, and Smart Factories.

## **CONCEPT OF 5G TECHNOLOGY**: A New Step to IOT Platform. **TEXT BOOKS**:

- 1. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1stEdition, McGraw HillEducation, 2017.
- 2. The Definitive Guide to the ARM Cortex-M0 byJosephYiu,2011
- 3. Vijay Madisetti, Arshdeep Bahga, Internet of Things, "A Hands on Approach", University Press, 2015.

#### **REFERENCES:**

- 1. Cypress Semiconductor/PSoC4BLE (Bluetooth Low Energy) Product Training Modules.
- 2. Pethuru Raj and AnupamaC.Raman, "The Internet of Things:EnablingTechnologies,Platforms, and Use Cases", CRC Press,2017.

## Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(I - L)	0W, 2- N	leaium	l, 3 – H	lign)	1	1	1	1		1				
	PO1	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO1	PSO2
		2	3	4	5	6	7	8	9	10	11	12		
CO1		2	3		2		2	3	2	3	2	2	2	
CO2				3									3	
CO3			3											3
CO4	3									2				
CO5											3		2	
CO6												3	2	



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **Open Elective**

#### LTPC 3 00 3

### **IMAGE PROCESSING**

Lectu	re – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30
Credi	ts:	3	<b>External Marks:</b>	70
Prere	quisites: Mathemat	ics I & II, Engineering Physic	s, Linear integrated circuits, S	Signals and
Syste	ms, Analog Comm	unications, Digital Signal Pro	cessing.	
Cours	se Objectives:			
•	To introduce the co	oncepts of image processing a	and basic analytical methods	to be used in
image	e processing.			
•	To familiarize stud	ents with image enhancement		
•	To introduce differ	ent image restoration technique	ies.	
•	To introduce the co	oncepts of colour image proce	ssing.	
•	To familiarize the s	students with image compress	ion techniques.	
• To	introduce morphol	ogical processing and segmer	tation techniques.	
Cours	se Outcomes:			
Upon	successful complet	tion of the course, the stude	nt will be able to:	
CO1	Understand the fu	ndamentals of image process	ing, necessity for transforms,	DFT and its
	properties, DCT.			
CO2	Evaluate techniqu	es for image enhancement.		
CO3	Estimate the degra	adation of an image and apply	appropriate restoration techn	iques.
<b>CO4</b>	Understand the ne	eed for colour image process	ing and learn the fundament	als of colour
	image processing	Ţ.		
CO5	Understand the ne	eed for image compression a	nd learn different techniques	to compress
	image.			
CO6	Interpret morphol	ogical processing and imple	ment different techniques to	segment an
	image.	<b>A A A A</b>		
		Course Content(Sy	llabus)	
		UNIT	L	

**INTRODUCTION:** Introduction to Image Processing, Fundamental steps in digital image processing, components of an image processing system, image sensing and acquisition, image sampling and quantization, some basic relationships between pixels, an introduction to the mathematical tools used in digital image processing.

**IMAGE TRANSFORMS:** Need for image transforms, Discrete Fourier transform (DFT) of one variable, Extension to functions of two variables, some properties of the 2-D Discrete Fourier transform.

#### UNIT II

**INTENSITY TRANSFORMATIONS AND SPATIAL FILTERING:** Background, Some basic intensity transformation functions, histogram processing, fundamentals of spatial filtering, smoothing spatial filters, sharpening spatial filters, Combining spatial enhancement methods

FILTERING IN THE FREQUENCY DOMAIN: Preliminary concepts, The Basics of filtering in the



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

frequency domain, image smoothing using frequency domain filters, Image Sharpening using frequency domain filters, Selective filtering

#### UNIT III

**IMAGE RESTORATION AND RECONSTRUCTION:** A model of the image degradation / Restoration process, Noise models, restoration in the presence of noise only-Spatial Filtering, Periodic Noise Reduction by frequency domain filtering, Linear, Position –Invariant Degradations, Estimating the degradation function, Inverse filtering, Minimum mean square error (Wiener) filtering.

**IMAGE COMPRESSION:** Fundamentals, Basic compression methods: Huffman coding, Golomb coding, Arithmetic coding, LZW coding, Run-Length coding, Symbol-Based coding, Bit-Plane coding, Block Transform coding, Predictive coding

UNIT IV

**MORPHOLOGICAL IMAGE PROCESSING:** Preliminaries, Erosion and dilation, opening and closing, basic morphological algorithms for boundary extraction, thinning, gray-scale morphology **IMAGE SEGMENTATION:** Fundamentals, point, line, edge detection, thresholding, region –based segmentation.

#### <u>UNIT V</u>

**COLOR IMAGE PROCESSING**: color fundamentals, color models, pseudo color image processing, basics of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color, noise in color images, color image compression.

#### **TEXT BOOKS:**

- 1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008.
- 2. 2. Jayaraman, S. Esakkirajan, and T. Veerakumar," Digital Image Processing", Tata McGraw-Hill Education, 2011.

#### **REFERENCES:**

- 1. Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 9th Edition, Indian Reprint, 2002.
- 2. B.Chanda, D.Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2009.

### Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – 1)	(1 - Low, 2- Medium, 5 - High)													
	PO1	РО	PSO1	PSO2										
		2	3	4	5	6	7	8	9	10	11	12		
CO1	2	3	2	2								2		3
CO2	2	3												3
CO3	2	3		3										2
CO4	3		2										2	
CO5	3		2											
CO6	2	2										2	3	



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **Open Elective**

#### L T P C 300 3

#### **BIOMEDICAL MECHANISMS**

Lectur	e – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30
Credit	S:	3	<b>External Marks:</b>	70
Prereq	uisites: Basics of instr	umentation.		
Course	e Objectives:			
	• To explain the impo	ortance of various sources of bio-	electric potentials in human	body.
	• To enhance the kno	wledge of various electrodes and	transducers used for measu	ring
	bioelectrical			
	potentials.			
	• To familiarize mech equipments.	hanisms of cardiovascular and re-	spiratory systems and their 1	neasuring
•	• To introduce eleme prosthetic devices.	ents of patient care & monitorin	ng system and various there	apeutic &
	• To provide fundam	nentals of various diagnostic tech	hniques and introduce the c	concepts of
	bio-telemetry.			
Course	e Outcomes:			
Upon s	uccessful completion	of the course, the student will b	e able to:	
CO1	Identify various source	ces of bio-electric potentials in ma	an-instrumentation system.	
CO2	Interpret how electroe	les and transducers are involved i	in biomedical engineering co	oncepts.
CO3	Outline the anatom instruments.	y of Cardiovascular and resp	iratory system and their	measuring
<b>CO4</b>	Summarize the funct malfunction of human	ionality of patient care & monit 1 body.	coring equipments used to i	dentify the
CO5	Analyze various the biomaterials used for	rapeutic and prosthetic devices patient care.	s, clinical laboratory instru	ments and
CO6	Identify the different accident prevention n	diagnostic imaging techniques nethods.	and monitors, recorders and	d electrical
Course	e Content(Syllabus)			
		<u>UNIT I</u>		
SOURC	CES OF BIOELECT	RIC POTENTIALS AND EI	<b>LECTRODES:</b> Resisting a	and Action

Potentials, Propagation of Action Potentials, The Bioelectric Potentials. Electrodes: Electrode theory, Bio Potential Electrodes, Biochemical Transducers, introduction of biomedical signals.

#### UNIT II

**THE CARDIOVASCULAR SYSTEM:** The Heart and Cardiovascular System, The Heart, Blood Pressure, Characteristics of Blood Flow, Heart Sounds, Cardio Vascular Measurements, Electrocardiography, Measurement of Blood Pressure, Measurement of Blood Flow and Cardiac output, Plethysmography, Measurement of Heart Sounds, Event detection, PQRS &T-waves in ECG, the first & second Heartbeats, ECG rhythm analysis.

#### <u>UNIT III</u>

**PATIENT CARE & MONITORY AND MEASUREMENTS IN RESPIRATORY SYSTEM:** The elements of Intensive Care Monitory, Diagnosis, Calibration and reparability of Patient Monitoring equipment, other instrumentation for monitoring patients, pacemakers, defibrillators, the physiology of respiratory system, tests and instrumentation for mechanics of breathing, respiratory theory equipment, analysis of respiration.

#### UNIT IV

#### **BIO TELEMETRY AND INSTRUMENTATION FOR THE CLINICAL LABORATORY:**

Introduction to biotelemetry, Physiological parameters adaptable to biotelemetry, the components of biotelemetry system, implantable units, applications of telemetry inpatient care – The blood, tests on blood cells, chemical test, automation of chemical tests.

#### UNIT V

### X-RAY AND RADIOISOTOPE INSTRUMENTATION AND ELECTRICAL SAFETY OF MEDICAL EQUIPMENT:

Generation of Ionizing radiation, instrumentation for diagnostic X rays, special techniques,

instrumentation for the medical use of radioisotopes, radiation therapy – Physiological effects of electrical current, shock Hazards from electrical equipment.

#### **TEXT BOOKS:**

1. Biomedical Instrumentation and Measurements–C.Cromwell, F.J.Weibell, E.A.Pfeiffer– Pearsoneducation.

2. Biomedicalsignalanalysis–Rangaraj,M.Rangayya–WileyInterscience–Johnwilley&Sons Inc.

#### **REFERENCES:**

1.HandBookookofBio-MedicalInstrumentation – R.S. Khandpur, (TMH).

2.IntroductiontoBio-MedicalEngineering–Domach, (Pearson).

3.Introductionto Bio-Medical Equipment Technology–Cart,(Pearson).

### Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 - Low 2- Medium 3 - High)

	PO1	РО	PSO1	PSO2										
		2	3	4	5	6	7	8	9	10	11	12		
CO1	2	3	2	3										3
CO2	3	3				2							2	
CO3	2	2		3	2								3	
CO4	2												2	
CO5	2		3										2	
CO6	3				2							2		3



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

#### **DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING**

**Open Elective** 

#### L T P C 3 0 0 3

#### TRANSDUCERS AND SENSORS

Lecture	- Tutorial:	3-1 Hours	Internal Marks:	30
<b>Credits:</b>		4	<b>External Marks:</b>	70
<b>Prerequi</b> method o	<b>sites:</b> Basic electri f measurement.	cal and electronics engineer	ing, basics of measuring system	stems and
Course (	Objectives:			
• To	make students fam	iliar with the constructions ar	nd working principle of differe	nt types of
ser	isors and transducer	ſS.		
• To	make students awa	are about the measuring instruct transducers	uments and the methods of me	easurement
• To	make students awa	re of the latest trends in senso	r technology	
Course (	Jutcomes:	te of the fatest fields in sense		
Upon su	cessful completion	n of the course, the student <b>y</b>	vill be able to:	
CO1	Apply concepts in quantity.	common methods for convert	ing a physical parameter into	an electrical
CO2	Classify and expla temperature, strain	in with examples of transdue, motion, position and light.	cers, including those for measure	surement of
CO3	Choose proper ser measurements of p	nsor comparing different sta hysical parameters like pressu	ndards and guidelines to mal re, flow, acceleration, etc.	ke sensitive
CO4	Predict correctly th	e expected performance of va	rious sensors.	
CO5	Locate different t importance.	ype of sensors used in rea	l life applications and parap	ohrase their
CO6	Set up testing strate sensors and transc knowledge outside	egies to evaluate performance lucers and develop profession the classroom through design	characteristics of different ty onal skills in acquiring and a of a real-life instrumentation s	pes of pplying the system.
		<b>Course Content (Syllabus)</b>		
		<u>UNIT I</u>		
NUTDOD			· 1° 1 C 1	, • ,•

**INTRODUCTION:** Functional elements of an instrument, generalized performance characteristics of instruments – static characteristics, dynamic characteristics.

Zero order, first order, second order instruments – step response, ramp response and impulse response. Response of general form of instruments to periodic input and to transient input Experimental determination of measurement system parameters, loading effects under dynamic conditions.

#### <u>UNIT II</u>

**TRANSDUCERS FOR MOTION AND DIMENSIONAL MEASUREMENTS:** Relative displacement, translation and rotational resistive potentiometers, resistance strain guages, LVDT, synchros, capacitance pickups, Piezo-electric transducers, electro-optical devices, nozzle – flapper transducers, digital displacement transducers, ultrasonic transducers.

Magnetic and photoelectric pulse counting methods, relative acceleration measurements, seismic acceleration pickups, calibration of vibration pickups. Gyroscopic sensors.

#### UNIT III

**TRANSDUCERS FOR FORCE MEASUREMENT:** Bonded strain guage transducers, Photoelectric transducers, variable reluctance pickup, torque measurement dynamometers.

**TRANSDUCERS FOR FLOW MEASUREMENT:** Hot wire and hot-film anemometers, Electromagnetic flow meters, laser Doppler velocimeter.

**TRANSDUCERS FOR PRESSURE MEASUREMENT:** Manometers, elastic transducers, liquid systems, gas systems, very high pressure transducers. Thermal conductivity guages, ionization guages, microphone.

#### <u>UNIT IV</u>

**TRANSDUCERS FOR TEMPERATURE MEASUREMENT:** Thermal expansion methods, Thermometers (liquid in glass), pressure thermometers, Thermocouples, Materials configuration and techniques. Resistance thermometers, thermistors, junction semiconductors, Sensors, Radiation methods, Optical pyrometers, Dynamic response of temperature sensors heat flux Sensors, Transducers for liquid level measurement, humidity, silicon and quartz sensors, fiber optic sensors.

#### UNIT V

**SMART SENSORS:** Introduction, primary sensors, converters, compensation. Recent trends in sensor technology – film sensors, semi conductor IC technology, MEMS, Nano-sensors.

