

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR FIRST YEAR B.TECH PROGRAMME I YEAR I SEMESTER- R18 REG

SI. No	Course Code	Title of the Course	Scheme of Instruction (Periods Per Week)			Scheme of Examination (Maximum Marks)			No. of Credits	
			L	Т	Р	Total	CIA	SEA	Total	
1	HS	Professional English – I	2	1	-	3	40	60	100	3
2	20A1100201	Engineering Mathematics – I	2	1	I	3	40	60	100	3
3	20A1100 203	Applied Physics	2	1	I	3	40	60	100	3
4	ES	Fundamentals of Electrical Engineering.	2	1	-	3	40	60	100	3
5	20A1103 301	Engineering Graphics	1	-	2	3	40	60	100	2
6	HS	English Communication Skills lab – I	-	-	4	4	40	60	100	2
7	BS	Applied Chemistry lab	-	-	2	2	40	60	100	1
8	LC	Automation tools & Professional Workshop	-	-	2	2	40	60	100	1
		Total	9	4	10	23	320	480	800	1 8

I YEAR II SEMESTER

SI. No	Course Code	Title of the Course		Scheme of Instruction (Periods Per Week)				Scheme ninatio Marks	No. of Credits	
110	Couc		L	Т	Р	Total	CIA	SEA	Total	creates
1	HS	Professional English – II	2	1	-	3	40	60	100	3
2	BS	Engineering Mathematics – II	3	1	-	4	40	60	100	4
3	BS	Applied Chemistry	2	1	-	3	40	60	100	3
4	ES	Programming and Problem solving with C	3	1	-	4	40	60	100	4
5	PC	Electronics Devices and Circuits	3	1	-	4	40	60	100	4
6	MC	Environmental Studies	2	1	-	3	40	60	100	0
7	HS	English Communication Skills lab – II	-	I	3	3	40	60	100	1.5
8	BS	Applied Physics lab	-	-	2	2	40	60	100	1
9	9 ES Programming and Problem solving with C Lab		-	-	3	3	40	60	100	1.5
	Total			6	8	29	360	540	900	22

L - LECTURE T – TUTORIAL P - PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE FOR SECOND YEAR B.TECH PROGRAMME

SI. No	Course Code	Title of the Course	Scheme of Instruction (Periods Per Week)				Scheme of Examination (Maximum Marks)			No. of Credits
			L	Т	Р	Total	CIA	SEA	Total	
1	ES	Network Analysis and Transmission lines	3	-	-	3	40	60	100	3
2	BS	Digital Electronics and Logic Design	3	-	-	3	40	60	100	3
3	PC	Signals and Systems	3	-	-	3	40	60	100	3
4	OE	Open Elective -I	3	-	-	3	40	60	100	3
5	BS	Engineering Mathematics -III	3	-	-	3	40	60	100	3
6	HS	Managerial Economics and Financial Analysis	3	-	I	3	40	60	100	3
7	PC	Electronic Devices and Circuits Lab	-	I	2	2	40	60	100	1
8	ES	Network Analysis Laboratory	-	I	2	2	40	60	100	1
9	ES	Basic Simulation Laboratory	-	-	2	2	40	60	100	1
	Total			-	6	24	360	540	900	21

II YEAR I SEMESTER

II YEAR II SEMESTER

SI. No	Sl.CourseNoCodeTitle of the Course			Scheme of Instruction (Periods Per Week)				Scheme xamina ximum I	No. of Credits	
			L	L	Г	10181	UIA	SLA	1 01/11	
1	ru	Analog Communications	3	-	-	3	40	00	100	3
2	PC	Analog & Pulse Circuits	5	-	-	5	40	60	100	5
5	ES	Electro Magnetic Field Theory	5	-	-	3	40	60	100	5
4	ES	Control Systems	5	-	-	5	40	60	100	5
5	BS	Probability Theory and Stochastic Process	3	-	-	3	40	60	100	3
υ	UL	Open Liecuve –n	З	-	-	J	τυ	υυ	100	J
7	MC	Professional Ethics and Human Values	2	-	I	2	40	60	100	0
8	PC	Analog Communication Laboratory	-	-	2	2	40	60	100	1
9	PC	Analog and Pulse Circuits Laboratory	-	-	2	2	40	60	100	1
10	PC	Digital Electronics and Logic Design Laboratory	-	-	2	2	40	60	100	1
	Total		20	-	6	26	400	600	1000	21

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE FOR THIRD YEAR B.TECH PROGRAMME

SI.	Course Code	Title of the Course		Scheme of Instruction (Periods Per Week)				Scheme of Examination (Maximum Marks)			
110	Couc		L	Т	Р	Total	CIA	SEA	Total	creuits	
1	PC	Linear and digital Integrated circuits	3	1	-	4	40	60	100	4	
2	PC	Digital Communications	3	1	-	4	40	60	100	4	
3	PC	Antennas and Wave Propagation	3	1	-	4	40	60	100	4	
4	PE	Professional Elective I	3	-	-	3	40	60	100	3	
5	OE	Open Elective III	3	-	-	3	40	60	100	3	
6	MC	IPR and Patents	2	-	-	2	40	60	100	0	
7	PC	Linear and Digital Integrated Circuit laboratory	-	-	2	2	40	60	100	1	
8 PC Digital Communication Laboratory		-	-	2	2	40	60	100	1		
9	9 PC VHDL Programming Lab			-	2	2	40	60	100	1	
	Total				6	26	360	540	900	21	

III YEAR I SEMESTER

III YEAR II SEMESTER

SI. No	Course Code	Title of the Course		Scheme of Instruction (Periods Per Week)				Scheme xamina timum N	No. of Credits	
110	couc		L	Т	Р	Total	CIA	SEA	Total	orcans
1	PC	VLSI Design	3	1	-	4	40	60	100	4
2	PC	Digital Signal Processing	3	1	-	4	40	60	100	4
3	PC	Microprocessors and Microcontrollers	3	1	-	4	40	60	100	4
4	PE	Professional Elective II	3	-	-	3	40	60	100	3
5	OE	Open Elective IV	3	-	-	3	40	60	100	3
6	PC	Microprocessors and Microcontrollers Laboratory	-	-	2	2	40	60	100	1
7	7 PC Digital Signal Processing Laboratory		-	-	2	2	40	60	100	1
8 PC VLSI Laboratory			-	-	2	2	40	60	100	1
	Total			3	6	24	320	480	800	21

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE FOR FOURTH YEAR B.TECH PROGRAMME

SI. No	Course Code	Title of the Course	Sche Inst (Per Wee	eme ructi viods ek)	of ion Per		Schen Exam (Maxi	No. of Credits		
			L	Т	Р	Total	CIA	SEA	Total	
1	PC	Microwave Engineering	3	1	-	4	40	60	100	4
2	PC	Optical Communication	3	-	-	3	40	60	100	3
3	PC	Digital Image Processing	3	1	-	4	40	60	100	4
4	PE	Professional Elective III	3	-	-	3	40	60	100	3
5	PE	Professional Elective IV	3	-	-	3	40	60	100	3
6	MC	Indian Constitution (MC)	2	-	-	2	40	60	100	0
7	PC	Microwave Engineering & OC Lab	-	-	2	2	40	60	100	1
8	PR	Mini Project	-	-	8	8				4
	Total			1	14	32	320	480	800	22

IV YEAR I SEMESTER

IV YEAR II SEMESTER

SI. No	Sl. No Course Code Title of the Course		Inst	So true Pe	chem ction er We	e of (Periods eek)	Scheme of Examination (Maximum Marks)			No. of Credit
			L	Т	Р	Total	CIA	SEA	Total	S
1	PE	Professional Elective V (MOOCS)	3	-	-	3	40	60	100	3
2	PE	Professional Elective VI (MOOCS)	3	-	-	3	40	60	100	3
3	PR	Main Project and Seminar	-	-	16	16	80	120	200	8
		Total	6	-	16	22	160	240	400	14

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Sl.	SI. No. of Nu Course Code I T Course lite										
No	Course Code		L	T	Credits						
1	PE I	Telecommunication Switching systems and networks	3	-	3						
2	PE I	Computer Organization and Architecture	3	-	3						
3	PE I	Electronic Measurements and Instrumentation	3	-	3						

PROFESSIONAL CORE ELECTIVE - II

Sl. No	Course Code	Title of the Course	L	Т	No. of Credits
1	PE II	Cellular & Mobile Communications	3	-	3
2	PE II	Digital System Design	3	-	3
3	PE II	Electromagnetic Interference & Electromagnetic Compatibility	3	-	3

PROFESSIONAL CORE ELECTIVE - III

Sl. No	Course Code	Title of the Course	L	Т	No. of Credits
1	PE III	Satellite Communications & RADAR Engineering	3	-	3
2	PE III	Data Base Management Systems	3	-	3
3	PE III	Embedded System Design	3	-	3

PROFESSIONAL CORE ELECTIVE - IV

Sl. No	Course Code	Title of the Course	L	Т	No. of Credits
1	PE IV	Data Communications	3	-	3
2	PE IV	Operating Systems	3	-	3
3	PE IV	Analog IC Design	3	-	3

PROFESSIONAL CORE ELECTIVE - V

Sl. No	Course Code	Title of the Course	L	Т	No. of Credits
1	PE V	Wireless Communications and Networks	3	-	3
2	PE V	Soft Computing Techniques	3	-	3
3	PE V	Digital IC Design	3	-	3

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

	PROFESSIONAL CORE ELECTIVE - VI										
Sl. No	Course Code	Title of the Course	L	Т	No. of Credits						
1	PE VI	Computer Networks	3	-	3						
2	PE VI	Internet of Things	3	-	3						
3	PE VI	Artificial Intelligence	3	-	3						

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Sl. No	Course Code	Title of the Course	No. of Credits
1	OE	Basic Electronics	3
2	OE	Microprocessors and Applications	3
3	OE	Industrial Electronics	3
4	OE	Signals and Systems	3
5	OE	Soft Computing Techniques	3
6	OE	Principles of Communications	3
7	OE	Digital Signal Processing	3
8	OE	Electronic measurement and Instrumentation	3

OPEN ELECTIVES OFFERED BY ECE DEPARTMENT

ACADEMIC REGULATIONS (NRIA18) COURSE STRUCTURE AND DETAILED SYLLABUS (I YEAR)

ELECTRONICS AND COMMUNICATION ENGINEERING

For

B.Tech FOUR YEAR DEGREE COURSE (Applicable from 2018-19 Batches)

NRI INSTITUTE OF TECHNOLOGY

An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited with NAAC "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

÷

.

ACADEMIC REGULATIONS COURSE STRUCTURE AND DETAILED SYLLABUS (I YEAR)

ELECTRONICS AND COMMUNICATION ENGINEERING

For B.Tech FOUR YEAR DEGREE COURSE (Applicable from 2018-2019 Batches)

NRI INSTITUTE OF TECHNOLOGY

O

w

U

An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited with NAAC "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited with NAAC "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

STRUCTURE FOR FIRST YEAR B.TECH PROGRAMME

S1.	Course	Title of the Course	Scheme of Instruction (Periods Per Week)				S Ez (Maxi	No. of		
No	Code		L	Т	P	Total	CIA	SEA	Total	Credits
1	18A1100101	Professional English – I	2	1	_	3	40	60	100	3
2	18A1100201	Engineering Mathematics – I	2	1	-	3	40	60	100	3
3	18A1100205	Applied Chemistry	2	1	-	3	40	60	100	3
4	18A1102301	Fundamentals of Electrical Engineering.	2	1	-	3	40	60	100	3
5	18A1103301	Engineering Graphics	1	-	2	3	40	60	100	2
6	18A1100191	English Communication Skills lab – I	_	_	4	4	40	60	100	2
7	18A1100294	Applied Chemistry lab	-	-	2	2	40	60	100	1
8	18A1105391	Automation tools & Professional Workshop	-	-	2	2	40	60	100	1
		Total	9	4	10	23	320	480	800	18

I YEAR I SEMESTER

I YEAR II SEMESTER

Sl. Course		Title of the Course	Sche (P	eme o eriod	of Ins s Per	truction Week)	S Ex (Maxi	No. of		
No	Code		L	Т	Р	Total	CIA	SEA	Total	Credits
1	18A1200101	Professional English – II	2	1	-	3	40	60	100	3
2	18A1200201	Engineering Mathematics – II	3	1	-	4	40	60	100	4
3	18A1200203	Applied Physics	2	1	-	3	40	60	100	3
4	18A1205301	Programming and Problem solving with C	3	1	-	4	40	60	100	4
5	18A1204401	Electronic. Devices and Circuits	3	1	-	4	40	60	100	4
6	18A1200801	Environmental Studies	2	1	-	3	40	60	100	0
7	18A1200191	English Communication Skills lab – II	-	_	3	3	40	60	100	1.5
8	18A1200292	Applied Physics lab		-	2	2	40	60	100	1
9	18A1205392	Programming and Problem solving with C Lab	_	-	3	3	40	60	100	1.5
		Total	15	6	8	29	360	540	900	22

L - LECTURE T - TUTORIAL P - PRACTICAL

CIA – Continuous Internal Assessment SEA – Semester End Assessment

. ۰., X. . C

PROFESSIONAL ENGLISH-I (Common to CE,EEE,ME,ECE,CSE and IT)

Lecture – Tutorial: 2-1 Hours Credits: 3 Prerequisites: Internal Marks: 40

External Marks: 60

Course Objectives:

None

- 1. To strengthen the lexical ability of the students in different contexts.
- 2. To expose the students to various sub-skills and strategies of reading and writing summarizing and paraphrasing.
- 3. To help the students develop effective writing skills through paragraph writing.
- 4. To train the students in fundamentals of grammar required to equip them with fluent English.
- 5. To enable the students to think critically by exposing them to different socio-cultural contexts through various literary texts.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Use grammar accurately in various formal and functional contexts.
- CO2 Build good vocabulary and develop the ability to use in various contexts.
- CO3 Comprehend, analyze and evaluate texts critically.
- CO4 Develop effective reading and writing skills to enhance communicative competence.
- CO5 Help the students to inculcate and apply human values and professional ethics in their academic, professional and social lives.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2- Medium, 3 - High)

$(\mathbf{T} - \mathbf{T})$	UW , Z	mean	um, 0	- 111g	,							
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
CO1	1	2	3	4	Э	0		8	9	3	11	2
CO2										3		2
CO3						1	1		1			2
CO4							• vinanteviewe to de	-		3		2
CO5						1	1	3				2

UNIT I

- 1. **Reading:** Introduction to Integrated Communication with emphasis on Reading Skills, Scanning an article from *The Economic Times* – **"Why India celebrates Engineers Day on the birth anniversary of M. Visvesvaraya"**
- 2. Text: "I have a dream..." Martin Luther King
- 3. **Vocabulary Building:** Synonyms and Antonyms from the Text, Word Formations: Root Words, Prefixes and Suffixes
- 4. **Writing:** Styles of Sentence Structure for Effective Writing, Textual Exercises, Scrambled Sentences
- 5. **Remedial Grammar:** Parts of Speech, Effective Sentence Constructions Using Connectives

UNIT II

- 1. Reading: Skimming: "Oh Father, Dear Father" Raj Kinger
- 2. Text: "On Shaking Hands" A.G. Gardiner
- 3. Vocabulary Building: Synonyms and Antonyms from the Text
- 4. Writing: Paragraph Scramble
- 5. **Remedial Grammar:** Framing Questions and Question Tags, Punctuation Rules, Usage of Articles

UNIT III

- 1. Reading: Critical Reading: "Dial 000" Barry Rosenberg
- 2. Text: "Seeing People Off" Max Beerbohm
- 3. Vocabulary Building: Synonyms and Antonyms from the Text, Acronyms
- 4. Writing: Principles of a Good Paragraph
- 5. Remedial Grammar: Verbs and Types, Present Tense

UNIT IV

- 1. Reading: Note Making: "Icons: The Lotus Temple" Anamika Bhutalia
- 2. Text: "The Lost Child" Mulk Raj Anand
- 3. **Vocabulary Building:** Synonyms and Antonyms from the Text, One Word Substitutes
- 4. Writing: Summarising and Writing Anecdotes
- 5. **Remedial Grammar**: Past Tense and Future Tense, Correction of Sentences **REFERENCE BOOKS**:
- 1. **The Blue Book of Grammar and Punctuation**, 10th Edition, Jane Straus, Josey-Bass, A Wiley Imprint.
- 2. Oxford Practice Grammar, John Eastwood, Oxford University Press.
- 3. The Most Common Mistakes in English Usage Thomas Elliott Berry
- 4. Essential Communication Skills Shalini Agarwal, Ane Books Pvt Ltd.
- 5. Dictionary of Synonyms and Antonyms, Oxford & IBH, III Ed
- 6. **A Practical English Grammar**, Agnes V. Martinet and Audrey Jean Thomson, Oxford University Press.

E-RESOURCES:

- 1. http://grammar.ccc.commnet.edu/grammar/index.htm
- 2. https://owl.english.purdue.edu/
- 3. https://www.britishcouncil.in/

ENGINEERING MATHEMATICS-1

((Common to CE,EEE,ME,ECE,CSE and IT)

Lecture – Tutorial	: 2-1
Credits:	3

Internal Marks: 40

External Marks: 60

Prerequisites:

Fundamentals of Matrices, Fundamentals of Trigonometry and Calculus **Course Objectives:**

- The course is designed to equip the students with the necessary skills and techniques that are essential for Engineering course.
- The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 To solve simultaneous linear equations, determine eigen values, eigen vectors of a matrix and determine the nature of a Quadratic forms.
- CO2 To calculate a root of algebraic and transcendental equations. Explain relation between the finite difference operators and compute the interpolating polynomial for the given data. Solve Ordinary differential equations numerically using Taylor series method, Euler's and RK method of second and fourth order.
- CO3 To determine the Maxima and Minima of functions of Two variables without constraints and with constraints and form the Partial Differential equations by elimination of arbitrary constants and arbitrary functions.
- CO4 To solve the ordinary linear differential equations by using Laplace Transforms.

Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2- Medium, 3 – High)

	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12
CO1	3	2		1	2						1	1
CO2	3	2		1	1						1	1
CO3	3	2		1	2	1					1	1
CO4	3	2		1	1						1	1

Matrices

Rank – Echelon form – Normal form – PAQ form – Inverse of 4x4 matrix by Gauss-Jordan - Solution of Homogeneous linear systems – solution of Nonhomogeneous linear systems – Gauss Elimination – Gauss Seidel methods.

UNIT I:

Eigenvalues – Eigen vectors – Properties – Cayley Hamilton theorem (without proof) – Inverse Powers of Matrices by Caley Hamilton theorem – Quadratic forms – Reduction of quadratic forms to Canonical form (Congruent transformation method, Orthogonal transformation) – Rank, Index, Signature of a Quadratic form.

UNIT II

Numerical Methods

Solutions of Algebraic and Transcendental Equations: Bisection method – Iteration method – Newton Raphson method (one variable). Interpolation: Finite differences –Operators Δ, ∇, E and relations between them - Forward differences – Backward differences – Missing terms - Newton's forward and backward formulae for interpolation – Lagrange's interpolation formula.

Trapezoidal rule – Simpson's 1/3rd and 3/8th rules – Numerical solution of Ordinary differential equation by Taylor series method – Euler's method – Modified Euler's method – Rungekutta method of second and fourth order.

UNIT III

Partial Differentiation

Homogeneous function – Euler's theorem – Total derivative – Chain rule – Generalized mean value theorem for single variable (without proof) – Taylor's and Maclaurin's series – Expansion of Two variable functions – functional dependence – Jacobian – Maxima and Minima of functions of two variables without constraints and Lagrange's method of multipliers.

UNIT IV

Laplace Transforms

Laplace transforms of standard functions – shifting theorems – transforms of derivative's and integrals – Unit step function – Dirac's delta function.

Inverse laplace transforms - convolution theorem (without proof) – solving ordinary differential equations (Initial value problems) using Laplace transforms.

TEXT BOOKS:

1.B.S.Grewal, "Higher Engineering Mathematics, Khanna Publishers", 43rd Edition, 2014.

2.V.Ravindranath and P.Vijayalakshmi, Mathematical Methods, Himalaya Publishing House.

REFERENCE BOOKS:

1. N.P.Bali, Engineering Mathematics, Lakshmi Publications.

2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.

E-RESOURCES:

1.www.nptelvideos.com/mathematics/ (Math Lectures from MIT,Stanford,IIT'S)

2.nptel.ac.in/courses/122104017

3.nptel.ac.in/courses/111105035

APPLIED CHEMISTRY

(Common to CSE, IT, ECE, EEE)

Lecture – Tu	t orial: 2-
Credits:	3

Internal Marks: 40 External Marks: 60

Prerequisites:

Course Objectives:

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Plastics have become part of our life. Hence their preparation, fabrication and study of properties are essential to engineering students.
- CO2 Study of electrochemistry helps in developing efficient cells and batteries and thorough understanding of corrosion and its prevention.
- CO3 With the increase in demand for power and also with depleting sources of fossil fuels, the demand for alternative sources of fuels is increasing. Some of the prospective fuel sources are introduced
- CO4 Nano materials, superconductors and liquid crystals are advanced engineering materials with exceptional properties can be exploited by engineering students.

The green synthesis must be understood to keep the planet earth safe. Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2- Medium, 3 - High)

	РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	1	3		1							
CO2	3	1	2									1
CO3	2	1			1			1				
CO4	1				2			+		Í		

UNIT I

POLYMERS

Introduction-methods of polymerization-(emulsion and suspension)-physical and mechanical properties.

Plastics- Introduction-Thermoplastics and Thermosetting plastics – Compounding and fabrication (compression, injection, transfer & extrusion)-Preparation, properties and applications of polythene, PVC, Bakelite and Teflon **Elastomers:** - Natural rubber- compounding and vulcanization – Synthetic rubbers: Buna S, Buna N and Thiokol- Applications of elastomers. Fiber reinforced plastics – Biodegradable polymers – Conducting polymers.

UNIT II

ELECTROCHEMISTRY AND CORROSION

Galvanic cells - Reversible and irreversible cells – Single electrode potential – Electrochemical series and uses of this series- Standard Hydrogen electrode and Calomel electrode - Concentration Cells **Batteries**: Dry Cell – Li- cells (Liquid cathode and solid cathode Li cells). **Fuel cells**-Hydrogen-oxygen and methyl alcohol-oxygen fuel cells **Corrosion :-** Definition – Theories of Corrosion (chemical & electrochemical) – Formation of galvanic cells by different metals, by concentration cells, by differential aeration and waterline corrosion – Passivity of metals – Pitting corrosion - Galvanic series – Factors which influence the rate of corrosion -Protection from corrosion – Cathodic protection – Protective coatings: Galvanizing, Tinning, Electroplating, Electro less plating.

UNIT III

NON CONVENTIONAL ENERGY SOURCES

Solar energy: Introduction, application of solar energy, conversion of solar energy(thermal and photo conversion)-photovoltaic cell: design, working Hydro power include setup a hydropower plant (diagram)-Geothermal energy: introduction-design geothermal power plant-Tidal and wave power: Introduction-design and working-movement of tides and their effect on sea level-Ocean thermal energy: Introduction, closed cycle, open cycle, hybrid OTEC, diagram and explanation-.Biomass and bio fuels

UNIT IV

Chemistry of Advanced materials

Nano materials: Introduction –Sol- gel method &chemical reduction method of preparation-characterization by BET methods-carbon nano tubes and fullerenes: Types, preparation and properties and applications.

Liquid crystals: Introduction-Types-Applications.

Super conductors: definition-types-properties-application.

Semi conductors: Preparation of Semiconductors Si and Ge(two methods) **Green chemistry**: principles-phase transfer catalyst method-supercritical fluid extraction methods

TEXT BOOKS:

1. Engineering Chemistry by Jain and Jain; Dhanpati Rai Publications

2. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2015 edition.

REFERENCE BOOKS:

1. Engineering Chemistry of Wiley India Pvt. Ltd., Vairam and others, 2014 edition (second).

2. Engineering Chemistry by Prasanth Rath, Cengage Learning, 2015 edition.

3. A text book of engineering Chemistry by S. S. Dara; S. Chand & Co Ltd., Latest Edition

4. Applied Chemistry by H.D. Gesser, Springer Publishers

5. Text book of Nano-science and nanotechnology by B.S. Murthy, P. Shankar and others, University Press, IIM

E-RESOURCES:

1.www.nptel.ac.in

2.www.swayam.gov.in

ENGINEERING MECHANICS

FUNDAMENTALS OF ELECTRICAL ENGINEERING (Common to EEE,ECE)

Lecture – Tutorial:	3 – 1	Internal Marks:	40
Credits:	3	External Marks:	60

Course Objectives:

- To inculcate the understanding about the electrical fundamentals
- To impart the basic knowledge about the Magnetic circuits
- Identification of various components and Understanding the operation of CRO.
- Understanding the importance of various sources and their Conversion.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Un	derstand the	importance	of Electric	circuits	& Elements.
--------	--------------	------------	-------------	----------	-------------

- CO2 Understanding about the Magnetic Circuits.
- CO3 Identification of various components and Understanding the operation of CRO.

CO4 Understanding the importance of various sources and their Conversion.

Contribution of Course Outcomes towards achievement of Program Outcomes (1– Low, 2- Medium, 3 – High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	1	2				_				
CO2	3	2		2								
CO3	2	1										
CO4	3	3		2								

UNIT I

Fundamentals of Electricity :

Introduction to circuit elements (R,L & C) – Electric current – Electric Potential difference – Ohm's law -Factors upon which Resistance depends – Specific Resistance – Effect of Temperature on Resistance – Temperature coefficient of Resistance – Series & parallel connection of Resistances , Inductances & Capacitances - Kirchhoff's laws (KCL & KVL)– Basic types of Sources (Independent Sources).

UNIT II

Protective Devices :

Types of Fuses, Characteristics , Materials Used, Fuse Rating – Types of Switches , Materials used, Symbols – Types of Circuit breakers - Types of Resistors , Rating – Colour coding of R,L & C

UNIT III

Earthing :

Need and Necessity of Earthing – Types of Earthing – Simple Earthing circuits for domestic appliances – Procedure of Earthing – Earthing of Generators, Motors, Transformers, Transmission Lines – Calculation earth resistance – Perfect Earthing - Importance of Neutral

Electrical Safety :

Electrical Shock – Types of First aids – Safety Norms – Human Body response for various electric voltages

UNIT IV

Measuring Instruments :

Types of Measuring Instruments – Principle of operation - Measurement of current, voltage, power, energy, Resistance, Inductance & capacitance – Earth Resistance – Principle of operation of CRO.

TEXT BOOKS:

1. Principles of Electrical Engineering by V.K Mehta, S.Chand Publications.

2. Elec., Technology by Edward Hughes

3. Electronic Principles by Sanjay Sharma , S.K.Katraia and Sons publications, 2nd edition

4. Electronics Devices and Circuits, S.Salivahanan, N.Suresh Kumar, A.Vallava Raj, TMH publications, 4th edition

REFERENCE BOOKS:

1. Theory and Problems of Basic Electrical Engineering by D.P.Kothari & I.J. Nagrath PHI.

2. Basic Electrical Engineering by Fitzgerald and Higginbotham

3. Electrical Engineering fundamentals by Vincent Del Toro - PHI, New Delhi

E-RESOURCES:

1. http://nptel.ac.in/courses.php

2. http://jntuk-coeerd.in/

3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

ENGINEERING GRAPHICS (Common to EEE, ECE, CSE& IT)

Lecture –	Practice :	1 - 2
Credits :		2

Internal Marks: 40

Semester end assessment: 60 (Internal Only)

Prerequisites:

- > Knowledge of basic mathematical concepts (Geometry)
- Drawing skills

Course Objectives:

- To introduce the students to use drawing instruments and to draw polygons, Engineering Curves.
- To introduce the students to use of orthographic projections, projections of points, lines &
 - Lines inclined to both the planes.
- To make the students draw the projections of the planes and solids at various positions with reference planes.
- The student will be able to represent and convert the pictorial views to orthographic views and vice versa by using AutoCAD as well as conventional.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Understand simple geometric construction like polygons, engineering curves and scales.
- CO2 Understand orthographic projection of points, straight lines- inclined to one plane and inclined to both the planes.
- CO3 Understand orthographic projection of planes and solids at various positions with different reference planes.

CO4 Understand The transformation of orthographic views into pictorial views and vice versa through AutoCAD as well as conventional drawing.

Contribution of Course Outcomes towards achievement of Program Outcomes (1- Low, 2- Medium, 3 - High)

	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO	PO	PO
	T	4	3		Э	0	1	0	3	10	TT	14
CO1	3	2	1	2	2	2	1	-	-	3	-	1
CO2	3	2	1	$\tilde{2}$	2	2	1	i.e	-	3	-	1
CO3	3	2	1	2	2	2	1	-	-	3	-	1
CO4	3	2	1	2	2	2	1	-	-	3		1

UNIT I

Introduction to engineering drawing:

Polygons: Construction of regular polygons by general methods, inscribing and

describing polygons with circles.

Conics: Construction of Parabola, Ellipse and Hyperbola by using general methods and also draw tangents & normals for the curves.

UNIT II

Introduction to orthographic projections:

Projections of points and lines: Horizontal plane, vertical plane, profile plane, importance of reference planes, projections of points in various quadrants. Projections of straight lines- perpendicular lines, inclined lines and parallel to either of the reference planes(HP,VP or PP).

Projections of lines inclined to both the planes:

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination .

UNIT III

Projections of planes: regular planes perpendicular/parallel to one plane and inclined to the other reference plane.

Projections of Solids: projections of Prisms, Pyramids, Cones and Cylinders with the axis parallel/perpendicular/ inclined to one of the planes and vice versa.

UNIT IV

Transformation of Projections: AutoCAD Fundamentals.

Conversion of Pictorial views to orthographic views Using AutoCAD and conventional.

Conversion of orthographic views to isometric views. Isometric drawing of simple objects through AutoCAD.

TEXT BOOKS:

1. Engineering Drawing by N.D. Butt, Chariot Publications

2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers **REFERENCE BOOKS:**

1. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers

2. Engineering Graphics for Degree by K.C. John, PHI Publishers

3. Engineering Graphics by PI Varghese, McGrawHill Publishers

4. Engineering Drawing + AutoCad – K Venugopal, V. Prabhu Raja, New Age Publishers

E-RESOURCES:

2. http://nptel.iitm.ac.in/

ENGLISH COMMUNICATION SKILLS LAB-I

Practice:4 HoursCredits:2

Internal Marks: 40

External Marks: 60

Prerequisites:

None

Course Objectives:

To enable the students to learn through practice the four communication skills: Listening, Speaking, Reading and Writing.