#### **TEXT BOOKS:**

1. Doebelin, E.O., "Measurement systems – Application and Design", McGraw Hill.

2. D. Patranabis, "Sensors and Transducers", PHI, 2nd Edition.

#### **REFERENCES:**

1. Instrumentation Measurement & Analysis, by B.C. Nakra, K.K. Choudry, (TMH) .

2. Transducers and Instrumentation, by D.V.S. Murthy (PHI).

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low 2- Medium 3 – High)

(1 - 10 w, 2- Mculum, 5 - Ingl)														
	PO1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	РО 10	РО 11	PO 12	PSO1	PSO2
		_	-	-	-		-	~	-					
CO1	2		2	3						2		3		3
CO2	2	2		2										3
CO3	3	2		2	2									3
CO4			2										2	
CO5	2		2										2	
CO6	2		3		2							2		3



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

#### **DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING**

#### **Open Elective**

#### L T P C 3 0 0 3

### **INDUSTRIAL ELECTRONICS**

Lectur	re – Tutorial:	3-0 Hours	Internal Marks:	30
Credit	ts:	3	<b>External Marks:</b>	70
Preree	quisites: Power Electror	nics, Electrical Machine	s – I, and Electrical Machines– II.	
Cours	e Objectives: Students	will be able to:		
• • •	Simulate and analyse the Design and develop an i Design an electric heatin Equip the skill to design Simulate and analyse the drive system.	e semiconductor-control llumination system for on ng system for industrial and develop a regulated e series and shunt comp	lled ac and DC drive system. domestic, industrial, and commercia purposes. d power supply. ensators for power factor improvem	l sites. ent in the
Cours	e Outcomes:			
Upon	successful completion of	of the course, the stude	ent will be able to:	
CO1	Understand the charact	eristics of DC amplifier	s.	
CO2	Analyse the Operation	and Characteristics of S	witched-mode DC power supplies.	
CO3	Learn about the princip	les and operations of the	yristor components.	
<b>CO4</b>	Characterize the applic	ations of SCR.		
CO5	Describe the various ap	plications of industrial of	electronics.	
<b>CO6</b>	Understand the charact	eristics of Operational A	Amplifiers.	
		<b>Course Content</b>	(Syllabus)	
		UNIT	I	
DC A Follo stabil Instru	<b>MPLIFIERS -</b> Need f wer, Cascode amplifi ization, Operational Am imentation Amplifiers.	for DC amplifiers, DC a er, Stabilization. <b>DIF</b> aplifiers, Ideal specifica	amplifiers - Drift, Causes, Darlingto FERENTIAL AMPLIFIERS - tions of Operational Amplifiers,	on Emitter Chopper

#### <u>UNIT II</u>

**REGULATED POWER SUPPLIES -** Block diagram, Principle of voltage regulation, Series and Shunt type Linear Voltage Regulators. **PROTECTION TECHNIQUES -** Short Circuit, Overvoltage, and Thermal Protection. **SWITCHED MODE & IC REGULATORS -** Switched Mode voltage regulator, Comparison of Linear and Switched Mode Voltage Regulators, Servo Voltage Stabilizer, monolithic voltage regulators Fixed and Adjustable IC Voltage regulators, 3terminal Voltage regulators - Current boosting.



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### UNIT III

**SCR:** Principles of operation and characteristics of SCR, Applications of SCR. **Thyristor** - Triggering of Thyristors. **COMMUTATION TECHNIQUES OF THYRISTORS** - Classes A, B, C, D, E, and F, Ratings of SCR, Static circuit breaker, Protection of SCR.

UNIT IV

**APPLICATIONS OF SCR IN POWER CONTROL** - Static circuit breaker, Protection of SCR. **INVERTERS** - Classification, Single Phase inverters. **CONVERTERS** – single-phase Half wave and Full wave. DIAC, TRIAC, and Thyristor Applications. **CHOPPER CIRCUITS** – Principle, methods and Configurations, DIAC AND TRIAC, **TRIACS** - Triggering modes, Firing Circuits, Commutation.

#### <u>UNIT V</u>

**INDUSTRIAL APPLICATIONS -I: Industrial Timers -** Classification, types. **Electronic Timers -** Classification, RC and Digital timers, Time base Generators. Electric Welding Classification, types, and methods of Resistance and ARC wielding Electronics DC Motor Control, **INDUSTRIAL APPLICATIONS -II:High-Frequency Heating** – principle, merits, applications, High-frequency Source for Induction heating. **Dielectric Heating** – principle, material properties, Electrodes, and their Coupling to RF generator, Thermal losses, and Applications. **Ultrasonics** – Generation and Applications.

#### **TEXT BOOKS:**

1. Industrial and Power Electronics – G. K. Mithal and Maneesha Gupta, Khanna Publishers, 19th Ed., 2003.

2. Integrated Electronics – J. Millman and C.C Halkias, McGraw Hill, 1972. **REFERENCES:** 

1. Electronic Devices and circuits – Theodore. H. Bogart, Pearson Education, 6th Edn., 2003.

2. Thyristors and applications – M. Rammurthy, East-West Press, 1977.

3. Integrated Circuits and Semiconductor Devices – Deboo and Burroughs, ISE.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 - L)	(1 - Low, 2 - Medium, 3 - Hign)													
	PO	Р	Р	Р	Р	PO	PSO1	PSO2						
	1	0	0	0	0	6	7	8	9	10	11	12		
		2	3	4	5									
СО	3	3	2	2						2		3		3
1	5	3	4	4						4		3		3
СО	2	2												2
2	4	3												4
СО	2	2		2	2									2
3	4	4		4	4									4
СО	2												2	
4	3												3	
CO	2		2										2	
5	3		4										3	
CO	2				2							2		2
6	4				4							4		4



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **Open Elective**

L T P C 300 3

### MICROPROCESSOR AND APPLICATIONS

Lectur	re – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	30
Credit	s:	3	<b>External Marks:</b>	70
Prerec	uisites: Digital Design,	Digital logic.		
Cours	e Objectives:			
•	Learn concepts of micro	processor, different addressing modes	and programming of 8	086.
•	Learn assembly languag	e Programming of 8086.		
•	Understand interfacing of	of 8086, with memory and other perip	herals.	
•	Study the features of 80:	51 Microcontroller, its instruction set	and also other controller	rs.
Cours	e Outcomes:			
Upon s	successful completion of	of the course, the student will be abl	e to:	
CO1	Demonstrate the archite	ecture of 8086 microprocessor and its	operation.	
CO2	Apply assembly langua	ge program concepts for microproces	sors.	
CO3	Analyze various interfabased systems.	acing techniques and apply them for	the design of processor,	/Controller
CO4	Distinguish between m	icroprocessor and microcontroller.		
CO5	Outline the architecture	and operation of 8051 microcontrolle	er.	
CO6	Determining the variou	s applications of 8051 microcontroller	ſ.	
		Course Content(Syllabus)		
		<u>UNIT I</u>		
8086 D	DOCESSOD. 2026 mi	proprocessor family 2026 Main factu	ras Dagistar organizati	on internel

**8086 PROCESSOR:** 8086 microprocessor family, 8086 Main features, Register organization, internal architecture, bus interfacing unit, execution unit, program status register pin diagram/description, 8086 system timing, minimum mode and maximum mode configuration with timing diagrams.

#### UNIT II

**8086 PROGRAMMING:** Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.

#### <u>UNIT III</u>

**8086 INTERFACING:** Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, Intel 8237a DMA controller, stepper motor, A/D and D/A converters.

#### UNIT IV



An Autonomous Institution, Permanently Affiliated to INTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**8051 MICRO CONTROLLER:** Hardware Architecture, pinouts — Functional Building Blocks of controller — Memory organization — I/O ports and data transfer concepts- Timing Diagram - Data Transfer, Manipulation, Control Algorithms& I/O instructions, sample programs.

### UNIT V

MICRO CONTROLLER PROGRAMMING & APPLICATIONS: Simple programming exercises-Traffic signal interface, 7-segment interface, keyboard -Control of servo motor stepper motor control-Application to automation systems.

### **TEXT BOOKS:**

1. A.K Ray, K.M.Bhurchandhi," Advanced Microprocessor and Peripherals", Tata McGraw Hill Publications, 2000.

2. The 8051 Microcontrollers and Embedded systems Using Assembly and C, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D.McKinlay; Pearson 2-Edition, 2011.

#### **REFERENCES:**

1. Microprocessors and Interfacing – Programming and Hardware by Douglas V Hall, SSSP Rao, Tata Mc Graw Hill Education Private Limited, 3rdEdition, 1994.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program **Specific outcomes (PSO)** 

$(\mathbf{I} - \mathbf{L})$	(1 - Low, 2 - Meululii, 3 - High)													
	PO1	РО	PSO1	PSO2										
		2	3	4	5	6	7	8	9	10	11	12		
CO1	3	3	2	2						2		3		3
CO2	2	3												2
CO3	2	2		2	2									2
CO4	3												3	
CO5	3		2										3	
CO6	2				2							2		2

**A A C D C A** 



An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### **Open Elective**

L T P C 3 0 0 3

#### PRINCIPLES OF COMMUNICATIONS

T 4		2.1.11	T 4 1 1 7 1	20				
Lecture	e – 1 utorial:	3-1 Hours	Internal Marks:	30				
Credits	•••	4	External Marks:	/0				
Prerequ	<b>insites:</b> Probability th	eory and Stochastic Processe	s, Basics of Communications.					
Course	Objectives:	1		•				
• To d	levelop ability to ana	alyze system requirements of	analog and digital communicat	.10n				
syste	ems.	tion detection of various and	log and digital modulation task	niquas				
• Tou	<ul> <li>To indefisiant the generation, detection of various analog and digital modulation techniques.</li> <li>To acquire knowledge of impact of poise on performance of communication system</li> </ul>							
• To u	inderstand the conce	of binary codes and error of	letection and correction					
Course	Outcomes:	is of officing codes and effort	leteenon and concerton.					
Upon st	ccessful completion	n of the course, the student <b>v</b>	vill be able to:					
CO1	<b>CO1</b> Analyze and design of various continuous wave and angle modulation and demodulation techniques.							
CO2	<b>CO2</b> Understand the effect of noise present in continuous wave and angle modulation techniques.							
CO3	Analyze the impac	t of noise on the performance	of communication system.					
<b>CO4</b>	CO4 Analyze the various Pulse Modulation Techniques.							
CO5 Understand the concepts of Digital Modulation Techniques and Baseband transmission.								
CO6	<b>CO6</b> Understand the importance of digital codes in communication and error detection and correction.							
		<b>Course Content (Syllabus)</b>						
		<u>UNIT I</u>						
AMPLIT	UDE MODULAT	<b>ION:</b> Introduction, Amplitud	e Modulation: Time & Freque	ency –				
Domain c	lescription, switchin	g modulator, Envelop detector						
	E SIDE BAND-SU	PPRESSED CARRIER M	<b>ODULATION:</b> Time and Fi	requency –				
Domain ( Multiplay	description, Ring mo	dulator, Conerent detection,	Costas Receiver, Quadrature C	arrier				
SINCL F	SIDF_RAND ANI	VESTICIAL SIDERAND	METHODS OF MODULAT	INV SSB				
Modulati	on VSB Modulatio	n Fraguency Translation Fr	aguancy Division Multiplayir	ng Thoma				
Example	VSD Transmission	of Applog and Digital Talouis	ion	ig, Theme				
Example.			1011.					
ANCLE	MODULATION.	Pasia definitions Fraguene	Modulation Narrow Pand	EM Wido				
ANGLE Dand EN	Transmission has	dwidth of EM Signals, Congre	tion of EM Signala Demodulat	Five, while				
	The Stand Markinshi	i width of FM Signals, Genera	aton of FM Signals, Demodular	1011 01 F M				
Signais,	FM Stereo Multiple	xing.						
~~~~		<u>UNIT III</u>						
SIGNAI Amplitu Commu	L SAMPLING AN de Modulation, l nication Techniques	D ANALOG PULSE COM Pulse Width Modulation, Quantization, Digital Transi	MUNICATION: Ideal Sampl Pulse Position Modulatior nission of Data, Parallel and S	ing, Pulse 1. Digital berial				
Transmi	ssion, Data Conversi	on, Pulse Code Modulation, I	Delta Modulation.					
		<u>UNIT IV</u>						

NOISE IN ANALOG MODULATION: Introduction, Receiver Model, Noise in DSB-SC receivers, Noise in AM receivers, Threshold effect, Noise in FM receivers, Capture effect, FM threshold reduction, Pre-emphasis and De-emphasize in FM.

UNIT V

TRANSMISSION OF BINARY DATA IN COMMUNICATION SYSTEMS: Digital Codes, Principles of Digital Transmission, Transmission Efficiency, Modem Concepts and Methods – FSK, BPSK, Error Detection and Correction.

TEXT BOOKS:

1. Principles of Communication Systems – H Taub& D. Schilling, GautamSahe, TMH, 2007, 3rdEdition.

2. Communication Systems – B.P. Lathi, BS Publication,2006. **REFERENCES:**

1. Principles of Communication Systems - Simon Haykin, John Wiley, 2nd Edition.

2. Electronics & Communication System – George Kennedy and Bernard Davis, TMH 2004.

3. Communication Systems– R.P. Singh, SP Sapre, Second Edition TMH,2007.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 - L)	1 – Low, 2- Medium, 3 – High)													
	PO1	РО	PO	РО	PO	PSO1	PSO2							
		2	3	4	5	6	7	8	9	10	11	12		
CO1	3	3	2	2									3	
CO2	2	2					2							2
CO3	3	2		2						2		2	2	
CO4	2													3
CO5	2	3	3										3	
CO6	2													3

An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Open Elective

L T P C 3 00 3

IC APPLICATIONS

Lectur	re – Tutorial:	3-0 Hours	Internal Marks:	30				
Credit	ts:	3	External Marks:	70				
Preree	quisites: Basic Electroni	cs, Circuit Analysis.						
Cours	e Objectives:							
•	To introduce the basic b	uilding blocks of linear inte	grated circuits.					
•	• To understand the linear and non-linear applications of operational amplifiers.							
•	To introduce the theory	and applications of filters a	nd TIMERS.					
•	To analyze the concepts	of ADC and DAC.						
•	To know classification of	of digital integrated circuits	and their ICs.					
Cours	e Outcomes:							
Upon	successful completion of	of the course, the student	will be able to:					
CO1	Analyze the operationa	l characteristics of IC 741.						
CO2	Apply the concepts of C	OP-AMP 741 to design line	ar & non-linear applications.					
CO3	Construct various filter	s and timers circuits.						
CO4	Analyze the importance	e of A/D to D/A converters	in digital systems.					
CO5	Summarize various typ	es of digital integrated circu	its and logic families.					
		Course Content(Sy	labus)					
		<u>UNIT I</u>						
INTEO	GRATED CIRCUITS:	Classification of ICs, diffe	rential amplifiers and types, Block	c diagram				
of op-ai	mp, Ideal and Practical (Dp-Amp, Op-amp character	istics,741 Op-Amp and its Feature	es, Modes				
of opera	ation-inverting, non-inve	erting.						
	UNIT II							
APPLI	APPLICATIONS OF OPERATIONAL AMPLIFIERS:							

Linear and Nonlinear Circuits using operational amplifiers and their analysis, Inverting and Non inverting Amplifiers, Differentiator, Integrator, Voltage to current converter, Instrumentation amplifier, adder, sub tractor, Comparator, Multi-vibrators and Schmitt trigger, Triangular wave generator, Precision rectifier, Log and Antilog amplifiers.

UNIT III

ACTIVE FILTERS and TIMERS: Introduction. First. Order and Second Order Low Pass. High Pass and Band Pass Filters Active Band Reject and All Pass Filters. TIMERS & PHASE LOCKED LOOPS: Introduction to 555 Timer, Functional Diagram, Monostable and Astable Operations and Applications, Schmitt Trigger, PLL-Introduction, Block Schematic, Principles and Description of individual Blocks of 565, VCO.

UNIT IV

An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

D-A AND A- D CONVERTERS: Introduction, Basic DAC Techniques - Weighted Resistor Type. R-2R Ladder Type inverted R-2R Type. Different types of ADCs - Parallel Comparator Type. Counter Type. Successive Approximation Register Type and Dual Slope Type DAC

<u>UNIT V</u>

DIGITAL INTEGRATED CIRCUITS INTRODUCTION: Classification of Integrated Circuits. Standard TTL NAND Gate-Analysis & Characteristics.

COMBINATIONAL CIRCUIT ICs: Use of TTL-74XX Series & CMOS 40XX Series ICs- Encoders, Decoders, multiplexers, De-multiplexers, Priority Encoders, & their applications.

TEXT BOOKS:

- 1. Linear Integrated Circuits, D. Roy Chowdhury, New Age International (p) Ltd.
- 2. Op-Amps & Linear ICs, Ramakanth A. Gayakwad, PHI

REFERENCES:

- 1. Operational Amplifiers & Linear Integrated Circuits, R.F. Coughlin & Fredrick F. Driscoll, PHI.
- 2. Operational Amplifiers & Linear Integrated Circuits: Theory & Applications, Denton J. Daibey, TMH.
- 3. Design with Operational Amplifiers & Analog Integrated Circuits, Sergio Franco, McGraw Hill.
- 4. Digital Fundamentals Floyd and Jain, Pearson Education.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low 2- Medium 3 – High)

$(\mathbf{I} - \mathbf{L})$	(1 - 10 m, 2 - mean, 5 - mgm)													
	PO1	РО	PSO1	PSO2										
		2	3	4	5	6	7	8	9	10	11	12		
CO1	2	3		2									2	
CO2	3	3												
CO3	2	2		2								3		
CO4	3												3	
CO5	2	3	2										3	
CO6	3													2

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSES - NRIA20 Reg

<u>POOL - 1</u> (Instrumentation and Control systems)

S.No	Year/Semester	Name of Course	L – T - P	Credits
1	II/IV	Data Acquisition Systems	3 -1 - 0	4
2	III/V	Bio-Medical Instrumentation	3 -1 - 0	4
3	III/VI	Digital Control systems	3 -1 - 0	4
4	IV/VII	Intelligent & Smart Instrumentation	3 -1 - 0	4

In Addition to any of the four subjects, MOOCs/ NPTEL courses for 04 credits (02 courses @ 2 credits each) are compulsory in the domain of Electronics and Communication)

<u>POOL - 2</u> (Integrated Circuits and Systems)

S.No	Year/Semester	Name of Course	L – T - P	Credits
1	II/IV	PLD & ASIC	3 -1 - 0	4
2	III/V	Design for Testability	3 -1 - 0	4
3	III/VI	System on Chip	3 -1 - 0	4
4	IV/VII	Low power VLSI Design	3 -1 - 0	4

In Addition to any of the four subjects, MOOCs/NPTEL courses for 04 credits (02 courses @ 2 credits each) are compulsory in the domain of Electronics and Communication)

<u>POOL - 3</u> (Communication Engineering)

S.No	Year/Semester	Name of Course	L – T - P	Credits
1	II/IV	Software Defined Radio	3 -1 - 0	4
2	III/V	Cognitive Radio	3 -1 - 0	4
3	III/VI	5G Communications	3 -1 - 0	4
4	IV/VII	Global Navigational Satellite	3 -1 - 0	4

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

		systems						
In Addition to any of the four subjects, MOOCs/NPTEL courses for 04 credits (02								
courses	@ 2 credits eac	ch) are compulsory in the do	main of Electro	onics and				
Communication)								

<u>POOL - 4</u> (Digital Signal processing)

S.No	Year/Semester	Name of Course	L – T - P	Credits
1	II/IV	Speech Signal Processing	3 -1 - 0	4
2	III/V	Video Signal Processing	3 -1 - 0	4
3	III/VI	Biomedical Signal Processing	3 -1 - 0	4
4	IV/VII	DSP Processors and Architectures	3 -1 - 0	4

In Addition to any of the four subjects, MOOCs/NPTEL courses for 04 credits (02 courses @ 2 credits each) are compulsory in the domain of Electronics and Communication)

Total Credits

Total Credits	20

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSE: POOL-I (Instrumentation and Control Systems) NRIA20 Reg, Semester - IV

L T P C 3 1 0 4

DATA ACQUISITION SYSTEMS

Lectur	re – Tutorial:	3-1-0 Hours	Internal Marks:	30			
Credit	S:	4	External Marks:	70			
Prerec	quisites: Digital Logic	Design, Digital IC Design.					
Cours	e Objectives:						
	• Understand and I	learn Single and Multichannel Data	Acquisition System.				
	• Acquire basic sk	ills on capturing experimental data.					
	• Understand and	learn Digital to Analog and Analog	to Digital conversion tech	niques.			
	• Understand and	learn on-linear data convertor techni	ques and applications.				
	• Understand and learn monolithic data convertors and error budget of Data Acquisition System.						
Cours	e Outcomes:						
Upon	successful complet	ion of the course, the student	will be able to:				
CO1	Identify and explore v	arious data acquisition systems.					
CO2	Analyze and Interpret	Analog to Digital conversion Techr	iques for the digital syste	ms.			
CO3	Apply various Analog	to Digital conversion Techniques for	or signal process in comm	unication			
	Systems.						
CO4	Design and Develop v	arious Digital to Analog conversion	Techniques for Digital S	ystems.			
CO5	Investigate the suitable	e Digital to Analog conversion Tech	niques for Computing Sy	stems.			
CO6	Understand the error b	oudget analysis of Data Acquisition	System.				

Course Content(Syllabus)

<u>UNIT I</u>

INTRODUCTION: Objective of a DAS, single channel DAS, Multi-channel DAS, Components used in DAS– DC Input Characteristics: offset voltages, offset currents, and bias current - Parameters of a DAS System: Resolution- Non linearity, Monotonicity, Accuracy and Precision, Noise, settling time, Acquisition Time.

<u>UNIT II</u>

ANALOG TO DIGITAL CONVERTERS (ADCS): Classification of A/D Converters, : Flash ADC, Flash ADC with interpolation, Multi-step ADC, Sub-ranging ADC, Folding ADC, Pipelined ADC, Parallel feedback – Successive approximation (SAR) ADC – Ramp comparison – Dual slope integration – Voltage to frequency – Voltage to Time - Logarithmic types of ADCS.

ADC APPLICATIONS: Data Acquisition systems – Digital signal processing systems – PCM voice communication systems – Test and measurement instruments – Electronic weighing machines.

<u>UNIT III</u>

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DIGITAL TO ANALOG CONVERTERS (DACS): Principles and design of – Parallel R– 2R, Binary Weighted resistor DAC, inverted R-2R ladder DAC, DAC Performance Specifications: Resolution, Output Voltage Range, Accuracy, Linearity D/A decoding – Codes other than ordinary binary.

<u>UNIT IV</u>

DATA CONVERTER APPLICATIONS: DAC applications – Digitally programmable V/I sources – Arbitrary waveform generators – Digitally programmable gain amplifiers – Analog multipliers/ dividers – Analog delay lines.

MONOLITHIC DATA CONVERTERS: Typical study of monolithic DACS and ADCS. Interfacing of

DACS and ADCS to a Micro Processors- Hybrid integrated Circuits DACS- monolithic DAC – Parameter specifications.

<u>UNIT V</u>

ERROR BUDGET OF DACs AND ADCs: Error sources, error reduction and noise reduction Techniques in DAS: Controlling Noise, Grounding Conflict, Symptoms of Ground loops- Cross talk in DAS- Isolation & Floating DAS- Error budget analysis of DAS, case study of a DAC and an ADC.

TEXT BOOKS:

1. Electronic data converters fundamentals and applications – Dinesh K. Anvekar, B.S. Sonde – Tata McGraw Hill.

2. Data Acquisition Systems- From Fundamentals to applied design by PAOLO Emilio, Maurizio,@2013,Springer.

REFERENCES:

1. Electronic Analog/ Digital conversions - Hermann Schmid - Tata McGraw Hill.

- 2. E.R. Hanateck, User's Handbook of D/A and A/D converters Wiley
- 3. Electronic instrumentation by HS Kalsi- TMH 2 ndEdition, 2004.
- 4. Data converters by G.B. Clayton

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

	PO	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	РО	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	2	3		2									3	
CO2	2	2	2									2	3	
CO3	3												3	
CO4		2	3											2
CO5	3				2									3
CO6	3	2	2											2

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSE: POOL-I (Instrumentation and Control Systems) NRIA20 Reg, Semester - V

L T P C 3 1 0 4

BIOMEDICAL INSTRUMENTATION

Lectu	re – Tutorial:	3-1-0 Hours	Internal Marks:	30					
Credit	ts:	4	External Marks:	70					
Prere	Prerequisites: Linear and Digital Integrated Circuits, Electronic Measuring and Instrumentation.								
Cours	Course Objectives:								
•To	•To explain the importance of various sources of bio-electric potentials in human body.								
•To	•To enhance the knowledge of various electrodes and transducers used for measuring bioelectrical potentials.								
•To	familiarize mechanisms	of cardiovascular and respiratory systems	and their measuring equipr	nents.					
•To	introduce elements of pa	tient care & monitoring system and vario	us therapeutic & prosthetic	devices.					
• T	To provide fundamentals	of various diagnostic techniques and intro	oduce the concepts of bio-te	lemetry.					
Cours	se Outcomes:								
Upon	successful comple	tion of the course, the student w	vill be able to:						
CO1	Identify various sour	ces of bio-electric potentials in man-ir	strumentation system.						
CO2	Interpret how electro	des and transducers are involved in bio	omedical engineering con	cepts.					
CO3	Outline the anatom instruments.	y of Cardiovascular and respirato	ry system and their m	neasuring					
CO4	Summarize the funct malfunction of huma	ionality of patient care & monitoring n body.	g equipments used to ide	entify the					
CO5	CO5 Analyze various therapeutic and prosthetic devices, clinical laboratory instruments and biomaterials used for patient care.								