Understand the nuances of language usage for better presentation in all the walks of life promoting life-long learning.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the importance of communication skills and instill the need for life-long learning.
- CO2 Express themselves fluently and appropriately in social and professional contexts.
- CO3 Make sense of both verbal and non-verbal messages through selected listening activities.
- CO4 Aware of the need of pronunciation and intonation in improving their speaking skills.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	РО 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1				1	_	1			1	3		2
CO2						1			1	3		2
CO3	_								1	3		2
CO4											1	2

List of Experiments:

UNIT 1:

1. Why study Spoken English?

Making Inquiries on the phone, thanking and responding to Thanks
 Responding to Requests and asking for Directions

Practice work.

TACLICE WOLK

UNIT 2:

1. Asking for Clarifications, Inviting, Expressing Sympathy, Congratulating

2. Apologising, Advising, Suggesting, Agreeing and Disagreeing

Practice work.

UNIT 3:

1. Letters and Sounds

2. The Sounds of English

Practice work.

UNIT 4:

- 1. Pronunciation
- 2. Stress and Intonation

Practice work.

Equipment Required:

Computer Assisted Language Laboratory with computers equipped with

software that help the students in developing four skills - Listening, Speaking,

Reading and Writing.

Reference Books:

- 1. INTERACT: English Lab Manual for Undergraduate Students' Published by Orient Blackswan Pvt Ltd.
- 2. Strengthen your communication skills by Dr M Hari Prasad, Dr Salivendra Raju and Dr G Suvarna Lakshmi, Maruti Publications.
- 3. English for Professionals by Prof Eliah, B.S Publications, Hyderabad.
- 4. Unlock, Listening and speaking skills 2, Cambridge University Press
- 5. Spring Board to Success, Orient BlackSwan
- 6. A Practical Course in effective english speaking skills, PHI
- 7. Word power made handy, Dr shalini verma, Schand Company
- 8. Let us hear them speak, Jayashree Mohanraj, Sage texts
- 9. Professional Communication, Aruna Koneru, Mc Grawhill Education Cornerstone, Developing soft skills, Pearson Education

E-Resources:

- 1. https://www.britishcouncil.in/
- 2. <u>http://www.talkenglish.com/</u>

APPLIED CHEMISTRY LAB

Practice:	2		Internal Marks:	40
Credits:	1	1	External Marks :	60

Prerequisites:

Course Objectives:

To provide knowledge of chemistry practical's. It enables the students to analyze the different parameters of water sample like hardness and alkalinity and different volumetric titrations. It makes the students to obtain basic knowledge of instrumentation based on different Engineering applications.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

CO1 Perform different volumetric titrations listed in syllabus.

CO2 To analyze various parameters of water sample.

CO3 Instrumental methods of chemical analysis exhibit the skill of the students.

CO4 Preparation of different compounds provides knowledge to the students.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2- Medium, 3 - High)

	PO	РО	PO	PO	PO	PO						
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	1	2						decent time				
CO2	1	2	1									
CO3	1											
CO4	1											

List of Experiments:

1.Determination of HCl by Na₂CO₃ solution

2.Determination of alkalinity of sample containing Na₂CO₃ and NaOH

3.Determination of KMnO₄ using standard oxalic acid solution

4.Determination of total hardness of water by EDTA solution

5.Determination of copper using standard EDTA solution

6.Determination of Zinc using standard EDTA solution

7.Determination of Iron by a calorimetric method

8.Conductometric titration between strong acid and strong base

9.Potentiometric titration between strong acid and strong base

10.Potentiometric titration between Iron and dichromate

Additional Experiments to be performed

1. Preparation of urea-formaldehyde resin

2.Determination of P^H of water sample

3. Preparation of phenol-formaldehyde resin

EQUIPMENT REQUIRED:

PH meters, Potentiometers, Conductometers, colorimeters.

APPARATUS

Burettes, Pipettes, Conical flask, Beakers.

REFERENCE BOOKS:

1 . A Textbook of Quantitative Analysis, Arthur J. Vogel.

2. Dr. Jyotsna Cherukuri (2012) Laboratory Manual of engineering chemistry-II, VGS Techno Series

3. Chemistry Practical Manual, Lorven Publications

4. K. Mukkanti (2009) Practical Engineering Chemistry, B.S. Publication

AUTOMATION TOOLS & PROFESSIONAL WORKSHOP

Practice:	2	Internal Marks :	40
Credits:	1	External Marks :	60

Prerequisites: Knowledge of information technology workshop

Course Objectives:

- 1 Understand the basic components and peripherals of a computer.
- 2 To become familiar in configuring a system.
- 3 Learn the usage of productivity tools
- 4 Acquire knowledge about the netiquette and cyber hygiene
- 5 Get hands on experience in trouble shooting a system

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Understand and Apply MS Office tools
- CO2 Configure the components on the motherboard and install different operating systems
- CO3 Understand and configure different storage media
- CO4 Identified strategies for overcoming constraints to effective decentralization and sustainable management at different levels

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2 - Medium, 3- High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12
CO1	3	2	3	2	2	2	1	2	3	1	3	2
CO2	3	1	3	-	2	1	1	-	1	1	3	2
CO3	3	1	2	-	2	2	1	-	1	1	2	2
CO4	3	2	2	1	-	2	1	1	1	1	2	2

List of Experiments: 10

1.Identification of the peripherals of a computer: To prepare a report containing the block diagram of the CPU along with the configuration of each peripheral and its functions. Description of various I/O Devices
2.System Assembling, Disassembling: A practice on disassembling the components of a PC and assembling them to back to working condition.
3.Operating System Installation-Install Operating Systems like Windows, Linux along with necessary Device Drivers.

4.MS-Office / Open Office

a. Word - Formatting, Page Borders, Reviewing, Equations, symbols.

b. Spread Sheet - organize data, usage of formula, graphs, charts.

c. Power point - features of power point, guidelines for preparing an effective presentation.

d. Access- creation of database, validate data

5. Network Configuration & Software Installation-Configuring TCP/IP, proxy and firewall settings. Installing application software, system software & tools.
6. Internet and World Wide Web-

Cyber Hygiene (Demonstration): Awareness of various threats on the internet. Importance of security patch updates and anti-virus solutions. Ethical Hacking, Firewalls, Multi-factor authentication techniques including Smartcard, Biometrics are also practiced

7.Search Engines & Netiquette:

Students are enabled to use search engines for simple search, academic search and any other context based search (Bing, Google etc). Students are acquainted to the principles of micro-blogging, wiki, collaboration using social networks, participating in online technology forums

8. Trouble Shooting-Hardware trouble shooting, Software trouble shooting. **Hardware Troubleshooting (Demonstration):** Identification of a problem and fixing a defective PC(improper assembly or defective peripherals).

Software Troubleshooting (Demonstration): Identification of a problem and fixing the PC for any software issues

9. MATLAB- basic commands, subroutines, graph plotting.

10. LATEX-basic formatting, handling equations and images.

EQUIPMENT REQUIRED:

1. Physical components of computer

REFERENCE BOOKS:

1. Computer Hardware, Installation, Interfacing, Troubleshooting and Maintenance, K.L. James, Eastern Economy Edition.

2. Microsoft Office 2007: Introductory Concepts and Techniques, Windows XP Edition by Gary B. Shelly, Misty E. Vermaat and Thomas J. Cashman (2007, Paperback).

3. LATEX- User's Guide and Reference manual, Leslie Lamport, Pearson, LPE, 2/e.

4. Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers, Rudraprathap, Oxford University Press, 2002.

5. Workshop Manual prepared by NRIIT staff

E-RESOURCES:

1.http://nptel.iitm.ac.in 2.JNTUK-COERD

VIRTUAL LAB:

1. http://vlab.amrita.edu/?sub=1&brch=201&sim=366&cnt=1

2. http://vlab.amrita.edu/?sub=1&brch=195&sim=840&cnt=1

3. http://vlab.amrita.edu/?sub=1&brch=282&sim=879&cnt=1

PROFESSIONAL ENGLISH-II

			(Com	mon to	o CE,E	CEE,M	E,ECE	,CSE a	and IT)		
Lect	ure – T	`utori	al: 2-	-1				1	ntern	al Mar	ks:	40
Cred	its:		3					E	Extern	al Mar	ks:	60
Prere	equisit	es:										
Cour	se Obj	ective	es:									
1. To	expo	se the	e stud	ents to	o com	ponen	ts of g	gramn	nar reo	quired	in ef	fective
se	entence	cons	tructio	ns.			•					
2. To	help	the st	udents	s to de	velop	effectiv	ve writ	ing sk	ills us	ing ph	rasal	verbs,
	nnecti	ves, co	ollocat	10ns, 10	lioms	etc.		1	1 4	- £ 1-44		
3. 10	enabl	e the :	studen	its to le	earn u	ne iorn	nat, sty	vie and	i types	s or lett	ers, r	eports
		118. Ve the	stude	nte to	vorio		abilla	and s	trotog	ies of 1	readin	a ond
+. IC	riting	se uie	stude	1115 10	variot	is sub	SKIIIS	and s	aleg		caum	ig anu
5 10	nung. Venabl	e the	stude	nts to	analy	se and	l evalu	ate va	rious	texts t	hat l	ead to
o. re	obal co	mprel	hensio	n.	unury	oc and	i viara			COALD	cifet i	ouu to
Cour	se Out	come	s:									
Upon	SUCCE	essful	comp	letion	of the	cours	se. the	stude	ent wi	ll be al	ble to	:
CO1	Recog	gnize t	he imp	portanc	ce of th	ne role	of con	imuni	cation	in the	comp	etitive
CO2	Acqui	re the	comp	etence	to wri	te effe	ctively	in var	ious fo	rmal a	nd	
	acade	emic c	ontext	s.			5					heens
CO3	Acqui	re the	jargoi	n used	in bus	siness	comm	unicat	ion an	d tech:	nical	
	comm	iunica	ation.									
CO4	Devel	op the	e abilit	y to eva	aluate	texts	by infe	rring t	he im	olied se	ense o	of
	such	texts	and ap	oply su	ch kno	owledg	e globa	ally.				
CO5	Gain	know	ledge	about	the si	gnifica	ince of	the t	univer	sal hu	man	values
	throu	gh e	xpress	10n 01	t hur	nan 1	eelings	s of	compa	ssion	and	right
Cont	under	rstand	ling.	0-1-		4				Deces		
Outo			course	Ulle	omes	towar	us ach	leven	lent of	Frogr	am	
(1 - I)	low 2.	Medi	ium 3	- Hig	h)							
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	i –	.=			-				2	3		2
CO2	;					:				2		2
CO3										3		2
CO4										Ū		2
CO5			-					2				2
000	l		Ľ.			UNIT	L	_				
1. T e	ext: A.	"The	Strugg	ele for	an Ec	lucatio	on" – E	Booker	T. Wa	shingt	on	
	В	. "Go	od Ma	nners	" – J.C	2. Hill				0-		
2. W	riting:	Form	al Con	nmunic	ation	VS Inf	ormal	Comm	unicat	ion -W	riting	1
3. V o	ocabula	a ry : B	usines	ss and '	Techn	ical Te	rminol	ogy			Ŭ	
4. R	emedia	l Gra	mmar	: Chan	ge of V	/oice						
					1	UNIT I	Ι					
1. T e	xt: "A	Lette	er to Iı	ndu" –	Jawal	harlal	Nehru					
2. W	riting:	Lette	r Writi	ing – T	ypes o	f Lette	rs – Di	fferen	t Style:	s of Let	tter W	riting
3. V o	ocabula	ary : F	hrasa	l Verbs	– Use	e of Co	nnectiv	ves in	Senter	ice Coi	nstruc	tions
4. Re	emedia	l Gra	mmar	: Repor	ted Sp	peech						

5

UNIT III

1. Text: A. "The Power of a Plate of Rice" – Ifeoma Okoye

B. "Email to Employees" – Satya Nadella

2. **Writing**: Email Writing, Report Writing (Significance, Format and style of writing Technical Reports)

- 3. Vocabulary: Collocations
- 4. Remedial Grammar: Subject-Verb Agreement

UNIT IV

- 1. Text: "Stench of Kerosene" Amrita Pritam
- 2. Writing: Essay Writing Types of Essays
- 3. Vocabulary: Use of Idiomatic Expressions (in different contexts)
- 4. Remedial Grammar: Common Errors
- **TEXT BOOKS:**

REFERENCE BOOKS:

- 1. Advanced Grammar in Use. Martin Hewings. Cambridge University Press. 2013
- 2. Effective Technical Communication Rizvi, Ashraf. M.. Tata McGraw Hill, New Delhi. 2005
- 3. Word Power Made Easy. Norman Lewis
- 4. Michael Swan. Basic English Usage
- 5. A New Approach to Objective English. Dhillon Group of Publications
- 6. English and Soft Skills. Dhanavel S. P. Orient Black Swan, Hyderabad, 2010
- 7. Professional Communication. Baradwaj Kumkum. I.K. International Publishing House Pvt. Ltd, New Delhi .2008
- 8. Intermediate English Grammar, Raymond Murphy, Cambridge University Press.

E-RESOURCES:

- 1. http://grammar.ccc.commnet.edu/grammar/index.htm
- 2. https://owl.english.purdue.edu/
- 3. https://learnenglish.britishcouncil.org/en

ENGINEERING MATHEMATICS-II (Common to CE,EEE,ME,ECE,CSE and IT)

Lecture –	3 - 1	Internal Marks :	40
Tutorial:			
Credits:	4	External Marks :	60

Prerequisites:

Student has a knowledge about Trigonometric functions and its related formulae, Differentiation, Integration and vector algebra. **Course Objectives:**

- The course is designed to equip the students with the necessary skills and techniques that are essential for Engineering course.
- The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Finding the General solution of first order ordinary differential equation and its applications.
- CO2 Finding the General solution of second and higher order ordinary differential equations with constant and variable coefficients.
- CO3 Determine double integral over a region and triple integral over a volume.
- CO4 Determine the Gradient, Divergence and Curl of a vector and vector identities.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1-Low, 2-Medium, 3-High)

	PO												
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2		1	2						1	1	
CO2	3	2		1	2			}			1	1	
CO3	3	2		1	1						1	1	
CO4	3	2		1	1						1	1	

UNIT I

Ordinary differential equations of first order and applications

Linear – Bernoulli – Exact – Reducible to exact differential equations – Ort trajectories –

Newton's law of cooling - Law of exponential growth and decay .

UNIT II Ordinary differential equations of 2nd and higher order

Non homogeneous equations of higher order with constant coefficients with Right hand side terms of the type e^{ax} , $\sin ax$, $\cos ax$, x^k (k > 0), $e^{ax}V$, x^mV - Variation of parameters – Differential equations with variable coefficients (Legendre and Cauchy)

8

UNIT III

Multiple Integrals

Multiple Integrals – Double and Triple Integrals – Change of variables – Change of integration.

UNIT IV

Applications: Finding Areas, Surfaces and Volumes.

Vector Calculus

Vector differentiation – Gradient – Divergence – Curl – Vector identies. Vector Integration – Line integral – work done – Potential function – area – surface and volume integrals – Vector integral theorems (without proof) viz. Greens, stokes and Gauss divergence and related problems.

TEXT BOOKS:

1.B.S.Grewal, "Higher Engineering Mathematics, Khanna Publishers", 43rd Edition, 2014.

REFERENCE BOOKS:

1. N.P.Bali, Engineering Mathematics, Lakshmi Publications.

2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India

E-RESOURCES:

1.www.nptelvideos.com/mathematics/ (Math Lectures from MIT,Stanford,IIT'S)

2.nptel.ac.in/courses/122104017

3.nptel.ac.in/courses/111105035

APPLIED PHYSICS

(Common to ECE, CSE, EEE & IT)

Lecture –	2-1	Internal Marks:	40
Tutorial:			
Credits:	3	External Marks :	60

Prerequisites: Knowledge of Optics & Electromagnetism

Course Objectives: 1. To provide a bridge between Basic Physics and Engineering Physics.

2.To Create the awareness of various phenomena of physics which in turn help the students in future engineering applications

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Impart Knowledge of Physical Optics phenomena like Interference, Diffraction and Polarization involving required to design instruments with higher resolution.
- CO2 Teach Concepts of coherent sources, its realization and utility optical instrumentation. Apply the concepts of light in optical fibers, light wave communication systems, and for sensing physical parameters
- CO3 Study the concepts regarding the bulk response of materials to the EM fields and their analytically study in the back-drop of basic quantum mechanics.
- CO4 Understand the physics of Semiconductors and their working mechanism for their utility in sensors

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2- Medium, 3 - High)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1 CO2	3 3	3	-	2	32				-	3		
CO3 CO4	3 3	3	2		2					1		

UNIT I

Interference: Introduction - Interference in thin films (reflection geometry) - Newton's rings - construction and basic principle of Interferometers.

Diffraction: Introduction – Rayleigh Criterion - Resolving power of a grating, Telescope and Microscopes.

Polarization: Introduction - Types of Polarization –Double Refraction - Nicol Prism -Quarter wave plate and Half Wave plate.

UNIT-II

Lasers: Introduction - Characteristics of Laser, Absorption, spontaneous emission, Stimulated emission Lasing action, Relation between Einstein Coefficients, Population Inversion, Pumping Schemes: 3- level&4- level lasers, Pumping methods. Components of laser devices, Ruby Laser, He-Ne Laser, Applications.

Fibre Optics: Principle of optical fibre, Structure – Numerical aperture and acceptance angle,

Types of optical fibers – based on Material, refractive index profile, Modes of propagation (Single & Multimode Fibres), Propagation of signal through optical fibre, Applications.

UNIT III

EM fields: Basic laws of electro magnetism, Maxwell's equations (Differential form only) - propagation of EM wave in dielectric medium – Poynting Vector. **Quantum Mechanics**: Introduction - Matter waves – Schröedinger Time Independent and Time Dependent wave equations – Particle in a box.

Free Electron Theory: Introduction - Defects of Classical free electron theory – Quantum Free electron theory - concept of Fermi Energy – Density of States

UNIT IV

Band Theory of Solids: Bloch's theorem – Kronig – Penney model (qualitative) – energy bands in crystalline solids – classification of crystalline solids– effective mass of electron & concept of hole.

Semi-Conductor Physics: Conduction – Density of carriers in Intrinsic and Extrinsic semiconductors – Drift & Diffusion – relevance of Einstein's equation-Hall effect.

TEXT BOOKS:

- 4. A text book of Engineering physics by Dr.M.N.Avadhanulu And Dr. P.G Kshir sagar, Schand & Company Ltd (2017)
- 5. P.K.Palanisamy, Engineering Physics, Sci Tech, Chennai
- Engineering Physics, 2nd Edition, H.K.Malik & A.K.Singh, Mc Graw Hill Education, Chennai

REFERENCE BOOKS:

3. Solid State Physics by A.J.Dekkar, Mac Millan Publishers

4. Ajoy Ghatak, Optics, 2nd Ed., Tata McGraw Hill, 1994

E-RESOURCES:

1.NPTEL

2.www.doitpoms.ac.uk

PROGRAMMING AND PROBLEM SOLVING WITH C (Common to CIVIL, EEE, MECH, ECE)

Lecture -	Tutorial :	3-1
Credits:		4

Internal Marks: 40 **External Marks:** 60

Prerequisites:

. Basic Knowledge on computer usage

.Basic knowledge on Mathematics

Course Objectives:

Formulating algorithmic solutions to problems and implementing algorithms in C.

• Notion of Operation of a CPU, Notion of an algorithm and computational procedure,

editing and executing programs in Linux.

- Understanding branching, iteration and data representation using arrays.
- Modular programming and recursive solution formulation.
- Understanding pointers and dynamic memory allocation.
- Understanding miscellaneous aspects of C.
- Comprehension of file operations.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to: CO1 Understanding basic terminologies, basic idea on writing, executing programs, understanding decision structures.

CO2 Design programs involving Arrays, modular programming concepts

CO3 Understand the use of Pointers and Strings

CO4 Use different data structures and create/update basic data files.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 - Low, 2- Medium, 3 - High)

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
1	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	2	1	1	1	2			1		
CO2	3	3	3	3	1 ·	3	1					1
CO3	3	3	3	3	1	3	2	1				2
CO4	3	3	3	3	1	3	2					2

UNIT I

Introduction to Programming: Computer - Components, Types of Languages, Compiler, Algorithms and their representations: Flowcharts, Pseudo Code. **Introduction to C**: "Hello World" in C – Editor, Compiler, Execution Environment. C as a Middle Level Language. Basic Structure of C program, Standard Library and Header Files, Tokens in C - Variable, Constant (literal and named), Data types, Keywords, Variable Declaration and Assignment. Operators - Precedence & Associativity. Type conversion, Input and Output statements.

Selection and Looping Statements: If statement, If-Else Statement, Nested If, Examples, Multi-way selection: Switch, Else-If, examples, While Statement, For Statement, Nested Loops, do-while Statement, Break and Continue statements, Example programs
Arrays: Concept, Declaration and Initialization of Arrays, Accessing Individual Elements of Array. Use of Arrays in Sorting, Searching. Concept of 2-D array (Matrix), Passing arrays to functions, Examples.

Functions: Need of Functions, Function Declaration, Definition and Call. Inbuilt functions and User Defined Functions. Passing arguments to a function, Returning values from a function. Scope of variable, local and global variable. Storage classes.

Recursive Functions: Need of Recursion, Direct Recursion, Indirect Recursion, Examples of Recursive Programs – Factorial, Fibonacci series. Recursive Vs Iterative solutions, Disadvantages of Recursion.

UNIT III

Pointers: Concept of Pointers, Relevance of Data type in Pointer Variable, Pointer arithmetic. Pointer to pointer. Pointers and Functions (passing pointers to functions, returning pointers from functions). Pointers and Arrays. Pointers and Strings. Array of Pointers, Pointer to Array. Various alternatives of accessing arrays (1-D and 2-D) using pointers, Dynamic Memory Allocation ,Command Line Arguments

Strings: Strings as Arrays, Character Array versus Strings, Reading Strings, Writing Strings, User Defined Functions for String Operations – Copy, Concatenate, Length, Reverse, Converting case, Appending, Comparing two strings, Extracting a substring. Array of strings.

UNIT IV

Structures & Unions: Notion, Declaration and Initialization, Structure Variables, Accessing and Assigning values of the fields, Functions and Structures, Arrays of Structures, nested structures, Pointers and Structures, Passing Structure to a Function and Returning Structure from Function. Introduction to self referential structures, Union, Nesting of Structure and Union. Enumerated data types.

Data Files: Declaring, Opening and Closing File Streams, Reading From and Writing to Text Files, Random File Access

TEXT BOOKS:

1. C Programming-A Problem Solving Approach, Forouzan, Gilberg, Cengage

REFERENCE BOOKS:

1. Programming in ANSIC 7th Edition by E.Balaguruswamy

2.Let us C by Yaswanth Kanetkar

3. The C programming Language, Dennis Richie and Brian Kernighan, Pearson Education.

4. Programming with C, Bichkar, Universities Press.

5. Programming in C, ReemaThareja, OXFORD.

6. C by Example, Noel Kalicharan, Cambridge.

7. ANSI C Programming, Gary J. Bronson, Cengage Learning.

E-RESOURCES:

1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-

science/6-087-practical-programming-in-c-january-iap-2010/lecture-notes/

2. http://cslibrary.stanford.edu/101/EssentialC.pdf

3. http://nptel.ac.in/courses/106104128/

4. http://www.vssut.ac.in/lecture_notes/lecture1424354156.pdf

SPECIAL DEVICES:

UNIT-II

Operation and Characteristics of Zener Diode, Tunnel Diode, Varactor Diode, Photo Diode, PIN Diode, LED and SCR

UNIT II

RECTIFIERS AND FILTERS:

Introduction to Power supplies, Rectifiers – Qualitative treatment of Half Wave rectifier, Qualitative treatment of Full Wave rectifier, Quantitative treatment Bridge rectifier and related problems.

FILTERS AND REGULATORS:

Introduction to Filters, types of filters and their significance, Qualitative treatment of - Capacitive Filter, Inductor Filter, L-Section, Π -Section single and multiple, Voltage Regulator using Zener Diode, Related Problems.

UNIT III

BIPOLAR JUNCTION TRANSISTOR, BIASING AND STABILIZATION:

Introduction To Bipolar Transistor, Construction Operation of BJT, Working Of P-N-P and N-P-N Transistors, BJT as Amplifier and Switch, Transistor Current Components- Input-Output Characteristics of BJT in *CE,CB,CC Configurations, Relation Between a, \beta, \gamma.*

STABILIZATION & BIASING:

BJT Biasing Techniques, Need for Biasing, Operating Point, DC & AC Load Line Analysis, Types of Biasing, Stability Factors of Biasing, Thermal Runaway, Heat Sinks, Thermal Stabilizations, Diode Compensation Techniques

UNIT IV

JUNCTION FIELD EFFECT TRANSISTOR & MOSFET's:

Introduction to J-FET, Types of J-FET, V-I Characteristics of J-FET in CS Configuration, FET as an Amplifier, J-FET Biasing.

MOSFET's:

MOSFET's Construction, Operation & Characteristics, Enhancement & Depletion Mode MOSFET, UJT Construction, working and its characteristics, UJT as Relaxation Oscillator

TEXT BOOKS:

- 1) Jacob Millman, Christos C.Halkias And Satyabrata Jit, Electronic Devices And Circuits, Mc Graw Hill, 3rd Edition, 2010.
- 2) S. Salivahanan, N. Kumar And A. Vallavaraj, Electronic Devices And Circuits, Mc Graw Hill, 2rd Edition, 2007

REFERENCE BOOKS:

- 1) 1. R.L.Boylestad And Louis Nashelsky, Electronic Devices And Circuits, Pearson/Prentice Hall Publishers.
- 2) David A.Bell, Electronic Devices And Circuits, Oxford University Press, 5th Edition, 2008.
- 3) Micro Electronic Circuits, Sedra Smith, Oxford Press, India(5/E), Oxford, 2004

4) Electronic Devices And Circuits- K.Satya Prasad, Vgs Booklinks E-RESOURCES:

- 1.Moocks
- 2.NPTEL
- 3. Course era

ENVIRONMENTAL STUDIES

(Common to CE, EEE, ME, CSE and IT)

Lecture –	Tutorial:	2-1
1		
Credits:		
4.4.4.4		

Internal Marks: 40 External Marks: 60

Prerequisites:

Course Objectives:

- Basic understanding of ecosystem and to know the importance of biodiversity.
- Understanding of natural resources.
- To understand different types of pollutants effecting the environment.
- To know global environmental problems, problems associated with over population and burden on environment.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Realize the importance of ecosystem and biodiversity for maintaining ecological balance.
- CO2 Understand the role of natural resources for the sustenance of life on earth and recognize the need to conserve them.
- CO3 Identify the environmental pollutants and abatement devices.
- CO4 Gain the importance of sustainability.

Contribution of Course Outcomes towards achievement of Program Outcomes

	PO	PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2		3	1		2	3	2			2	1
CO2	2		3			2	3	2			$\overline{2}$	1
CO3	2		3			2	3	2			2	1
CO4	2		3			2	3	2			2	1

UNIT I

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Ecological succession. - Food chains, food webs and ecological pyramids, flow of energy, biogeochemical cycles.

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity- classification - Value of biodiversity, India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts - Endangered and endemic species of India – Conservation of biodiversity.

UNIT II

Natural Resources: Natural resources and associated problems

Forest resources – Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources - Use and over utilization of surface and ground water -

Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources. Case studies.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources Vs Oil and Natural Gas Extraction.

Land resources: land as a resource, land degradation, wasteland reclamation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT III

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards, Technological solutions for pollution control, Role of an individual in prevention of pollution with case studies.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Biomedical, Hazardous and **E**-**waste** management, carbon credits.

Disaster management: floods, droughts, earthquakes, cyclones.

UNIT IV

Social issues and the environment: Global environmental challenges- global warming and climate change, acid rains, ozone layer depletion.

Towards sustainable future: From unsustainable to sustainable development, population and its explosion, urban problems related to energy, rain water harvesting, consumerism and waste products, role of IT in environment and human health, HIV/ AIDS, environmental ethics.

Environmental management and acts: Impact assessment and significance, various stages of EIA, environmental management plan (EMP), green belt development. Environmental Law (Air, Water, Wildlife, Forest, Environment protection act).

The student should visit an industry/ Ecosystem and submit a report individually on any issues related to environmental studies course and make a power point presentation.

TEXT BOOKS:

1. Environment Studies, Anubha Kaushik, C P Kaushik, New Age International Publishers, 2018

2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.

3. Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

REFERENCE BOOKS:

1. Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.

2. Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada.

3. Erach Bharucha, 2010 " Text Book of Environmental Studies", University Grants Commission, University Press (India) Pvt. Ltd., Hyderabad.

4. Text book of Environmental Science and Engineering by G. Tyler Miller Jr, 2006 Cengage learning.

E-RESOURCES:

1. http://nptel.ac.in/courses.php.

2.http://jntuk-coeerd.in/

ENGLISH COMMUNICATION SKILLS LAB-II

3 1.5

Internal Marks: 40

External Marks: 60

Prerequisites:

Course Objectives:

To enable the students to learn through practice the four communication skills: Listening, Speaking, Reading and Writing.

Understand the nuances of language usage for better presentation in all the walks of life promoting life-long learning.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Attain better understanding of the nuances of English language to put into use in various situation and events.
- CO2 Acquire speaking skills with clarity and confidence which in turn enhances their employability skills.
- CO3 Communicate and present their ideas and sources accurately and effectively.
- CO4 Enhance their employability skills and critical thinking skills with participation in mock interviews and group discussions.

Contribution of Course Outcomes towards achievement of Program Outcomes

(1 – Low, 2- Medium, 3 – High)

1				D								
	PO 1	PO	PO	PO 4	PO	PO 6	PO 7	PO	PO	PO 10	PO	PO
	-	4	0		9			0	9	10	**	14
CO1									1	3		2
CO2										3]	2
CO3			1						1	3		2
CO4]						1			2

List of Experiments:

UNIT 1:

1. Debating Practice work

UNIT 2:

1. Group Discussions Practice work

UNIT 3:

1. Presentation Skills Practice work

UNIT 4:

Interview Skills
 Curriculum Vitae
 Practice work

EQUIPMENT REQUIRED:

Computer Assisted Language Laboratory with computers equipped with software that help the students in developing four skills – Listening, Speaking, Reading and Writing.