CO6	CO6 Identify the different diagnostic imaging techniques and monitors, recorders and electrical accident prevention methods.								
	Course Content(Syllabus)								
	<u>UNIT I</u>								

SOURCES OF BIOELECTRIC POTENTIALS AND ELECTRODES: Resisting and Action Potentials, Propagation of Action Potentials, The Bioelectric Potentials. Electrodes: Electrode theory, Bio Potential Electrodes, Biochemical Transducers, introduction of biomedical signals.

<u>UNIT II</u>

THE CARDIOVASCULAR SYSTEM: The Heart and Cardiovascular System, The Heart, Blood Pressure, Characteristics of Blood Flow, Heart Sounds, Cardio Vascular Measurements, Electrocardiography, Measurement of Blood Pressure, Measurement of Blood Flow and Cardiac output, Plethysmography, Measurement of Heart Sounds, Event detection, PQRS &T-waves in ECG, the first & second Heartbeats, ECG rhythm analysis.

<u>UNIT III</u>

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

PATIENT CARE & MONITORY AND MEASUREMENTS IN RESPIRATORY SYSTEM: The elements of Intensive Care Monitory, Diagnosis, Calibration and reparability of Patient Monitoring equipment, other instrumentation for monitoring patients, pacemakers, defibrillators, the physiology of respiratory system, tests and instrumentation for mechanics of breathing, respiratory theory equipment, analysis of respiration.

<u>UNIT IV</u>

BIO TELEMETRY AND INSTRUMENTATION FOR THE CLINICAL LABORATORY:

Introduction to biotelemetry, Physiological parameters adaptable to biotelemetry, the components of biotelemetry system, implantable units, applications of telemetry inpatient care – The blood, tests on blood cells, chemical test, automation of chemical tests.

<u>UNIT V</u>

X-RAY AND RADIOISOTOPE INSTRUMENTATION AND ELECTRICAL SAFETY OF

MEDICAL EQUIPMENT:Generation of Ionizing radiation, instrumentation for diagnostic X rays, special techniques, instrumentation for the medical use of radioisotopes, radiation therapy – Physiological effects of electrical current, shock Hazards from electrical equipment.

TEXT BOOKS:

1.Biomedical Instrumentation and Measurements – C.Cromwell, F.J.Weibell, A.P Feiffer – Pearson Education.

2. Biomedicalsignalanalysis–Rangaraj,M.Rangayya–WileyInterscience–Johnwilley&Sons Inc. **REFERENCES:**

1. Hand Book ook of Bio-Medical Instrumentation – R.S. Khandpur, (TMH)

2. Introduction to Bio-Medical Engineering–Domach, (Pearson)

3.Introductionto Bio-Medical Equipment Technology–Cart,(Pearson)

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	-	3	2	-	-	-	-	-	-	-	2	-	3	-
CO2	2	-	-	-	2	-	-	-	-	-	-	-	-	2
CO3	-	2	-	-	-	-	-	-	-	-	-	-	-	2
CO4	2	2	-	2	-	-	-	-	-	-	-	-	2	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-	-	2
CO6	2	-	-	2	-	-	-	-	-	-	-	-	3	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSE: POOL-I (Instrumentation and Control Systems)	L	Т	Р	С
NRIA20 Reg, Semester - VI	3	1	0	4

DIGITAL CONTROL SYSTEMS

• •	—	0.4.0.11			00					
Lectur	e – Tutorial:	3-1-0 Hours		Internal Marks:	30					
Credit	S:	4		External Marks:	70					
Prereq	uisites: Mathematics,	Networks and control s	ystems.							
Course	Course Objectives: Students will be able to:									
• [• Understand the basics of Z- Transform.									
• S	tudy the stability analy	sis of the digital control	system.							
• E n	quip the basic Knowle nodel	lge about the design of o	ligital control	systems for different er	ngineering					
• A	analyze digital control s	ystems using state-space	e methods.							
• A	analyze digital control	systems using transfor	m techniques	(frequency response) a	and state-					
S	pace methods (pole-ass	ignment).								
Course	e Outcomes:									
Upon s	successful completi	on of the course, the	student will	l be able to:						
CO1	Understand a pure, tw	o-pole system that satisf	ies specified p	erformance specificatio	ns like					
	percent overshoot, pea	k time, settling time, and	l DC gain.							
CO2	Quantify the z-plane l	ocation of a pair of dom	inant poles gi	ven time-domain perfor	mance					
	information like perce	nt overshoot, settling tim	e, and peak tir	ne.						
CO3	Describe discrete equi	valents from given conti	nuous-time sys	stems.						
CO4	Analyze discrete-time	difference equation con	taining input	variables and output va	riables					
	at particular time insta	nces from a system's dis	crete-time tran	nsfer function.						
CO5	Estimate the value of	any system variable (e.	g., state varia	ble or output variable)	at any					
	discrete, time instant g	iven initial conditions ar	nd input wavef	orms.						
CO6	Design of state feedba	ck controller through po	e placement.							
	Course Content (Syllabus)									

<u>UNIT I</u>

SAMPLING AND RECONSTRUCTION: Introduction, sample and hold operations, Sampling theorem, Reconstruction of original sampled signal to continuous-time signal, **Z**-**TRANSFORMS:** Introduction, Z – transforms, Theorems of Z-Transforms, the inverse Z – transforms, Modified Z- Transforms, **Z-PLANE ANALYSIS OF DISCRETE-TIME CONTROL SYSTEM:** Z-Transform method for solving difference equations; Pulse transforms function, block diagram analysis of sampled - data systems, mapping between s-plane and z-plane: Primary strips and Complementary Strips.

<u>UNIT II</u>

STATE-SPACE ANALYSIS: State Space Representation of discrete-time systems, Pulse Transfer Function Matrix solving discrete-time state-space equations, State transition matrix, and its Properties, Methods for Computation of State Transition Matrix, Discretization of continuous-time state-space equations.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

<u>UNIT III</u>

POLE PLACEMENT AND OBSERVER DESIGN: CONTROLL ABILITY AND OBSERVABILITY: Concepts of Controllability and Observability, Tests for controllability and Observability, Duality between Controllability and Observability, Controllability and Observability conditions for Pulse Transfer Function. **Stability Analysis:** Stability Analysis of closed-loop systems in the Z-Plane, Jury stability test – Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion, Stability analysis using Liapunov theorems.

UNIT IV

DESIGN OF DISCRETE-TIME CONTROL SYSTEM BY CONVENTIONAL METHODS: Design of digital control based on the frequency response method - Bilinear Transformation and Design procedure in the W-plane, Lead, Lag, and Lead-Lag compensators and digital PID controllers. Design digital control through the deadbeat response method.

<u>UNIT V</u>

STATE FEEDBACK CONTROLLERS AND OBSERVERS: Design of state feedback controller through pole placement – Necessary and sufficient conditions, Ackerman's formula, **State Observers:** Full order and Reduced-order observers.

TEXT BOOKS:

1. K. Ogata - "Discrete-Time Control Systems" - Pearson Education/PHI, 2nd Edition.

2. M. Gopal - "Digital Control and State Variable Methods"- TMH.

REFERENCES:

1. B. C. Kuo, "Digital Control Systems", 2nd Edition, Oxford University Press, 2003.

2. M. Gopal - "Digital Control Engineering". New Age International, 2014.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 - Low, 2 - Medium, 3 - High)РО РО РО РО РО РО PO РО PO РО РО РО PS PS 1 2 3 4 5 6 7 8 9 10 11 12 01 02 3 2 2 2 CO1 3 3 3 CO2 2 2 2 2 3 CO3 3 2 CO4 2 3 2 3 CO5 3 2 CO6

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSE: POOL-I (Instrumentation and Control Systems)L T P CNRIA20 Reg, Semester - IV3 1 0 4

INTELLIGENT AND SMART INSTRUMENTATION

Lectu	re – Tutorial:	3 – 1 - 0 Hours	Internal M	arks:	30									
Credit	S:	4	External N	larks:	70									
Prerec	quisites:													
Cours	e Objectives: Electr	onics measurements and Ins	strumentation, Basics of	Sensors.										
• 7	Fo explain the concept	of intelligent instrumentation	on and impart knowledge	e on automa	ation.									
• [Γo develop an ability to	model and analyze a real t	ime system.											
• [Γo develop an ability to	evaluate the performance	of a real time system.											
• [Γo develop an ability to	design an intelligent system	m for industrial automat	ion.										
•	Γο discuss the latest tee	hnology in automation.												
Cours	e Outcomes:													
Upon	successful comple	tion of the course, the s	student will be able t	o:										
CO1	Develop the design problems.	methodologies for measu	rement and instrument	tation of re	eal work									
CO2	Study the concepts o and system dynamics	f intelligent sensor devices,	their performance char	acteristics a	nd signa									
CO3	Address the issues in and compensation.	dealing signal conditioning	g operations such as cali	bration, line	earizatio									
CO4	Use artificial intellige	nce in sensor signal process	sing to solve real world	problems.										
CO5	Perceive with interfac	ing protocols in wireless ne	etworking platform.											
CO6	Analyze various ser protocols.	sors with AI and unders	tand the intelligent set	nsor standa	ards and									
Cours	e Content(Syllabus)												
					· · · · · · ·									

<u>UNIT I</u>

INTRODUCTION: Definition of intelligent instrumentation, Types of instruments, Static Characteristics: Accuracy and Precision, Error, Correction, and Uncertainty, Repeatability, Reproducibility, and Hysteresis, Sensitivity, Offset, and Dead Band, Resolution and Linearity, Statistical Characteristics, Error Modeling, Dynamic Characteristics, Dynamic Error and Dynamic Sensitivity, Input-Output Impedances, Historical Perspective, Current status, software based instruments.

<u>UNIT II</u>

INTELLIGENT SENSORS: Classification, Smart sensors, Cogent Sensors, Soft or Virtual sensors, Self-Adaptive Sensors, Self-Validating Sensors, VLSI Sensors, Temperature Compensating Intelligent Sensors, Pressure Sensor, Indirect Sensing.

<u>UNIT III</u>

LINEARIZATION, CALIBRATION, AND COMPENSATION: Analog Linearization of Positive and Negative Coefficient Resistive Sensors, Higher-Order Linearization, Nonlinear ADC- and

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Amplifier-Based Linearization, Interpolation, Piecewise Linearization, Microcontroller-Based Linearization, Artificial Neural Network–Based Linearization, Nonlinear Adaptive Filter–Based Linearization, Sensor Calibration, Conventional Calibration Circuits, Offset Compensation, Error and Drift Compensation, Lead Wire Compensation.

<u>UNIT IV</u>

SENSORS WITH ARTIFICIAL INTELLIGENCE: Artificial Intelligence, Sensors with Artificial Intelligence, Multidimensional Intelligent Sensors, AI for Prognostic Instrumentation, ANN-Based Intelligent Sensors, Fuzzy Logic–Based Intelligent Sensors.

<u>UNIT V</u>

INTELLIGENT SENSOR STANDARDS AND PROTOCOLS: IEEE 1451 Standard, STIM, TEDS, NCAP, Network Technologies, LonTalk, CEBUS, J1850 Bus, 1 Signal Logic and Format, MI Bus, Plug-n-Play Smart Sensor Protocol.

TEXT BOOKS:

Manabendra Bhuyan, —Intelligent Instrumentation: Principles and Applications CRC Press, 2011.
 G. C. Barney, —Intelligent Instrumentation, Prentice Hall, 1995.

REFERENCES:

1. J.B DIXIT, A. yadav Laxmi Publications, Ltd., 01-Sep-2011

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

	,		/	0 /										
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	3	-	-	-		-	-	-	-	-	-	3	-
CO2	3	2	-	-	-	3	-	-	-	-	-	-	2	-
CO3	3	-	2	-		-	-	3		-	-	-	-	2
CO4	2	-	-	-	3	-	-		-	3	-	-	3	-
CO5	-	3	2	3	-	-	2	-	2	-	2	-	-	3
CO6	-	-	3	2	-	-		-	-	-	-	2	2	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSE: POOL-II (Integrated Circuits and Systems) NRIA20 Reg, Semester - IV L T P C 3 1 0 4

PROGRAMMABLE LOGIC DEVICES AND ASIC

Lectu	ıre – Tutorial:	3-1-0 Hours	Internal Marks:	30
Credi	ts:	4	External Marks:	70
Prere	quisites: Digital Logi	c Design, Basics of VLSI Deign.		
Cours	se Objectives:			
•	To introduce the conce	pts of various programmable logic dev	vices and their architectu	res.
•	To know the types of	ASICs, their design using CMOS, th	eir design flow and AS	IC library
	design.		C	•
•	To understand various	programming methodologies and de	sign systems using prog	grammable
Cours	ASIC Interconnect.			
Unon	se Outcomes.	tion of the course the student u	ill be able to.	
Opon CO1	Basegnize the need for	tion of the course, the student w	/iii de adie to:	
	Describe the architect	or programmable logic devices.	lices	
002				
003	Analyze various progr	amming methodologies available and	their comparison.	
CO4	Recall types of ASICs	, ASIC library design and design flow	using CMOS technolog	<u>y.</u>
005	methodologies.	plementation flow for PLDs with I	ow power design techn	iques and
CO6	Understand various SC	OC design challenges and design for in	ntegration.	
Cours	se Content(Syllabus	s)		
		<u>UNIT I</u>		
INTR	ODUCTION TO PR	OGRAMMABLE LOGIC DEVIC	ES: Introduction, Simpl	le PLDs-
Read of	only memories, Program	nmable Logic arrays, Programmable	Array Logic, PLDs/Gene	eric array
logic, CPLD	Complex Programmat	ble Logic devices- architecture of X	Cilinx Cool runner XCF	R3064XL
	·	<u>UNIT II</u>		
INTR	ODUCTION TO ASI	Cs, CMOS LOGIC, ASIC LIBRA	RY DESIGN: Types of	ASICs -
Design	n flow – CMOS transis	stors- CMOS Design rules -Combina	tional logic Cell Sequen	tial logic
cell - 7	Transistor as Resistors	- Transistor parasitic capacitance – Le	ogical effort - Library ce	ell design
– Libra	ary architecture.			
		<u>UNIT III</u>		
PROC	GRAMMABLE ASI	ICs, PROGRAMMABLE ASI	C LOGIC CELLS	AND
PROC	JKANIMABLE ASIC	I/O CELLS: Anti Tuse - Static I	AM - EPROM and E	C & A C
inputs	and outputs - Xilinx I/	O blocks	a PLEA - Allera MAA L	
mputs		UNIT IV		
PROG	GRAMMABLE ASIC	INTERCONNECT: Actel ACT -Xi	linx LCA - Xilinx ΕΡΙΓ) - Altera
MAX	5000 and 7000 - Altera	a MAX 9000 - Altera FLEX – Design	systems - Logic Synthe	sis - Half

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

gate ASIC.

<u>UNIT V</u>

SILICON ON CHIP DESIGN: Voice over IP SOC - Intellectual Property – SOC Design challenges- Methodology and design-FPGA to ASIC conversion – Design for integration-SOC verification-Set top box SOC.

TEXT BOOKS:

1. M.J.S. Smith, —Application Specific Integrated Circuits, Pearson Education, 2008

2. Wayne Wolf, —FPGA-Based System Designl, Prentice Hall PTR, 2009.

3. Farzad Nekoogar and Faranak Nekoogar, —From ASICs to SOCs: A Practical Approachl, Prentice Hall PTR, 2003.

REFERENCES:

1. Low Power CMOS Design – Anantha Chandrakasan, IEEE Press/Wiley International, 1998. 2

2. Massoud Pedram, Jan M. Rabaey , "Low power design methodologies ", Kluwer Academic Publishers.

3. Low Power CMOS VLSI Circuit Design – A. Bellamour, M. I. Elamasri, Kluwer Academic Press, 1995.

4. Digital Systems Design with FPGAs and CPLDs - Ian Grout, Elsevier, Newnes.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

	PO	PO	РО	PO	РО	PO	PS	PS						
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	2	2	-	-	-	-	-	2	-	-	2	-	3
CO2	2	3	-	3	-	-	2	-	-	-	-	-	2	-
CO3	3	-	2	-	-	2	-	-	-	-	-	2	-	-
CO4	3	2	-	2	2	-	-	3	-	-	2	-	-	-
CO5	3	2	3	2	-	-	-	-	-	2	-	-	-	3
CO6	3	2	3	2	2	-	-	-	-	2	-	-	-	3

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSE: POOL-II (Integrated Circuits and Systems) NRIA20 Reg, Semester - V DESIGN FOR TESTABILITY

L T P C 3 1 0 4

Lecture – Tutorial:	3-1-0 Hours			Iı	nternal Ma	30					
Credits:	4					External Marks:					
Prerequisites: Mathematica	l expressions	for	threshold	voltag	ge,	substrate	biasing,	digital			
electronics, basics of VLSI Design.											

Course Objectives:

- To provide an in-depth understanding of the testing and verification of faults affecting VLSI circuits.
- To provide a basic idea on importance of testing in fault tolerance.
- To expose the students, the basics of testing techniques for VLSI circuits and Test Economics.
- To understand the testability measures and scanning techniques.
- To test the various self testing methods

Course Outcomes:

Upon s	successful completion of the course, the student will be able to:
CO1	Apply the concepts in testing which can help them design a better yield in IC design.
CO2	Acquire the knowledge of fundamental concepts in fault and fault diagnosis.
CO3	Tackle the problems associated with testing of semiconductor circuits at earlier design levels so as to significantly reduce the testing costs.
CO4	Analyze the various test generation methods for static & dynamic CMOS circuits.
CO5	Identify the design for testability methods for combinational & sequential CMOS circuits.
CO6	Recognize the BIST techniques for improving testability.

Course Content(Syllabus)

<u>UNIT I</u>

INTRODUCTION TO TESTING: Testing Philosophy, Role of Testing, Digital and Analog VLSI Testing, VLSI Technology Trends affecting Testing, Types of Testing, Fault Modeling: Defects, Errors and Faults, Functional Versus Structural Testing, Levels of Fault Models, Single Stuck-at Fault.

<u>UNIT II</u>

LOGIC AND FAULT SIMULATION: Simulation for Design Verification and Test Evaluation, Modeling Circuits for Simulation, Algorithms for True-value Simulation, Algorithms for Fault Simulation, Automatic Test Pattern Generation.

UNIT III

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

TESTABILITY MEASURES: SCOAP Controllability and Observability, High Level Testability Measures, Digital DFT and Scan Design: Ad-Hoc DFT Methods, Scan Design, Partial-Scan Design, Variations of Scan.

<u>UNIT IV</u>

BUILT-IN SELF-TEST: The Economic Case for BIST, Random Logic BIST: Definitions, BIST Process, Pattern Generation, Response Compaction, Built-In Logic Block Observers, Test-Per-Clock, Test-Per Scan BIST Systems, Circular Self Test Path System, Memory BIST, Delay Fault BIST.

<u>UNIT V</u>

BOUNDARY SCAN STANDARD: Motivation, System Configuration with Boundary Scan: TAP Controller and Port, Boundary Scan Test Instructions, Pin Constraints of the Standard, Boundary Scan Description Language: BDSL Description Components, Pin Descriptions.

TEXT BOOKS:

1. M.L. Bushnell, V. D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits" Kluwer Academic Publishers.

REFERENCES:

- 1. M. Abramovici, M. A. Breuer and A.D Friedman, "Digital Systems and Testable Design", Jaico Publishing House.
- 2. P.K. Lala, "Digital Circuits Testing and Testability", Academic Press.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low 2- Medium 3 – High)

	(i Low, 2 Medium, 5 Mgn)													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	2	3		2									2	
CO2	3	3											3	
CO3	2	2		2								3		2
CO4	3												3	
CO5	2	3	2										3	
CO6	3													2

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSE: POOL-II (Integrated Circuits and Systems)	L	Т	Р	С
NRIA20 Reg, Semester - VI	3	1	0	4

SYSTEM ON CHIP

	<u> </u>									
Lecture – Tutorial:	3-1 Hours	Internal Marks:	30							
Credits:	4	External Marks:	70							
Prerequisites: Basic C & As	ssembly Programming, N	licroprocessors and Microcontrollers	•							
Course Objectives:										
• To design, optimize, and	l program a modern Syste	em-on-a-Chip.								
• To understand and estim	ate Processor Selection f	for System-on-a-Chip.								
• To understand the system	em on a chip from Vect	or Processors, Vector Instructions	extensions,							
VLIW Processors, Supe	rscalar Processors.									
To implement Interconn	ect architectures.									
Course Outcomes:										
Upon successful complet	ion of the course. the	student will be able to:								
CO1 Understand the concept	s of system architecture,	hardware and software in the SoC.								
CO2 Demonstrate the concept	ots of Processor selection	, classify and compare different proc	essors.							
CO3 Identify internal Memo	ry, Size, Scratchpads and	Cache memory.								
Classify and compare d	lifferent types of cache, S	oC Memory Systems, Board-based N	Memory							
System.			•							
Determine SoC standar	d buses, NOC architectur	e, Layered Architecture, Network In	terface							
and explain the importa	unce of Mapping design c	nto Reconfigurable devices								
Discuss SOC Design at	pproach. AES algorithms	and develop different applications li	ke Image							
compression. Video Co	mpression. MP3 Audio I	Decoding.								
	Course Content(Svllabus)								
		- ;								
	<u>UNIT I</u>									

INTRODUCTION TO THE SYSTEM APPROACH: System Architecture, Components of the system, Hardware and Software in the SoC: programmability versus performance, Processor Architectures, Memory and Addressing. System level interconnection, Approaches to designing a SoC, System Architecture and Complexity.

UNIT II

PROCESSORS: Introduction, Processor Selection for SOC, Basic concepts in Processor Architecture, Basic concepts in Processor Micro Architecture, Basic elements in Instruction handling. Buffers: minimizing Pipeline Delays, Branches. MORE ROBUST PROCESSORS: Vector Processors and Vector Instructions extensions, VLIW Processors, Superscalar Processors, Soft Processors, Custom Designed Accelerators.

UNIT III

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

MEMORY DESIGN FOR SOC: Overview of SOC external memory, Internal Memory, Size, Scratchpads and Cache memory, Cache Organization, Cache data, Write Policies, Strategies for line replacement at miss time. **TYPES OF CACHE**: Split – I, and D – Caches, Multilevel Caches, Virtual to real translation, SoC (On-Die) Memory Systems, Board-based (Off-Die) Memory System, Models of Simple Processor – memory interaction.

<u>UNIT IV</u>

INTERCONNECT ARCHITECTURES: Bus: - Basic Architecture, SoC Standard Buses (AMBA, Core Connect) Network on Chip (NoC) Architecture, NoC with Switch Interconnects with example, Layered Architecture and Network Interface. **CUSTOMIZATION AND CONFIGURABILITY:** SOC Customization: An overview, Customizing Instruction Processor, Mapping design onto Reconfigurable devices, Instance Specific design.

<u>UNIT V</u>

APPLICATION STUDIES / CASE STUDIES: SOC Design approach, AES algorithms, Design and evaluation, Image compression – JPEG compression, Video Compression, MP3 Audio Decoding.

TEXT BOOKS:

- 1. Michael J. Flynn and Wayne Luk, "Computer System Design System-on-Chip", Wiley India Pvt. Ltd.
- 2. Steve Furber, "ARM System on Chip Architecture ", 2nd Edition, 2000, Addison WesleyProfessional.

REFERENCES:

- 1. Ricardo Reis, "Design of System on a Chip: Devices and Components", 1st Edition, 2004, Springer
- 2. Jason Andrews, "Co-Verification of Hardware and Software for ARM System on Chip Design (Embedded Technology)", Newnes, BK and CDROM.
- 3. Prakash Rashinkar, Peter Paterson and Leena Singh L, "System on Chip Verification Methodologies and Techniques", 2001, Kluwer Academic Publishers.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	-	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CO4	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	2	2	3	-	-	-	-	-	-	-	-	3	-
CO6	2	3	3	3	3	2	2	-	-	-	-	-	3	3

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HONORS COURSE: POOL-II (Integrated Circuits and Systems)	L	Т	Р	С
NRIA20 Reg, Semester - VII	3	1	0	4

LOW POWER VLSI DESIGN

	internal marks:	30								
4	External Marks:	70								
n, Scaling techniques, D	esign for testability.									
eed for low power in VLS	l.									
is dissipation types in CN	IOS.									
pact of power on system	n performances.									
lifferent Design approach	ies.									
• To study the concepts of low voltage and low power logic circuits.										
etion of the course, th	ne student will be able to:									
ze advanced issues in VL	SI systems, specific to the deep-submit	cron silicon								
nicron CMOS technology a	nd digital CMOS design styles.									
battery-powered systems a	nd high performance circuits.									
rious CMOS dynamic logi	c circuits.									
niques low voltage and low	power CMOS circuits for various applic	ations.								
bes of memory circuits and	their design.									
Course Conten	t(Syllabus)									
	4 gn, Scaling techniques, D eed for low power in VLS is dissipation types in CM pact of power on system lifferent Design approach its of low voltage and low p etion of the course, th ze advanced issues in VL nicron CMOS technology a battery-powered systems a prious CMOS dynamic logic iques low voltage and low pes of memory circuits and Course Contem	4 External Marks: gn, Scaling techniques, Design for testability. eed for low power in VLSI. us dissipation types in CMOS. upact of power on system performances. lifferent Design approaches. uts of low voltage and low power logic circuits. etion of the course, the student will be able to: ze advanced issues in VLSI systems, specific to the deep-subminicron CMOS technology and digital CMOS design styles. battery-powered systems and high performance circuits. rious CMOS dynamic logic circuits. niques low voltage and low power CMOS circuits for various applications of memory circuits and their design. Course Content(Syllabus)								

UNIT I

SOURCES OF POWER DISSIPATION: Resisting and Action Potentials, Propagation of Action Potentials, Introduction, Short-Circuit Power Dissipation, Switching Power Dissipation, Dynamic Power for a Complex Gate, Reduced Voltage Swing, Switching Activity, Leakage Power Dissipation, p–n Junction Reverse-Biased Current, Sub threshold Leakage Current, Short-Channel Effects.

<u>UNIT II</u>

SUPPLY VOLTAGE SCALING FOR LOW POWER: Device Feature Size Scaling, Constant-Field Scaling, Constant-Voltage Scaling, Architectural-Level Approaches: Parallelism for Low Power, Pipelining for Low Power, Combining Parallelism with Pipelining, Voltage Scaling Using High-Level Transformations: Multilevel Voltage Scaling Challenges in MVS Voltage Scaling Interfaces, Static Timing Analysis Dynamic Voltage and Frequency Scaling.

<u>UNIT III</u>

SWITCHED CAPACITANCE MINIMIZATION: Probabilistic Power Analysis: Random logic signals, probability and frequency, probabilistic power analysis techniques, signal entropy, Bus Encoding: Gray Coding, One-Hot Coding, Bus-Inversion, Clock Gating, Gated-Clock FSMs, Glitching Power Minimization.

<u>UNIT IV</u>

LEAKAGE POWER MINIMIZATION: Fabrication of Multiple Threshold Voltages, Multiple Channel Doping, Multiple Oxide CMOS, Multiple Channel Length, Multiple Body Bias, VTCMOS Approach, MTCMOS Approach, Power Gating, Clock Gating Versus Power Gating, Power-Gating Issues, Isolation Strategy, State Retention Strategy, Power-Gating Controller, Power Management, Combining DVFS and Power Management.

<u>UNIT V</u>

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

LOW POWER CLOCK DISTRIBUTION& SIMULATION POWER ANALYSIS: Low power clock distribution: Power dissipation in clock distribution, single driver versus distributed buffers, Zero skew versus tolerable skew, chip and package co design for clock network. **SIMULATION POWER ANALYSIS:** SPICE circuit simulators, gate level logic simulation, capacitive power estimation, architecture level analysis, Monte Carlo Simulation.

TEXT BOOKS:

- 1. Low-Power VLSI Circuits and Systems, Ajit Pal, SPRINGER PUBLISHERS.
- PRACTICAL LOW POWER DIGITAL VLSI DESIGN , Gary Yeap Motorola, SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

REFERENCES:

- 1. Low Power CMOS Design Anantha Chandrakasan, IEEE Press/Wiley International, 1998. 2
- 2. Massoud Pedram, Jan M. Rabaey, "Low power design methodologies", Kluwer Academic Publishers.
- Low Power CMOS VLSI Circuit Design A. Bellamour, M. I. Elamasri, Kluwer Academic Press, 1995.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

	PO	PO	PO	PO	РО	PO	PS	PS						
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	2	2										2	
CO2	2	3	-										3	
CO3	2											2	2	
CO4	3	2		2				2						3
CO5	2	3												2
CO6	2		2											2

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

NRIA20 Reg, Semester - IV

3 1 0 4

SOFTWARE DEFINED RADIO

Lectur	e – Tutorial:	3-1 Hours	Internal Marks:	30					
Credit	s:	4	External Marks:	70					
Prereq	uisites: Introduction to	Programming with Scientific	e Applications, Introduction to Object	-oriented					
Program	nming.								
Course Objectives:									
• [The course gives students	s knowledge of fundamental a	nd state-of-the-art concepts						
iı	n software-defined radio.								
•	Simulation of the SDR	system such as the front-end	l RF system, analog-to-digital and c	ligital-to-					
6	analog conversion,		1 1						
•]	Learning different blocks	s of SDR systems involving m	odulation.						
Course	e Outcomes:								
Upon s	successful completion	of the course, the student	will be able to:						
CO1	Demonstrate advanced	d knowledge in the evolvin	ng paradigm of Software defined	radio and					
	technologies for its imp	plementation.							
CO2	Analyze complex prob	lems critically in the domains	of Radio frequency implementation is	sues.					
CO3	Understand the multira	te signal processing in SDR.							
CO4	Analyze Smart antenna	techniques for better spectrum	n exploitation for conducting research	1.					
CO5	Apply appropriate tec	chniques for the development	nt of technological knowledge in a	lesigning					
	software defined radios	s and their usage for cognitive	radio.						
CO6	CO6 Apply scientific techniques for the development of designing software defined radios and their								
	usage for cognitive rad	IU. Course Contert(S-1	lahua)						
		Course Content(Syl	liadus)						
	<u>UNIT I</u>								

INTRODUCTION: The Need for Software Radios, What is Software Radio, Characteristics and benefits of software radio- Design Principles of Software Radio, RF Implementation issues- The Purpose of RF Front – End, Dynamic Range- The Principal Challenge of Receiver Design – RF Receiver Front- End Topologies-Flexibility of the RF Chain with Software Radios- Importance of the Components to Overall Performance-Transmitter Architectures and Their Issues.

<u>UNIT II</u>

MULTI RATE SIGNAL PROCESSING: Introduction- Sample Rate Conversion Principles- Polyphase Filters Digital Filter Banks- Timing Recovery in Digital Receivers Using Multirate Digital Filters. Digital generation signals: Introduction- Comparison of Direct Digital Synthesis with Analog Signal Synthesis-Approaches to Direct Digital Synthesis- Analysis of Spurious Signals- Spurious Components due to Periodic jitter- Band Pass Signal Generation.

<u>UNIT III</u>

ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERSION: Parameters of ideal data converters- parameters of Practical data converters- Analog to Digital and Digital to Analog Conversion-Techniques to improve data converter performance- Common ADC and DAC architectures. Applications of SDR: Cognitive radio, Intelligent wireless application-wireless device parameters, vehicular communication networks, satellite communication.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT IV

DIGITAL HARDWARE CHOICES: Introduction- Key Hardware Elements- DSP Processors- Field Programmable Gate Arrays- Trade-Offs in Using DSPs, FPGAs, and ASICs- Power Management Issues Using a Combination of DSPs, FPGAs, and ASICS, GNU radio.

UNIT V

OBJECT - ORIENTED REPRESENTATION OF RADIOS AND NETWORK RESOURCES: Networks- Object Oriented Programming- Object Brokers- Mobile Application Environments- Joint Tactical Radio System. Case Studies in Software Radio Design: Introduction and Historical Perspective, SPEAK easy-JTRS, Wireless Information Transfer System, SDR-3000 Digital Transceiver Subsystem, Spectrum Ware, CHARIOT.

TEXT BOOKS:

- 1. Software Radio: A Modern Approach to Radio Engineering Jeffrey H. Reed, 2002, PEA Publication.
- 2. Software Defined Radio: Enabling Technologies- Walter Tuttle Bee, 2002, Wiley Publications.

REFERENCES:

- 1. Software Defined Radio for 3G Paul Burns, 2002, Artech House.