5

REFERENCE BOOKS:

- 1. INTERACT: English Lab Manual for Undergraduate Students' Published by Orient Blackswan Pvt Ltd.
- 2. Strengthen your communication skills by Dr M Hari Prasad, Dr Salivendra Raju and Dr G Suvarna Lakshmi, Maruti Publications.
- 3. English for Professionals by Prof Eliah, B.S Publications, Hyderabad.
- 4. Unlock, Listening and speaking skills 2, Cambridge University Press
- 5. Spring Board to Success, Orient BlackSwan
- 6. A Practical Course in effective english speaking skills, PHI
- 7. Word power made handy, Dr shalini verma, Schand Company
- 8. Let us hear them speak, Jayashree Mohanraj, Sage texts
- 9. Professional Communication, Aruna Koneru, Mc Grawhill Education
- 10. Cornerstone, Developing soft skills, Pearson Education

E-RESOURCES:

- 1. 1. https://www.britishcouncil.in/
- 2. http://www.talkenglish.com/

APPLIED PHYSICS LAB

Practice:	2	Internal Marks:	40
Credits:	1	External Marks:	60

Prerequisites: Knowledge of Vernier Calipers, Screw Gauge

Course Objectives: Training field oriented Engineering graduates to handle instruments and their design methods to improve the accuracy of measurements.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Calculate wavelengths of various light sources, thickness of the given object and radius of curvature of lens.
- CO2 Determine Numerical Aperture & bending losses of Optical Fibre
- CO3 Analyze the characteristics and energy band gaps of semi-conductor and zener diodes

CO4 Estimate the frequency of tuning fork and Magnetic field strength. Contribution of Course Outcomes towards achievement of Program Outcomes (1 - Low, 2- Medium, 3 - High)

Juco	011100	(T = T /	, w, <u>4</u> -	mean	, v ·	- 111811	•					
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3					1		3			1
CO2	3	3			2				3			
CO3	3	3							3			
CO4	3	3							3			

List of Experiments:

- 13. Determination of wavelength of a source-Diffraction Grating-Normal incidence
- 14. Newton's rings Radius of Curvature of Plano Convex Lens
- 15. Determination of thickness of a spacer using wedge film and parallel interference fringes. .
- 16. Determination of wavelength of laser source using diffraction grating.
- 17. Determination of Numerical Aperture of an Optical Fibre.
- 18. Study of I/V Characteristics of Semiconductor diode.
- 19. I/V characteristics of Zener diode.
- 20. Energy Band gap of a Semiconductor p n junction
- 21. Meldi's experiment Transverse and Longitudinal modes.
- 22. Magnetic field along the axis of a current carrying coil Stewart and

Gee's apparatus

- 23. Verification of laws of vibrations in stretched strings Sonometer
- 24. L- C- R Series Resonance Circuit.

EQUIPMENT REQUIRED:

- 10. Spectrometer
- 11. Travelling Microscope
- 12. Regulated Power Supply
- 13. Function Generators
- 14. Energy Band Gap Kit
- 15. Digital Mutlimetres
- 16. Tuning Forks
- 17. Electrically driven Tuning Forks
- 18. Tangent Galvanometer

REFERENCE BOOKS:

1. Lab Manual of Engineering Physics by Dr.Y.Aparna & Dr.K.Venkateswara Rao (VGS Books Links, Vijayawada)

E-RESOURCES:

1.www.vlab.co.in

PROGRAMMING AND PROBLEM SOLVING WITH C LAB

Practice: Credits: 3 1.5

Internal Marks: 40 External Marks: 60

Prerequisites:

Course Objectives:

- Understand the basic concept of C Programming, and its different modules that includes conditional and looping expressions, Arrays, Strings, Functions, Pointers, Structures and File programming.
- Acquire knowledge about the basic concept of writing a program.
- Role of constants, variables, identifiers, operators, type conversion and other building blocks of C Language.
- Use of conditional expressions and looping statements to solve problems associated withconditions and repetitions.
- Role of Functions involving the idea of modularity.

COURSE OUTCOMES:

Upon successful completion of the course, the student will be able to:

- CO1 Understand C programming development environment, compiling, debugging, and linking and executing a program using the development environment
- CO2 To solve the problems using selection and iterative statements

CO3 Analyzing the complexity of problems, Modularize the problems into small modules and then convert them into programs, Understand and apply the in-built functions and customized functions for solving the problems.

CO4 To solve the various problems using arrays, structures, pointers and files Contribution of Course Outcomes towards achievement of Program

omes	$\mathbf{I} - \mathbf{\Gamma}0$	w, 2-	Meaiu	m, 3 -	- High						
PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
1	2	3	4	5	6	7	8	9	10	11	12
2	3	1	2	3	1	2					1
2	1	2	2	1	2	2					2
2	3	3	2	3	3	2			Which is man		3
3	3	3	3	3	3	3		-			3
	PO 1 2 2 2 3	PO PO 1 2 2 3 2 1 2 3 3 3	PO PO PO 1 2 3 2 3 1 2 1 2 2 3 3 3 3 3	PO PO PO PO 1 2 3 4 2 3 1 2 2 1 2 2 2 3 3 2 3 3 3 3	PO PO PO PO PO PO 1 2 3 4 5 2 3 1 2 3 2 1 2 2 1 2 3 3 2 3 3 3 3 3 3	PO PO PO PO PO PO 1 2 3 4 5 6 2 3 1 2 3 1 2 1 2 2 1 2 2 3 3 3 3 3 3 3 3 3 3 3	PO PO PO PO PO PO PO PO 1 2 3 4 5 6 7 2 3 1 2 3 1 2 2 3 1 2 3 1 2 2 3 3 2 3 3 2 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3	PO PO <th< td=""><td>PO PO <th< td=""><td>PO PO <th< td=""><td>PO PO <th< td=""></th<></td></th<></td></th<></td></th<>	PO PO <th< td=""><td>PO PO <th< td=""><td>PO PO <th< td=""></th<></td></th<></td></th<>	PO PO <th< td=""><td>PO PO <th< td=""></th<></td></th<>	PO PO <th< td=""></th<>

List of Experiments:

Exercise - 1 Basics
a) What is an OS Command, Familiarization of Editors - vi, Emacs
b) Using commands like mkdir, ls, cp, mv, cat, pwd, and man
c) C Program to Perform Adding, Subtraction, Multiplication and Division of two numbers From
Command line
Exercise - 2 Basic Math
a) Write a C Program to Simulate 3 Laws at Motion
b) Write a C Program to convert Celsius to Fahrenheit and vice versa
Exercise - 3 Control Flow - I
a) Write a C Program to Find Whether the Given Year is a Leap Year or not.
b) Write a C Program to Add Digits & Multiplication of a number

Exercise - 4 Control Flow - II a)Write a C Program to Find Whether the Given Number is i) Prime Number ii) Armstrong Number b) Write a C program to print Floyd Triangle c) Write a C Program to print Pascal Triangle Exercise – 5 Functions a) Write a C Program demonstrating of parameter passing in Functions and returning values. b) Write a C Program illustrating Fibonacci, Factorial with Recursion without Recursion Exercise – 6 Control Flow - III a) Write a C Program to make a simple Calculator to Add, Subtract, Multiply or Divide Using switch...case b) Write a C Program to convert decimal to binary and hex (using switch call function the function) Exercise – 7 Functions - Continued Write a C Program to compute the values of sin x and cos x and e^x values using Series expansion. (use factorial function) Exercise - 8 Arrays Demonstration of arrays a) Search-Linear. b) Sorting-Bubble, Selection. c) Operations on Matrix. Exercises - 9 Structures a)Write a C Program to Store Information of a Movie Using Structure b)Write a C Program to Store Information Using Structures with Dynamically Memory Allocation c) Write a C Program to Add Two Complex Numbers by Passing Structure to a Function Exercise - 10 Arrays and Pointers a)Write a C Program to Access Elements of an Array Using Pointer b) Write a C Program to find the sum of numbers with arrays and pointers. Exercise – 11 Dynamic Memory Allocations a) Write a C program to find sum of n elements entered by user. To perform this program. allocate memory dynamically using malloc () function. b) Write a C program to find sum of n elements entered by user. To perform this program. allocate memory dynamically using calloc () function. Understand the difference between the above two programs Exercise – 12 Strings a) Implementation of string manipulation operations with library function. i) copy ii) concatenate iii) length iv) compare

b) Implementation of string manipulation operations without library function. i) copy

ii) concatenate

iii) length

iv) compare

Exercise -13 Files

a)Write a C programming code to open a file and to print it contents on screen. b)Write a C program to copy files

Exercise - 14 Files Continued

a) Write a C program merges two files and stores their contents in another file.b) Write a C program to delete a file.

EQUIPMENT REQUIRED:

1.Computer Systems with UNIX OS,GCC Compiler,VI Editor

REFERENCE BOOKS:

1. 1. Programming in ANSIC 7th Edition by E.Balaguruswamy

2.Let us C by Yaswanth Kanetkar

3. The C programming Language, Dennis Richie and Brian Kernighan, Pearson Education.

E-RESOURCES:

1. http://www.skiet.org/downloads/cprogrammingquestion.pdf

2. http://www.c4learn.com/c-programs/

3. https://www.programiz.com/c-programming/examples

4. https://www.sanfoundry.com/c-programming-examples/

1.1

X.

(C)

NRI INSTITUTE OF TECHNOLOGY

An Autonomous Institution, Permanently Affiliated to JNTUK, Kakinada (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institute) Pothavarappadu (V), Via Nunna, Agiripalli (M), PIN-521 212.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE FOR II YEAR B.TECH PROGRAMME-NRIA 18

		1										
			Sch	eme o	of Inst	ruction	Schem	Scheme of Examination				
S. No	CC	Title of the Course	(P	eriod	s Per \	Neek)	(Max	ximum Ma	kimum Marks)			
			L	Т	Р	Total	CIA	SEA	Total			
1		Complex Variables & Transform Techniques	3	-	-	3	40	60	100	3		
2		Network analysis & Transmission Lines	3	-	-	3	40	60	100	3		
3		Digital Electronics & Logic Design	3	-	-	3	40	60	100	3		
4		Signals and Systems	3	-	-	3	40	60	100	3		
5		Open Elective -I	3	-	-	3	40	60	100	3		
6		Managerial Economics and Financial Analysis	3	-	-	3	40	60	100	3		
7		Electronic Devices and Circuits Lab	-	-	2	2	40	60	100	1		
8		Network Analysis Lab	-	-	2	2	40	60	100	1		
9		Basic Simulation lab	-	-	2	2	40	60	100	1		
		Total	18	-	6	24	360	540	900	21		

II B.TECH I-SEMESTER

II B.TECH II-SEMESTER

S.	СС	Title of the Course	Sch (P	eme o eriod	of Insti s Per V	ruction Week)	Schem (Max	e of Exam ximum Ma	ination arks)	No. of Credits
1			L	Т	Р	Total	CIA	SEA	Total	
1		Analog & Pulse Circuits	3	I	-	3	40	60	100	3
2		Analog Communications	3	-	-	3	40	60	100	3
3		Electro Magnetic Field Theory	3	-	-	3	40	60	100	3
4		Control Systems	3	-	-	3	40	60	100	3
5		Probability Theory and Stochastic Process	3	-	-	3	40	60	100	3
6		Open Elective –II	3	-	-	3	40	60	100	3
7	NC	IPR & P	2	-	-	2	40	60	100	0
8		Analog Comm. Laboratory	-	-	2	2	40	60	100	1
9		Analog & Pulse Circuits Laboratory	-	-	2	2	40	60	100	1
10		Digital Electronics and Logic Design Laboratory	-	-	2	2	40	60	100	1
		Total	20	-	6	26	400	600	1000	21

B.TECH (ECE) II-YEAR I-SEMESTER

Complex Variables & Transform Techniques

	Α
Name of the Program : B.Tech	Academic Year :
	2019-2020
Branch:	Year & Semester : II B.Tech &I-Sem
Electronics & Communication Engineering	
Name of the Course : Complex Variables &	Regulation : R18
Transform Techniques	
Course Area/Module :	No of students registered:198
Course Coordinator :	Course Instructors:
Mr. D.SRINIVASULU	1. Dr.M.Babu Prasad
	2. Dr.K.KRISHNA RAO
	3. Mr. D.SRINIVASULU
Designation:	Credits: 3
Professor	
Associate Professor	
Mail id : gktsrinu@gmail.com	No. of Lecture Hours per week : 3
	No. of Tutorial Hours per week: 1

Prerequisites:1.Knowledge of complex numbers, Trigonometric relations, Differentiation, Integration and co-ordinate Geometry

2. Convergence of series

Course Objectives:

- 1. To familiarize the techniques in complex variables
- 2. To familiarize the techniques in fourier series.
- 3. To familiarize the techniques in fourier transforms
- 4. To familiarize the techniques in Z-transforms
- 5. To equip the students to solve application problems in their disciplines.

Cours	se Outcomes:
Upon	successful completion of the course, the student will be able to:
	Student will be able to
CO1	> write an analytic function if either real part or imaginary part is known and by using
	Cauchy-Riemann equations or apply Milne-Thompson method(L3)
	Student will be able to
CO2	evaluate the integral of complex function over the region bounded by the closed
02	curves by apply either Cauchy-Goursat theorem or Cauchy's integral formula or
	Cauchy's Residue theorem(L5)
	Students will be able to
CO3	write the infinite series expansion of complex function by apply
	Taylor's/Maclaurin's/Laurent's series(L3)
	Students will be able to
CO4	➤ write a Fourier series expansion of a periodic function by using Euler's formulae
	(L3)
COS	Student will be able to
COS	understand the concept of Fourier transform and its properties (L2)
	Student will be able to
CO6	➢ solve the difference equations using Z-transforms and Inverse Z-transforms(L3)

Contra	Contribution of Course Outcomes towards achievement of Frogram Outcomes											
(1 - Lo)	(1 – Low, 2- Medium, 3 – High)											
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	2	2	-	-	-	-	-	-	-	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-
CO6	3	3	2	2	-	-	-	-	-	-	-	-

Contribution of Course Outcomes towards achievement of Program Outcomes

Evaluation Scheme:

Component	Duration Minutes	Marks	% Weightage
Mid Examination - I	90 Min	15	15%
Mid Examination - II	90 Min	15	15%
Online Quiz Examination - I	20 Min	10	10%
Online Quiz Examination - I	20 Min	10	10%
Assignment-I	60 Min	5	5%
Assignment-II	180 Min	70	70%
Class Test-I	90 Min	15	15%
Class test-II	90 Min	15	15%
Semester End Examination	20 Min	10	10%

Syllabus:

Unit-1: Complex Variable – Differentiation & Integration

Complex function, Real and Imaginary parts of Complex function, Limit, Continuity and Derivative of complex function, Cauchy-Riemann equations, Analytic function, entire function, singular point, conjugate function, Harmonic functions, Milne-Thomson method. Line integral of a complex function, Cauchy's theorem(only statement), Cauchy's Integral Formula.

Unit-2: Complex Variable- Series expansion, Residue Theorem & Evaluation of Real Integrals

Absolutely convergent and uniformly convergent of series of complex terms, Radius of convergence, Taylor's series, Maclaurin's series expansion, Laurent's series.

Zeros of an analytic function, Singularity, Isolated singularity, Removable singularity, Essential singularity, pole of order m, simple pole, Residues, Residue theorem, Calculation of residues, Residue at a pole of order m,

Evaluation of real definite integrals: Integration around the unit circle, Integration around semi circle.

Unit-3: Fourier Series and Transforms

Introduction, Eulers formula, conditions for Fourier expansion, Functions having points of discontinuity, change of interval, Odd and Even function-expansions, Half-range series. Fourier integral theorem (without proof) – Fourier sine and cosine integrals - sine and cosine transforms - properties, Inverse transforms - Finite Fourier transforms.

Unit-4: Z-Transforms

Definition of Z-transform, elementary properties, linearity property, damping rule, shifting u_n to the right and left, multiplication by n, initial value theorem, final value theorem, Inverse Z-transform, convolution theorem, formation of difference equations, solution of difference equations using Z-transforms

TEXT BOOKS:

1.B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43/e, 2010.2. Erwin kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

REFERENCE BOOKS:

1. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7/e, Mc-Graw Hill, 2004.

2.N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, 2008.

E-RESOURCES:

1.www.nptelvideos.com/mathematics/ (Math Lectures from MIT, Stanford, IIT'S)

2.nptel.ac.in/courses/122104017

3.nptel.ac.in/courses/111105035

Network Analysis And Transmission Lines

Name of the Program : B.Tech	Academic Year :
	2019-2020
Branch:	Year & Semester : II B.Tech &I-Sem
Electronics & Communication Engineering	
Name of the Course : Network Analysis and	Regulation : R18
Transmission Lines	
Course Area/Module : Microwaves and Antennas	No of students registered:198
Course Coordinator :	Course Instructors:
N Swarnalatha	
N Malathi	
Designation:	Credits: 3
Associate Professor	
Contact Details :	No. of Lecture Hours per week :4
Mail id :hairehman@gmail.com	No. of Tutorial Hours per week: 1

Pre-Requisites for the Course:

Students are assumed to have back ground knowledge on the following topics:

1. Properties of conductors and Dielectrics.

Pre-requisite Courses:

Applied Physics.

Course Description:

Students will be introduced to EM waves, principle of operation, the different types of waveEquations and mechanism analysis and their applications. The course provides introduce the student to expose students to examples of applications and various Transmissionline types also wave propagation.

Course Objectives:

Students will be able To

1.	To know the behaviour of the steady state and transient states in RLC circuits
2.	To understand the resonance and two port network parameters
3.	Wave characteristics in different media for normal and oblique incidence.
4.	Various concepts of transmission lines and impedance measurements

Course Outcomes:

Course Name: NATL	,
-------------------	---

Upon successful completion of this course, students should be able to

C222.1	Gain the knowledge on basic RLC circuits behavior.
C222.2	Analyze the steady state and transient states of RLC circuits.
C222.3	Analyze the two port network parameters.
C222.4	Demonstrate the reflection and Refraction of EM waves at boundaries
C222.5	Analyse basic transmission line parameters.
C222.6	Analysis and Design of a transmission lines.

			-									
со	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	3							3		2
CO2	3	3	3							3		2
CO3	3	3	2							3		2
CO4	3	3	2							3		2
CO5	3	3	2							3		2
CO6	3	3	2							3		2
Total	18	18	14							18		10
Avg.	3	3	2.33							3		1.6

Course Content (Syllabus):

UNIT I

Network Theorems

Super position theorem, Thevenin's theorem, Norton's theorem, and Maximum Power Transfer theorem.

Two Port Network

Relationship of two port variables, Short circuit admittance parameters, Open circuit impedance parameters, Transmission parameters, Hybrid parameters, Relation between parameter sets.

UNIT II

Transient and Steady state analysis of RC, RL and RLC Circuits

Response to sinusoidal excitation—series RL, RC and RLC Circuits, parallel RC, RL and RLC.

Resonance

Introduction, Definition of Q series resonance, Bandwidth of series resonance, parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth of parallel resonance.

UNIT III

Transmission Lines - I

Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Equivalent Circuit, Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts

Part II

Lossless / Low Loss Characterization, Types of Distortion, Condition for Distortion less line, Minimum Attenuation, Loading - Types of Loading.

UNIT IV

Transmission Lines – II

Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. Low loss radio frequency lines and UHF Transmission lines, UHF Lines as Circuit Elements

Part II

 $\lambda/4$, $\lambda/2$, $\lambda/8$ Lines – Impedance Transformations, Smith Chart – Configuration and Applications, Single Stub Matching.

Pre-Requisites for the Course:

Mathematics I & Mathematics II Course Objectives:

- 1. To understand the basic concepts on RLC circuits
- 2. To know the behavior of the steady states and transient states in RLC circuits
- 3. To understand the two port network parameters
- 4. Various concepts of transmission lines and impedance measurements

Digital Electronics and Logic Design

Name of the Program: B.Tech	Academic Year: 2019-20
Branch: ECE	Year & Semester: II/I
Name of the Course: Digital Electronics and Logic Design	Regulation: R18
Course Area/Module: Digital Electronics	No. of students registered: 198
Course Coordinator: M.Mahesh Designation: Assistant Professor	Course Instructors: 1. M. Mahesh 2. K. Prathyusha
No. of Lecture Hours per week:	No. of Tutorial Hours per week: 4
Credits:3	

Course Objectives:

Students will be able to:

1. To study the basic philosophy underlying the various number systems, negative number representation, binary arithmetic, binary codes and error detecting and correcting binary code.

2. To study the theory of Boolean algebra and to study representation of switching functions using Boolean expressions and their minimization techniques.

3. To study the combinational logic design of various logic and switching devices and their realization.

4. To study some of the programmable logic devices and their use in realization of switching functions.

5. To study the sequential logic circuits design both in synchronous and Asynchronous modes for various complex logic and switching devices, their minimization techniques and their realizations.

6. To implement synchronous state machines using flip flops.

Course Outcomes:

At the end of the course, the students will develop ability to:

1. Understand the numeric information in different forms and interpret different logic gates.
2. Minimize the given Switching functions in SoP and PoS forms using K-Map and Tabular
Method.
3. Analyze and Design various combinational circuits like Encoders, Decoders, Multiplexers,
De-multiplexers, and Arithmetic Circuits.
4. Design combinational logic circuits using different types of Programmable Logic Designs.
5. Design and Implement various sequential circuits like flip flops, registers.
6. Design the state diagrams with the knowledge of Mealy and Moore conversions, state
machines using various flip flops.

со	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
C01	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	3	2	1	-	-	-	-	-	-	2	-	3
CO4	2	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	-	-	-	-	-	-	2	-	3
CO6	2	2	3	-	-	-	-	-	-	-	-	-
Total	16	12	6	-	-	-	-	-	-	4	-	6
Avg.	2.67	2.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.67	0.00	1.00

Pre-Requisites for the Course:

Students are expected to have knowledge on the following topics:

S. No	Торіс
1	Set theory (Mathematics)
2	Basic logic operations like bit wise operations, Shift operations, flow charts, ASCII codes, etc. (Computer Programming)
3	Number systems, Digital logic design, Concepts of state machines using flip flops.

Course Description:

This Course provides in-depth knowledge of Digital Logic and design techniques of digital circuits and fundamental concepts used in the design of digital systems. Describe the common forms of number representation in digital electronic circuits and to be able to convert between different representations. Discuss the combinational circuit's using simple logical operations. Design combinational logic circuits & sequential logic circuits. This subject is required to understand the later subjects like LDICA, MPMC, VLSI& ES, etc. By studying this subject, the students can design and understand digital systems and its importance. The students logical thinking capability will be improved which will help in placements and in their future technical assignments.

Course Content (Syllabus):

UNIT- I

Number Systems and Binary Codes

Philosophy of number systems, complement representation of negative numbers, binary arithmetic, binary codes, error detecting & error correcting codes – Hamming codes.

Boolean algebra

Fundamental postulates of Boolean algebra, Basic theorems and properties. Digital logic gates, Representation of Boolean Functions using Canonical and Standard forms, , Multilevel NAND/NOR realizations.

UNIT-II

Minimization of Switching Functions

Minimization of switching functions using K-Map up to 5-variables, Tabulation Method.

Combinational Circuits

Design of Adders, Subtractors, Parallel Binary Adder, BCD adder, Encoder, Decoder, Multiplexer (MUX), Demultiplexer, Parity generator, Magnitude Comparator, Code converters.

UNIT- III

Programmable Logic Devices

Basic Structures of PROM, PLA, PAL, Realization of switching functions using PROM, PLA and PAL.

Sequential Logic Circuits-I

Classification of sequential circuits, Basic flip-flops (Truth tables and excitation tables), MS JK flip-flop, Race Around Condition, Conversion from one flip-flop to another flip-flop.

UNIT-IV

Sequential Logic Circuits II

Design of ripple counters, Design of synchronous counters, Registers, Shift register, Bidirectional Shift register, Universal shift register.

Synchronous Sequential Machines

State reduction and State assignment, Partitioning method, Mealy and Moore models, Design procedures, Design and realization of circuits using various Flip-flops.

Text Books:

1. Switching Theory & Logic Design by A. Anand Kumar, PHI, 3rd Edition.

2. Digital Design, Morris Mano, PHI, 3rd Edition, 2001.

3. Switching and Finite Automata theory, Zvi Kohavi and Niraj k Jha, Cambridge University Press, 3rd edition, 2010.

References:

1. Fundamentals of Logic Design, Charles H. Roth, Thomson Publications, 5th Edition, 2009.

2. Modern Digital Electronics by R.P. Jain, Mcgraw Hill, 3rd edition.

Signals and Systems

Name of the Program: B.Tech	Academic Year: 2019-2020
Branch: ECE	Year & Semester: II & I
Name of the Course: Signals and Systems	Regulation: Autonomous
Course Area/Module:	No. of students registered: 198
Course Coordinator: V.Srinivasa Rao Designation: Associate Professor	Course Instructors: P.L.Amrutha Valli
No. of Lecture Hours per week: 5	No. of Tutorial Hours per week:
Credits: 3	

Course objectives:

Students will be able to:

1. To introduce the terminology of signals and systems and Fourier tools through the analogy between vectors and signals

2. To introduce Fourier transform to convert signal from time domain to frequency domain and understand the concept of sampling and reconstruction of signals

3. To analyze the linear systems in time and frequency domains and understand importance of convolution, correlation.

4. To study Laplace-transform as mathematical tool to convert signals from time domain to complex frequency domain, and also study Z-transform as mathematical tool to analyze discrete-time signals and systems.

Course outcomes:

At the end of the course, the students will develop ability to:

1. Learn the basic concepts of signals and systems and represent signal in terms of Exponential and Trigonometric Fourier Series.

2. Transform the time domain signal into frequency domain by applying Fourier Transform.

3. Perform sampling and reconstruction of signals with the help of Nyquist criterion.

4. Analyze Linear systems in time and frequency domain and understand the properties of convolution and correlation.

5. Transform continuous time signals into complex frequency domain by applying Laplace Transforms.

6. Transform discrete time signals into complex frequency domain by applying Z – Transforms.

Pre-Requisites for the Course:

Students are expected to have knowledge on the following topics:

S. No	Торіс
1	Engineering Mathematics –I
2	Engineering Mathematics –II

CO-PO Mapping:

со	PO 1	P 0 2	PO 3	P O 4	P O 5	PO 6	PO 7	PO 8	PO 9	P O 10	PO 11	P O 12
C01	3	3	2	2					2		1	
CO2	3	2	2	1	3						2	
CO3	3	3	2	2	2	1					2	
CO4	3	3		2	3					2		2
CO5	3	3		2	3					2		2
CO6	18	16	6	10	11	1	-	-	2	4	6	5
Total	3	2.66	2	1.66	2.75	1	-	-	2	2.66	1.5	1.66
Avg.	3	3	2	2					2		1	

Course Content (Syllabus):

UNIT I

Introduction To Signals And Systems

Continuous and discrete time signals, Exponential and sinusoidal signals, Concepts of Impulse function, Unit step function and Signum function. Continuous and discrete time systems, Basic system properties. Orthogonal signal space and Signal approximation using orthogonal functions.

Fourier Series

Representation of Fourier series, Continuous time periodic signals, properties of Fourier series, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Complex Fourier spectrum.

UNIT II

Fourier Transforms

Deriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms, Fourier transforms involving impulse function and Signum function.

Sampling

Sampling theorem, Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling, Aliasing.

UNIT III

Linear System Analysis

Linear system, impulse response, Response of a linear system, Linear time invariant (LTI) system, Linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics.

Convolution and Correlation of Signals

Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Convolution property of Fourier transforms. Cross correlation and auto correlation of functions, properties of correlation function, Energy density spectrum, Parseval's theorem, Power density spectrum, Relation between auto correlation function and energy/power spectral density function. Relation between convolution and correlation.

UNIT IV

Laplace Transforms

Review of Laplace transforms, Partial fraction expansion, Inverse Laplace transform, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.Ts, Relation between L.T and F.T. of a signal.

Z-Transforms

Fundamental difference between continuous and discrete time signals, discrete time signal representation using complex exponential and sinusoidal components, Periodicity of discrete time using complex exponential signal, Concept of Z- Transform of a discrete sequence. Distinction between Laplace, Fourier and Z transforms. Region of convergence in Z-Transform, constraints on ROC for various classes of signals, Inverse Z-transform, properties of Z-transforms

Text Books:

- 1. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI, 2nd Edn
- 2. Signals & Systems- A.Anand Kumar 2nd Edition, PHI, 2012.
- 3. Signals, Systems & Communications -B.P. Lathi, BS Publications, 2003.

References:

- 1. Signals & Systems Simon Haykin and Van Veen, Wiley, 2nd Edition.
- 2. Signals and Systems K R RajeswariB.VisvesvaraRao, "Signals & Systems" –1st Edition, PHI, 2009.
- 3. Fundamentals of Signals and Systems- Michel J. Robert, MGH International Edition, 2008.
- 4. Charles L.Phillips, John M. Parr, Eve A. Riskin, "Signals, Systems, and Transforms", Pearson Publications, 4th Edition.

Data Structure and Algorithms

Name of the Program: UG(B.Tech)	Academic Year: 2019 - 2020
Branch: ECE	Year & Semester: II /I
Name of the Course: Data Structures	Regulation: NRIA18
Course Area/Module:Data Structure andAlgorithms	No. of students registered: 180
Course Coordinator: SK.Mahaboob Basha Designation: Associate Professor	Course Instructors: 1. Mr.Seetharam 2. Mr.B. Avinash
No. of Lecture Hours per week: 3	No. of Tutorial Hours per week: 1
Credits:3	

Course Objectives:

Students will be able to:

- 1. To impart basic knowledge of data structures.
- 2. Be familiar with basic techniques of algorithm analysis
- 3. Be familiar with writing recursive methods
- 4. To understand concepts about searching and sorting techniques
- 5. To understand concepts about searching and sorting techniques
- 6. To design and implementation of various basic and advanced data structures like stacks, queues, lists, trees and graphs.
- 7. To design and implementation of various basic and advanced data structures like stacks, queues, lists, trees and graphs.
- 8. To introduce various techniques for representation of the data in the real world.
- 9. To understanding about writing algorithms and step by step approach in solving problems with the help of fundamental data structures

Course Outcomes:

At the end of the course, the students will develop ability to:

- 1. Ability to analyze algorithms, and to understand the concept of recursive function
- 2. Ability to summarize searching and sorting techniques.
- 3. Ability to describe linked list operations
- 4. Ability to describe stack, queue and linked list operation
- 5. Ability to have knowledge of Trees, able to use trees to solve real time problems
- 6. to apply concepts of graphs to solve real time problems

CO-PO Mapping:

со	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	РО 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3	2	2								2
CO2	3	2	3	2								2

CO3	3	2	3	2				2
CO4	3	2	3	2				2
CO5	3	2	3	2				2
CO6	3	2	3	2				2
Total	18	13	17	12				12
Avg.	3	2.7	3	2				2

Pre-Requisites for the Course: C Programming

Students are expected to have knowledge on the following topics:

S.No	Торіс
1	Data Structures, Recursion, Searching and Sorting.
2	Linked Lists, Stacks, and Queues.
3	Trees.
4	Graphs

Course Description:

In computer science, a data structure is a data organization, management, and storage format that enable efficient access and modification. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data.

Course Content (Syllabus):

UNIT I

Data Structures, Recursion, Searching and Sorting

Data Structures: Definition, Types of Data Structures, Arrays, structures, self-referential structures, Operations, Algorithm analysis Time Complexity and Space Complexity.

Recursion: Definition, Linear and Binary recursions, Iteration vs. Recursion.

Searching: Linear Search, Binary Search.

Sorting: Basic concepts, Divide-and-Conquer approach, Insertion Sort, Merge Sort, Quick Sort, and Heap Sort.

UNIT II

Linked Lists, Stacks, and Queues.

Linked Lists: Introduction, types of Linked Lists, operations, inserting a node in Single Linked List, deleting a node in Single Linked List, searching a node in Single Linked List, inserting, deleting, and searching a node in Double Linked List.

Stacks: Introduction, operations, applications, Stacks implementation using Arrays, Stacks implementation using Linked List, Expression Conversion: Infix to Postfix, Infix to Prefix.

Queues: Introduction, operations, applications, Queues implementation using Arrays, Queues implementation using Linked Lists, Circular Queue. Priority Queues

UNIT III

Trees

Basic Tree Concepts, Terminology, operations, Tree traversals, Binary Trees: definition,

properties, Binary Tree representations, operations, **Binary Search Tree:** definition, properties, applications, Inserting, Deleting, and Searching element in Binary Search Tree, **Threaded Binary Tree:** definition, properties, Inserting a Node into a Threaded Binary Tree, **Heaps:** Definition of a Max Heap, properties.

UNIT IV Graphs

Introduction, Terminology, Representation of graphs, types of graphs, applications, operations, Graph transversal techniques: Breadth First Search (BFS), Depth First Search (DFS), implementations. **Minimum Spanning Tree (MST):** definition, Prim's algorithm, Kruskal's algorithm, **Shortest paths:** Basic Concepts, Dijsktra's algorithm.

Text books:

1 Data Structures using C,ReemaThareja, Oxford

2 Fundamentals of DATA STRUCTURES in C, Horowitz, Sartaj Sahani, Susan Anderson – Freed, University Press

Reference Books:

1 Data Structures using C, 2nd Edition, by A. K. Sharma, Pearson India

2. Classic Data Structures, 2/e, Debasis, Samanta, PHI,2009

3 Data Structures and Algorithms, 2008, G.A.V.Pai, TMH

4 Data Structures, 2/e, Richard F, Gilberg , Forouzan, Cengage

5 DATA STRUCTURE USING C, Udit Agarwal, KATSON Books

E-Resources:

1. https://en.wikipedia.org/wiki/Data_structure

2.https://www.tutorialspoint.com/data_structures_algorithms/data_structures_basics

3. http://nptel.ac.in/courses/106103069/

Managerial Economics and Financial Accounts

Name of the Program: UG(B.Tech)	Academic Year: 2019 - 2020
Branch: ECE	Year &Semester: II /I
Name of the Course: MEFA	Regulation: NRIA18
Course Area/Module: MANAGEMENT	No. of students registered: 180
Course Coordinator: 1.Dr.D.kailasa Rao 2.Designation: PROFESSOR	Course Instructors: 3.Dr.D.kailasa Rao 4.Mr. D.N Rajesh
No. of Lecture Hours per week:3	No. of Tutorial Hours per week :0
Credits:3	

Course Objectives:

Students will be able to:

1.	To enhance the knowledge of the students regarding importance of management and
	Managerial problems with optimum solutions and Demand Forecasting-methods.
2.	To develop the concepts viz., Consumer Behavior and demand concept.
3.	To provide the knowledge regarding production and cost and Break-Even Analysis.
4.	To share the concepts like market structures and Business Organization.
5	To provide awareness regarding Capital Budgating decisions & give an idea of practicing

- 5. To provide awareness regarding Capital Budgeting decisions & give an idea of practicing technique of Ratio Analysis.
- 6. To introduce the concepts- Financial Accounting.

Course Outcomes:

At the end of the course, the students will develop ability to:

1 Use the theory of managerial Economics ,demand ,Production analysis and fore casting theories.

2 Analyze of production markets and pricing strategies .Functions and Cost-price functions to manage markets & Break-Even point.

3 Develop an ability to identify, formulate and solve Engineering problem by applying the knowledge of Managerial Economics.

4 Theorize about characteristics features and types of Industrial organization, concept of changing business environment in Post-Liberalization scenario.

5 Enhance their capabilities in the interpretation of b/s that are followed in industries, organizations and institutes.

6 Apply financial analysis ,capital budgeting techniques in Evaluating various investment opportunities

CO-PO Mapping:

СО	PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	РО 8	PO 9	PO 10	PO 11	PO 12
C01	1											
CO2		1										
CO3	2	2	1									
CO4			1				1					
CO5	1		1			2						
CO6	1				1						1	
Total	6	3	3		1	2	1				1	
Avg.	1.5	1.5	1		1	2	1				1	

Pre-Requisites for the Course:

Nil

Course Description: This course covers micro Economic issues relating to demand and supply, types of markets and their price determination and pricing. Along with that students should have to develop a basic understanding of what financial statements contains and how to use them to assess a company's profitability and financial position. This course introduces various concepts of Economics and accounting that will be helpful in right decision making.

Course Content (Syllabus):

UNIT I

Introduction to Managerial Economics and Demand Analysis

Nature & Scope of Managerial Economics & its relationship with other subjects Concept of Demand, Determinants of Demand-law of demand & its limitations Elasticity of demand Types and measurements –Demand forecasting and methods.

UNIT II

Cost Analysis & Introduction to Markets

Different cost concepts :opportunity costs, Explicit & Implicit costs, Fixed & Variable costs Average & Marginal ,Short run & Long run costs Break Even Analysis(Simple problems). market-nature and types-monopolistic competition and oligopoly.

UNIT III

Types of Business Organisation & Business cycles

Features and Evaluation of sole Trader, Partnership , Joint stock company & co-operative Societies.

Business Cycles: Meaning & features of Business cycles –Phases & control of Business cyclesconcept of money and money supply, Functions of Commercial banks and RBI credit control methods of RBI.

UNIT IV

Introduction to Accounting and Financial Analysis

Introduction to Double entry system ,Journal, Ledger ,Trial balance & Final accounts.

Financial Analysis

Ratio Analysis-Need & significance(simple problems)Capital Budgeting Meaning & importance – Methods of Capital Budgeting :Payback period ,ARR(Accounting Rate Of Return),NPV(Net Present Value)(simple problems).

Text Books:

1. Dr.A.R.Aryasri-Managerial Economics and Financial Analysis TMH 2011.

2.Dr.N.Appa Rao, Dr.p.vijay kumar :Managerial Economics and Financial Analysis carigage publications ,New Delhi-2011.

3. Prof.J.V. Prabhakara Rao, Prof.P. Venkata Rao. Managerial Economics and Financial Analysis-Ravindra publications.

Reference Books:

1.V.Maheswari Managerial Economics Sultan Chand.2014.

2.Dr.B.Kuberudu and Dr.T.v.Ramana:managerial economics and Financial Analysis,Himalaya publishing House,2014.

3.Suma Damodaran:Managerial Economics,Oxford,2011.

4. Maheswari: Financial Accounting, Vikas Publications.

5. Shailaja, Gajjala and Usha Munipalle, Universities press, 2015

6. Banking Law and Practise , Gordan and Mithani, Himalaya publications

E-Resources:

1.https://www.tutorialspoint.com/managerialeconomic

2.https://lecturenotes.in/subject/566/managerial-economics-and-financial-analysis-mefa

Electronic Devices and Circuits Laboratory

LIST OF EXPERIMENTS

PART-I

- 1. Resistors: Colour Codes, Variable Resistors and LDR
- 2. Capacitors and their Colour codes
- 3. Coils and Inductors
- 4. Relays and switches
- 5. Breadboards
- 6. Diodes
- 7. Transistors BJT, UJT, FET
- 8. Silicon Controlled Rectifiers SCR
- 9. Soldering Guide
- 10. Multimeters, CRO
- 11. Function Generator, Regulated Power Supply

PART-II

- 1. PN Junction Diode Characteristics
 - a. Silicon Diode Characteristics
 - b. Germanium Diode Characteristics
- 2. Zener diode characteristics and Zener as Voltage Regulator
- 3. Rectifiers
- Half Wave Rectifier with and without filters
- 4. Rectifiers

Full Wave Rectifier with and without filters

- 5. Transistor CE Characteristics
 - a. Input Characteristics
 - b. Output Characteristics
- 6. Transistor CB Characteristics
 - a. Input Characteristics
 - b. Output Characteristics
- 7. FET Characteristics
 - a. Drain Characteristics
 - b. Transfer characteristics
- 8. CRO Operation and its measurements
- 9. UJT Characteristics
- 10. UJT Relaxation Oscillator
- 11. SCR Characteristics
- 12. Transistor Biasing
- 13. LED Characteristics

Network Analysis Laboratory

Preamble:

The objective of the Network Analysis lab is to expose the students to the of electrical circuits and give them experimental skill. The purpose of lab experiment is to continue to build circuit construction skills using different circuit element. It also aims to introduce MATLAB a circuit simulation software tool. It enables the students to gain sufficient knowledge on the programming and simulation of Electrical circuits.

Course Outcomes: Upon the completion of Network Analysis practical course, the student will be able to attain the following:

- Familiarity with DC and AC circuit analysis techniques.
- Analyze complicated circuits using different network theorems.
- > Acquire skills of using MATLAB software for electrical circuit studies.
- Acquire skills of two port network parameters (Z, Y, ABCD, h & g).
- > Determine the self and mutual inductance of coupled coils.

S.No	List of Experiments
1	Verification of Kirchhoff's current law and voltage law using hard ware and digital simulation.
2	Verification of mesh analysis using hard ware and digital simulation.
3	Verification of nodal analysis using hard ware and digital simulation.
4	Verification of super position theorem using hard ware and digital simulation.
5	Verification of reciprocity theorem using hardware and digital simulation.
6	Verification of maximum power transfer theorem using hardware and digital simulation.
7	Verification of Thevenin's theorem using hard ware and digital simulation.
8	Verification of Norton's theorem using hard ware and digital simulation.
9	Verification of compensation theorem using hard ware and digital simulation.
10	Verification of series resonance using hard ware and digital simulation.
11	Verification of parallel resonance using hard ware and digital simulation.
12	Verification of Two Port Network Parameters Z & Y Parameters using hard ware
13	Verification of Two Port Network Parameters ABCD & HYBRID Parameters using hard ware.
14	Verification of self inductance and mutual inductance by using hard ware.

Basic Simulation Laboratory

List of Experiments

- All the experiments are to be simulated using MATLAB or equivalent software.
- Minimum of 10 experiments are to be completed.
- 1. Basic Operations on Matrices.
- 2. Generation of Various Signals and Sequences (Periodic And Aperiodic), Such as Unit Impulse, Unit Step, Square, Saw Tooth, Triangular, Sinusoidal, Ramp, Sinc.
- 3. Operations on Signals And Sequences Such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy And Average Power.
- 4. Finding the Even and Odd Parts of Signal/ Sequence and Real and Imaginary Parts of Signal.
- 5. Convolution between Signals and Sequences.
- 6. Autocorrelation and Cross Correlation between Signals and Sequences.
- 7. Verification of Linearity and Time Invariance Properties of a given Continuous/Discrete System.
- 8. Computation of Unit Sample, Unit Step And Sinusoidal Responses Of The Given LTI System And Verifying Its Physical Realizability and Stability Properties.
- 9. Finding the Fourier Transform of a Given Signal and Plotting Its Magnitude and Phase Spectrum.
- 10. Waveform Synthesis Using Laplace Transforms.
- 11. Locating the Zeros and Poles And Plotting the Pole-Zero Maps in S Plane and Z-Plane For the given Transfer Function.
- 12. Sampling Theorem Verification.
B.TECH (ECE) II-YEAR II-SEMESTER

Analog and Pulse Circuits

Name of the Program: B.TECH	Academic Year: 2019 – 2020
Branch: ECE	Year & Semester: II & II
Name of the Course: ANALOG AND PULSE CIRCUITS	Regulation: NRIA18
Course Area/Module: Analog Electronics	No. of students registered: 198
Course Coordinator: R.Sunitha Designation: Professor	Course Instructors: 1. D. Ravisankar 2. R.Sunitha
No. of Lecture Hours per week: 3	No. of Tutorial Hours per week: 0
Credits: 3	

Course Objectives:

Students will be able to:

1.To demonstrate BJT amplifier using h parameters
2. To explain feedback amplifiers and oscillators
3. To know the classification of the power amplifiers and their analysis
4. To study and design the concepts of linear and non linear wave shaping circuits
5. To analyze different types of Multi vibrators and their design procedures
6. To understand the basic principles of Sampling gates

Course Outcomes:

At the end of the course, the students will develop ability to:

1. To explain BJT amplifier using h parameter model
2. To analyze and design electronic subsystems such as feedback amplifiers and oscillators
3. To analyze power amplifiers such as Class A and Class B and compare their performance
4. To design linear and non linear wave shaping circuits with different inputs
5. To deign and analyze various multi vibrators using transistors
6. To remember and analyze unidirectional and bidirectional sampling gates

CO-PO Mapping:

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	2	3			2							
CO3			3		2							
CO4	3		3									
CO5	3		3									
CO6			3									
Total	11	3	12		4							
Avg.	2.75	3	3	0	2	0	0	0	0	0	0	0

Pre-Requisites for the Course:

Students are expected to have knowledge on the following topics:

S. No	Торіс
1	Engineering Mathematics
2	Network Analysis
3	Electronic devices and circuits

Course Description:

This course starts by introducing some basic ideas of electronic amplifiers and study of feedback concepts (both positive and negative). Subsequently the course probes into introduction and emphasis of oscillators. Further design concepts of power amplifiers are also explained. This course covers pulse waveforms, linear and non linear circuits and their responses due to sinusoidal and non sinusoidal inputs. This course helps in understanding various types of multivibrators and their design procedures. This course gives an overview of unidirectional and bidirectional sampling gates and applications of sampling gates

Evaluation Scheme:

Component	Duration Minutes	Marks	% Weightage
Mid Examination - I	90 Min	15	15%
Mid Examination - II	90 Min	15	15%
Online Quiz Examination - I	20 Min	10	10%
Online Quiz Examination - I	20 Min	10	10%
Assignment-I	60 Min	5	5%
Assignment-II	180 Min	70	70%
Class Test-I	90 Min	15	15%
Class test-II	90 Min	15	15%
Semester End Examination	20 Min	10	10%

Course Content (Syllabus):

UNIT I AMPLIFIERS

Classification of amplifiers, Two port network, Determination of h parameters, Transistor hybrid model, Generalized analysis of transistor amplifier in CB, CE and CC configurations using h-parameters, Comparison of transistor amplifiers.

FEEDBACK AMPLIFIERS

Feedback principle and concept, types of feedback, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers, Illustrative Problems

UNIT II

OSCILLATORS

Oscillator principle, condition for oscillations, RC-phase shift and Wein bridge oscillators and their analysis, Generalized analysis of LC Oscillators, Hartley and Colpitt's oscillators, Illustrative Problems

POWER AMPLIFIERS

Overview of power amplifiers, Class A power Amplifiers and their analysis, Class B Push-pull amplifiers and their analysis, Illustrative Problems

UNIT III

LINEAR WAVE SHAPING

High pass, Low pass RC circuits, their response expressions for sinusoidal, step, pulse, square, ramp and exponential inputs (Qualitative Treatment Only)

NON LINEAR WAVE SHAPING

Diode clippers, Transistor clippers, clipping at two independent levels, Emitter coupled clipper; Clamping operation, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage (Qualitative Treatment Only)

UNIT IV

MULTIVIBRATORS

Bistable Multi Vibrator – Analysis and Design of Fixed Bias Bistable Multi Vibrator, Schmitt trigger, **Monostable Multi Vibrator** – Analysis and Design of Collector Coupled Monostable Multi Vibrator, **Astable Multi Vibrator** – Analysis and Design of Collector Coupled Astable Multi vibrator (Qualitative Treatment Only)

SAMPLING GATES

Basic operating principles of sampling gates, unidirectional sampling gate, unidirectional sampling gates to accommodate more than one input signal, bidirectional sampling gates using transistors, reduction of pedestal in a gate circuit, bidirectional sampling gates, four diode sampling gate, six diode sampling gates, applications of sampling gates

TEXT BOOKS

- Electronic Devices and Circuits- Salivahanan, N.Suressh Kumar, A. Vallavaraj, TATA McGraw Hill, Second Edition. (UNITS I, II)
- Pulse and Digital Circuits A. Anand Kumar, PHI, 2005 (UNIT III, IV)
- Integrated Electronics- J. Millman and C.C. Halkias, Tata Mc Graw-Hill, 1972

REFERENCES

- Electronic Circuit Analysis and Design Donald A. Neaman, Mc Graw Hill.
- Electronic Devices and Circuits Theory Robert L. Boylestad and Louis Nashelsky, Pearson/Prentice Hall, Tenth Edition.
- Electronic Circuit Analysis A.P.Godse, Technical Publications
- Pulse and Digital Circuits B.Yoganarsimhan
- Pulse & Digital Circuits by Venkata Rao,K,Ramasudha K, Manmadha Rao,G., Pearson,2010
- Pulse, Digital and Switching Waveforms J. Millman and H. Taub, McGraw-Hill, 1991

Analog Communications

MappName of the Program: B.Tech	Academic Year: 2019 – 20
Branch: E.C. E	Year & Semester: II - II
Name of the Course: Analog Communications	Regulation: NRIA18
Course Area/Module: Communication Systems	No. of students registered: 198
Course Coordinator: M.S.S.S Srinivas Designation: Associate Professor	Course Instructors: 3. M.S.S.S. Srinivas 4. M. Mahesh
No. of Lecture Hours per week: 5	No. of Tutorial Hours per week:
Credits: 3	

Course objectives:

Students will be able to:

1.	The fundamentals of basic communication system Need of modulation, modulation
	processes and different amplitude modulation schemes.
2.	Different angle modulation schemes with generation and detection methods.
3.	Understand types of Noises & Generation and detection of pulse modulation techniques and multiplexing
4.	Remember various radio receivers with their parameters.

Course outcomes:

At the end of the course, the students will develop ability to:

- 1. Understand different blocks in communication system & Design of various modulation and demodulation techniques.
- 2. Analyze generation and detection of FM signal & comparison between amplitude and angle modulation schemes.
- 3. Understand the types of noise affecting communication system and noise parameters. & Design generation & detection of Pulse Modulation techniques.
- 4. Identify different types of transmitters and receivers circuits and role of AGC

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			1							2
CO2	3	2			1							2
CO3	3	2			1							2
CO4	3	2										2
Total	12	8			3							8
Avg.	3	2			0.75							2

Pre-requisites for the course:

Students are expected to have knowledge on the following topics:

S. No	Торіс
1	Signals & Systems

Course Description:

Almost every day we are aware, or make use, of concepts such as electronic mail, wired cities, overnight stock market quotes fed into our home computers, tele conferencing, and a host of space and military applications of electronic communication. This subject is concerned with the theory of systems for the conveyance of information. The transmission of information-bearing signal over a band pass communication channel, such as telephone line or a satellite channel usually requires a shift of the range of frequencies contained in the signal to another frequency range suitable for transmission. A shift in the signal frequency range is accomplished by modulation. This chapter introduces the definition of modulation, need of modulation, types of modulation- AM, PM and FM, Various types of AM, spectra of AM, bandwidth requirements, Generation of AM & DSB-SC, detection of AM & DSB-SC, and power relations.

Course Content (Syllabus):

UNIT I

AMPLITUDE MODULATION : Introduction to communication system, Need for modulation, Frequency Division Multiplexing, Amplitude Modulation, Definition, Time domain and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, Detection of AM Waves

DSB & SSB MODULATION: Generation of DSBSC Waves, Coherent detection of DSB-SC Modulated waves, COSTAS Loop. Frequency domain description, Frequency discrimination method for generation of AM SSB Modulated Wave, Phase discrimination method for generating AM SSB Modulated waves. Demodulation of SSB Waves.

UNIT II

VESTIGIAL SIDE BAND MODULATION: Frequency description, Generation of VSB Modulated wave, Time domain description, Envelope detection of a VSB Wave pulse Carrier, Comparison of AM Techniques.

ANGLE MODULATION: Basic concepts, Frequency Modulation, Narrow band FM, Wide band FM, Constant Average Power, Transmission bandwidth of FM Wave - Generation of FM Waves, Direct FM, Detection of FM Waves: Balanced Frequency discriminator, Zero crossing detector, Phase locked loop, Comparison of FM & AM.

UNIT III

NOISE: Noise in Analog communication System, Noise in DSB & SSB System, Noise in AM System, Noise in Angle Modulation System, Threshold effect in Angle Modulation System, Preemphasis & de-emphasis.

PULSE MODULATION: Time Division Multiplexing, Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation & demodulation of PWM, PPM, Generation and demodulation of PPM, TDM Vs FDM.

UNIT IV

TRANSMITTERS & RECEIVERS:

Radio Transmitter – Classification of Transmitter, AM Transmitter, FM Transmitter – Variable reactance type and phase modulated FM Transmitter, frequency stability in FM Transmitter. **Radio Receiver** -Receiver Types - Tuned radio frequency receiver, Superhetrodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, AGC, FM Receiver, Comparison with AM Receiver, Amplitude limiting.

TEXT BOOKS:

1. Principles of Communication Systems - Simon Haykin, John Wiley, 2nd Ed.

2. Communication Systems – B.P. Lathi, BS Publication, 2006.

REFERENCES:

1. Principles of Communication Systems – H Taub & D. Schilling, Gautam Sahe, TMH, 2007 3rd Edition.

2. Electronics & Communication System – George Kennedy and Bernard Davis, TMH 2004.

3. Communication Systems- R.P. Singh, SP Sapre, Second Edition TMH, 2007.

4. Fundamentals of Communication Systems - John G. Proakis, Masond, Salehi PEA, 2006.

Electro Magnetic Field Theory

Name of the Program: B.Tech	Academic Year: 2019-2020
Branch: ECE	Year & Semester: II-II
Name of the Course: Electromagnetic Field Theory	Regulation: NRIA18
Course Area/Module: Antennas and EM Waves	No. of students registered : 198
Course Coordinator:	Course Instructors:
Dr.P Rama Koteswara Rao	1. Dr P Rama Koteswara Rao
Designation: Professor	2. N Malathi
No. of Lecture Hours per week: 03	No. of Tutorial Hours per week:00
Credits:03	

Course Objectives:

Students will be able to:

1. To study the basic philosophy underlying the various number systems, negative number representation, binary arithmetic, binary codes and error detecting and correcting binary code.

2. To study the theory of Boolean algebra and to study representation of switching functions using Boolean expressions and their minimization techniques.

3. To study the combinational logic design of various logic and switching devices and their realization.

4. To study some of the programmable logic devices and their use in realization of switching functions.

5. To study the sequential logic circuits design both in synchronous and Asynchronous modes for various complex logic and switching devices, their minimization techniques and their realizations.

6. To implement synchronous state machines using flip flops.

Course Outcomes:

At the end of the course, the students will be able to:

C224.1	Interpret and Apply the static electrostatic fields with respect to coordinate systems.							
C224.2	Analyze and Demonstrate the static magnetic fields in reating time applications.							
C224.3	Formulate the Maxwell's Equations in different forms.							
C224.4	Associate the fundamental theory of electromagnetic waves in free space and their practical applications.							
C224.5	Evaluate and Relate wave propagation characteristics in different conducting media.							
C224.6	Demonstrate the reflection and Refraction of EM waves in normal and oblique incidences							

Course Code	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
C224.1	3		2									
C224.2		3										
C224.3			3									3
C224.4	3				2							
C224.5		3										
C224.6		2										
AVG	3	2.67	2.5		2							3

Pre-Requisites for The Course:

Students are expected to have knowledge on the following topics:

S. No	
1.	Engineering Mathematics
2.	Engineering Physics

Course Description:

The course covers the basics of the electrostatic field—Gauss's law; boundary conditions; capacitance; Laplace's and Poisson's equations; energy and forces. The steady electric current. The magnetostatic field, vector potential; Ampere's and Biot-Savart laws; inductance; energy, forces, and torques. Quasi static fields; electromagnetic induction. It also deals with the propagation of Electromagnetic (EM) waves through guided and unguided media.

Course Content (syllabus):

<u>UNIT I</u>

Part-A:

Electrostatics : Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss Law and Applications, Electric Potential, Maxwell's Two Equations for Electrostatic Fields, Illustrative Problems.

<u>Part-B:</u>

Fields in Materials :Convection, Conduction and Displacement Current Densities, Dielectric Constant, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations..Illustrative Problems.

<u>UNIT II</u>

Part-A:

Magneto Statics : Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials. Illustrative Problems.

Part-B:

Maxwell's Equations (Time Varying Fields): Faraday's Law and Transformer emf, Inconsistency of Ampere's Law, Maxwell's Equations in Different Final Forms and Word Statements. Conditions at a Boundary Surface: Dielectric-Dielectric and Dielectric-Conductor Interfaces. Illustrative Problems.

UNIT III

Part-A:

EM Wave Characteristics - I: Characterization of conductor and dielectric media, Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations Between E & H,

Part-B:

EM Wave Characteristics - I:

Sinusoidal Variations, Wave Propagation Characteristics in dielectric and conductor media, Wave Propagation Characteristics in good dielectric and good conductor media, skin depth..Illustrative Problems.

UNIT IV

<u>Part-A:</u>

EM Wave Characteristics – II: Polarization & Types, Brewster Angle, Critical Angle ,Total Internal Reflection, Surface Impedance. Poynting Vector and Poynting Theorem – Applications Illustrative Problems.

Part-B:

EM Wave Characteristics – **II:** Reflections and Refractions of uniform plane waves by a perfect dielectric at normal & Oblique incidence, Reflections and Refractions of uniform plane waves by a perfect conductor at normal & Oblique incidence.

Text Books:

- 1. Elements of Electromagnetic Matthew N.O. Sadiku, Oxford Univ. Press, 3rd ed., 2001.
- 2. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd Edition, 2000.
- 3. Transmission Lines and Networks–Umesh Sinha, Satya Prakashan (Tech. India Publications), New Delhi, 2001.

Reference Books:

1. Electromagnetics- J.D. Kraus, "Electromagnetics", 4th Edition, Mc Graw-Hill. Inc, 1992.

2. Engineering Electromagnetics:Nathan Ida, Springer(India)Pvt.Ltd., New Delhi, 2nd ed., 2005.

3. Engineering Electromagnetics – William H. Hayt Jr. and John A. Buck, TMH, 7th ed., 2006.

4. Electromagnetic Field Theory and Transmission Lines: G Sasi Bhushana Rao, Wiley India 2013.

Control Systems

Name of the Program: B.Tech	Academic Year: 2019-2020
Branch: ECE	Year & Semester: II & II
Name of the Course: CONTROL SYSTEMS	Regulation: NRIA18
Course Area/Module: CONTROL SYSTEMS	No. of students registered: 198
Course Coordinator: K. Venkata Kishore Designation: Associate Professor	Course Instructors: 1. L. V. Mahesh Babu 2. K. Sravan Sai Kumar
No. of Lecture Hours per week:04	No. of Tutorial Hours per week:01
Credits:03	

Course objectives:

Students will be able to:

1.	To learn the mathematical modeling of physical systems and to use block diagram
	algebra and signal flow graph to determine overall transfer function
2.	To study the time response of first and second order systems and improvement of
	performance by proportional plus derivative and proportional plus integral controllers
3.	To study the stability of closed loop systems using Routh's stability criterion and the
	analysis by root locus method.
4.	To present the Frequency Response approaches for the analysis of linear time
	invariant (LTI) systems using Bode plots, polar plots and Nyquist stability criterion.
5.	To learn basic aspects of design of linear control systems using Bode plots.
6.	To study state models & analyze the systems and to present the concepts of
	Controllability & Observability

Course Outcomes:

At the end of the course, the students will develop ability to:

1.	Understand Closed/Open Loop Control Systems, derive the transfer function of physical systems and determine overall transfer function using block diagram algebra & signal flow
	graph reduction techniques
2.	Study different types of standard test signals, find the output response of first and second order
	systems, determine time response specifications of second order systems and determine steady
	state error along with error constants
3.	Acquire the skill to analyze absolute and relative stability of LTI systems using Routh-Hurwitz
	stability criterion and the Root Locus Plot
4.	Analyze the stability of LTI systems using frequency response methods using Bode plots &
	Polar Plots.
5.	Analyze the stability of LTI systems using frequency response methods using Nyquist Plots
6.	Represent physical systems by State Transition Matrices based state space modeling and
	determine the output response by understanding the concepts of controllability and observability

CO-PO Mapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-
CO4	3	3	-	2	-	-	-	-	-	-	-	-
CO5	3	2	2	2	-	-	-	-	-	-	-	-
CO6	2	-	-	3	-	-	-	-	-	-	-	-
Total	16	13	2	7	-	-	-	-	-	-	-	-
Avg.	2.67	2.6	2	2.33	-	-	-	-	-	-	-	-

Pre-Requisites for the Course:

Students are expected to have knowledge on the following topics:

S. No	Торіс
1	Laplace Transforms, Matrix Algebra & Differential Equations [Mathematics]
2	Kirchoff's Laws, Mesh & Nodal Analysis [Electrical Circuit Analysis]
3	DC & AC Motor working principles [Electrical Machines]

Course Description:

This course introduces the elements of linear control systems and their analysis. Classical methods of design using frequency response. The state space approach for design, modeling and analysis of simple PD, PID controllers.

Course Content (Syllabus):

UNIT I
Introduction to Control Systems Components
Concepts of Control Systems- Open Loop and closed loop control systems and their differences- Different
examples of control systems- Classification of control systems, Feed-Back Characteristics, Effects of
feedback. Mathematical models – Differential equations, Impulse Response and transfer function.
Transfer Function of DC Servo motor - AC Servo motor- Synchro transmitter and Receiver, Block
diagram representation of systems considering -Block diagram algebra - Representation by Signal flow
graph - Reduction is using Mason's gain formula.
UNIT II
Time Response Analysis
Standard test signals - Time response of first order systems – Characteristic Equation of Feedback control
systems, Transient response of second order systems - Time domain specifications - Steady state
response - Steady state errors and error constants, Introduction to P, PI, PD and PID controllers.
UNIT III
Stability Analysis in S-Domain
The concept of stability – Routh's stability , limitations ,Routh-Hurwitz criterion – qualitative stability
and conditional stability.
Root Locus Technique: The root locus concept - construction of root loci –effects of adding poles and
zeros to G(s) H(s) on the root loci.
UNIT IV

Frequency Response Analysis

Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram- Phase margin and Gain margin-Stability Analysis from Bode Plots. Polar Plots- Nyquist Plots- Stability Analysis.

State Space Analysis of Continuous Systems

Concept of state, state variables and state model, derivation of state models from physical systems (Electrical), solving the Time invariant state Equations- State Transition Matrix and its Properties – Concepts of Controllability and Observability.

TEXT BOOKS:

Control Systems principles and design, M.Gopal, Tata McGraw Hill education Pvt Ltd., 4th Edition.
 Automatic control systems, Benjamin C.Kuo, Prentice Hall of India, 2nd Edition.