- 2. Software Defined Radio: Architectures, Systems and Functions Markus Dillinger, KambizMadani, Nancy Alonistioti, 2003, Wiley.
- 3. Software Radio Architecture: Object Oriented Approaches to wireless System Engineering – Joseph Mitola, III, 2000, John Wiley & Sons.
- 4. R.F Microelectronics B. Razavi, 1998, PHI. 5. DSP A Computer Based Approach -S. K. Mithra, 1998, McGraw-Hill

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 - Low 2 - Medium 3 - High)

(1 – Low, 2- Wearing, 5 – High)														
	PO	PO	PO	РО	PO	PO	РО	РО	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
C01	3	2												
CO2		3		2									2	
CO3	2	2		3										
CO4				3						2				2
CO5			2			2								
CO6			2			3							2	
	HON	ORS CC	DURSE	: POO	L-III (O	Commu	inicatio	on Engi	ineerin	g)		LJ	ГРС	
NRIA20 Reg. Semester - V									3 1	04				

NRIA20 Reg, Semester - V

COGNITIVE RADIO

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Lectur	e – Tutorial:	3-1-0 Hours	Internal Marks:	30							
Credit	s:	4	External Marks:	70							
Prereq	uisites: Radio Spectru	m concept, Programming knowledge.									
Course	e Objectives:										
• [e	 To understand the evolving software defined radio and cognitive radio techniques and their essential functionalities. To study the basic architecture and standard for cognitive radio. 										
•	• To expose the student to evolving applications and advanced features of cognitive radio.										
Course	e Outcomes:										
Upon s	successful completion	of the course, the student will be al	ole to:								
CO1	Understand the fundam	ental concepts of cognitive radio network	ks.								
CO2	Develop the cognitive takes advantages in ord	radio, as well as techniques for spectrum ler to exploit it.	holes detection that cogni	tive radio							
CO3	Understand technologie spectrum sharing busin	es to allow an efficient use of TVWS for ess models/policies.	radio communications base	ed on two							
CO4	Understand fundament	al issues regarding dynamic spectrum acc	cess.								
CO5	Understand the radio-re	esource management and trading.									
CO6	Find out the number of	optimization techniques for better Spectr	rum exploitation.								

Course Content(Syllabus)

<u>UNIT I</u>

INTRODUCTION TO COGNITIVE RADIOS: Evolution of Software Defined Radio and Cognitive radio: goals, benefits, definitions, relations with other radios, Digital dividend, cognitive radio (CR) architecture, functions of cognitive radio, dynamic spectrum access (DSA), components of cognitive radio, spectrum sensing, spectrum analysis and decision, potential applications of cognitive radio.

<u>UNIT II</u>

SENSING: Primary signal detection. energy detector, Spectrum sensing, detection of spectrum holes (TVWS), collaborative sensing, geo-location database and spectrum sharing business models (spectrum of commons, real time secondary spectrum market).

<u>UNIT III</u>

OPTIMIZATION TECHNIQUES OF DYNAMIC SPECTRUM ALLOCATION: Linear programming, convex programming, non-linear programming, integer programming, dynamic programming, stochastic programming. Fundamental Limits of Cognitive Radio.

<u>UNIT IV</u>

DYNAMIC SPECTRUM ACCESS AND MANAGEMENT: Spectrum broker, cognitive radio architectures, centralized dynamic spectrum access, distributed dynamic spectrum access, learning algorithms and protocols.

<u>UNIT V</u>

SPECTRUM TRADING: Introduction to spectrum trading, classification to spectrum trading, radio resource pricing, brief discussion on economics theories in DSA (utility, auction theory), classification of auctions (single auctions, double auctions, concurrent, sequential).Research Challenges in Cognitive Radio: Network layer and transport layer issues, cross- layer design for cognitive radio networks.

TEXT BOOKS:

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

- 1. Ekram Hossain, DusitNiyato, Zhu Han, "Dynamic Spectrum Access and Management in Cognitive Radio Networks", Cambridge University Press,2009.
- 2. Kwang-Cheng Chen, Ramjee Prasad, "Cognitive radio networks", John Wiley & Sons Ltd., 2009.

REFERENCES:

- 1. Bruce Fette, "Cognitive radio technology", Elsevier, 2nd edition, 2009.
- 2. Huseyin Arslan, "Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems", Springer, 2007.
- 3. Francisco Rodrigo Porto Cavalcanti, Soren Andersson, "Optimizing Wireless Communication Systems" Springer, 2009.
- 4. Linda Doyle, "Essentials of Cognitive Radio", Cambridge University Press, 2009

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 - L)	ow, 2-1	vledium	1 , 3 – Hi	igh)									
	РО	PO	РО	PO	PO	РО	РО	РО	PO	PO	PO	PO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01
CO1	1	-	-	-	-	-	-	-	-	-	-	-	3
CO2	1	-	1	-	-	-	-	-	-	-	-	-	2
CO3	-	-	-	1	1	-	-	-	-	-	-	-	2
CO4	1	-	-	1	-	-	-	-	-	-	-	-	3
CO5	1	-	-	1	-	-	-	-	-	-	-	1	2
CO6	-	-	-	1	-	-	-	-	-	-	-	1	3

HONORS COURSE: POOL-III (Communication Engineering) NRIA20 Reg, Semester - VI

L T P C 3 1 0 4 PS 02

_

2

-

-

5G COMMUNICATIONS

Lecture – Tutorial:	3-1-0 Hours	Internal Marks:	30
Credits:	4	External Marks:	70

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Prerequisites: Analog Communication, Digital Communication, Cellular Mobile Communication, Wireless communication.

Course Objectives: Students will be able to:

- Learn the Basics of 5G and Beyond Wireless communication.
- Provide a basic understanding of the key technologies and enablers of 5G and beyond communication systems.
- Study various 5G wireless channel models.
- Learn 5G techniques such as massive MIMO and mm Wave.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- **CO1** Distinguish and understand the major cellular communication standards (1G/2G/3G/4G/5G/6G systems) and wireless communications networks.
- **CO2** Learn 5G Technology propagation channels modelling.
- **CO3** Understand the Vehicle-to-Vehicle channel modeling in 5G Mobile Systems.
- **CO4** Describe Radio resource management for mobile broadband D2D, multi-hop, and multi-operator D2D communications.
- **CO5** Understand the different Multiple accesses techniques in 5G communication.
- **CO6** Illustrate the 5G communication technique using Massive MIMO models.

Course Content (Syllabus)

<u>UNIT I</u>

HISTORICAL BACKGROUND - Industrial and technological revolution: from steam engines to the Internet, Evaluation of Mobile communications generations: from 1G to 4G (LTE, LTEA, LTEA Pro), An Overview of 5G – Introduction, Use cases, and challenges, Use Cases of Mobile Internet, Use Cases of Internet of Things, 5G requirements, Regulations for 5G, Spectrum Analysis and Sharing for 5G.

<u>UNIT II</u>

THE 5G WIRELESS PROPAGATION CHANNELS - Channel modeling requirements, propagation scenarios, and challenges in the 5G modeling, **OVERVIEW OF VEHICLE-TO-VEHICLE CHANNEL MODELING IN 5G MOBILE SYSTEMS-** Introduction, V2V Channel Models, MIMO V2V Channel Modeling, **Channel Models** - Channel Models for mm-Wave MIMO Systems.

<u>UNIT III</u>

TRANSMISSION AND DESIGN TECHNIQUES FOR 5G: Basic requirements of transmission over 5G, Modulation Techniques – Orthogonal frequency division multiplexing (OFDM), generalized frequency division multiplexing (GFDM), filter bank multi-carrier (FBMC), and universal filtered multi-carrier (UFMC), **MULTIPLE ACCESSES TECHNIQUES -** Orthogonal Frequency Division Multiple Accesses (OFDMA), Generalized Frequency Division Multiple Accesses (GFDMA), and Non-Orthogonal Multiple Accesses (NOMA).

<u>UNIT IV</u>

DEVICE-TO-DEVICE (D2D) AND MACHINE-TO-MACHINE (M2M) TYPE COMMUNICATIONs -Extension of 4G D2D standardization to 5G,**RADIO RESOURCE MANAGEMENT** -Radio resource management for mobile broadband D2D, multi-hop, and multi-operator D2D communications.

<u>UNIT V</u>

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

MILLIMETER-WAVE COMMUNICATIONS - spectrum regulations, deployment scenarios, beam forming, physical layer techniques, interference, and mobility management, **Massive MIMO**: Massive MIMO propagation channel models, Channel Estimation in Massive MIMO, Massive MIMO with Imperfect CSI, Multi-Cell Massive MIMO, Pilot Contamination, Spatial Modulation (SM).

TEXT BOOKS:

- 1. Wei Xiang · Kan Zheng, Xuemin (Sherman) Shen Editors "5G Mobile Communications", Springer International Publishing Switzerland 2017.
- 2. Afif Osseiran, Jose F. Monserrat, Patrick Marsch, "5G Mobile and Wireless Communications Technology", Cambridge University Press 2016.
- 3. Martin Sauter "From GSM From GSM to LTE–Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband", Wiley-Blackwell.
- 4. Afif Osseiran, Jose.F.Monserrat, Patrick Marsch, "Fundamentals of 5G Mobile Networks", Cambridge University Press.
- 5. Athanasios G.Kanatos, Konstantina S.Nikita, Panagiotis Mathiopoulos, "New Directions in Wireless Communication Systems from Mobile to 5G", CRC Press.

REFERENCES:

- 1. Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", John Wiley & Sons.
- 2. Amitabha Ghosh and Rapeepat Ratasuk "Essentials of LTE and LTE-A", Cambridge University Press.
- 3. Theodore S.Rappaport, Robert W.Heath, Robert C.Danials, James N.Murdock "Millimeter Wave Wireless Communications", Prentice Hall Communications.
- 4. Hao Jiang, Guan Gui, "Channel Modeling in 5G Wireless Communication Systems", Wireless Networks, Springer, 2019.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 - Low, 2 - Medium, 3 - High)

`	/		/	υ										
	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	3		2									3	
CO2	3	3	2										3	
CO3	2	3		2				2				3		2
CO4			2										3	
CO5	2	2	2			2							3	
CO6	3													2

HONORS COURSE: POOL-III (Communication Engineering) NRIA20 Reg, Semester - VII

L T P C 3 1 0 4

GLOBAL NAVIGATIONAL SATELLITE SYSTEMS

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

1				20						
Lectu	re – Tutoriai:	3-1-0 Hours	Internal Marks:	30						
Credit	is:	4	External Marks:	70						
Preree	quisites:									
Cours	e Objectives:									
	• To learn concepts of C	Hobal navigational satellite Sys	stem.							
•	To learn Concepts of Global Positioning System characteristics.									
•	To understand Concepts of navigation with Indian Constellation.									
•	 To understand concepts and operation of GNSS receiver. 									
•	To learn about types of GNSS errors.									
Cours	e Outcomes:									
Upon	successful complet	ion of the course, the st	udent will be able to:							
CO1	Summarize the concept	s of Global Navigational Sa	tellite System.							
CO2	Apply the concepts of (GPS system navigation in rea	al time applications.							
CO3	Conclude operation, ad	vantages and applications of	NavIC.							
CO4	Outline the various cha	racteristics of GNSS receive	r.							
CO5	CO5 Analyze various effects and errors generated in GNSS.									
CO6	CO6 Emphasize the noise and shadowing effects on GNSS.									
	·	Course Content(Syl	labus)							
	UNITI									

INTRODUCTION:- GNSS overview, Global Positioning System, Russian GLONASS system, Galileo satellite system, Chinese BeiDou system, Regional system: Quasi-Zenith Satellite System (QZSS), Navigation with Indian Constellation (NavIC), Augmentations, Markets and Applications.

FUNDAMENTALS OF SATELLITE NAVIGATION:- Concept of Ranging using Time of arrival Measurements: Two-Dimensional Position Determination, Principle of Position Determination via Satellite-Generated Ranging Codes, Fundamentals of satellite orbits: Orbital Mechanics, Constellation Design.

<u>UNIT II</u>

GLOBAL POSITIONING SYSTEM: overview: Space Segment Overview, Control Segment Overview, User Segment Overview, Space segment description: GPS Satellite Constellation Description, Space Segment Phased Development, Control segment description: OCS Current Configuration, User segment: GNSS Receiver Characteristics.

<u>UNIT III</u>

NAVIGATION WITH INDIAN CONSTELLATION (NAVIC): overview, space segment, NavIC control segment, Geodesy and time system, Navigation services, signals, applications and NavIC user equipment.

<u>UNIT IV</u>

GNSS RECEIVER: Acquisition: Single Trial Detector, Tong Search Detector, M of N Search Detector, Combined Tong and M of N Search Detectors, FFT-Based Techniques, Direct Acquisition of GPS Military Signals, Vernier Doppler and Peak Code Search, carrier tracking.

<u>UNIT V</u>

GNSS ERRORS: Introduction, Measurement errors: satellite clock error, ephemeris error, relative effects, atmospheric effects, receiver noise and resolution, multipath and shadowing effects, hardware bias errors, Psedo range error budgets.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

TEXT BOOKS:

1. Elliott D. Kaplan, Christopher J. Hegarty, **Understanding GPS/GNSS** principles and applications, third edition, artech house publishers, Boston, 2017.

REFERENCES:

- 1. G S Rao, Global Navigational satellite system, Tata McGraw-Hill education private Ltd, New Delhi, 2010.
- 2. ISRO-IRNSS-ICD-SPS-1.1, Bangalore, 2017
- 3. Bhatta, B., 2010. Global Navigation Satellite Systems: Insights Into GPS, Glonass, Galileo, Compass, and Others, BS Publications, New Delhi.
- 4. Grewal, M. S., Weill, L. R., Andrews, A. P., 2006. Global Positioning Systems, Inertial Navigation, and Integration, John Wiley & Sons, New York.
- 5. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E., 2008. GNSS Global Navigation Satellite Systems, Springer, Verlag Wien.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 - Low, 2 - Medium, 3 - High)														
	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	2											2	
CO2		2			2							3		3
CO3	3	2												
CO4	2			2									2	
CO5	2			3	2									
CO6	2			2									2	

HONORS COURSE: POOL-IV (Digital Signal Processing)	L	T	ŀ	2	С
NRIA20 Reg, Semester - IV	3	1	1 ()	4

SPEECH SIGNAL PROCESSING

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Lectu	re – Tutorial:	3-1-0 Hours	Internal Marks:	30						
Credit	ts:	4	External Marks:	70						
Prere	quisites: Signals and S	Systems, Digital Signal Processing	•							
Cours	e Objectives:									
•	Understand the concepts	s and practical aspects of Speech sign	al processing.							
•	Able to model the speec	h production mechanism, Source-sys	tem model of speech.							
•	To analyze and model th	ne speech signals in different domain	8							
•	To extract different feat	ure extraction and utilize these featur	es in various speech processing	; algorithm						
	development.	ash mass mition (ASD) sustain								
•	Design of automatic spe	eech recognition (ASR) system.								
Cours	e Outcomes:									
Upon	successful complet	ion of the course, the studen	t will be able to:							
CO1	Summarize the mechani	ism of human speech production and	articulation.							
CO2	Identify the time domain	n speech signal parameters.								
CO3	Differentiate time and fi	requency domain methods of speech	processing.							
CO4	Attribute linear predictiv	ve analysis for speech signals.								
CO5	Explore the solutions for LPC equations.									
CO6	CO6 Implement the different algorithms and models involved for speaker and speech recognition									
		Course Content(Syllabu	s)							
		<u>UNIT I</u>								
MECI	HANICS OF SPEECH:	Speech production: Mechanism of	speech production, Acoustic p	honetics,						
The A	coustic Theory of Speec	ch Production: Uniform lossless tub	e, Effects of losses in the voo	cal tract,						
Digita	l models for speech signal	ls: Vocal tract, Radiation, Excitation,	Auditory perception: psycho a	coustics.						
Repres	sentations of speech wave	form: Sampling of speech signals, Qu	antization.							
		<u>UNIT II</u>								
TIME	DOMAIN METHODS	FOR SPEECH PROCESSING: Til	ne domain parameters of Speec	h signal:						
Short-'	Time Energy. Average M	lagnitude. Average Zero crossing R	ate. Silence Discrimination us	ing ZCR						