REFERENCE BOOKS:

1. Modern Control Engineering, Kotsuhiko Ogata, Prentice Hall of India.

2. Control Systems, Manik Dhanesh N, Cengage publications.

3. Control Systems Engineering, I.J. Nagarath and M. Gopal, New Age International

Publications, 5th Edition.

4. Control Systems Engineering, S.Palani, Tata McGraw Hill Publications.

E-RESOURCES:

1. http://nptel.ac.in/courses.php

2. http://jntuk-coeerd.in/

3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

Probability Theory & Stochastic Process

Name of the Program: B.Tech	Academic Year: 2019-2020
Branch: ECE	Year & Semester:II-II
Name of the Course: PTSP	Regulation: NRIA18
Course Area/Module: SIGNAL PROCESSING	No. of students registered: 198
Course Coordinator: P.VENU GOPAL Designation: Associate Professor	Course Instructors: 1. P.VENU GOPAL 2. R.UPENDRA RAO
No. of Lecture Hours per week:4	No. of Tutorial Hours per week:1
Credits:3	

Course Objectives:

Students will be able to:

- To give students an introduction to elementary probability theory, in preparation for courses on statistical analysis, random variables and stochastic processes.
 To mathematically model the random phenomena with the help of probability theory concepts.
 - 3. To introduce the important concepts of random variables and stochastic processes.
 - 4. To introduce the types of noise and modeling noise sources.

Course Outcomes:

At the end of the course, the students will develop ability to:

- 1. Understand the axiomatic formulation of modern Probability Theory, Characterize probability models and random variables, function of random variables and formulate fundamental probability distribution and density functions.
- 2. Explain the concepts of expectation and conditional expectation, Evaluate and apply moments & characteristic functions, transformation of a random variable.
- 3. Understand the joint distribution function, joint density function, concept of inequalities, and operations on two random variables and multiple random variables.
- 4. Understand the concept of random processes and determine covariance, Analyze continuous and discrete- time random processes, Explain the concepts of stationary and wide sense stationary process, autocorrelation, cross correlation functions.
- 5. Understand the concept of random processes, spectral density of stationary random processes and cross power density spectrum, apply the above knowledge to solve basic problems.
- 6. Apply the theory of stochastic processes to analyze linear systems with random inputs and the systems in the presence of different types of noise sources.

CO-PO Mapping:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2								
CO2	3	1	2	1								
CO3	3	2	3	1								
CO4	2	1	3	1								
CO5	2	1	-	2								
CO6	2	1	2	3								
Total	15	9	12	10								
Avg.	2.5	1.5	2	1.66								

Pre-Requisites for the Course:

Students are expected to have knowledge on the following topics:

S. No	Торіс
1.	Calculus skills.
2.	Solution of ordinary differential equations.
3.	Fourier transform
4.	Linear Systems

Course Description:

Probability theory, Stochastic Processes and Statistical Signal Processing are essential for research in the area of Artificial Intelligence (AI), Signal Processing (SP) and Communication Engineering (CE) and many other fields, where there is uncertainty or randomness. Uncertainty or randomness is the common phenomena in the world. However, the probability theory and stochastic processes is a rich and sophisticated field of mathematics with a reputation for being confusion. This is due to either lack of basic concepts and knowledge of interpretation of these concepts to the real world problems where there is uncertainty. If some are good enough in the solving algebraic equations, they are not able to model or interpret the uncertainty of real world applications. If some people are able to model or interpret the real world applications with probabilistic equations, they are not able to solve them.

PTSP, which is essential for scientists and engineers working in the area of Artificial intelligence, Signal processing and communication, requires lot of practice for clear in-depth understanding to interpret and solve the problems.

Course Content (Syllabus):

UNIT I

THE RANDOM VARIABLE : Introduction, Review of Probability Theory, Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variables, Distribution and Density functions, Properties, Binomial, Poisson,

Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Conditional Density, Properties.

OPERATION ON ONE RANDOM VARIABLE – EXPECTATIONS : Introduction, Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Characteristic Function, Moment Generating Function.

UNIT II

MULTIPLE RANDOM VARIABLES: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density, Statistical Independence.

OPERATIONS ON MULTIPLE RANDOM VARIABLES: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case.

UNIT III

RANDOM PROCESSES – TEMPORAL CHARACTERISTICS: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, Concept of Stationary and Statistical Independence.First-Order Stationary Processes, Second-order and Wide-Sense Stationarity, Nth-order and Strict-Sense Stationarity.

Time Averages and Ergodicity, Autocorrelation Function and its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process.

UNIT IV

RANDOM PROCESSES – SPECTRAL CHARACTERISTICS: The Power Density Spectrum: Properties, Relationship between Power Density Spectrum and Autocorrelation Function, Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Density Spectrum and Cross-Correlation Function.

Modeling of Noise Sources: Resistive (Thermal) Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Average Noise Figure, Average Noise Figure of cascaded networks.

Text Books:

- 1. Probability, Random Variables & Random Signal Principles, Peyton Z. Peebles, TMH, 4th Edition, 2001.
- 2. Probability, Random Variables and Stochastic Processes, Athanasios Papoulis and S.Unnikrisha, PHI, 4th Edition, 2002.

References:

- 1. Probability Theory and Stochastic Processes B. Prabhakara Rao, BS Publications.
- 2. Probability and Random Processes with Applications to Signal Processing, Henry Stark and John W. Woods, Pearson Education, 3rd Edition.
- 3. Schaum's Outline of Probability, Random Variables, and Random Processes.
- 4. An Introduction to Random Signals and Communication Theory, B.P. Lathi, International Textbook, 1968.
- 5. Random Process Ludeman , John Wiley
- 6. Probability Theory and Random Processes, P. Ramesh Babu, McGrawHill, 2015.

			OOPS th	rough J	AVA (Op	en F	Elective)	
Name of th Program &Bra	e anch	B.T. con En	Fech & Electroni nmunications an gineering	c d	Academic	e Yea	r& Semester	2019-2020 & II Semester
Course Titl	e	00	OPS through JA	VA	Co	ourse	Theory	
Course Struct	ure		Lecture – Tutorial – Practical–	3 0 0 0			Hours	3
Number of Credits 3 Total No. of C					No. of Class	es pe	r Semester	60
Course Coc	le			Theor	ry Hours	60	Lab Hours	0
Regulatior	1		NRIA18	Course Area/Module			Progr	amming
Name of the Cours and Depar			Coordinator ent	Course for 7	Instructors Theory	Course Instructors for Practical		
K.V Computer Se	/amsi cience	Kris and	hna Engineering	K.Vamsi S.Asha V	Krishna ′arma			
			Internal total		40	E	xternal Total	60
Assessment in Marks	10	0	Internal Theory Marks		40	Ext	ernal Theory Marks	60
			Internal Practical Marks		00	Pra	External actical Marks	00
Date o Commence	f ment		18-11-2019		Date of Closure			
			Total No. of stu	idents regi	stered			

Course Description:

Java is the most popular platform, which is used to develop several applications for the systems as well as embedded devices like mobile, laptops, tablets and many more. It is an object oriented programming language and has a simple object model, as it has derived from C and C++. It provides a virtual machine, which is accumulated with byte-code and can run on any system. With time the importance and popularity of Java is on rise as it has the magic in its remarkable abilities to innovate and morph as the technology landscape changes. It is the language of choice for developing applications for the BlackBerry Smartphone. It is important for information technology industry to develop and create multiple web-based or server based applications to enhance the industrial competency. There is huge scope for this programming language

Course Objectives:

Students will be able to:

1.	To introduce the object oriented programming concepts.
2.	To understand object oriented programming concepts, and apply them in solving
	Problems.
3.	To introduce the principles of inheritance and polymorphism; and demonstrate
	how they relate to the design of abstract classes
4.	To introduce the implementation of packages and interfaces
5.	To introduce the concepts of exception handling and multithreading.
6.	To introduce the design of Graphical User Interface using applets.

Course Outcomes:

At the end of the course, the students will develop ability to:

1. Able to solve real world problems using OOP techniques.

2. Able to **understand** the use of abstract classes and Packages in java.

3. Able to **develop** and **understand** exception handling and Interfaces in java

4. Able to understand multithreaded applications with synchronization and **design** GUI based applications and **develop** applets for web applications

Courses Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C125.1	3	3	-	-	-	-	-	-	-	-	-	3
C125.2	3	3	3	-	-	-	-	-	-	-	-	3
C125.3	3	3	3	2	-	-	-	-	2	-	-	3
C125.4	3	3	3	2	-	-	-	-	2	-	-	3
Total	12	12	9	4	-	-	-	-	4	-	-	12
Average	3	3	2	0.67	-	-	-	-	0.67	-	-	3

Pre-Requisites for the Course:

Students are expected to have knowledge on the following topics:

S. No	Торіс								
1	Basic Knowledge on computer usage								
2	Basic knowledge on C								

Course Content (syllabus):

UNIT I

Introduction to OOP, Procedural Programming Language and Object Oriented Language, Principles of OOP, Applications of OOP, History of Java, Java features, Java

Virtual Machine (JVM), Java Program Structure, Variables, Primitive data types, Identifiers, Literals – Examples, Operators, expressions – Examples, Precedence Rules and Associativity, Primitive Type Conversion and Casting, Flow of Control, Classes and objects, Class Declaration, Creating Objects, Methods, Method Overloading

UNIT II

Constructors – Examples, Constructor Overloading, Garbage collector, Importance of static overriding, keyword and examples, this keyword – Examples, Arrays, command line arguments, Nested Classes., Inheritance, types of inheritance, Forms of Inheritance, super keyword, final keyword, Polymorphism an its and implementation, Method Creating the packages, using packages, importance of CLASSPATH, Access Protection, importing packages.

UNIT III

Interfaces, implementing interfaces, Nested Interfaces, Variables in interfaces, Multiple inheritance of interfaces, Differences between abstract class & interfaces, Exception handling, importance of try, catch, throw, throws and finally block, user-defined exceptions, Assertions.

UNIT IV

Multithreading: Introduction, differences, Thread life cycle, Creation of threads, Thread priorities, Thread Synchronization, Communication between Threads. Reading data from files and writing data to files, Files & random access file, Applet class, Applet structure, Applet life cycle, sample Applet programs,

Text Books:

- 1. The Complete Reference Java, 8th edition, Herbert Schildt, TMH.
- Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.

Reference Books:

- 1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons.
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.
- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
- 5. Java Programming and Object oriented Application Development, R. A. Johnson, Cengage Learning.

e-Resources:

- 1. http://www.javatpoint.com/
- 2. java.sun.com/docs/books/tutorial/java/TOC.html
- 3. http://www.learnjavaonline.org/
- 4. http://www.tutorialspoint.com/java/

Professional Ethics and Human Values

(Common to all branches)

Lecture – Tutorial:	0-2	CIA:	40
Credits:	0	SEA:	60

Prerequisites:

Course Objectives:

- To create awareness on engineering ethics and human values.
- To understand social responsibility of an engineer.
- To instill moral and social values and loyalty.

Cours	Course Outcomes:											
Upon	Upon successful completion of the course, the student will be able to:											
CO1	G	rooms th	nemselv	ves as et	hical, r	esponsi	ble and	societa	l beings	5.		
CO2	D	Discuss ethics in society and apply the ethical issues related to engineering.										
CO3	E	Exhibit the understanding of ethical theories in professional environment.										
CO4	R et	Recognize their role as social experimenters (engineers) and comprehend codes of ethics.										
CO5	Id fi	Identify the risks likely to come across in the professional world, analyzing them and find solutions.										
CO6	R	ealize th	e respo	nsibiliti	es and a	rights of	f engine	eers in t	he socie	ety.		
Contribution of Course Outcomes towards achievement of Program Outcomes												
(1 - L)	.ow, 2-	Mediu	m, 3 – 1	High)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						1	1	2				1
CO2						1	1	2				1
CO3						1	1	2				1
CO4											1	
CO5						1	1	2				1
CO6						1	1	2				1

UNIT I

Human Values: Objectives, Morals, Values, Ethics, Integrity, Work ethics, Service learning, Virtues, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Challenges in the work place.

Engineering ethics

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles – Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.

UNIT II

UNIT III

Engineering as Social Experimentation: Engineering as experimentation, Engineers as responsible experimenters, Codes of ethics, Industrial standards, A balanced outlook on law, Case study: The challenger.

UNIT IV

Safety, Responsibilities and Rights: Safety and risk, types of risks, Assessment of safety and risk, Safe exit, Risk-benefit analysis, safety lessons from 'the challenger', Case study: Power plants, Collegiality and loyalty, Collective bargaining, Confidentiality, Conflict of interests, Occupational crime, whistle blowing, Intellectual property rights, professional rights.

Text Books:

- A Text book on Professional Ethics and Human Values by R.S Naagarazan- New Age International Publishers.
- "Engineering Ethics includes Human Values" by M. Govindarajan, S. Natarajan and V.
 S. Senthil Kumar- PHI Learning Pvt. Ltd-2009

Reference Books:

"Professional Ethics and Human Values" by A. Alavudeen, R. Kalil Rahman and M. Jayakumaran- Laxmi Publications.

E-Resources:

- www.onlineethics.org
- www.nspe.org
- www.globalethics.org
- www.ethics.org

Analog Communications Laboratory

LIST OF EXPERIMENTS

All the Following Experiments must be conducted

- 1. Amplitude Modulation & Demodulation
- 2. Diode detector characteristics
- 3. DSB SC Modulation & Demodulation.
- 4. Frequency Modulation & Demodulation
- 5. Pre-emphasis & De-emphasis
- 6. AGC Circuits characteristics
- 7. Verification of Sampling Theorem
- 8. Pulse Amplitude Modulation & Demodulation.
- 9. PWM, PPM Modulation & Demodulation
- 10. Radio receiver characteristics

Equipment required:

1. RPS	-	(0-30) V
2. CRO	-	(0 - 20) M Hz
3. Function Generators	-	(0-1) M Hz

4. Trainer kits

Analog and Pulse Circuits Laboratory

Note: The students are required to design the circuit and verify the result using necessary hardware equipment

All the following Experiments should be conducted in laboratory

List of Experiments :

- 1. CE Amplifier
- 2. Current Shunt Feedback Amplifier
- 3. RC Phase Shift Oscillator
- 4. Colpitt's Oscillator
- 5. Class A Series fed Power Amplifier
- 6. Linear Waveshaping Circuits
- 7. Non Linear Waveshaping Circuits Clippers
- 8. Non Linear Waveshaping Circuits Clampers
- 9. Monostable Multivibrator
- 10. Astable Multivibrator

Equipment required for Laboratory:

- **1.** RPS 0 30 V
- **2.** CRO 0 20 M Hz.
- 3. Function Generators 0 1 M Hz
- 4. Digital Multimeters
- 5. Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Decade Inductance Boxes
- 8. Active & Passive Electronic Components

Content beyond syllabus:

Multisim/ Equivalent Industrial Standard Licensed simulation software tool

Digital Electronics & Logic Design Laboratory

LIST OF EXPERIMENTS

All the following Experiments should be conducted in laboratory

- 1. Verification of basic logic gates
- 2. Verification of universal logic gates
- 3. Design & verify the circuit for given canonical expression.
- 4. Design & verify 4X1 Multiplexer.
- 5. Design & verify 1X4 De-Multiplexer.
- 6. Construct half adder & Full adder using half adder & verify truth tables.
- 7. Construct half subtractor & Full subtractor using half subtractor & verify truth tables.
- 8. Verify the truth tables of various Flip Flops.
- 9. Design & verification of Decade counter.
- 10. Design & verification of 4 bit ring counter using D Flip flop.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE FOR THIRD YEAR B.TECH PROGRAMME-NRIA 18 III YEAR I SEMESTER

		Title of the Course	Inst	Sci ruct Pe	neme zion (l r Wee	of Periods k)	S Ez (Max			
S1. No	Course Code		L	т	Р	Total	CIA	SEA	Total	No. of Credits
1	PC	Linear and Digital Integrated Circuits	3	1	-	4	40	60	100	4
2	PC	Digital Communications	3	1	-	4	40	60	100	4
3	PC	Antennas and Wave Propagation	3	1	-	4	40	60	100	4
4	PE	 Professional Elective I i. Electronic measurements & Instrumentation ii. Telecommunication Switching and Networks iii. Computer Architecture & Organization 	3	_	_	3	40	60	100	3
5	OE	Open Elective III	3	-	-	3	40	60	100	3
6	MC	IPR and Patents	2	-	-	2	40	60	100	0
7	PC LAB	Linear and Digital Integrated Circuits Laboratory	-	-	2	2	40	60	100	1
8	PC LAB	Digital Communications Laboratory	-	_	2	2	40	60	100	1
9	PC LAB	VHDL Programming Laboratory	-	-	2	2	40	60	100	1
		Total	17	3	6	26	360	540	900	21

III YEAR II SEMESTER

		Title of the Course	Sch (P	eme o eriod	of Ins s Per	truction Week)	E (Max	Scheme xamina timum l	: of tion Marks)	
S1. No	Course Code		L	Т	Р	Total	CIA	SEA	Total	No. of Credits
1	PC	VLSI Design	3	1	-	4	40	60	100	4
2	PC	Digital Signal Processing	3	1	-	4	40	60	100	4
	PC	Microprocessors and Microcontrollers	3	1	_	4	40	60	100	4
4	PE	Professional Elective II i. Cellular and Mobile Communication ii. Digital System Design iii. Electromagnetic Interference & Electromagnetic Compatibility	3	_	_	3	40	60	100	3
5	OE	Open Elective IV	3	-	-	3	40	60	100	3
6	PC LAB	Microprocessors and Microcontrollers Laboratory	_	_	2	2	40	60	100	1
7	PC LAB	Digital Signal Processing Laboratory	-	I	2	2	40	60	100	1
8	PC LAB	VLSI Laboratory		-	2	2	40	60	100	1
		Total	15	3	6	24	320	480	800	21

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

B.TECH ECE III- I SEMESTER

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - I Semester

L T P C 3 1 0 4

Linear and Digital Integrated Circuits

	Lincui	und Digital Integrate									
Lecture	– Tutorial:	3 -1 Hours	Internal Marks:	40							
Credits		4	External Marks:	60							
Prere	quisites: Electronic	Devices & Circuits, Digital Electro	onics & Logic Design, and P	ulse &							
		Digital Circuits									
Course	Objectives:										
• Te	o understand the bas	ic operation & performance parameter	eters of differential amplifier	s.							
• T	o understand & learn	the measuring techniques & perfo	ormance parameters of OP-A	MP.							
• To learn the linear and non-linear applications of operational amplifiers.											
• To understand the analysis & design of different types of active filters using OP-AMP.											
• T	b learn the internal st	tructure, operation and application	s of different ICs.								
• T	Design and implen	nentation of combinational and sec	uential digital logic circuits.								
Course	Outcomes:		5 5								
Upon st	ccessful completion	n of the course, the student will b	e able to:								
CO1	Apply Differential	amplifier circuits and gains knowl	edge in OP-AMPs.								
CO2	Differentiate and gain knowledge in various applications of O-PAMPS.										
CO3	Analyze and design amplifiers and active filters using Op-amp.										
CO4	Interpret the operational amplifiers with linear integrated circuits.										
CO5	Understand basic digital circuits with combinatorial and sequential logic circuits.										
CO6	Apply the structur families.	res of commercially available A	nalog & Digital integrate	d circuit							
Course	Content(Syllabus)										
		<u>UNIT I</u>									
DIFFERENTIAL AMPLIFIERS: Introduction, DC and AC analysis of Dual input Balanced output Configuration, Properties of other differential amplifier configurations, Integrated circuits-Types, Classification, Package Types and Temperature ranges, Power supplies. OP-AMPS : Introduction to OP-amp, Characteristics of OP-Amps, Op-amp Block Diagram, ideal and practical Op-amp Specifications, DC and AC characteristics, 741 op-amp & its features, Op-Amp parameters & Measurement, Input & Output Off set voltages & currents, Slew rate, CMRR, PSRR, drift.											
		<u>UNIT II</u>									
OP-AMI Instrumer and Squa OP-AMI reject an HPF,BPF	P APPLICATIONS ntation Amplifier, AC re Wave generators, S P FILTERS: Introduc d all pass filters. I C, BRF and All pass filt	S: Inverting and Non-Inverting Amplifier, Differentiator and Integra chmitt Trigger, Log and Anti log Am tion to Active Filters, Characteristics Design and analysis of Butterwort ers. UNIT III	amplifiers, Difference A ator; Comparator, Triangular, S plifiers. of Low pass, high pass, band p h active filters1 st - 2 nd or	Amplifier, Saw-tooth Dass, band der LPF,							

TIMERS & PHASE LOCKED LOOPS: Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger; PLL - introduction, block schematic, principles and description of individual blocks, 565 PLL, Applications of PLL – frequency multiplication, frequency translation and Amplitude Modulation.

D/A and A/D CONVERTERS: Introduction, Basic DAC techniques, Different types of DACs-Weighted

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

resistor DAC, R-2R ladder DAC, Inverted R-2R DAC, Different Types of ADCs - Parallel Comparator Type ADC, Counter Type ADC, Successive Approximation ADC and Dual Slope ADC, DAC and ADC Specifications.

UNIT IV

COMBINATIONAL LOGIC DESIGN ICs: Decoders-74x138, 74x139, Encoders-74x148 Priority Encoder, Multiplexers-74x151 MUX, Demultiplexers -74X155, Barrel shifter.

SEQUENTIAL LOGIC DESIGN ICs: 8-Bit Latch 74x373, Flip Flops-D Flip Flop74X74, JK Flip Flop74X109, Counters- 74x163 4-Bit Binary Counter, 74X163 as Modulus-N Counter, Universal Shift Register 74x194.

TEXT BOOKS:

1. 1. Linear Integrated Circuits – D. Roy Choudhury, New Age International (p) Ltd, 2nd Edition, 2003.

2. Op-Amps & Linear ICs - Ramakanth A. Gayakwad, PHI,1987.

3. Operational Amplifiers-C.G. Clayton, Butterworth & Company Publ. Ltd./Elsevier, 1971

4. Digital Design Principles & Practices – John F. Wakerly, PHI/ Pearson Education Asia, 3rd Ed., 2005. **REFERENCES:**

1 Operational Amplifiers & Linear Integrated Circuits - Sanjay Sharma ;SK Kataria Sons;2nd Edition,2010

2. Design with Operational Amplifiers & Analog Integrated Circuits - Sergio Franco, McGraw Hill, 1988.

3. Operational Amplifiers & Linear ICs – David A Bell, Oxford Uni. Press, 3rd Edition

4. Fundamentals of Digital Logic Design- Stephen Brown, ZvonkoVranesic, McGrawHill

E-Resources :

1. <u>https://www.tutorialspoint.com/linear_integrated_circuits_applications/index.htm</u>

- 2. <u>https://www.electronics-tutorials.ws/opamp</u>
- 3. https://www.elprocus.com/operational-amplifiers/
- 4. http://www.ee.surrey.ac.uk/Projects/CAL/seq-switching/General_seq_circ.htm
- 5. https://www.electronics-tutorials.ws/combination/comb_1.html

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program Specific outcomes (PSO)

(1 – Low, 2- Medium, 3 – High)

			-	•										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	-	2	-	-	-	-	-	-	-	-	-	-
CO2	2	3	-	2	-	-	-	3	-	-	-	-	3	-
CO3	-	3	-	-	3	-	-	-	-	-	2	-	-	-
CO4	3	-	-	3	-	3	-	-	-	2	-	-	-	2
CO5	2	2	-	-	-	-	2	-	-	-	-	-	3	-
CO6	-	2	-	2	-	-	-	-	-	2	-	-	3	2

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - I Semester

L T P C 3 1 0 4

DIGITAL COMMUNICATIONS								
Lecture -	- Tutorial:	3-1 Hours	Internal Marks:	40				
Credits:		4	External Marks:	60				
Prerequi	sites: Basics of Con	mmunications, Signals and Systems ar	nd Probability and Rande	om				
processes	•							
Course C) bjectives:							
1. To ac	quire basic knowled	dge of digital communication systems	and its advantages.					
2. To a	nalyze various p	ulse digital and digital modulation	on techniques and the	eir error				
performa	nce.							
3. To un	derstand and analy	ze various source coding and chann	el coding techniques.					
Course C	Outcomes:							
Upon suc	cessful completion	n of the course, the student will be a	ble to:					
CO1	Apply the knowle	dge of statistical theory of communica	tion and understand the	basics of				
	digital communica	ation systems.						
CO2	Analyze the perfo	rmance of digital modulation techniq	ues for generation, dete	ction and				
	digital representation	ion of the signal.						
CO3	Explore the proba	bility of error for various digital mod	lulation techniques with	the help				
	of random variable	es and filters.						
CO4	Integrate and appl	y the basics of information theory to	the communication and	compute				
	entropy, information rate of the source.							
CO5	Understand and a	analyze the source coding techniques a	and channel capacity.					
CO6	Compute and anal	yze different error control coding sch	emes for reliable transn	nission of				
	digital information over the channel.							
Course Content (Syllabus)								
		UNIT I						

INTRODUCTION TO DIGITAL COMMUNICATION:

Elements of digital communication systems, advantages of digital communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization error, Companding in PCM systems.

Differential PCM systems (DPCM). Delta modulation, its draw backs, adaptive delta modulation, comparison of PCM and DM systems.

<u>UNIT II</u>

Introduction, Line Codes, ASK, FSK, PSK, DPSK, DEPSK, QPSK, coherent reception, non-coherent detection, M-ary PSK, ASK, FSK.

Probability of error, the optimum filter, matched filter, probability of error using matched filter, calculation of error probability of ASK, BPSK, BFSK, QPSK.

UNIT III

INFORMATION THEORY:

Discrete messages, concept of amount of information and its properties. Average information, Entropy and its properties. Information rate, Mutual information and its properties.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

SOURCE CODING:

Introductions, Advantages, Shannon's theorem, Shanon-Fano coding, Huffman coding, efficiency calculations, channel capacity of discrete and analog Channels, capacity of a Gaussian channel, bandwidth –S/N trade off.

UNIT IV

LINEAR BLOCK CODES:

Introduction, Matrix description of Linear Block codes, Error detection and error correction capabilities of Linear block codes, Hamming codes, Binary cyclic codes, Algebraic structure, encoding, syndrome calculation.

CONVOLUTION CODES:

Introduction, encoding of convolution codes, Graphical approach: state, tree and trellis diagram, decoding using Viterbi algorithm.

TEXT BOOKS:

1. Digital communications - Simon Haykin, John Wiley, 2005

2. Principles of Communication Systems - H. Taub and D. Schilling, TMH, 2003

REFERENCES:

1 Digital and Analog Communication Systems - Sam Shanmugam, John Wiley, 2005.

2. Digital Communications – John Proakis, TMH, 1983. Communication Systems- Analog & Digital – Singh & Sapre, TMH, 2004.

3. Modern Analog and Digital Communication – B.P.Lathi, Oxford reprint, 3rd edition, 2004.

Contribution of Course Outcomes towards achievement of Program Outcomes (PO) and Program	
Specific outcomes (PSO) (1 – Low, 2- Medium, 3 – High)	

	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	-	-	-	-	2	-	-	-	3	-	-	3
CO2	-	3	2	-	-	2	-	-	-	-	-	-	2	-
CO3	2	-	-	3	-	-	-	-	2	-	-	2	-	-
CO4	-	2	-	2	-	-	-	-	-	3	-	-	-	3
CO5	2	-	3	-	-	-	-	3	-	-	-	2	-	-
CO6	-	3	2	-	3	-	-	-	-	-	-	-	-	2

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - I Semester

L T P C 3 1 0 4

	ANTE	NNAS AND WAVE PRO	PAGATIO	JN					
Lecture –	Tutorial:	3-1 Hours		Internal Marks:	40				
Credits:		4		External Marks:	60				
Prerequis	Prerequisites: EM Waves and Transmission Lines.								
Course O	Course Objectives:								
• To i	• To introduce the fundamental principles of antenna theory and to apply them for the analysis,								
design.									
• To i	ntroduce to the des	ign principles of different an	ntenna array	ys.					
• To	understand the radi	ation mechanism of various	s types of a	antennas and also to le	arn about				
the basic p	arameters of antenr	has and their measurement.							
• To ı	understand the wave	e propagation over ground a	nd through	different layers of atm	osphere.				
Course O	utcomes:								
Upon suc	cessful completion	of the course, the student	will be abl	e to:					
CO1	Understand the ba	asic antenna radiation parar	meters and	radiation mechanism	of single				
	wire & two wire a	ntennas with current distribu	ution analy	sis.					
CO2	Quantify the radi	ation fields and powers radi	iated by di	pole antennas also ana	lyze their				
	radiation character	ristics using mathematical ap	pproach.						
CO3	Illustrate the di	fferent types of arrays	and their	radiation patterns v	vith both				
	mathematical and	geometrical analysis.							
CO4	Understand the g	eometry and working princi	iple of ope	ration of non resonant	radiators				
	and micro strip an	tennas with qualitative analy	/sis.						
CO5	Design Microwa	ve antennas also Analyze a	antenna me	easurements to assess	antenna's				
	performance.								
CO6	Identify and distin	nguish the characteristics of	different n	nodes of radio wave pr	opagation				
	in the atmosphere	with both qualitative and qu	antitative t	reatment.					

Course Content(Syllabus) UNIT I

Part-A (Antenna Fundamentals): Introduction, Radiation Mechanism – single wire, 2 wire. Antenna Parameters - Radiation Patterns, Patterns in Principal Planes, Main Lobe and Side Lobes, Beamwidths, Beam Area, Radiation Intensity, Beam Efficiency, Directivity, Gain and Resolution, Antenna Apertures, Aperture Efficiency, Effective Height, illustrated Problems.

Part-B(**Thin Linear Wire Antennas**): Retarded Potentials, Dipoles, Current Distribution on a thin wire antenna ,Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Directivity, Effective Area . Natural current distributions and patterns of Thin Linear Center-fed Antennas of different lengths.

<u>UNIT II</u>

Part-A(Antenna Arrays-I):2 element arrays – different cases, Principle of Pattern Multiplication, N element Uniform Linear Arrays – Broadside, End-fire Arrays, EFA with Increased Directivity,

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Directivity Relations (no derivations). Related Problems.

Part-B(Antenna Arrays-II):Concept of Scanning Arrays. Binomial Arrays, Effects of Uniform and Non-uniform Amplitude Distributions, Design Relations. Arrays with Parasitic Elements, Yagi-Uda Arrays.

UNIT III

Part-A(**Non-Resonant Radiators**) : Introduction, Traveling wave radiators – basic concepts, Long wire antennas –field strength calculations and patterns, Helical Antennas – Significance, Geometry, basic properties; Design considerations of helical antennas in Axial Mode and Normal Modes (Qualitative Treatment).

Part-B(**Microstrip Antennas**):Introduction, Definition, Basic geometry, Features, Advantages and Limitations, Different Shapes of patch elements, Rectangular Patch Antennas –Geometry and Parameters, Radiation Mechanism of Microstrip antenna. Characteristics of Microstrip antennas, Impact of different parameters on characteristics.