and en	ergy, Short Time Auto Co	prrelation Function, Pitch period estin	nation using Auto Correlation F	unction.						
LINE	AR PREDICTIVE ANA	LYSIS OF SPEECH: Basic Princi	ples of linear predictive analys	sis: Auto						
correla	tion method. Covariance	method. Solution of LPC equations	Cholesky method. Durbin's R	ecursive						
algorit	hm. Application of LPC	parameters: Pitch detection using L	PC parameters. Formant analy	sis using						
LPC p	arameters, VELP. Relation	ns Between the Various Speech Para	meters, CELP.	0						
APPL	ICATION OF SPEECH	I PROCESSING: Voice response	systems: General consideration	is in the						
design	of voice response syste	ms, A multiple output digital voice	response system. Speaker rec	cognition						
system	s: Speaker verification sy	stem, Speaker identification system.	realized affecting appeared for	0						

UNIT V

HIDDEN MARKOV MODEL (HMM) FOR SPEECH: Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

TEXT BOOKS:

- 1. L.R.Rabinerand, R.W.Schaffer, Digital Processing of Speech signals, Prentice Hall, 2004
- 2. Ben Gold and Nelson Morgan, Speech and Audio Signal Processing, John Wiley and Sons Inc., Singapore, 2004
- 3. Speech Communications: Human and Machine, Douglas O'Shaughnessy, Wiley, 2nd Ed.2000

REFERENCES:

- 1. Quatieri, Discrete-time Speech Signal Processing, PrenticeHall,2001.
- 2. L.R. Rabiner and B. H. Juang, Fundamentals of speech recognition, Prentice Hall, 1999.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

(1		· · · · · · · · · · · · · · · · · · ·	,	-8/										
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	2	3	2	3				2				2		2
CO2	3	3												3
CO3	3	2		2										2
CO4	3	3			2								3	
CO5	2	3	3										3	
CO6	3												3	

HONORS COURSE: POOL-IV (Digital Signal Processing) NRIA20 Reg, Semester - V L T P C 3 1 0 4

VIDEO SIGNAL PROCESSING

Lecture – Tutorial: 3-1-0 Hours Internal Marks: 30

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

4	External Marks:	70
ocessing, Digital Image Processing.		
ideo technology, and analytical framew	ork for video analysis in the	frequency
-space video signal can be sampled to re rdable data rate.	etain the maximum perceivab	le
timation and basic Video coding technic	ques	
based methods and block-based hybrid	coding framework	
263, MPEG-1, MPEG-2, and MPEG-4 s	tandards for video	
f the course, the student will be ab	le to:	
of video, its perception and representat	ion, and characterization of v	ideo in the
f Lattice theory, sampling of video signa	ils and sample rate conversio	n.
tion estimation technique for a given vie	leo processing application.	
video processing and video coding.		
ion estimation techniques and appropria	te coding system for a given	video.
pression standards and applications of m	odern video coding standard	s.
Course Content(Syllabus)		
	4 ccessing, Digital Image Processing. ideo technology, and analytical framewards space video signal can be sampled to re- rdable data rate. timation and basic Video coding technic based methods and block-based hybrid 263, MPEG-1, MPEG-2, and MPEG-4 s f the course, the student will be ab of video, its perception and representat ^c Lattice theory, sampling of video signa- tion estimation technique for a given video video processing and video coding. ion estimation techniques and appropria- pression standards and applications of m Course Content(Syllabus)	4 External Marks: coessing, Digital Image Processing. ideo technology, and analytical framework for video analysis in the formal data rate, the space video signal can be sampled to retain the maximum perceivable data rate. timation and basic Video coding techniques based methods and block-based hybrid coding framework 263, MPEG-1, MPEG-2, and MPEG-4 standards for video f the course, the student will be able to: of video, its perception and representation, and characterization of v T Lattice theory, sampling of video signals and sample rate conversion tion estimation technique for a given video processing application. video processing and video coding. ion estimation techniques and appropriate coding system for a given pression standards and applications of modern video coding standard Course Content(Syllabus)

<u>UNIT I</u>

VIDEO FORMATION, PERCEPTION, AND REPRESENTATION – color perception and specification – light and color, human perception of color, trichromatic theory of color mixure color specifications by tri stimulation values video capture and display – Analog video raster – Analog color television systems, Digital video and Frequency Domain characterization of Video Signals.

<u>UNIT II</u>

VIDEO SAMPLING – Basics of the Lattice theory, Sampling of Video Signals required sampling rates sampling video in two dimensional sampling a rastar scan sampling video in three dimensionlas spatial and temporal aliasing, Conversion of Signals Sampled on Different Lattices, Sampling Rate Conversion of Video Signals.

<u>UNIT III</u>

TWO-DIMENSIONAL MOTION ESTIMATION-Optical Flow Optical Flow Equation and Ambiguity in Motion Estimation, Motion Estimation Criteria. Block-Matching Algorithm, Exhaustive and fast algorithms, Multi resolution Motion Estimation, Application of Motion Estimation in Video Coding.

<u>UNIT IV</u>

WAVEFORM BASED VIDEO CODING-Predictive coding, Video coding using Temporal prediction and transform coding, Content Dependent Video Coding – Two dimensional shape coding, Texture coding for Arbitrarily shaped Regions.

<u>UNIT V</u>

VIDEO COMPRESSION STANDARDS-Standardization Standards Organizations, Requirements for a Successful Standard, Standard Development Process, Applications for Modern Video Coding Standards-Video Telephony with H.261 and H.263-Multimedia content description with MPEG7.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

TEXT BOOKS:

1. VideoProcessingandCommunication-1stedition YaoWang, J.Ostermann, YaZhang, PrenticeHall, 2001

REFERENCES:

- 1. Image processing, analysis, and machinevision,2nd Edition ,-Sonka M,Hlavac V,Boyle R.Brooks Cole publishing,1999.
- 2. Multidimensional, signal, image and video processing and coding,-Woods, Elsevier,Academic press,2006.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	2	2		3					2					3
CO2	3	2												3
CO3	3	2		2										3
CO4	2	2	2										2	
CO5	3	3			2							2	2	
CO6		2												3

HONORS COURSE: POOL-IV (Digital Signal Processing) NRIA20 Reg, Semester - VI

L T P C 3 1 0 4

BIOMEDICAL SIGNAL PROCESSING

Lecture – Tutorial:	3-1-0 Hours	Internal Marks:	30
Credits:	4	External Marks:	70

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Prerequisites: Signals and Systems, Digital signal processing, Biomedical engineering.

Course Objectives:

- To introduce the basic signal processing techniques in analyzing biological signals.
- To understand Sources and characteristics of noise and artifacts in bio signals.
- To explore application of established engineering methods to complex biomedical signals problems.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Study origins and characteristics of some of the most commonly used biomedical signals, including ECG, EEG, evoked potentials, and EMG.

CO2 Develop a thorough understanding on basics of digital signals and biological signals.

CO3 Find applications related to biomedical signal processing.

CO4 Develop a thorough understanding on basics of signal pre-processing and digital filtering.

CO5 Develop a thorough understanding on basics of ECG and EEG feature extraction.

CO6 Develop a thorough understanding on basics of ECG pattern recognition and classification algorithms.

Course Content (Syllabus)

<u>UNIT I</u>

Acquisition, Generation of Bio-signals, Origin of bio-signals, Types of bio-signals, Study of diagnostically significant bio-signal parameters.

<u>UNIT II</u>

Electrodes for bio-physiological sensing and conditioning, Electrode-electrolyte interface, polarization, electrode skin interface and motion artifact, biomaterial used for electrode, Types of electrodes (body surface, internal, array of electrodes, microelectrodes), Practical aspects of using electrodes, Acquisition of bio-signals (signal conditioning).

<u>UNIT III</u>

Signal conversion (ADC's and DAC's) Processing, Digital filtering, biomedical signal processing by Fourier analysis, Biomedical signal processing by wavelet (time-frequency) analysis, Analysis (Computation of signal parameters that are diagnostically significant).

<u>UNIT IV</u>

Classification of signals and noise, Spectral analysis of deterministic, stationary random signals and nonstationary signals, Coherent treatment of various biomedical signal processing methods and applications.

<u>UNIT V</u>

Principal component analysis, Correlation and regression, Analysis of chaotic signals Application areas of Bio–Signals analysis Multi resolution analysis (MRA) and wavelets, Pattern classification– supervised and unsupervised classification, Neural networks, Support vector Machines, Examples of biomedical signal classification examples.

TEXT BOOKS:

W. J. Tompkins, "Biomedical Digital Signal Processing", Prentice Hall,1993.
 Eugene N Bruce, "Biomedical Signal Processing and Signal Modeling", John Wiley & Son's publication,2001.

REFERENCES:

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

- 1. Myer Kutz, "Biomedical Engineering and Design Handbook, Volume I", McGraw Hill, 2009.
- 2. D C Reddy, "Biomedical Signal Processing", McGraw Hill, 2005.

3. Katarzyn J. Blinowska, Jaroslaw Zygierewicz, "Practical Biomedical Signal Analysis Using MATLAB", 1st Edition, CRC Press, 2011.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

	РО	PO	PO	РО	РО	РО	РО	РО	PO	РО	РО	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	2	-	-	-	-	2	-	-	-	3	-	-	3
CO2	-	3	2	-	-	2	-	-	-	-	-	-	2	-
CO3	2	-	-	3	-	-	-	-	2	-	-	2	-	-
CO4	-	2	-	2	-	-	-	-	-	3	-	-	-	3
CO5	2	-	3	-	-	-	-	3	-	-	-	2	-	-
CO6	-	3	2	-	3	-	-	-	-	-	-	-	-	2

HONORS COURSE: POOL-IV (Digital Signal Processing) NRIA20 Reg, Semester - VII L T P C 3 1 0 4

DSP PROCESSORS AND ARCHITECTURES

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Lectur	e – Tutorial:	3-1-0 Hours	Internal Marks:	30
Credit	S:	4	External Marks:	70
Prerec	uisites: Signals and S	ystems. Digital Signal Proces	ssing and Microprocessors.	
Cours	e Objectives:			
• T	o recollect the fundame	ntal concepts of digital signal	processing.	
• 1	o study the architectures	s of basic DSP processors.		
• 1	o know the architecture	s and features of commercial	DSP processors.	
• T	To write the assembly lar	nguage programs and implem	enting them on processors.	
• 1	o interface memory and	I/O peripherals to DSP proce	essors.	
Cours	e Outcomes:			
Upon	successful comple	tion of the course, the	student will be able to:	
CO1	Summarize the basics of	of Digital Signal Processing a	nd transforms.	
CO2	Distinguish between th	e architectural features of gen	neral purpose processors and DSP pr	ocessors.
CO3	Understand the archited	ctures of TMS320C54xx devi	ces and ADSP 2100 DSP devices.	
CO4	Analyze the architectur	es of high performance proce	essors of analog devices family.	
CO5	Take part in writing sir	nple assembly language prog	rams using instruction set of TMS320	C54xx.
CO6	Interface various devic	es to DSP Processors.		
		Course Content (S	Syllabus)	
		<u>UNIT-I</u>		
INTROI	DUCTION TO DIGIT	TAL SIGNAL PROCESSI	NG: Introduction, A Digital signa	l-processing
system, 7	The sampling process, I	Discrete time sequences, Dis	crete Fourier Transform (DFT) and	Fast Fourier
Transform	n (FFT), Linear time-in	variant systems, Digital filte	ers, Decimation and interpolation. Co	omputational
Accuracy	in DSP Implementation	ons: Number formats for sig	nals and coefficients in DSP system	ıs, Dynamic
Range an	d Precision.			

<u>UNIT-II</u>

ARCHITECTURES FOR PROGRAMMABLE DSP DEVICES: Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues, Features for External interfacing.

<u>UNIT-III</u>

PROGRAMMABLE DIGITAL SIGNAL PROCESSORS: Commercial digital signal processing devices, Data Addressing modes of TMS320C54XX DSPs, data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX processors, program control, TMS320C54XX instructions and programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, pipeline Operation of TMS320C54XX Processors.

UNIT-IV

ANALOG DEVICES FAMILY OF DSP DEVICES: Analog Devices Family of DSP Devices ALU and MAC block diagram, Shifter Instruction, Base Architecture of ADSP 2100, ADSP2181 high performance processor. Introduction to Blackfin Processor- The Blackfin Processor, Introduction to Micro signal Architecture, Overview of Hardware Processing Units and Register files, Address Arithmetic Unit, Control Unit, Bus Architecture and Memory, Basic Peripherals.

<u>UNIT-V</u>

INTERFACING MEMORY AND I/O PERIPHERALS TO PROGRAMMABLE DSP DEVICES: Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).

TEXT BOOKS:

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

1. Digital Signal Processing – Avtar Singh and S. Srinivasan, Thomson Publications, 2004.

2. A Practical Approach To Digital Signal Processing - K Padmanabhan, R. Vijayarajeswaran, Ananthi. S, New Age International, 2006/2009.

3. Embedded Signal Processing with the Micro Signal Architecture Publisher: Woon-Seng Gan, Sen M. Kuo, Wiley-IEEE Press, 2007.

REFERENCE BOOKS:

1. Digital Signal Processors, Architecture, Programming and Applications–B. Venkata ramani and M. Bhaskar, 2002, TMH.

2. DSP Processor Fundamentals, Architectures & Features – Lapsley et al., S. Chand & Co.

3. Digital Signal Processing Applications Using the ADSP-2100 Family, Amy Mar, PHI.

4. The Scientist and Engineer's Guide to Digital Signal Processing by Steven W. Smith, California Technical Publishing.

5. Embedded Media Processing, David J. Katz and Rick Gentile of Analog Devices, Newnes.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	2	2											2
CO2			2		2			2					3	
CO3	2	2												2
CO4	3											3	3	
CO5	2	2	2										2	
CO6	3	3	3											3

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

MINORS COURSES - NRIA20 Reg

S.No	Year/Semester	Name of Course	L – T - P	Credits
1	II/IV	Analog Electronics	3 -1 - 0	4
2	III/V	Electronic Communication Systems	3 -1 - 0	4
3	III/VI	Fundamentals of Digital systems	3 -1 - 0	4
4	IV/VII	Signal Analysis	3 -1 - 0	4

In Addition to any of the four subjects, MOOCs/ NPTEL courses for 04 credits (02 courses @ 2 credits each) are compulsory in the domain of Electronics and Communication Engineering.

Total Credits

Total Credits	20

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Minor Course:IVth Semester NRIA20 Reg

L T P C 3 1 0 4

ANALOG ELECTRONICS

Lecture – Tutorial:	3 –1-0 Hours	Internal Marks:	30
Credits:	4	External Marks:	70

Prerequisites:

- Fundamentals in semiconductor physics
- Basic knowledge in Mathematics

Course Objectives:

- 1. Demonstrate the principle and operation of various semiconductor diodes
- 2. Understand and apply the concepts of transistors and their amplifiers BJT, FET & MOSFET and their frequency responses
- 3. Illustrate the concepts of feed back in amplifiers and emphasize on feedback topologies Illustrate various oscillator circuits and its applications using BJT
- 4. Familiarize with different power amplifier circuits using BJT and design the power amplifier

Course Outcomes:

Upon successful completion of the course, the student will be able to: Acquire basic knowledge essential for understanding the operation of electronic CO1 circuits CO₂ Explain the working of various semi conductor diodes and their VI characteristics Understand the behavior of various transistors and their working as amplifiers and CO₃ observe their frequency responses CO4 Interpret the performance of feedback topologies using BJT Develop the capability to design oscillator circuits by transistors using the CO₅ knowledge of positive feedback Analyze various power amplifier circuits and calculate their efficiency CO6