UNIT IV

Part-A(**Microwave Antennas**): Paraboloidal Reflectors – Geometry, characteristics, types of feeds, Spill Over, Back Lobes, Aperture Blocking, Cassegrain Feeds. Horn Antennas – Types, Optimum Horns, Design Characteristics of Pyramidal Horns; Antenna Measurements – Directivity and Gain Measurements.

Part-B(Wave Propagation): Concepts of Propagation – frequency ranges and types of propagations. Ground Wave Propagation–Characteristics, Parameters, Wave Tilt.Sky Wave Propagation – Formation of Ionospheric Layers and their Characteristics, Mechanism of Reflection and Refraction, Critical Frequency, MUF and Skip Distance, Optimum Woking Frequency, Virtual Height, Ionospheric Abnormalities,. Fundamental Equation for Free-Space Propagation, Space Wave Propagation– Mechanism, LOS and Radio Horizon. Effective Earth's Radius, Duct Propagation, Tropospheric Scattering.

TEXT BOOKS:

1. Antennas and Wave Propagation– John D. Kraus and Ronald J. Marhefka, 4th Edition, TMH, 2010.

2. Electromagnetic Waves and Radiating Systems – E.C. Jordan and K.G. Balmain, PHI, 2nd Edition.

REFERENCES:

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

1. Antenna Theory - C.A. Balanis, John Wiley and Sons, 2nd Edition, 2001.

2. Antennas and Wave Propagation – K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.

3. Micro strip Antenna Design Hand Book – Ramesh Garg, Prakash Bhartia, Inder Bahl, Apisak Ittipiboon, Artech House, second edition 2001

4. Transmission and Propagation – E.V.D. Glazier and H.R.L. Lamont, The Services Text Book of Radio, vol. 5, Standard Publishers Distributors, Delhi.

5. Electronic and Radio Engineering – F.E. Terman, McGraw-Hill, 4th Edition, 1955.

6. Antennas – John D. Kraus, McGraw-Hill, 2nd Edition, 1988

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

opeen	specific outcomes (1505) (1 100, 2 metulum, 5 mgn)													
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	-	2	-	-	-	-	-	-	-	-	-	-	2
CO2	-	3	3	2	-	-	2	2	-	-	-	-	-	3
CO3	2	3	-	3	-	-	-	-	-	-	-	-	-	-
CO4	2	-	3	3	-	-	-	-	-	-	2	-	-	3
CO5	2	3	-	-	-	2	-	2	-	-	-	-	2	-
CO6	-	3	2	-	-	-	-	-	-	-	-	-		-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - I Semester

L T P C 3 0 0 3

PROFESSIONAL ELECTIVE – I

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Lectur	e – Tutorial:	3-0 Hours	Internal Marks:	40					
Credits	5:	3	External Marks:	60					
Prereq	Prerequisites: Electrical circuits, Electronic Devices and circuits.								
Course	Objectives:								
• I	ntroduce the basic con	cepts related to the operation of	f electronic measuring instrum	ents.					
• A	Acquire a sound unde	rstanding theory and performa	ance characteristics of instrur	ments and					
errors in	n measurement and ap	ply to DC voltmeters, ammeters	s, ohmmeters.						
•]	To analyze fundament	al characteristics of Micro str	rip lines through electromagn	netic field					
concept	ts.								
• (Compare and contrast c	lifferent types of oscilloscopes.							
• 5	select different types of	f D.C and A.C bridges for meas	surement of passive component	its.					
• 5	Study the principles be	hind various transducers and the	heir applications in the measu	rement of					
various	parameters.								
Course	e Outcomes:								
Upon s	uccessful completion	of the course, the student will	l be able to:						
CO1	Understand the fundation	mental concepts instrumentation	on, basic concepts of measurin	g systems					
	and characteristics of	measuring systems.							
CO2	Describe different typ	bes of meters and understanding	g the operation of meters.						
CO3	Analyze Different t	ypes of signal generators and	d signal analyzers and their	working					
	principles.			_					
CO4	Interpret the different	types of Oscilloscopes and the	ir working principles.						
CO5	Explore the different	types of A.C. and DC Bridges a	and their operations.						
CO6	Demonstrate the diffe	erent types of transducers and th	neir principles and operations.						
Course	Content(Syllabus)								
		τινιτή τ							

UNIT I

Performance Characteristics of Instruments: Block Schematic of Measuring Systems, Static characteristics, Accuracy, Resolution, Precision, Expected value, Error, Sensitivity. Dynamic Characteristics-speed of response, Fidelity, Lag and Dynamic error, Types of Errors.

DC & AC Meters: Basic DC Voltmeter, Multi-range Voltmeters, Range extension/Solid state and differential voltmeters, AC voltmeters, Digital Voltmeters: Ramp Type, Staircase, Dual slope integrating type, Successive Approximation type, Ohmmeters series type, shunt type, Multi-meter for Voltage, Current and resistance measurements.

<u>UNIT II</u>

Signal Generators: fixed and variable AF oscillators, Standard AF sine and square wave signal generators, Function Generator, Square pulse, Random noise, sweep, Arbitrary waveform generator.

Wave Analyzers: Harmonic Distortion Analyzer, Spectrum Analyzer, Digital Spectrum Analyzer,

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Digital Fourier Analyzer, Power analyzer.

<u>UNIT III</u>

Oscilloscopes: CRT, Block Schematic of CRO, vertical amplifiers, horizontal deflection system, sweep, trigger pulse, delay line, sync selector circuits.

Special Oscilloscopes: Dual beam CRO, Dual trace oscilloscope, sampling oscilloscope, digital readout oscilloscope, digital storage oscilloscope, Lissajous method of frequency measurement, standard specifications of CRO, probes for CRO- Active & Passive, attenuator type.

<u>UNIT IV</u>

Bridges: Measurement of Resistance – Wheatstone,Kelvin Bridge, Measurement of inductance-Maxwell's bridge, Anderson Bridge. Measurement of capacitance - Shearing Bridge. Wheat stone bridge. Wien Bridge.

Transducers- active & passive transducers : Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors. Measurement of physical parameters force, pressure, velocity, humidity, moisture, speed. Basic block diagram of Data acquisition systems, single channel and multi-channel DAS.

TEXT BOOKS:

1. Electronic Instrumentation, second edition-H.S.Kalsi, Tata McGraw Hill, 2004.

2. Modern Electronic Instrumentation and Measurement Techniques- A.D.Helfrick and W.D.Cooper, PHI, 5th Edition, 2002.

REFERENCES:

1. Electronic Instrumentation & Measuements- David A. Bell, PHI,2nd Edition,2003.

2. Electronic Measurements and Instrumentation by K.Lal Kishore, Pearson Education-2005.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

	РО	PO	РО	РО	РО	РО	PS	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	-	-	3	-	-	-	-	-	-	-	3	-
CO2	-	3	-	-	3	-	-	3	-	3	-	-	-	-
CO3	2	-	-	-	-	-	-	-	3	-	-	3	-	-
CO4	-	-	-	2	-	3	-	-	-	-	-	-	3	-
CO5	3	3	-	2	-	-	3	-	-	-	2	-	-	2
CO6	3	-	3	-	-	-	-	-	-	-	-	-	2	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - I Semester

L T P C 3 0 0 3

TELECOMMUNICATION SWTICHING NETWORKS PROFESSIONAL ELECTIVE - I

Lecture – Tutorial:	3-0 Hours	Internal Marks:	40					
Credits:	3	External Marks:	60					
Prerequisites: Fundamental knowledge of Analog and Digital circuits, Basic knowledge of Analog								
and Digital Communication, Analytical skills for communication systems and mathematical								
knowledge.								

Course Objectives:

- To understand various switching systems.
- To learn in detail about stored program control.
- To know about time division switching concepts.
- To study the basic telephone network structures.
- To understand various internet concepts like LAN, WAN and MAN.
- To gain knowledge on telecommunication traffic and ISDN.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- **CO1** Analyze the need for switching systems and their evolution from analog to digital.
- **CO2** Explore the types of stored program control.
- **CO3** Interpret the concepts of space switching, time switching and combination switching.
- **CO4** Differentiate between signalling methods used in telecommunication networks.
- CO5 Exhibit good knowledge on data communication networks and be able to differentiate LAN, WAN and MAN.

CO6 Demonstrate and work on telecommunication traffic and ISDN services.

Course Content(Syllabus)

UNIT I

UNIT I: INTRODUCTION:

Evolution of telecommunications, Basics of switching system – general principle and elements, Classification of switching system.

CROSSBAR SWITCHING:

Principles of crossbar switching, Crossbar switch configurations, Cross point technology, Crossbar exchange organization.

<u>UNIT II</u>

ELECTRONIC SPACE DIVISION SWITCHING:

Stored program control, Centralized SPC, Distributed SPC, Enhanced services, Two stage networks, Three stage networks, n stage networks.

TIME DIVISION SWITCHING:

Time multiplexed space switching, Time multiplexed time switching, Combination switching, Three stage Combination switching, n stage Combination switching.

UNIT III
(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

TELEPHONE NETWORKS:

Subscriber loop systems, Switching hierarchy and routing, Transmission plan, Transmission systems, Numbering plan, Charging plans, In channel signalling, Common channel signalling.

PUBLIC SWITCHED DATA NETWORKS:

Connection oriented and Connection less service, Circuit switching, Packet switching, Virtual switching concepts, LAN, WAN, MAN, Internetworking.

UNIT IV

TELECOMMUNICATION TRAFFIC:

The unit of traffic, Congestion, Traffic measurement, A mathematical model, Lost call systems, Queuing systems.

INTEGRATED SERIVES DIGITAL NETWORK:

Introduction, Motivation, New services, Network and protocol architecture, Transmission channels, User network interfaces, Signaling, Numbering &Addressing, Service characterization, Internetworking, ISDN standards, Broadband ISDN.

TEXT BOOKS:

- 1. **Telecommunication switching system and networks** Thyagarajan Viswanath, PHI, 2000
- 2. J. E Flood, "Telecommunications Switching and Traffic Networks," Pearson Education, 2006
- 3. Data Communication & Networking B.A. Forouzan, TMH, 4 Edition, 2004.
- 4. **Digital telephony** J. Bellamy, John Wiley, 2nd edition, 2001.

REFERENCES:

- 1. Data Communications & Networks Achyut. S. Godbole, TMH, 2004.
- 2. **Principles of Communication Systems** H. Taub & D. Schilling, TMH, 2nd Edition, 2003. **An Engineering approach to computer networking** -S.Keshav, Addison W

E-Resources:

- 1. <u>www.modernelectronics.org</u>
- 2. <u>www.electronicsforyou.com</u>
- 3. <u>www.npteliitm.ac.in</u>

	PO	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	-	-	3	-	3	-	-	-	-	3	-	-	-
CO2	2	3	-	-	2	-	-	2	-	-	-	-	3	-
CO3	-	-	3	-	2	-	-	-	3	-	-	-	-	2
CO4	-	3	2	-	-	-	-	-	-	2	-	-	3	-
CO5	3	-	3	-	-	-	-	3	-	-	-	-	-	-
CO6	-	-	3	-	-	-	3	-	-	-	-	-	-	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - I Semester

L T P C 3 0 0 3

COMPUTER ARCHITECTURE AND ORGANISATION

PROFESSIONAL ELECTIVE - I

Lectu	re – Tutorial:	3-0 Hours	Internal Marks:	40
Cred	its:	3	External Marks:	60
Prerec	uisites: Computer F	Fundamentals, Programming Concepts		
Cour	se Objectives:			
•	Understand the arch	nitecture of a modern computer with its	s various processing uni	ts.
•	Understand the Peri	formance measurement of the compute	er system.	
•	Understand the mer	nory management system of computer		
Cour	sa Autaamasi			
Upon	successful complet	tion of the course, the student will be	able to:	
CO1	Gain the knowledge	e of the computer architecture of mode	ern computers	
	Sum the knowledg		an compators.	
CO2	Analyse the perform	nance of a computer using performanc	e equations.	
CO3	Identify the fundam	nentals of different instruction set archi	itectures and their relation	onship
	to the CPU design.			
CO4	Gain the knowledge	e on the memory system and multi pro	grammed concepts.	
CO5	Identify the operati	on of modern CPUs including interfac	cing, pipelining, memor	y systems
	and busses.			
CO6	Gain the knowledge	e on the principles of operation of mult	tiprocessor systems.	
C	ourse Content(Syll	abus)		
		<u>UNIT I</u>		
Basic	Structure Of Com	puters: Functional unit, Basic Oper	ational concepts, Bus	structures,
System	n Software, Performa	ance, The history of computer develop	ment.	4:-1:4:
Centra	al Arithmetic: Dat	a representation, Addition and Subtra	iction Algorithms, Mul	tiplication
Algori	unitis, Division Algo	runns, Floating Point Arithmetic Oper	rations.	
		<u>UNIT II</u>		
Machi	ne Instruction Sequ	uencing: Register Transfer Notation, A	Assembly Language Not	ation, The
role of	Stacks and Queues	in computer programming equation, A	ddressing Modes.	
Туре о	of Instructions: Bas	ic Instruction Types, Data transfer Ins	tructions, Arithmetic Ins	structions,
Logica	l Instructions, shift a	and Rotate Instructions, Branch Instruc	ctions.	
		<u>UNIT III</u>		
Micro	Programmed Con	trol: Control Memory, Address Seque	encing, Micro Program	Example,
Hard V	Vired Control, Micro	Programmed Control.	A '1' X A	• ,•
The N	lemory System: I	Vietnol Momory, Main Memory,	Auxiliary Memory, A	ssociative
wiemo	ry, Cache Miemory,	vinual wemory, wemory wanagemen	it natuware.	
		<u>UNIT IV</u>		

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer Modes, Priority Interrupt, Direct Memory Access, Serial Communication.

Pipeline and Multiprocessors: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processing, Interconnection Structures, Cache Coherence.

TEXT BOOKS:

- 1. Computer System Architecture M.Moris Mano, IIIrd Edition, PHI / Pearson, 2006.
- 2. Computer Organization Car Hamacher, ZvonksVranesic, SafwatZaky, V Edition, McGraw Hill, 2002.

REFERENCES:

- 1. Computer Organization and Architecture William Stallings Seventh Edition, PHI/Pearson, 2006.
- 2. Computer Architecture and Organization John P. Hayes, McGraw Hill International editions, 1998.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition PHI/Pearson.
- 4. Fundamentals or Computer Organization and Design, SivaraamaDandamudi Springer Int. Edition.
- 5. "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy.

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program														
Speci	Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	01	2	
C01	3	-	-		2	-	-	-	-	-	-	-	-	-	
CO2	3	3	-	-	2	-	-	-	-	2	-	-	3	-	
CO3	2	-	3	-	-	-	-	-	2	-	-	-	-	2	
CO4	3	2	3	-	-	-	-	-	-	-	-	-	3	-	
CO5	2	2	3	-	2	-	-	-	-	2	-	-	-	-	
CO6	2	-	3	-	-	-	-	-	-	-	-	-	-	-	

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - I Semester

L T P C 0 0 2 1

Linear and Digital Integrated Circuits Lab

Minimum 10 experiments should be conducted. { 8 experiments from part A and 2 experiments from part B}

Pre-Requisites: EDC LAB, DLED LAB & APC LAB,

Course Outcomes: The Students will be able to

- Have a thorough understanding of operational amplifier (741).
- Design circuits using operational amplifiers for various applications.
- Design various active filters using Op amps.
- Understand various applications of 555 565 and 566 ICs.
- Demonstrate their knowledge by digital circuits.
- Design various combinational circuits using various Digital Integrated IC's.

PART- A

- 1. Study of OP AMPs IC 741, IC 555, IC 565, IC 566, IC 1496 functioning, parameters and Specifications.
- 2. OP AMP Applications Adder, Subtractor, Comparator Circuits.
- 3. Integrator and Differentiator Circuits using IC 741.
- 4. Active Filter Applications LPF, HPF (first order)
- 5. Active Filter Applications BPF, Band Reject (Wideband).
- 6. Schmitt Trigger Circuits using IC 741 and IC 555
- 7. Function Generator using OP AMPs.
- 8. IC 555 Timer Monostable Operation Circuit.
- 9. IC 555 Timer Astable Operation Circuit.
- 10. 4 bit DAC using OP AMP

PART -B

- 11.8*1 MULTIPLEXER-74151.
- 12. 1*8 Demultiplexer-74155.
- 13. Decade counter using 74LS90

Equipment required for Laboratories:

- 1. RPS.
- 2. CRO.
- 3. Function Generator.
- 4. Multimeter.
- 5. IC Trainer Kits (Optional).

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

- 6. Bread Boards.
- 7. Components:- IC741, IC555, IC74151, IC74155, IC74LS90, IC Tester.

Experiments to be conducted beyond the syllabus:

- 1. IC 741 Oscillator Circuit Wien Bridge Oscillator
- 2. IC 741 Oscillator Circuit Phase Shift Oscillator.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)

-		· · · · · · · · · · · · · · · · · · ·			/		/	0 /						
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	-	3	-	3	-	3	-	-	2	-	-	-	3	-
CO2	2	3	-	-	2	-	-	-	-	-	2	-	-	-
CO3	-	-	3	-	2	-	3	-	-	3	-	-	3	-
CO4	3	-	2	-	-	-	-	-	3	-	-	-	-	-
CO5	3	-	-	-	-	-	-	3	-	-	-	3	-	-
CO6	-	-	3	-	-	-	-	-	-	-	-	-	3	-

--000000--

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - I Semester

L T P C 0 0 2 1

Practice:	2	Internal Marks:	40
Credits:	1	External Marks:	60

Prerequisites:

Basics of Communications, Signals & Systems and Probability & Random Processes.

Course Objectives:

- To acquire practical knowledge of digital communication systems.
- To implement different modulation and demodulation techniques.
- To analyze the outputs of various digital modulation techniques.
- To perform and interpret various source coding and error control coding techniques.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the Time-Division Multiplexing systems, and verify the output of pulse code modulation and demodulation.
- CO2 Analyze the output of differential pulse code modulation and demodulation and verify the delta modulation.
- CO3 Analyze the outputs of different digital modulation techniques-FSK, PSK.
- CO4 Interpret the outputs of DPSK modulation and demodulation.
- CO5 Analyze the outputs of source encoder and decoder, linear block codes, convolution codes and binary cyclic codes.
- CO6 Perform and analyze the output of companding circuit.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

List of Experiments:

- 1. Time division multiplexing.
- 2. Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Delta modulation.
- 5. Frequency shift keying.
- 6. Phase shift keying.
- 7. Differential phase shift keying.
- 8. Companding
- 9. Source Encoder and Decoder
- 10. Linear Block Code-Encoder and Decoder
- 11. Binary Cyclic Code Encoder and Decoder
- 12. Convolution Code Encoder and Decoder

Equipment Required:

- 1. RPS 0 30 V
- 2. CRO 0 20 M Hz.
- 3. Function Generators -0 1 M Hz
- 4. RF Generators -0 1000 M Hz. /0 100 M Hz.
- 5. Multimeters
- 6. Lab Experimental kits for Digital Communication
- 7. Components

Contr	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program													
Speci	Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)													
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
					-		-	0	•	10	11	10	0.1	•

	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	2	3	-	-	2	-	-	-	1	-	-	-	-	-
CO2	-	3	2	-	-	-	-	2	-	-	-	-	-	3
CO3	2	-	-	3	-	-	-	-	-	3	-	-	-	3
CO4	2	2	2	-	-	-	3	-	2	-	-	-	-	-
CO5	-	-	-	-	-	3	-	-	-	-	2	-	-	3
CO6	3	-	2	-	3	-	-	-	-	-	-	3	-	-

III Year - I Semester

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

0 0 2 1

VHDL PROGRAMMING LAB

Practice:	2	Internal Marks:	40
Credits:	1	External Marks:	60

Prerequisites:

Switching Theory and Logic Design, C Language, Pulse & Digital Circuits Laboratory

Course Objectives:

- Introduce the basic HDL languages and their importance in digital design.
- VHDL fundamentals were discussed to modelling the digital system design blocks.
- Model digital systems at several levels of abstractions, dataflow, behavioural, structural & mixed signalling modelling.
- Analyse and design basic digital circuits with combinatorial and sequential logic circuits using VHDL.
- VHDL compilers, simulators and synthesis tools are described, which are used to verify digital systems in a technology-independent fashion.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

- CO1 Understand the three different modeling styles of digital circuits.
- CO2 Design various combinational circuits using VHDL.
- CO3 Develop a VHDL source code for comparators and code converters.
- CO4 Perform simulation of various sequential circuits using VHDL.
- CO5 Analyze the obtained simulation results.
- CO6 Verify the logic with the necessary hardware.

List of Experiments: (Minimum of ten experiments has to be performed)

Note: The students are required to develop VHDL source code, perform simulation using a relevant simulator, and analyze the obtained simulation results using a necessary synthesizer. All the experiments are required to verify and implement the logical operations on the latest FPGA Hardware in the Laboratory.

- 1. Realization of logic gates using three models.
- 2. Design of full adder and develop VHDL code using three models.
- 3. Design 3 to 8 decoders and develop VHDL code.
- 4. Design 8 to 3 encoder and develop VHDL code.
- 5. Design 8 x 1 multiplexer and develop VHDL code.
- 6. Design 4- bit magnitude comparator and develop VHDL code.
- 7. Design 4-bit binary to grey code converter and develop VHDL code.
- 8. Design D-flip-flop and develop VHDL code.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

- 9. Design decade counter and develop VHDL code
- 10. Design universal shift registers and develop VHDL code.
- 11. Design an 8-bit serial in-parallel out and parallel in-serial out shift register and develop VHDL code.
- 12. Design ALU and develop VHDL code.

Equipment Required:

- 1. Xilinx Vivado software / Equivalent Industry Standard Software. 2
- 2. . Xilinx Hardware / Equivalent hardware.
- 3. 3. Personal computer system with necessary software to run the programs and implement.

-	РО	PO	РО	РО	РО	РО	PS	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	-	-	2	-	-	-	1	-	-	-	-	-
CO2	3	2	2	-	-	-	-	2	-	-	-	-	2	3
CO3	3	2	-	3	3	-	-	-	-	3	-	-	-	3
CO4	3	2	2	-	-	-	3	-	2	-	-	-	-	-
CO5	3	2	-	-	-	3	-	-	-	-	2	-	2	3
CO6	3	3	2	-	3	-	-	-	-	-	-	3	-	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

AUTONOMOUS SYLLABUS III - II SEMESTER

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - II Semester

L T P C 3 10 4

VLSI DESIGN

Lectur	ture – Tutorial: 3-1 Hours Internal Marks: 40									
Credit	s:	4	External Marks:	60						
Prereq	uisites: Basic electrica	l properties of MOSFET, CMOS technolo	ogy, Digital electronics circ	uits.						
Course	e Objectives:									
• T	Use mathematical m	ethods and circuit analysis models	in analysis of CMOS	digital						
electron	nics circuits, including	g logic components and their interconn	ects.							
• I	Learn the various fat	prication steps of IC and come acro	ss basic electrical prope	erties of						
MOSF	ET.									
• App	oly CMOS technology	r-specific layout rules in the placement	nt and routing of transis	tors and						
intercon	nect and to verify the fu	inctionality, timing, power and parasitic e	ffects.							
• Un	derstand the design fo	r testability.								
• Kn	ow the FPGA archited	ture and design flow, CPLD and syste	em on chip.							
• Hig	hlight the circuit desig	n issues in the context of VLSI technol	logy, power calculations a	nd clock						
mechan	ism.									
Course	e Outcomes:									
Upon s	successful completion	of the course, the student will be al	ble to:	1.D'						
COI	Understand the CM	OS fabrication flow and also the elect	trical properties of MOS	and B1-						
CO2	CMOS circuit.									
02	Know three sets of c	lesign rules with which NMOS and Cr	viOS designs may be fabi	icated.						
CO3	Estimate the scalin circuits in silicon.	g factors determining the characteri	stics and performance of	of MOS						
CO4	Know about scaling	of MOS circuits.								
CO5	Understand the conc	epts of FPGA design, synthesis and di	fferent case studies.							
CO6	Analyze the design classify the power ca	for testability techniques and unde alculations, package selection and cloc	rstand the mixed signal k mechanism.	design,						
Course	e Content(Syllabus)									
		<u>UNIT I</u>								
Introdu Enhance processe	action : Introduction to ement and Depletion mo es	IC Technology, MOS and related VLSI T odes of transistor action, IC production pr	Cechnology, Basic MOS Tracocess, MOS and CMOS Fa	ansistors, brication						
Basic I MOS tr Alternat BiCMO	Electrical Properties C ransistor Threshold Vo tive forms of pull-up, T S Technology.	Df MOS and Bi-CMOS Circuits: I_{ds} voltage, MOS transistor Trans, Output C The CMOS Inverter ,Comparison betwee	ersus V_{ds} Relationships, As Conductance and Figure of n CMOS and Bipolar tech	spects of of Merit, nologies,						

UNIT II

MOS and Bi-CMOS Circuit Design Processes: The NMOS Inverter, Pull-up to Pull-down Ratio for NMOS inverter driven by another NMOS inverter. Pass transistor, Pull-up to Pull-down Ratio for NMOS inverter driven by another NMOS inverter through one or more pass transistors.

MOS and Bi-CMOS Circuit Design Rules: MOS Layers, Realization of gates using NMOS, PMOS and CMOS technologies, Stick Diagrams, Design Rules and Layout, General observations on the lambda based Design rules, 2µm Double Metal, Double Poly, CMOS/BiCMOS rules, 1.2µm Double Metal, Double Poly

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

CMOS rules, Layout Diagrams of NAND and NOR gates and CMOS inverter.

UNIT III

Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, The Delay Unit, Inverter Delays, Propagation Delays, Wiring Capacitances, Fan-in and fan-out characteristics, Choice of layers, Switch logic, Gate logic.

Scaling Of MOS Circuits: Scaling models, Scaling factors for device parameters, Limits due to sub threshold currents, current density limits on logic levels and supply voltage due to noise.

UNIT IV

FPGA Design: ASIC design flow, FPGA design flow, Basic FPGA architecture, FPGA Technologies, CPLD, Introduction to SoC design.

VISI Design Issues: VLSI Design issues and design trends, design process, design for testability, technology options, power calculations, package selection, clock mechanisms, mixed signal design.

TEXT BOOKS:

1. Essentials of VLSI Circuits and Systems By Kamran Eshraghian, Douglas and A. Pucknell and Sholeh Eshraghian, Prentice-Hall of India Private Limited,2005 Edition.

2. VLSI Design-Black Book By Dr. K.V.K.K. Prasad, Kattula Shyamala, Kogent Learning Solutions Inc.2012 Edition.

REFERENCES:

- 1. VLSI Design By A.Albert Raj & T.Latha, PHI Learning Private Limited, 2010.
- 2. VLSI Design-A.Shanthi and A.Kavita, New Age International Private Limited, 2006 First Edition.

		(/		/	0 /						
	РО	РО	РО	РО	РО	PS	PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	-	-	-	3	3	-	-	-	-	-	-	3	2
CO2	-	-	3	2	-	-	3	-	-	-	-	3	-	-
CO3	3	3	2	-	-	-	-	2	-	-	3	-	3	-
CO4	-	2	-	-	3	-	-	3	-	3	-	-	-	2
CO5	3	2	3	-	-	-	-	-	3	-	-	-	3	-
CO6	2	3	3	-	-	-	-	-	-	-	-	3	-	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - II Semester

L T P C 3 10 4

MICROPROCESSORS & MICROCONTROLLERS

Lectu	Lecture – Tutorial: 3-1 Hours Internal Marks: 40										
Credi	ts:	4	External Marks:	60							
Prere	quisites: Digital Electr	onics, Computer Organization									
Cours	se Objectives:										
•	To familiarize with arc To introduce the assen	chitecture of 8086 microprocessor and ably language programming concepts of a interfacing devices with 8086 and 80	8051 microcontroller. of 8086 processor.								
Cour		s interfacing devices with 8080 and 80	51.								
	se Outcomes:		. .								
Upon	successful completion	n of the course, the student will be at	ole to:								
CO1	Gain the knowledge of micro controller.	f the architecture and instruction set of	8086 Microprocessor a	nd 8051							
CO2	Identify a detailed s/w	& h/w structure of the microprocessor	and microcontroller.								
CO3	Illustrate how the diffe	erent peripherals are interfaced with 80	86.								
CO4	Interface various I/O d	evices to the 8051 microcontroller.									
CO5	Develop 8086 and 805	1 based different kinds of applications									
CO6	Design various interf	acing circuits for computing periphera	ls								
Cours	se Content(Syllabus)	• • • •									

<u>UNIT I</u>

8086 Microprocessor

Introduction to Microprocessor, Features of 8086 Processor, Register Organization of 8086,

Architecture, Memory Segmentation, Signal Descriptions of 8086.

Modes of 8086 System

Physical Memory Organization, General Bus Operation, I/O Addressing Capability, Minimum and

Maximum Mode 8086 Systems and Timing Diagrams.

UNIT II

Instruction Set and Assembly Language Programming of 8086

Addressing Modes, Instruction Sets, Assembler Directives and Operators, Simple Programs

Involving Logical, Branch and Call Instructions, Sorting, String Manipulations.

Stack and Interrupts

Introduction to Stack, Stack Structure of 8086, Interrupts and Interrupt Service Routines, Interrupt

Cycle of 8086, Non Maskable Interrupts, Maskable Interrupts, Interrupt Programming.

UNIT III

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Basic Peripherals and Interfacing

Semiconductor Memory Interfacing, PIO 8255, Modes of Operations of 8255, Interfacing Analog to

Digiatal Data Converters, Interfacing Digital to Analog Converters, Stepper Motor Interfacing.

Programmable Peripheral Devices

Programmable Interrupt Controller 8259A, Programmable Communication Interface 8251 USART,

DMA Controller 8257.

<u>UNIT IV</u>

8051 Microcontrollers

Introduction to Microcontrollers, Features of 8051 Controller, Architecture of 8051, Signal

Description of 8051, Register Set 0f 8051, Memory Organization, Addressing Modes of 8051,

Instruction Set of 8051.

Interfacing with Keyboard/Display Devices

Input/Output Pins Ports and Circuits, Timers and Counters Serial Ports, Interrupt Structure,

Interrupt Priority in 8051, LED's, 7 Segment Display Unit, LCD Unit, A/D, D/A and Keyboard

Interfacing.

TEXT BOOKS:

- 1. A. K. Ray and K.M. Bhurchandani, "Advanced Microprocessors and Peripherals", TMH, 2nd edition, 2006
- 2. Kenneth. J. Ayala, "The 8051 Microcontroller", 3rd Edition, Cengage Learning, 2010. **REFERENCES:**
 - 1. D. V. Hall' "Microprocessors and Interfacing", TMH, 2nd edition 2006. .
 - 2. Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinlay, "The 8051 Microcontrollers and Embedded Systems", Pearson, 2nd Edition.
 - 3. Barry B.Brey, "The Intel Microprocessors", PHI, 7th Edition, 2006.

DPCCI	Specific dutcomes (1505) (1 Low, 2 meaning, 5 mgn)													
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	-	3	-	2	-	3	-	-	-	2	-	-	-	-
CO2	2	2	-	2	-	-	-	3	-	-	-	-	3	-
CO3	-	3	3	-	2	-	-	-	-	-	3	-	3	-
CO4	3	2	-	2	-	-	-	-	3	-	-	-	-	2
CO5	2	-	-	3	-	-	3	-	-	-	3	2	3	-
CO6	-	2	-	2	-	-	-	-	-	2	-	-	-	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - II Semester

L T P C 3 1 0 4

DIGITAL SIGNAL PROCESSING

Lecture	e – Tutorial:	3-1 Hours	Internal Marks:	40
Credits		4	External Marks:	60
Prereq	uisites: Signals and S	Systems, Laplace and Fourier	Transforms.	
Course	Objectives:			
Analy	ze the Discrete Time	Signals and Systems		
• Know	the importance of FI	FT algorithm for computation	of Discrete Fourier Transform	
• Under	stand the various imp	plementations of digital filter	structures	
• Learn	the FIR and IIR Filte	er design procedures		
• Know	the need of Multi rat	e Processing		
• Learn	the concepts of DSP	Processors		
Course	Outcomes:			
Upon s	uccessful completion	n of the course, the student	will be able to:	
COI	Apply the difference	e equations concept in the ana	alysis of discrete time systems.	
CO2	Understand the FFT	algorithm for solving the DF	T of a given signal.	
CO3	Design a Digital filte	er (FIR&IIR) from the given	specifications.	
CO4	Realize the FIR and	IIR structures from the desig	ned digital filter.	
CO5	Understand the Mul filter banks, sub ban	tirate Processing concepts to d coding of speech signals).	b be used various applications (eg	g: Digital
CO6	Apply the signal pro	cessing concepts on DSP Pro	ocessors.	
Course	Content(Syllabus)			
		<u>UNIT I</u>		
INTRO	DUCTION TO DIC	GITAL SIGNAL PROCES	SING: Discrete time signals & se	equences,
Classifi	cation of Discrete the	ime systems, stability of L	FI systems, Response of LTI sy	stems to
arbitrar	y inputs. Solution of	f Linear constant coefficient	difference equations. Frequency	y domain
represen	ntation of discrete tim	ne signals and systems.		
DISCR	ETE FOURIER SE	RIES AND DISCRETE F	OURIER TRANSFORMS: Pro	perties of
Discrete	e Fourier series. DE	S representation of periodic	sequences. Discrete Fourier Tra	ansforms.
Propert	ies of DFT, linear filt	ering methods based on DFT		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
I	,	UNIT II		
FAST and dec	FOURIER TRANSI imation in frequency	F ORMS : Fast Fourier Trans FFT Algorithms, Inverse FF	forms (FFT) - Radix-2 decimatio T.	n in time
REAL	ZATION OF DIG	ITAL SYSTEMS: Review	of Z-Transforms: Solution of c	lifference

UNIT III

structures of IIR systems, Transposed forms. Basic structures of FIR systems.

DESIGN OF IIR DIGITAL FILTERS:

Analog filter approximations – Butterworth and Chebyshev, Design of IIR Digital filters from analog filters, Design Examples, Analog and Digital frequency transformations.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DESIGN OF FIR DIGITAL FILTERS:

Characteristics of FIR Digital Filters, frequency response. Design of FIR Digital Filters using Window Techniques and Frequency Sampling technique, Comparison of IIR & FIR filters.

<u>UNIT IV</u>

MULTIRATE DIGITAL SIGNAL PROCESSING: Introduction, Decimation, Interpolation Sampling rate conversion, Implementation of sampling rate converters, Applications – Sub-band Coding of Speech Signals, Implementation of Digital Filter Banks, Trans-multiplexers.

INTRODUCTION TO DSP PROCESSORS: Introduction to programmable DSPs: Multiplier and Multiplier Accumulator, Modified bus structures and memory access schemes in P-DSPs, Multiple Access Memory, Multiported memory, VLIW architecture, Pipelining, Special addressing modes, On-Chip Peripherals. Architecture of TMS320C5X: Introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary Register ALU, Index Register, Block Move Address Register, Parallel Logic Unit, Memory mapped registers, program controller, some flags in the status registers, On- chip memory, On-chip peripherals.

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G.Manolakis, Pearson Education /PHI, 2007.
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PHI.
- 3. Digital Signal Processors Architecture, Programming and Applications, B.Venkataramani, M.Bhaskar, TATA McGraw Hill, 2002.
- 4. Digital Signal Processing K Raja Rajeswari, I.K. International Publishing House. **REFERENCES:**

1. Digital Signal Processing: Andreas Antoniou, TATA McGraw Hill, 2006.

- 2. Digital Signal Processing: MH Hayes, Schaum's Outlines, TATA Mc-Graw Hill, 2007.
- 3. DSP Primer C. Britton Rorabaugh, Tata McGraw Hill, 2005.
- 4. Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling, Sandra L. Harris, Thomson, 2007.
- 5. Digital Signal Processing Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006.
- 6. Digital Signal Processing P.Ramesh babu, Sci Tech publications.

Specific outcomes (1505) (1 Low, 2 ⁻ Medium, 5 High)														
	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	2	2	-	2	-	-	-	-	-	-	-	3	-	-
CO2	2	-	-	-	3	-	-	2	-	-	-	-	-	3
CO3	3	3	3	-	-	-	3	-	-	-	2	-	2	-
CO4	3	3	-	2	-	-	-	-	3	-	-	-	3	-
CO5	2	-	3	2	-	3	-	-	-	-	-	-	-	-
CO6	-	2	-	2	-	-	-	3	-	2	-	-	-	3

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - II Semester

L T P C 3003

CELLULAR AND MOBILE COMMUNICATIONS

		PROFESSIONAL ELECTIVE – I	I	
Lectur	e – Tutorial:	3-0 Hours	Internal Marks:	40
Credits	S:	3	External Marks:	60
Prereq	uisites: Analog Com	munications, Digital Communications.		
Course	e Objectives:			
• Uno	derstand the basic ce	llular concepts like frequency reuse,	cell splitting, cell sector	ing etc.,
and var	ious cellular systems.			
• Un	derstand the diffe	rent types of interferences influ	encing cellular and	mobile
commu	nications.		-	
• Un	derstand the concept	of propagation model and the different	t types antennas used at	cell site
and mo	bile.			
• Un	derstand the frequen	cy management, channel assignment	, various propagation e	ffects in
cellular	environment and the	concepts of handoff and types of hand	loffs.	
• Un	derstand the architect	ures of GSM and 3G cellular systems.		
Course	e Outcomes:			
Upon s	successful completion	n of the course, the student will be al	ole to:	
CO1	Demonstrate an	understanding on cellular commu	nication system, arch	itecture,
	functioning, various	standards and different evolution of	cellular communication	systems
	up to 5G.			
CO2	Interpret the cellular	system operation and design concepts	, cell splitting.	
CO3	Measure Co-Chann	el and Non Co-Channel interferer	nces for various mobi	le radio
	propagation models	and interpret the C/I measurements for	different antenna system	ns.
CO4	Estimate the freque	ncy management, channel assignmen	nt, channel sharing and	channel
	borrowing technique	es		
CO5	Understand impairm	ents due to multipath fading channel,	and designing of differer	ıt
	antennas.			
CO6	Design the Omni-di	rectional and directional antennas used	at cell sites and their syn	nthesis
	methods.			
Course	e Content(Syllabus)			

UNIT I

Introduction to Cellular Mobile Systems: A basic cellular system, Performance criteria, Uniqueness of mobile radio environment: Modal of transmission medium, Mobile fading characteristics, Delay spread and Coherence bandwidth, Operation of Cellular Systems, Hexagonal shaped cells. Evolution of mobile cellular communication: different generations of mobile cellular communication (1G, 2G, 3G, 4G and beyond), 5G vision.

Elements of Cellular Mobile Radio System Design: Concept of frequency reuse channels: Frequency reuse schemes, Frequency reuse distance, Number of customers in the system, Permanent and Dynamic cell splitting, cell sectoring, Cellular structures: macro, micro, pico and femto cells.

<u>UNIT II</u>

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Interference: Co-channel Interference at the mobile unit and cell site, Design of an Omnidirectional and Directional antenna systems. Non-cochannel Interference: Adjacent channel interference: Next channel interference, Neighboring channel interference, Near-End-Far-End Interference.

Frequency Management: Numbering the channels and grouping into subsets, Frequency spectrum utilization, Setup, access and paging channels, Self-location scheme at the mobile unit.

Channel Assignment: Channel assignments to cell sites and travelling mobile units, Fixed channel assignment: Adjacent-channel assignment, Channel sharing, Channel borrowing and Underlay-overlay cells, Non-fixed channel assignment algorithms.

UNIT III

Cell Coverage for Signal and Traffic: Signal reflections in flat and hilly terrain, obtaining the mobile point-to-point model (Lee Model), Phase difference between direct and ground reflected paths, General formula for mobile radio propagation between two fixed stations over water or flat open area, Land to mobile transmission over water, Foliage loss.

Cell Site and Mobile Antennas: Sum and difference patterns and their synthesis, Antennas at cell site: Omni directional and Directional antennas: Start-up and Abnormal antenna configurations, Space diversity antennas, Umbrella pattern antennas, unique situations of cell site antennas, Mobile antennas: Roof-mounted and Glass-mounted antennas, Mobile high gain antennas, Horizontally oriented and vertically oriented space-diversity antennas.

UNIT IV

Handoff and Dropped calls: Concept of Handoff, Types of handoff: Based on signal strength and based on carrier to interference Ratio, Handoff initiation, Delaying handoff, Forced handoff, Power- difference handoff, mobile assigned handoff , soft and hard handoff, cell site handoff only, Intersystem handoff, Dropped call rates introduction and formula for Dropped call rate.

Digital Cellular Systems: Global system for mobile (GSM): GSM architecture, OSI model of GSM, GSM channels, Multiple Access schemes FDMA, TDMA CDMA, OFDMA, concepts of LTE and LTE-advanced standards, 5G features and challenges.

TEXT BOOKS:

1. Mobile Cellular Telecommunications – W.C.Y. Lee, Tata McGraw Hill, 2rd Edn., 2006.

2. Principles of Mobile Communications–Gordon L.Stuber, Springer International 2nd Edt. 2007.

REFERENCES:

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

. Wireless Communications – Theodore. S. Rapport, Pearson education, 2nd Edn., 2002.

2. Wireless and Mobile Communications – Lee McGraw Hills, 3rd Edition, 2006.

3. Mobile cellular communication- G.Sasibhushan rao, Pearson Education.

4. Wireless Communication and Networking – Jon W. Mark and Weihua Zhqung, PHI, 2005.

5. Wireless Communication Technology – R. Blake, Thompson Asia Pvt. Ltd., 2004.

	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	-	-	-	-	-	1	-	-	2	-	-	-	3
CO2	3	2	2	-	-	-	-	-	-	-	-	-	-	3
CO3	3	2	3	1	-	3	-	-	-	2	-	2	2	-
CO4	3	-	2	1	-	-	-	-	-	-	-	1	3	-
CO5	-	2	3	-	2	-	-	-	-	2	1	2	-	-
CO6	-	-	-	-	2	-	2	-	1	-	2	-	-	3

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - II Semester

L T P C 3 0 0 3

DIGITAL SYTEM DESIGN

PROFESSIONAL ELECTIVE-II										
Lectu	re – Tutorial:	3-0 Hours	Internal Marks:	40						
Credi	ts:	3	External Marks:	60						
Prere	quisites: Digital Logi	c Design, Digital IC Ap	plications.							
Cours	e Objectives:									
•	Fo learn advanced dig	tital design concepts.								
•	Fo design digital sub-	systems using Verilog H	IDL.							
•	Го learn Memory, CP	LDs, FPGAs and ASIC	S.							
•	To Design and implen	nentation of combinatio	nal and sequential digital logic ci	rcuits.						
Cours	e Outcomes:									
Upon	successful completion	on of the course, the stu	ident will be able to:							
CO1	Model complex di	gital systems at several	l levels of abstractions, behavio	ral, structural,						
	simulation, synthes	is and rapid system prot	totyping.							
CO2	Have basic unders	tanding of Memory, CP	LDs, FPGAs and ASICs.							
CO3	Design digital circ	uits and subsystems using	ng Verilog HDL.							
CO4	Analyze and desig	n basic digital circuits v	with combinatorial and sequentia	l logic circuits						
	using Verilog VHD	DL.								
CO5	Investigate suitable	e Verilog VHDL progra	m constructs in Digital System D	Designs.						
CO6	Apply various Dig	ital ICs in performance	evaluation for the synthesis proc	ess.						
		Course Conten	t(Syllabus)							

UNIT-I

Part-A (Verilog HDL-Basics) : Introduction, Overview of Digital Design with Verilog HDL, Hierarchical Modeling Concepts, Basic Concepts, Modules and Ports, Gate Level Modeling, Dataflow Modeling

Part-B (Verilog HDL-Programming): Behavioral Modeling, Tasks and Functions, Useful Modeling Techniques, Timing and Delays, User Defined Primitives, Logic Synthesis with Verilog HDL, Testbenches for verification of HDL models.

UNIT-II

Part-A (**Combinational Logic Design-I**): Introduction, Combinational-Circuit Analysis, Combinational-Circuit Synthesis, Programmed Minimization Methods, Timing Hazards, Circuit Timing, Decoders, Encoders, Three-State Devices.

Part-B (Combinational Logic Design-II): Multiplexers, Exclusive-OR Gates and Parity Circuits, Comparators, Adders, Subtractors, ALUs, Combinational Multipliers. Design considerations of the above combinational logic circuits.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

UNIT-III

Part-A (Sequential Logic Design-I): Bistable Elements, Latches and Flip-Flops, Counters, Shift Registers, Clocked Synchronous State-Machine Analysis and Design, Designing State Machines Using State Diagrams.

Part-B (Sequential Logic Design-II): State-Machine Synthesis Using Transition Lists, State-Machine Design Example, Decomposing State Machines, Feedback Sequential Circuits, Feedback Sequential-Circuit Design.

UNIT-IV

Part-A(Memory and CPLDs): Read-Only Memory, Read/Write Memory, Static RAM, Dynamic RAM, Complex Programmable Logic Devices.

Part-B(FPGAs and ASICs): Field-Programmable Gate Arrays, Types of ASICs, ASIC Design flow, Economics of ASICs.

TEXT BOOKS:

1. John F. Wakerly, "Digital Design: Principles and Practices", 4th edition, Pearson, 2008

2. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", 2nd edition, Pearson, 2003

3. Enoch O. Hwang, "*Digital Logic and Microprocessor Design with VHDL*", 1st edition, Nelson Engineering, 2007.

REFERENCE BOOKS:

1.Michael John Sebastian Smith, "Application-Specific Integrated Circuits", 1st edition, Pearson, 2002

2. Charles H. Roth, "Fundamentals of Logic Design", 5th edition, Cengage Learning, 2004

3. Randy H. Katz, Gaetano Borriello, "Contemporary Logic Design", 2nd edition, PHI Learning, 2009

-		(, ,		/		,	0 /						
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	-	2	-	3	-	-	-	-	-	-	-	2	-
CO2	-	3	3	2	-	-	2	2	-	-	-	-	-	3
CO3	2	3	-	3	2	-	-	-	2	-	-	-	3	-
CO4	2	-	3	3	-	-	-	-	-	3	2	-	-	2
CO5	2	3	-	-	-	2	-	2	-	-	-	-	-	-
CO6	-	3	2	-	-	-	-	-	-	-	-	3	3	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - II Semester

L T P C 3 0 0 3

PROFESSIONAL ELECTIVE - II

ELECTROMAGNETIC INTERFERENCE AND ELECTROMAGNETIC COMPATIBILITY

(EMI / EMC)

Lectu	re – Tutorial:	3-0 Hours	Internal Marks:	40								
Credi	ts:	3	External Marks:	60								
Prereq	uisites: EM Waves	& Transmission Lines, Wave Propaga	tion, Antennas.									
Cours	se Objectives:											
• 1	o familiarize with t	he fundamentals that are essential for	electronics industry in t	he field of								
E	EMI / EMC											
• 1	• To understand EMI sources and its measurements.											
• 1	o understand the va	rious techniques for electromagnetic c	ompatibility.									
Cours	se Outcomes:											
Upon	successful complet	tion of the course, the student will be	able to:									
CO1	Understand natural	and nuclear sources of EMI and its pra-	actical concerns.									
CO2	Learn about electro	magnetic emissions from various appl	ances and circuits.									
CO3	Analyze the concept	ot of electromagnetic interference and o	cross talk in transmissio	n lines.								
CO4	Study about variou	s types of radiated and conducted inter	ference measurements.									
CO5	Understand about e	lectrostatic discharge and electric surg	es.									
CO6	Learn different type	es of grounding, shielding and bonding	·									
С	ourse Content(Syll	abus)										
		<u>UNIT I</u>										
Introd	uction, Natural and	d Nuclear Sources of EMI / EMC:										
Concep	ots of EMI/EMC an	d Definitions, Practical experiences an	nd concerns, Natural an	nd Nuclear								
sources	s of EMI, Lightnin	g Discharge: Cloud-to-Ground Disch	arge, Cloud-to-Cloud	Discharge								
EM fie	ld produced by Lig	htning, Effects of Lightning Discharg	e on Transmission Line	es, Electro								
Static 1	Discharge: Charge	accumulation and discharge, Model	MSD waveform, ESD	equivalen								
circuit	Radiated field from	FSD										

<u>UNIT II</u>

EMI from Apparatus and Circuits, Open Area Test Sites:

Electromagnetic emissions: Systems, Appliances, Noise from Relays and Switches, Nonlinearities in circuits, Cross talk in transmission lines, Transients in power supply lines, Electromagnetic interference (EMI), Open area test sites measurements: Measurement of RE and RS, Open area test

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

site: Stationary EUT, Stationary Antenna, EUT-Antenna separation.

UNIT III

Radiated and Conducted Interference Measurements and ESD:

Anechoic chamber, TEM cell, GH TEM Cell, Characterization of conduction currents / voltages (CM & DM interference), Conducted EM noise on power lines, Conducted EMI from equipment, Immunity to conducted EMI detectors and measurements, ESD, Electrical fast transients / bursts, Electrical surges.

<u>UNIT IV</u>

Grounding, Shielding, Bonding and Cables, Connectors, Components:

Principles and types of grounding, Shielding and bonding, Power line filter design: commonmode, differential mode and combined CM and DM filters, EMI suppression cables, EMC connectors, EMC gaskets, Opto-Isolators.

TEXT BOOKS:

1. Engineering Electromagnetic Compatibility - Dr. V.P. Kodali, IEEE Publication, Printed in India by S. Chand & Co. Ltd., New Delhi, 2000.

2. Electromagnetic Interference and Compatibility IMPACT series, IIT – Delhi, Modules 1 – 9. **REFERENCES:**

1. Introduction to Electromagnetic Compatibility - Ny, John Wiley, 1992, by C.R. Pal.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program														
Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	PO PO<													
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	-	-	3	-	3	-	-	-	-	3	-	-	-
CO2	2	3	-	-	2	-	-	2	-	-	-	-	3	-
CO3	-	-	3	-	2	-	-	-	3	-	-	-		2
CO4	-	3	2	-	-	-	-	-	-	2	-	-	3	-
CO5	3	-	3	-	-	-	-	3	-	-	-	-	-	-
CO6	-	-	3	-	-	-	3	-	-	-	-	-	-	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

0 0 2 1

VLSI LABORATORY Lecture – Tutorial: 0-0 Hours **Internal Marks:** 40 **Credits: External Marks:** 60 1 Prerequisites: CMOS technology, Digital Electronic Circuits. **Course Objectives:** Understand the physics and modeling of MOSFET. • Fabricate steps and layout of CMOS integrated circuits. • Analyze the performance of CMOS inverter and various circuits. • Design CMOS circuits using various design rules. **Course Outcomes:** Upon successful completion of the course, the student will be able to: **CO1** Design CMOS logic circuits. Simulate the circuit with tanner EDA tools. **CO2 CO3** Apply the design rules to get the layout of the circuits. **CO4** Apply lambda based design rules and solve the problem in the design of CMOS logic circuits. Design various gates, adders, encoders and flip-flops. **CO5** Understand various design rules to obtain the CMOS logic circuits. **CO6** LAB EXPERIMENTS:

VLSI LABORATORY USING EDA TOOL(SCHEMATIC AND LAYOUT DIAGRAMS)

The students are required to design the schematic diagrams using CMOS logic and to draw the layout diagrams to perform the following experiments using 130nm technology with the Industry standard EDA Tools.

- 1. Implementation of an inverter using CMOS logic.
- 2. Implementation of the universal gates using CMOS logic.
- 3. Implementation XOR gate using CMOS logic.
- 4. Full Adder using CMOS logic.
- 5. Full subtractor using CMOS logic.
- 6. Implementation of SR latch using CMOS logic.
- 7. Implementation of D latch using CMOS logic.
- 8. Design of Decoder using CMOS logic.
- 9. Design of Static RAM cell using CMOS logic.
- 10. Design of Differential Amplifier using CMOS logic.

Design of flip flop using CMOS logic.

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

SOFTWARE REQUIRED:

1. Mentor Graphics Software / Equivalent Industry Standard Software.

2. Personal computer system with necessary software to run the programs and to implement.

Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program														
Specific outcomes (PSOs) (1 – Low, 2- Medium, 3 – High)														
	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	-	-	3	-	-	3	-	-	-	-	-	3	-
CO2	-	2	-	2	-	-	-	3	-	2	-	-	-	2
CO3	-	-	3	-	-	2	-	-	2	-	3	3	-	-
CO4	2	-	-	-	-	-	-	-	-	3	-	-	2	-
CO5	-	2	-	2	3	-	2	-	-	-	2	3	-	-
CO6	-	3	-	-	-	-	-	-	-	-		-	3	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - II Semester

L T P C 0 0 2 1

Microprocessors & Microcontrollers Lab

Lectu	re – Tutorial:	0-0 Hours	Internal Marks:	40
Credi	ts:	1	External Marks:	60
Prere	quisites: Digital Elect	tronics, Computer Architecture		
Cours	e Objectives:			
•	To develop assemb	bly language program skills and pro	viding the basic know	ledge of
	interfacing various p	peripherals to 8086 microprocessor and	8051 Microcontroller.	
Cours	e Outcomes:			
Upon	successful completio	on of the course, the student will be a	ble to:	
COI	Develop the assemb	ly language Programmers' for 8086 Mi	croprocessor	
CO2	Use the cross compi	ler such as MASM to verify and simula	ate the 8086 codes	
CO3	Interfacing of variou	s peripheral chips to 8086 microproces	ssor.	
CO4	Develop the assemble	ly language Programmes for 8051 Mici	rocontroller.	
CO5	Design various inter	facing circuits for Real world and pract	tical Applications.	
CO6	Analyze the perform	ance of various interface techniques fo	r the computing circuits	•
	LAB EXPERIMEN	18:		
PART]				
MICRO	OPROCESSOR 808	6		
Introdu	lction to			
	$\frac{1}{1} \mathbf{ASIVI}.$			• . •
1.	Arithmetic Operatio	ns - Multi byte addition and subtraction	n, multiplication and div	1810n,
2	Logic operations - sl	hift and rotate Converting packed BCI) to Unnacked BCD_BC	'D to
2.	ASCII conversion.	and totale, converting packed Del	o to Onpacked DeD, De	
3.	By using string oper	ations and instruction prefix: Move, Bl	lock, Reverse string, Sor	ting,
1	Eastorial on a given	Number	.8011.	
4.	Sum of square and S	Sum of Cubes of a given number		
5.	Sum of square and c	sum of Cubes of a given number		
PART	·II· INTERFACINO	WITH MICROPROCESSOR 8086	(Any 2 Experiments)	
1	8259-Interrupt Cont	roller –Generate interrupt using 8259 t	imer.	
2	8279-Keyboard Dist	play-write a ALP to display a string of $\frac{1}{2}$	character	
3.	8255-PPI-write ALE	to generate sinusoidal wave, triangula	r and saw tooth wave us	ing PPI.
4.	8251 USART Write	ALP to establish communication betw	een two processors.	
			I	
PART	-III: MICROCONT	ROLLER 8051		
1.	Switches and LEDs.			
2.	Traffic light Control	ler.		
3.	Finding No of 1's an	nd 0's in a given 8 bit number		
4.	Addition of even nu	mber from a given array		

5. Serial Communication

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes (POs) and Program													
Speci	ific out	tcomes ((PSOs)	(1 - Loc)	ow, 2- I	Mediun	n, 3 – E	ligh)						
P PO </th														
	0	2	3	4	5	6	7	8	9	10	11	12	01	2
	1													
CO1	2	3	-	2	-	-	-	-	-	3	-	-	-	3
CO2	-	3	-	2	-	-	-	-	-	2	-	-	-	2
CO3	3	-	3	-	3	-	-	-	-	-	2	-	-	-
CO4	-	3	3	-	-	2	-	-	2	-	-	-	2	3
CO5	2	-	-	-	-	-	3	-	-	-	-	-	-	-
CO6	-	2	-	2	-	-	-	3	-	2	-	-	3	-