Course Content (Syllabus)

UNIT I

TYPES OF DIODES AND DIODE APPLICATIONS:

Basic principle of operation and V I characteristics of diodes: – PN junction diode, Zener diode, LED, Varactor diode, Photo diode and Tunnel diode

Diode applications: clamping circuits and clipping circuits - operation and transfer characteristics

UNIT II

TRANSISTOR AMPLIFIERS:

Bipolar Junction transistors – Working of BJT, Transistor as an amplifier, Types of Configurations CB, CE, CC, Classification of amplifiers, Amplifier configurations of BJT – CB, CE and CC, their operation,

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

frequency response and applications.

Unipolar Junction Transistors – Working of FET, FET as an amplifier, Types of configurations-CG,CD,CS, FET as Common Source Amplifier its operation and frequency response, Basic concepts of MOSFETs Depletion and Enhancement, amplifiers – Common source MOSFET amplifier only

UNIT III

FEEDBACK AMPLIFIERS:

Feedback concept, types of feedback, general characteristics of negative feedback, Block diagram representation of feedback topologies, Method of analysis of negative feedback amplifier, Comparison of feedback amplifiers

UNIT IV

OSCILLATORS:

Oscillatory circuit, conditions for oscillations, classification of oscillators, RC oscillators- basic principle and working of RC phase shift and Wien bridge oscillators, LC oscillators – basic principle and working of Hartley and Colpitts oscillators, Working of crystal oscillator

UNIT V

POWER AMPLIFIERS:

Classification of power amplifiers, class A power amplifier – series fed and transformer coupled, efficiency of class A amplifier, class B power amplifier – class B push pull amplifier and Complementary symmetry class B push pull amplifiers, efficiency of class A amplifier, class AB push pull amplifier, thermal runaway, thermal stability, heat sinks.

TEXT BOOKS:

- 1. Integrated Electronics Analog Digital Circuits, Jacob Millman and D. Halkias, McGraw Hill
- 2. Electronic Circuit Analysis for JNTU, S Salivahanan, N Suresh Kumar
- 3. Robert L. Boylestad, Louis Nashelsky, –Electronic Devices and Circuits Theory, Pearson education

REFERENCE BOOKS:

- 1. Electronic Circuit Analysis- K.LalKishore, K. Lal Kishore B.S Publications
- 2. G. K. Mithall, Electronic Devices and Circuits, Khanna Publishers, New Delhi.
- 3. Electronic Circuit Analysis, A.P Godse, U.A Bakshi, Technical Publications
- 4. Electronic Circuit Analysis K.S. Srinivasan, Anurdha Agencies

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	3	2											3

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CO2	2	2							2		3
CO3		3		3		2					2
CO4	3	2	2	2							3
CO5	3	3		2							3
CO6	2	2								2	

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Minor Course: Vth Semester NRIA20 Reg

L T P C 3 1 0 4

ELECTRONIC COMMUNICATION SYSTEMS

Lectu	ure – Tutorial:	3-1-0 Hours		Internal Marks:	30						
Cred	its:	4		External Marks:	70						
Prere	Prerequisites: Basics of Communications, Signals and Systems.										
Course Objectives:											
•	 Familiarize with the fundamentals of analog and digital communication systems. Familiarize with various techniques for analog as well as digital modulation and demodulation of signals. 										
 To understand the influence of noise on the performance of the communication systems. Familiarize with basic techniques for generating and demodulating various analog and digita pulse modulated signals. 											
Cour	se Outcomes:										
Upon	successful compl	etion of the course, the	student v	will be able to:							
CO1	Understand basic elen	nents of analog and digital c	ommunica	tion system.							
CO2	Demonstrate various a	analog and digital modulation	on and dem	odulation techniques.							
CO3	Compute the power an	nd bandwidth requirements	of various	modulation schemes.							
CO4	CO4 Analyze the performance of modulation and demodulation techniques in various transmission environments.										
CO5	Analyze various analo	g and digital pulse modulat	ion and de	modulation techniques.							
CO6	Evaluate the performation	nce of the communication s	ystem in tl	ne presence of noise.							
		Course Content (S	yllabus)								
		<u>UNIT I</u>									
AMP	LITUDE MODULA	TION : Introduction to con	nmunicatio	n systems, Need for mo	odulation,						
Freque	ency Division Multiple	exing, Amplitude Modulati	on, Definit	tion, Time domain and f	frequency						
domai	n description, single	tone modulation, power re	elations in	AM waves, Generation	n of AM						
waves	, square law Modulato	r, Switching modulator, De	tection of	AM Waves; Square law	detector,						
Envel	Envelope detector.										
UNIT II											
DSB & SSB MODULATION: Double side band suppressed carrier modulators, time domain and											
freque	ency domain descrip	tion, Generation of DSB	SC Wave	s, Balanced Modulate	ors, Ring						
Modu	lator, Coherent detect	on of DSB-SC Modulated	waves, CC	OSTAS Loop. Frequenc	y domain						
descri	ption, Frequency discr	imination method for gene	ration of A	AM SSB Modulated Wa	ive, Time						
domai	n description, Phase	discrimination method for	or generati	ng AMSSB Modulate	d waves.						
Demo	dulation of SSB Way	ves, Comparison of AM	Fechniques	, Applications of diffe	erent AM						
Syster	ns, FDM.										

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

<u>UNIT III</u>

ANGLE MODULATION: Basic concepts, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrowband FM, Wideband FM, Constant Average Power, Transmission bandwidth of FM Wave- Generation of FM Waves, Detection of FM Waves: Balanced Frequency discriminator, Zero crossing detector, Phase locked loop. Comparison of FM & AM.

<u>UNIT IV</u>

PULSE DIGITAL MODULATION: Elements of digital communication systems, advantages of digital communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization error, Companding in PCM systems. Differential PCM systems (DPCM), Delta modulation, its draw backs, adaptive delta modulation, comparison of PCM and DM systems, noise in PCM and DM systems.

<u>UNIT V</u>

DIGITALMODULATIONTECHNIQUES:Introduction,ASK,FSK,PSK,DPSK,DEPSK,QPSK,MaryPSK,ASK,FSK, similarity of BFSK and BPSK.

TEXT BOOKS:

1. Principles of Communication Systems–HTaub&D.Schilling, GautamSahe, TMH, 3rd Edition, 2007.

2. Principles of Communication Systems-Simon Haykin, John Wiley, 2nd Edition, 2007.

- 3. Modern Digital and Analog Communication Systems –B.P.Lathi, Zhi Ding, Hari Mohan Gupta, Oxford
- University Press, 4th Edition, 2017
- 4. Digital communications- Simon Haykin, JohnWiley,2005
- 5. Digital and Analog Communication Systems -SamShanmugam, JohnWiley, 2005. **REFERENCES:**
- 1. Electronics & Communication System– George Kennedy and Bernard Davis, TMH 2004.
- 2. Communication Systems–R.P.Singh, SP Sapre, Second Edition TMH, 2007.
- 3. Electronic Communication systems–Tomasi, Pearson, fourth Edition, 2007.
- 4. Principles of Communication Systems-H.Tauband D. Schilling, TMH,2003
- 5. Digital Communications–John Proakis, TMH, 1983.
- 6. Communication Systems Analog & Digital–Singh & Sapre, TMH, 2004.

7. Modern Digital and Analog Communication Systems–B.P.Lathi, ZhiDing, Hari Mohan Gupta, Oxford University Press, 4th Edition, 2017.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)

`	,) -	0 /										
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CO1	3	2	-	-	-	-	2	-	-	-	3	-	-	3
CO2	-	3	2	-	-	2	-	-	-	-	-	-	2	-
CO3	2	-	-	3	-	-	-	-	2	-	-	2	-	-
CO4	-	2	-	2	-	-	-	-	-	3	-	-	-	3
CO5	2	-	3	-	-	-	-	3	-	-	-	2	-	-
CO6	-	3	2	-	3	-	-	-	-	-	-	-	-	2

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Minor Course: VI th Semester NRIA2O Reg

L T P C 3 0 0 3

FUNDAMENTALS OF DIGITAL SYSTEMS

Lecture	- Tutorial:	3-1 Hours	Internal Marks:	30							
Credits		4	External Marks:	70							
Prerequ	Prerequisites: Basic Mathematics, Basic Electronics.										
Course Objectives:											
•]	• To learn the characteristics of various types of logic families.										
•]	To understand concep	ts of combinational circuits									
•]	To develop advanced	sequential circuits.									
•]	To understand the imp	portance of memories in digitation	al systems.								
Course	Course Outcomes:										
Upon su	Upon successful completion of the course, the student will be able to:										
CO1	Summarize about d	lifferent types of logic familie	es								
CO2	Apply the concepts	of combinational circuits to	design advance digitals systems.								
CO3	CO3 Build various sequential circuits to design advanced digital systems.										
CO4	CO4 Analyze the importance of memories in digital systems.										
CO5	CO5 Understand the architecture of CPLD and FPGA to program various digital circuits.										
CO6	Apply the concepts	to specific applications using	g ASIC and SoC.								
Course Content(Syllabus)											
	UNIT I										

Introduction of Logic Families: Diode Logic (DL), Resistor Transistor Logic (RTL), Diode Transistor Logic (DTL), Transistor- Transistor Logic (TTL), Emitter Coupled Logic (ECL) or Current Mode Logic (CML), Integrated Injection Logic (IIL), Characteristics of Logic Families, Uni-Polar and Bi-Polar Logic Families.

<u>UNIT II</u>

<u>**Combinational circuits Design:**</u> 4- bit adder-sub tractor circuit, BCD adder circuit, Excess 3 adder circuit and carry look-a-head adder circuit, Design of encoder , decoder, multiplexer and de-multiplexers,. Design of Priority encoder, 4-bit digital comparator and seven segment decoder.

UNIT III

<u>Sequential circuits Design</u>: Classification of sequential circuits (synchronous and asynchronous), operation of NAND & NOR Latches and flip-flops; truth tables and excitation tables of RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals. Conversion from one flip-flop to another flip-flop. Design of registers - Buffer register, control buffer register, shift register, bidirectional shift register, universal shift, register

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT IV

<u>Memories:</u> Programmable Logic Devices PLDs: Programmable Read Only Memory(PROM),Programmable Array Logic(PAL),Programmable Logic Array(PLA) Types of ROM: PROM(Programmable Read only Memory),EPROM(Erasable Programmable Read only Memory),EEPROM(Electrically Erasable Programmable Read only Memory),MROM(Mask ROM).

<u>UNIT V</u>

Types of RAM: Static Random Access Memory (SRAM), Dynamic Random Access Memory (DRAM), Types of DRAM: DDR, SDRAM, CDRAM. Introduction of CPLD, FPGA, difference between CPLD, Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), System on Chip (SoC)

TEXT BOOKS:

- 1. Switching and finite automata theory Zvi. KOHAVI, Niraj.K.Jha 3rd Edition, Cambridge University Press,2009
- 2. Digital Design by M.Morris Mano, Michael D Ciletti,4th edition PHI publication,2008
- 3. Switching theory and logic design by Hill and Peterson, Mc-Graw Hill TMH edition, 2012.

REFERENCES:

- 1. Fundamentals of Logic Design by Charles H. Roth Jr, Jaico Publishers, 2006
- 2. Digital electronics by R S Sedha.S.Chand& company limited,2010
- 3. Switching Theory and Logic Design by A. Anand Kumar, PHI Learning pvt ltd,2016.
- 4. Digital logic applications and design by John M Yarbough, Cengage learning, 2006.TTL 74-Series data book.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO) (1 – Low 2- Medium 3 – High)

$(1 - Low, 2^2 \text{ Medium}, 5 - \text{ Hgn})$														
	PO	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO1	3	2												3
CO2	2	3										2		3
CO3		2		2										2
CO4	3			2										2
CO5	3	2											2	
CO6	2													

NRI INSTITUTE OF TECHNOLOGY

L T P C 3 10 4

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Minor Course:	VII th Semester
NRIA20 Reg	

SIGNAL ANALYSIS

Lecture – Tutorial:	3-1 Hours	Internal Marks:	30				
Credits:	4	External Marks:	70				
Prerequisites: Engineering Mathematics –I, Engineering Mathematics –II.							
Course Objectives:							

- To introduce the terminology of signals and systems.
- To study Fourier tools to convert signal from time domain to frequency domain and analyze the spectral characteristics.
- To know the importance of convolution and correlation.
- To understand the concept of sampling and reconstruction of signals.
- To study Laplace-transform as mathematical tool to convert signals from time domain to complex frequency domain, and also study Z-transform as mathematical tool to analyze discrete-time signals.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- **CO1** Learn the basic concepts of signals and differentiate various classifications of signals.
- **CO2** Analyze the frequency domain representation of signals using Fourier concepts.
- **CO3** Understand the concept of convolution, correlation and relate them.
- **CO4** Illustrate the sampling-reconstruction process and various types of sampling techniques.
- **CO5** Apply Laplace transforms to analyze continuous time signals.
- **CO6** Apply Z-transforms to analyze discrete time signals.

Course Content (Syllabus)

<u>UNIT-I</u>

INTRODUCTION: Definition of Signals and Systems, Classification of Signals, Classification of Systems, Operations on signals: time-shifting, time-scaling, amplitude- shifting, amplitude-scaling. related problems. Complex exponential and sinusoidal signals, Singularity functions and related functions: impulse function, step function, signum function and ramp function.

<u>UNIT-II</u>

FOURIER ANALYSIS OF PERIODIC SIGNALS: Fourier series representation of continuous time periodic signals, properties of Fourier series, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Relation between Trigonometric and Exponential Fourier series, Complex Fourier spectrum.

<u>UNIT-III</u>

FOURIER ANALYSIS OF APERIODIC SIGNALS: Deriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms. related problems.

<u>UNIT-IV</u>

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CORRELATION: Auto-correlation and cross-correlation of functions, properties of correlation function, Energy density spectrum, Parseval's theorem, Power density spectrum, Relation between convolution and correlation. **SAMPLING THEOREM:** Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling – Aliasing, related problems.

UNIT-V

LAPLACE TRANSFORMS: Introduction, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.T's, Inverse Laplace transform, Partial fraction expansion, Relation between L.T and F.T. of a signal. **Z-TRANSFORMS:** Concept of Z- Transform of a discrete sequence. Region of convergence in Z-Transform, constraints on ROC for various classes of signals, Inverse Z- transform, properties of Z-transforms. Distinction between Laplace, Fourier and Z transforms.

TEXT BOOKS:

- 1. Signals, Systems & Communications B.P. Lathi, BS Publications, 2003.
- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI,2nd Edn,1997
- 3. Signals & Systems- A.Anand Kumar –2nd Edition, PHI, 2012.

REFERENCE BOOKS:

1.Principles of Linear Systems and Signals - BP Lathi, Oxford University Press, 2015

- 2. Signals and Systems T K Rawat, Oxford University press, 2011
- 3. Signals & Systems Simon Haykin and Van Veen, Wiley, 2nd Edition.
- Signals and Systems K R RajeswariB. VisvesvaraRao, "Signals & Systems" –1st Edition, PHI, 2009.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 - Low, 2 - Medium, 3 - High)РО PO PO PO РО PO PO PO PO PO PO PO PS PS 3 4 5 6 7 8 9 10 11 12 01 02 1 2 3 3 2 3 3 CO1 2 3 2 2 3 CO2 2 2 3 CO3 3 2 2 2 CO4 2 2 3 CO5 2 3 2 CO6