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

III Year - II Semester

L T P C 0 0 2 1

Digital Signal Processing Laboratory

Lectu	re – Tutorial:	0-0 Hours	Internal Marks:	40								
Credi	ts:	1	External Marks:	60								
Preree	quisites: Signals and S	systems, Laplace and Fourier Transf	forms.									
Cours	e Objectives:											
• Anal	yze the Discrete Time	Signals and Systems										
• Knov	w the importance of FF	I algorithm for computation of Dis	rece Fourier Transform									
• Lear	the FIR and IIR Filte	r design procedures	105									
• Learn	n the concepts of DSP	Processors										
Cours	e Outcomes:											
Upon	successful completion	n of the course, the student will be	able to:									
CO1	Apply the difference	equations concept in the analysis of	discrete time systems.									
CO2	Understand the FFT algorithm for solving the DFT of a given signal.											
CO3	Design a Digital filter	r (FIR&IIR) from the given specific	ations.									
CO4	Realize the FIR and I	IR structures from the designed dig	ital filter.									
CO5	Understand the Mult	irate Processing concepts to be us	ed various applications (eg: Digital								
~~~	filter banks, sub band	coding of speech signals).										
CO6	Apply the signal proc	essing concepts on DSP Processors	•									
A 11 41-	<b>F</b> -11' <b>F</b> '	LIST OF EXPERIMENTS										
All the	e Following Experiment	its should be conducted using MAT	LAB sonware.									
1. Gen	eration of Discrete tim	ne signals.										
2. Con	nputation of Linear Co	onvolution.										
3. Con	nputation of Circular C	Convolution.										
4. Add	lition of Sinusoidal sig	nals.										
5. Con	nputation of DFT and	IDFT.										
6. Free	quency response of IIR	low pass and high pass Butterwort	h filter.									
7. Free	quency response of IIR	low pass and high pass Chebyshev	filter.									
8. Free	quency response of FII	R low pass and high pass filter using	Rectangular window.									
9. Free	quency response of FII	R low pass and high pass filter using	g Triangular window.									
10. Co	mputation of N-Point	FFT.										
<u>Experi</u>	ments to be conducted	beyond the syllabus										
1. Imp	lementation of Decima	ation and Interpolation for a Sequen	ce/Signal.									



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

2. Verification of Linear Convolution and Circular Convolution of sequences using

Code Composer Studio (CCS).

#### **SOFTWARE REQUIRED:**

1. MATLAB software

	РО	PS	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	01	2
CO1	3	2	-	2	-	3	-	-	-	-	-	3	-	3
CO2	-	-	-	-	3	-	-	2	-	3	-	-	-	3
CO3	3	3	3	-	-	-	3	-	-	-	2	-	2	-
CO4	2	3	-	-	-	-	-	-	-3	-	-	-	3	-
CO5	2	-	3	2	3	3	-	-	-	-	-	-	-	2
CO6	-	2	-	2	-	-	-	3	-	2	-	-	3	-



(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR FINAL YEAR B.TECH PROGRAMME-NRIA 18

			Sch	eme	of		Scher			
SI.	Course		Inst	ructi	ion		Exam	ination		No. of
No	Code	Title of the Course	(Per	iods	Per	•	(Max	Credits		
			Wee	ek)						
			L	Т	Р	Total	CIA	SEA	Total	
1	PC	Microwave Engineering	3	1	-	4	40	60	100	4
2	PC	Optical Communication	3	-	-	3	40	60	100	3
3	PC	Digital Image Processing	3	1	-	4	40	60	100	4
4	PE	Professional Elective III	3	-	-	3	40	60	100	3
		(i)Satellite Communications &								
		RADAR Engineering								
		(ii) Data Base Management								
		Systems								
		(iii) Embedded System Design								
5	PE	<b>Professional Elective IV</b>	3	-	-	3	40	60	100	3
		(i) Data Communications								
		(ii) Operating Systems								
		(iii) Analog IC Design								
6	MC	Indian Constitution (MC)	2	-	-	2	40	60	100	0
7	PC	Microwave Engineering & OC	-	-	2	2	40	60	100	1
		Lab					40	00	100	1
8	PR	Mini Project	-	-	8	8	40	60	100	4
		Total	17	2	10	29	320	480	800	22

#### **IV YEAR I SEMESTER**

#### **IV YEAR II SEMESTER**

SI. No	Course Code	Title of the Course	Inst	So ruo Pe	chem ction er Wo	e of (Periods eek)	So Ex (Maxin	cheme amina num N	of tion ⁄Iarks )	No. of Credit
			L	Т	Р	Total	CIA	SEA	Total	S
1	PE	Professional Elective V	3	-	-	3	40	60	100	3
		(MOOCS)								
		(i)Wireless								
		Communications and								
		Networks								
		(ii) Soft Computing								
		Techniques								
		(iii) Digital IC Design								
2	PE	Professional Elective VI	3	-	-	3	40	60	100	3
		(MOOCS)								
		(i) Computer Networks								
		(ii) Internet of Things and								
		Applications								

		(iii) Artificial Intelligence								
3	PR	Main Project and Seminar	-	-	16	16	80	120	200	8
		Total	6	-	16	22	160	240	400	14

#### IV Year - I Semester

#### L T P C 3 1 0 4

### **Microwave Engineering**

Lecture	- Tutorial:	3-1 Hours	<b>Internal Marks:</b>	40
<b>Credits:</b>		4	<b>External Marks:</b>	60
Prerequi	sites: Transmissior	Lines, Electromagnetic Field Theory		
Course (	Objectives:			
• To Ar	understand the str	ucture, and function of the various m	icrowave tubes as oscill	ators and
• To	learn about Microv	vave solid State Devices as oscillators.		
• To	analyze fundamen	ntal characteristics of Micro strip lin	nes through electromagn	etic field
CO	ncepts.			
• To Mi	understand the crowave Bench Set	basic properties of waveguide con up for measurement of Microwave par	mponents, Ferrite mater cameters.	rials and
Course (	<b>Dutcomes:</b>			
Upon su	ccessful completion	n of the course, the student will be al	ble to:	
CO1	Describe the mode with calculation of	es of operation of Klystron tube as mic f efficiency.	rowave Oscillator and an	nplifier
CO2	Analyze the mode	s of operation of Magnetron and TWT	as microwave tubes.	
CO3	Explore different	modes of propagation in waveguide st	ructures using EM field c	oncepts.
<b>CO4</b>	Understand fundation field analysis.	mental characteristics of Micro strip li	nes through electromagne	etic
CO5	Estimate the S-mat microwave energy	rix for various waveguide components in a desired direction.	and analyze the splitting	of the
CO6	Understand the op microwave param	eration of microwave Solid state device ters using a Microwave test bench.	ces and Measure various	
	<b>F</b>	Course Content(Syllabus)		
		UNIT I		

#### **Part-A: (O type Microwave Tubes-1)**

Introduction, Microwave Spectrum and Bands, Applications of Microwaves. Microwave tubes -

O type and M type classifications. O-type tubes : Two Cavity Klystron– Structure, Principle of working ,Velocity Modulation Process and Applegate Diagram, Expressions for o/p Power and Efficiency, Applications.

#### Part-B: (O type Microwave Tubes-2)

Reflex Klystron – Structure, Principle of working, Velocity Modulation Process and Applegate Diagram, Mathematical Theory of Bunching, Power Output, Efficiency, Oscillating Modes, Applications.

#### UNIT II

#### Part-A: (Microwave Tubes-M type)

M-type Tubes Introduction, Magnetrons – Different Types, 8-Cavity Cylindrical Magnetron, Hull Cut-off Condition, and PI-Mode Operation. Slow Wave Structures-types, Structure of TWT, working of TWT amplifier, Applications.

#### Part-B: (Microwave Solid State Devices)

Microwave Solid State Devices: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diode – Principle, Characteristics, Basic Modes of Operation. Avalanche Transit Time Devices

- Introduction, IMPATT and TRAPATT Diodes - Principle of Operation and Characteristics.

#### UNIT III

#### **Part-A: (Wave Guides)**

Rectangular Waveguides – TE/TM modes, Expressions for Fields, Cut-off Frequencies, Filter Characteristics, Mode Characteristics. Circular Waveguides- Introduction, TE/TM modes, Expressions for Fields, Impossibility of TEM Waves in Hollow Waveguides.

#### Part-B: (Micro strip Lines)

Introduction to Strip Lines, Basic Structure of Micro strip lines,  $Z_0$  Relations, Effective Dielectric Constant, advantages of micro strip lines, losses and applications of micro strip lines.

#### UNIT IV

#### **Part-A: (Wave Guide Components)**

Scattering Matrix– Significance, Formulation and Properties. S-Matrix Calculations for - E-plane and H-plane Tees, Magic Tee, Directional Couplers – 2Hole, Ferrite Components–Faraday Rotation, S-Matrix Calculations for Isolator, Circulator, Related Problems.

#### **Part-B: (Microwave Measurements)**

Description of Microwave Bench – Different Blocks and their Features, Precautions; Microwave Power Measurement – Bolometer Method, Measurement of Attenuation, Frequency, Guide Wavelength, VSWR.

#### **TEXT BOOKS:**

1. Microwave Devices and Circuits – Samuel Y. Liao, PHI, 3rd Edition, 1994

2.Microwave Principles – Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS Publishers and Distributors, New Delhi,

#### **REFERENCES:**

1. Foundations for Microwave Engineering – R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.

2. Microwave Engineering - David M. Pozar, Wiley publications, 4th Edition

3. Microwave Engineering- Annapurna Das and Sisir K.Das, Mc Graw Hill Education, 3rd Edition.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

				<u> </u>					1					
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	3
CO2	2	2	-	2	-	3	-	-	-	-	-	-	2	-
CO3	3	3	-	-	3	-	-	-	3	-	2	-	-	-
CO4	3	3	-	2	-	-	-	-	-	-	-	-	-	3
CO5	2	2	-		-	-	2	-	-	-	-	2	-	
CO6	-	2	-	2	-	-	-	-	-	2	-	-	-	3

#### **IV Year - I Semester**

#### L T P C 3 0 0 3

#### **OPTICAL COMMUNICATION**

	01									
Lectur	re – Tutorial:	3-0 Hours	<b>Internal Marks:</b>	40						
Credit	s:	3	<b>External Marks:</b>	60						
Prerec	quisites: Engineerin	g physics, Analog Communications, I	Digital Communication.							
Cours	e Objectives:									
• An	alyze and design op	otical communication and fiber optic se	ensor systems.							
• Un	derstand the proper	ties of optical fiber that affect the per	formance of a commun	ication link						
and typ	bes of fiber material	s with their properties and the losses o	ccur in fibers.							
• An	alvze the principles	of single and multi-mode optical fiber	s and their characteristic	cs.						
• Wo	orking of semicond	ictor lasers, differentiate between dire	ct modulation and exter	nal electro-						
optic r	nodulation. Analyz	e the operation of LEDs. laser diod	es. PIN. photo detector	rs (spectral						
propert	ies, bandwidth, and	circuits) and apply in optical systems.	, , , , , , , , , , , , , , , , , , ,							
• De	sign the functionali	ty of each of the components that con	oprise a fiber optic com	munication						
system	the models of anal	og and digital receivers.								
Cours	e Outcomes:	- <u>_</u>								
Upon	successful complet	ion of the course, the student will be	able to:							
<b>CO1</b>	Understand the ov	verview of optical fiber communication	on and classify the type	s of optical						
	fibers, analyze cyli	ndrical fibers using mathematical equa	ations.	1						
CO2	Design the optical	fibers using various materials and to i	llustrate various attenua	tion losses.						
CO3	Illustrate various	dispersion models Apply splicing tec	chniques on fibers and	choose low						
	loss connectors to	minimize joint losses.								
<b>CO4</b>	Analyze different	types of optical sources and photo dete	ectors, External quantum	n efficiency,						
	and analyze signal	transmission, receiver operation and e	rror sources of optical fi	iber.						
CO5	Evaluate the pow	ver coupled in to optical fibres and	Measurement of Atten	nuation and						
	Dispersion, Eye pa	ttern.								
<b>CO6</b>	<b>CO6</b> Design optical system with budget analysis and to classify principles and types of WDM.									
		Course Content(Syllabus)								
		<u>UNIT I</u>								
DIDE										

**PART A: Overview of optical fiber communication** – Historical development, The general system, advantages of optical fiber communications. Optical fiber wave guides- Introduction, Ray theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays, Cylindrical fibers- Modes, V-number, Mode coupling, Step Index fibers, Graded Index fibers, Single mode fibers- Cut off wavelength, Mode Field Diameter, Effective Refractive Index, Related problems.

**PART B: Fiber materials**– Glass, Halide, Active glass, Chalgenide glass, Plastic optical fibers. **Fiber losses**-Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses

#### <u>UNIT II</u>

**PART A: Signal distortion in optical fibers -** Information capacity determination, Group delay, Types of Dispersion-Material dispersion, Wave-guide dispersion, Polarization-Mode dispersion, Intermodal dispersion, related problems.

**PART B: Optical fiber Connectors**-Connector types, Single mode fiber connectors, Connector return loss, **Fiber Splicing**- Splicing techniques, Splicing single mode fibers, **Fiber alignment and** 

joint loss- Multimode fiber joints, single mode fiber joints.

#### UNIT III

**PART A: Optical sources -** LEDs, Structures, Materials, Internal and External Quantum efficiency, Modulation, Power bandwidth product. **Laser Diodes**- Fabry perot resonator cavity Laser diode, Distributed feedback (DFB) Laser diode, Reliability of LED & ILD

**PART B: Optical detectors** - Physical principles of PIN and APD, Comparison of Photo detectors. Photo detector Noise, related problems **Optical receiver operation**- Digital signal transmission through optical data link, error sources in optical pulse detection mechanism, Receiver configuration, Digital receiver performance

#### UNIT IV

**PART A: Source to fiber power launching** – Source Output pattern, Power coupling calculations, Power launching versus wavelength, Equilibrium Numerical Aperture, Lansing schemes for coupling improvement, Measurement of Attenuation and Dispersion in optical fibers, Eye pattern.

**PART B: Optical system design** – Point-to- point links- Component choice and considerations, Link power budget with examples, Rise time budget with examples, Line coding in Optical links, Wavelength Division Multiplexing

#### **TEXT BOOKS:**

1. Optical Fiber Communications – Gerd Keiser, Mc Graw-Hill International edition, 3rd Edition, 2000.

2. Optical Fiber Communications – John M. Senior, PHI, 2nd Edition, 2002.

#### **REFERENCES:**

1. Fiber Optic Communications: D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005.

2. Optical Fiber Communication and its Applications – S.C.Gupta, PHI, 2005.

3. Fiber Optic Communication Systems – Govind P. Agarwal, John Wiley, 3rd Edition, 2004.

4. Fiber Optic Communications – Joseph C. Palais, 4th Edition, Pearson Education, 2004.

**Contribution of Course Outcomes towards achievement of Program Outcomes** (1 – Low, 2- Medium, 3 – High)

·			/	U /										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	3	-	-	-	-	-	-	2	-	-	3	-	-
CO2	-	2	3	-	-	3	-	-	-	-	2	-	-	3
CO3	3	-	3	-	3	-	3	-	-	3	-	-	-	-
CO4	-	2	-	-	2	-	-	-	-	-	-	3	-	2
CO5	-	-	2	3	-	-	-	2	-	-	-	-	3	-
CO6	2	-	2	3	-	-	-	-	-	2	-	-	-	-

#### IV Year - I Semester

#### L T P C 3 1 0 4

#### DIGITAL IMAGE PROCESSING

Lectu	re – Tutorial:	3-1 Hours	<b>Internal Marks:</b>	40
Credi	ts:	4	External Marks:	60
Prere	quisites: Mathemat	ics I & II, Engineering Physics, Linea	r integrated circuits, Sign	als and
Syste	ms, Analog Comm	unications, Digital Signal Processing.		
Cours	e Objectives:			
•	To introduce the co	oncepts of image processing and basic	analytical methods to be	e used in
image	e processing.			
•	To familiarize stud	ents with image enhancement.		
•	To introduce differ	ent image restoration techniques.		
•	To introduce the co	oncepts of colour image processing.		
•	To familiarize the s	students with image compression techn	niques.	
• To	introduce morphol	ogical processing and segmentation te	chniques.	
Cours	e Outcomes:		•	
Upon	successful comple	tion of the course, the student will b	e able to:	
CO1	Understand the fu	ndamentals of image processing, nece	essity for transforms, DF	T and its
	properties, DCT.			
CO2	Evaluate techniqu	es for image enhancement.		
CO3	Estimate the degr	adation of an image and apply appropr	iate restoration technique	<u> </u>
				/5. C 1
04	Understand the no	eed for colour image processing and	learn the fundamentals (	of colour
	image processing			
CO5	Understand the ne	eed for image compression and learn	different techniques to c	ompress
	image.			
CO6	Interpret morphol image.	ogical processing and implement dif	ferent techniques to seg	ment an
		Course Content(Syllabus)		
		<u>UNIT I</u>		
PART image Repre mathe	<b>A: Introduction:</b> e processing, compesenting digital imatematical tools used	Introduction to digital image process onents of an image processing system ages, Some basic relationships betwee in digital image processing.	ing, Fundamental steps in , Image sensing and acc en pixels, An introduction	n digital juisition, on to the
PART	B: Image transfo	orms and Intensity transformations	: Need for transforms. I	OFT with
one v	variable and two va	ariables. Properties of 2D Discrete Fo	ourier transform. Discret	e cosine
transf	form Basics of it	tensity transformations and spatial	filtering Some basic	intensity
transf	Formation functions	Histogram processing	intering, some busie	mensity
uansi	ormation functions	, mstogram processing.		
		UNIT II		
PART	<b>A:</b> Filtering in	spatial and frequency domain: F	undamentals of spatial	filtering.
smoo	thing spatial filter	s, sharpening spatial filters Image s	moothing and sharpenin	ng using
frequ	ency domain filters	, Selective filtering in frequency doma	in filters.	
PART Resto	<b>B: Image Resto</b> Tration in the pres	<b>pration</b> : A model of the image dependence of noise only Spatial Filtering	gradation / Restoration g, Periodic Noise Redu	process, ction by
frequency domain filtering, Linear, Position –Invariant Degradations, Estimation the degradation function, Inverse filtering, Minimum mean square error(Wiener) filtering.

#### UNIT III

**PART A: Color image processing:** Color fundamentals, color models, pseudo color image processing, basics of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color.

**PART B: Image compression:** Fundamentals, Basic compression methods: Huffman coding, Arithmetic coding, LZW coding, Run-Length coding, symbol based coding, Predictive coding, Wavelet coding, color image compression.

#### UNIT IV

**PART A: Morphological Image Processing:** Preliminaries, Erosion and dilation, opening and closing, The Hit or miss transformation, Some basic morphological algorithms, Gray scale morphology, Some basic gray scale morphological algorithms.

**PART B: Image segmentation:** Fundamentals, point, line, edge detection, Basic edge detection, thresholding, region –based segmentation.

#### **TEXT BOOKS:**

 R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008.
 Jayaraman, S. Esakkirajan, and T. Veerakumar," Digital Image Processing", Tata McGraw-Hill Education, 2011.

#### **REFERENCES:**

1. Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 9th Edition, Indian Reprint, 2002.

2. B.Chanda, D.Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2009.

	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PS O2
CO1	3	2	-	-	-	-	3	-	-	-	-	-	-	-
CO2	3	2	-	2	2	-	-	-	-	-	-	-	-	3
CO3	-	3	2	-	-	3	-	-	-	-	-	-	3	-
CO4	3	2	-	3	-	-	-	3	1	-	-	-	-	-
CO5	-	3	2	-	-	-	-	-	-	2	-	-	3	-
CO6	-	2	-	3	2	-	-	-	-	3	-	-	-	-

#### LTPC

#### 3 0 0 3

#### **PROFESSIONAL ELECTIVE – III** SATELLITE COMMUNICATIONS & RADAR ENGINEERING

Lecture – Tutor	ial: 3-0 Hours	Internal Marks:	40
Credits:	3	External Marks:	60
Prerequisites: D	igital Communication, Cellular m	obile Communication, Optical commu	nication,
Signals and Sys	tems, Analog Communications, I	Electromagnetic Theory, Antennas an	d Wave
Propagation.			
<b>Course Objectiv</b>	es:		
<ul> <li>To underst communica</li> <li>To analyze</li> <li>To familiar</li> </ul>	and the basic concepts, applicat tions. various satellite subsystems and th ize with the concepts of satellite lin	ions, frequencies used and types of heir functionality. nk design and calculation of C/N ratio.	satellite
• To understa	and the concepts of satellite navigation	tion, architecture and applications of G	PS.
• To gain kno	wledge about the basics of RADA	R and its parameters.	
• To learn ab	out different types of Radars and the	heir applications.	
Course Outcom	28:		
Upon successful	completion of the course, the stu	ident will be able to:	
CO1 Under mecha	stand the concepts of satellite nics and launching vehicles.	communications and to analyze the	e orbital
CO2 Acqui	re knowledge about various satelli	te subsystems and basic transmission th	ieory.
CO3 Under the pri	stand the basic concepts of satelli nciples of satellite navigation and	te uplink and downlink design and to Global positioning system.	analyze
CO4 Acqui a RAI	re the knowledge of Radar system DAR system and to derive the RAD	to apply and to design required param DAR Equation.	eters for
CO5 Analy applic	ze the working principle of CW ations.	⁷ and Frequency Modulated Radar a	nd their
CO6 Analy receiv	ze different types of tracking RA ers and displays.	ADARs and to study different types of	of Radar
	Course Content(Syllab	us)	

UNIT I

**PART A: Introduction:** Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.

**PART B: Orbital Mechanics And Launchers:** Orbital Mechanics, Look Angle determination, Orbital perturbations, Orbit determination, launches and launch vehicles, Orbital effects in communication systems performance.

#### <u>UNIT II</u>

**PART A: Satellite Subsystems:** Attitude and orbit control system, telemetry, tracking, Command and Monitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space Qualification.

**PART B: Satellite Link Design:** Basic transmission theory, system noise temperature and G/T ratio, Design of down links, up link design, Design of satellite links for specified C/N.

Satellite Navigation and Global positioning system- Radio and Satellite Navigation, GPS Position Location principles, GPS Receivers and codes, GPS Navigation Message, GPS signal

levels, GPS receiver operation, Differential GPS.

#### UNIT III

PART A: Introduction to Radar: Introduction, Maximum Unambiguous Range, simple Radar range Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications, Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Illustrative Problems.

**PART B: CW and Frequency Modulated Radar:** Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, FM-CW Altimeter, Illustrative Problems.

**UNIT IV** 

PART A: Introduction to MTI Radar: Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Tracking with Radar- Sequential Lobing, Conical Scan, Mono pulse Tracking Radar - Amplitude Comparison Mono pulse (one- and twocoordinates).

PART B: Radar Receivers: Displays - types. Duplexers - Branch type and Balanced type, Circulators as Duplexers.

#### **TEXT BOOKS:**

1.Satellite Communications – Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003.

2. Satellite Communications Engineering – Wilbur L. Pritchard, Robert A Nelson and Henri G. Suyderhoud, 2nd Edition, Pearson Publications, 2003.

3. Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2nd Ed., 2007.

4. Radar Engineering and fundamentals of Navigational Aids-G.S.N.Raju, I.K International, 2008. **REFERENCES:** 

1. Satellite Communications: Design Principles - M. Richharia, BS Publications, 2nd Edition, 2003.

2. Satellite Communications - Dennis Roddy, McGraw Hill, 2nd Edition, 1996.

- 3. Satellite Communication D.C. Agarwal, Khanna Publications, 5th edition.
- 4. J.C.Toomay, Paul J. Hannen "Principles of Radar", PHI Learning.
- 5. Radar: Principles, Technology, Applications Byron Edde, Pearson Education, 2004.

6. Radar Principles – Peebles, Jr., P.Z., Wiley, New York, 1998.

(1 1)														
	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	-	-	3	-	-	-	-	-	-	-	2	-
CO2	-	3	2	-	-	2	-	-	-	-	-	-	-	-
CO3	3	2	-	3	-	-	-	-	3	-	-	2	-	2
CO4	-	3	-	2	-	-	-	-	-	-	2	-	-	2
CO5	3	2	3	-	-	-	-	-	-	-	-	2	-	-
CO6	2	3	-	-	-	-	2	-	-	-	-	-	-	3

#### IV Year - I Semester

#### L T P C 3 0 0 3

#### **PROFESSIONAL ELECTIVE - III**

#### DATABASE MANAGEMENT SYSTEMS

L	ecture	e – Tutorial:	3-0 Hours	Internal Marks:	40									
C	redits	:	3	<b>External Marks:</b>	60									
P	rerequ	uisites: Fundam	ental knowledge on C, C++, SQL	and basic functions	of database									
sy	stems.		0											
Ć	ourse	<b>Objectives:</b>												
	• T	o learn the principl	es of systematically designing and us	ing large scale Databa	se									
	Management Systems for various applications.													
	• Т	o understand quer	y processing and techniques involved	in query optimization	•									
	• T	o understand the p	rinciples of storage structure and reco	verv management.										
	• T	o understand the co	oncepts of transaction management an	nd concurrency control										
	Cour	se Outcomes:		<u></u>	•									
-	Upon	successful co	mpletion of the course. the s	tudent will be ab	le to:									
-	CO1	Describe a relation	anal database and object-oriented data	base.										
-	CO2	Create maintain	and manipulate a relational database i	using SOL										
_	CO3	Describe ER mod	lel and normalization for database des	sion										
-	CO4	Examine issues	in data storage and query processi	ng and can formulate	appropriate									
	001	solutions	in data storage and query processin	ig and can formulate	appropriate									
-	CO5	Understand the	role and issues in management of	data such as efficien	cy privacy									
		security, ethical r	esponsibility and strategic advantage		ey, privacy,									
	CO6	Design and build	database system for a given real worl	ld problem										
		Design und Sund												
_	PART	' A• An Overview	of Database Management. Introd	uction- What is Datab	ase System-									
	What i	s Database-Why I	Database- Data Independence- Relatio	n Systems and Others-	- Summary									
	i i iide		autouse Data macpenaence Relatio		Samma j.									
	PART	B: Database syst	tem architecture. Introduction: The	Three Levels of Arch	itecture-The									
	Extern	al Level- the Conc	eptual Level- the Internal Level- Mar	pping- the Database Ad	dministrator-									
	The D	atabase Manageme	ent Systems- Client/Server Architectu	re.										
		6	UNIT II											
	PART	A: The E/R M	Iodels: The Relational Model. Rel	ational Calculus. Intr	roduction to									
	Databa	ase Design. Datal	base Design and Er Diagrams-Enti	ties Attributes, and	Entity Sets-									
	Relation	onship and Relation	onship Sets-Conceptual Design With	h the Er Models, Th	e Relational									
	Model	Integrity Constrai	nts Over Relations.	,										
		6.7												
	PART	B: Key Constra	ints: Foreign Key Constraints-Gener	al Constraints, Relation	onal Algebra									
	and Ca	alculus, Relational	Algebra- Selection and Projection- Se	et Operation,	C									
	Renaming – Joins- Division- More Examples of Oueries, Relational Calculus, Tuple Relational													
	Calculus- Domain Relational Calculus.													
			UNIT III											
	PART	A: Queries, Cor	nstraints, Triggers: The Form of Ba	asic SQL Query, Unic	on, Intersect,									
	and E	kcept, Nested Que	ries, Aggregate Operators, Null Valu	es, Complex Integrity	^v Constraints									
	in SQI	L, Triggers and Ac	tive Database.											
	2													
	PART	B: Transaction	Management and Concurrency Co	ontrol: Transaction, p	properties of									
	transa	ctions, transaction	log, and transaction management wit	h SQL using commit	rollback and									

save point, Concurrency control for lost updates, uncommitted data, inconsistent retrievals and the Scheduler.

#### UNIT IV

**PART A: Concurrency control with locking methods :** lock granularity, lock types, two phase Locking for ensuring serializability, deadlocks, Concurrency control with time stamp ordering: Wait/Die and Wound/Wait Schemes, Database Recovery management: Transaction recovery.

**PART B: Overview of Storages and Indexing:** Data on External Storage- File Organization and Indexing –Clustered Indexing – Primary and Secondary Indexes, Index Data Structures, Hash-Based Indexing – Tree-Based Indexing, Comparison of File Organization.

#### **TEXT BOOKS:**

1. Introduction to Database Systems, CJ Date, Pearson.

2. Data base Management Systems, Raghurama Krishnan, Johannes Gherkin, TATA McGraw Hill 3rd Edition

3. Database Systems - The Complete Book, H G Molina, J D Ullman, J Widom Pearson **REFERENCE BOOKS:** 

1. Data base Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.

2. Fundamentals of Database Systems, Elmasri Navrate Pearson Education.

3. Introduction to Database Systems, C.J.Date Pearson Education.

`			/	0 ,										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	-	-	-	-	-	-	-	-	2	-	-	-	-
CO2	2	3	-	-	2	-	-	-	-	-	3	-	-	-
CO3	-	-	3	-	2	-	-	-	3	-	-	-	3	-
CO4	3	-	3	-	-	-	-	2	-	-	-	-	2	-
CO5	3	-	2	-	-	2	-	-	-	-	-	-	-	-
CO6	-	-	3	-	-	-	-	-	-	-	-	2	-	-

#### IV Year - I Semester

#### L T P C 3 0 0 3

### **PROFESSIONAL ELECTIVE - III**

#### EMBEDDED SYSTEM DESIGN

Lecture -	- Tutorial:	3-0 Hours	<b>Internal Marks:</b>	40
<b>Credits:</b>		3	<b>External Marks:</b>	60
Prerequis	ites: Operating Sys	tems, Microcontrollers, C Programmin	lg.	
Course C	<b>Objectives:</b>			
Provie	de in-depth knowle	edge about embedded systems embedd	led processors, and its l	nardware
and softw	vare.		-	
• Exp	plain design metrics	s or challenges in designing an embedo	led system.	
• Exp	plain real time ope	erating systems, inter task communica	tion and an embedded	software
developm	nent tools.			
Course C	Outcomes:			
Upon suc	cessful completion	n of the course, the student will be al	ole to:	
CO1	Analyze the differ	rences between general computing sys	stem and the embedded	systems,
	and need for com	umunication interfaces	, core of the embedded	systems
<b>CO2</b>	Understand design	n approaches of embedded hardware at	nd firmware.	
001				
CO3	Know about R7 multiprocessing.	ros, rros principles, kernel, tas	sks, threads, multitask	ing and
CO4	Understand kerne dead lock, and liv	el objects; inter task communication- ve lock.	pipes, signals, message	queues,
CO5	Apply embedded	software development tools, understa	nd unique design probl	ems and
	challenges of real	l time systems.		
CO6	Understand ARM	processor architecture and register org	anization of ARM.	
		Course Content(Syllabus)		
		<u>UNIT I</u>		~
PART A	: INTRODUCTIO	ON TO EMBEDDED SYSTEMS: I	Definition of Embedded	System,
Embedde	ed Systems Vs	General Computing Systems, His	story of Embedded	Systems,
Quality	ation, Major Appl	Incation Areas, Purpose of Embedde	a Systems, Characteris	sucs and
	• TVPICAL EMB	<b>EDDED SVSTEM</b> : Core of the Emb	edded System: General	Purnose
and Dom	ain Specific Proce	ssors, ASICs, PLDs, Commercial Off-	The-Shelf Components	(COTS).
Memory	: ROM, RAM, Ser	nsors and Actuators, Communication	Interface: Onboard and	External
Commur	nication Interfaces.			
		<u>UNIT II</u>		
PART A	: EMBEDDED HA	ARDWARE DESIGN: Analog and di	igital electronic compon	ents, I/O
types and	d examples, Timer a	and counting devices, Watchdog timer	, Real time clock.	
PART B	B: EMBEDDED	FIRMWARE DESIGN: Embedded	Firmware design app	proaches,
Embedde	ed Firmware deve	lopment languages, ISR concept, In	terrupt sources, Concep	ots of C
versus E	mbedded C and Co	mpiler versus Cross-compiler.		
		<u>UNIT III</u>		

**PART A: REAL TIME OPERATING SYSTEM:** Operating system basics, Types of operating systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling, Task communication, Task synchronisation.

**PART B: HARDWARE SOFTWARE CO-DESIGN:** Fundamental Issues in Hardware Software Co-Design, Computational models in embedded design, Hardware software Trade-offs.

#### UNIT IV

**PART A: Embedded System Development And Testing:** The integrated development environment, Types of files generated on cross-compilation, Simulators, Emulators and Debugging, Target hardware debugging, testing on host machine, Embedded Software development process.

**PART B: Advanced RISC Machine:** Features of ARM, Architecture of ARM, Modes of ARM, Register Organization of ARM, CPSR, Instruction set, Exception handling in ARM, ARM Families.

#### **TEXT BOOKS:**

1. Embedded Systems Architecture- By Tammy Noergaard, Elsevier Publications, 2013.

- 2. Embedded Systems-By Shibu.K.V-Tata McGraw Hill Education Private Limited, 2013.
- 3. Embedded Systems-By Shibu.K.V-Tata McGraw Hill Education Private Limited, 2013.
- 4.ARM System on Chip Architecture Steve Furber –2nd Eed., 2000, Addison Wesley Professional

#### **REFERENCES:**

1. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley Publications, 2013.

2.Embedded Systems-Lila Beda's-Pearson Publications, 2013

#### SWAYAM/NPTEL/MOOCS Courses

1. https://nptel.ac.in/courses/108/102/108102045/

2. https://nptel.ac.in/courses/106105193/

	/		/	U ,										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	2	3	-	-	-	-	-	-	-	2	-	-	3	-
CO2	-	-	3	-	2	-	-	3	-	-	-	-	-	3
CO3	2	-	-	3	3	-	1	-	-	-	-	3	-	-
CO4	-	2	2	-	-	-	-	-	-	-	-	-	3	2
CO5	3	-	-	-	-	2	-	-	-	-	-	-	3	-
CO6	-	3	-	2	2	-	-	-	2	-	-	-		-

#### IV Year - I Semester

#### PROFESSIONAL ELECTIVE-IV DATA COMMUNICATIONS

Lecture -	- Tutorial:	3-0 Hours	<b>Internal Marks:</b>	40
Credits:		3	<b>External Marks:</b>	60
Prerequi	sites: Analog Com	munication, Digital Communication.		
Course C	bjectives:			
• To	learn about basics of	of Data Communication networks, diff	erent protocols, standard	ls
and layeri	ng concepts.			
• To	know circuits for se	erial and parallel Data transmission.		
• To	study about error d	etection and correction techniques.		
• To synchrono	describe character ous data formats.	synchronization and explain the differ	ences between asynchro	nous and
• To	understand Data-Li	ink Protocols and Data Communicatio	ns Networks,	
• Define	e and describe the	Congestion Control and Quality of	Service in Data commu	inication
traffic con	ntrol.			
Course C	utcomes:			
Upon suc	cessful completion	n of the course, the student will be al	ole to:	
CO1	Understand the	concepts of Data Communication	networks, different p	rotocols,
	Standards and laye	ering.		
CO2	Analyze open syst	ems interconnection model and variou	s Data Communication	circuits.
CO3	Explore the error i	nvestigation techniques in data transm	ission process.	
CO4	Demonstrate the asynchronous and	character synchronization and ex synchronous data formats.	plain the differences	between
CO5	Analyze different	Data-Link Protocols and Data Commu	inications Networks.	
CO6	Elaborate the Con	gestion control and Quality of Service	in Data traffic control.	
		Course Content(Syllabus)		
		UNIT I		

#### **Data Communications and Networking:**

**Part-A:** Introduction, Data Communications Network Architecture, Data Communications Protocols, and Standards, Layered Network Architecture, Protocol data unit.

**Part-B:** Open Systems Interconnection, Data Communications Circuits, Serial and Parallel Data Transmission, Data Communications Circuit Arrangements, Circuit configurations, Transmission modes, Data Communications Networks, components, functions, features, network models.

#### <u>UNIT II</u>

#### **Fundamental Concepts of Data Communications:**

**Part-A:** Introduction, Error Control, Error Detection, redundancy checking, Error Correction, retransmission, Forward error correction, hamming code, examples.

Part-B: Character Synchronization, Asynchronous serial data, synchronous serial data, Data

Communications Circuits, Data Communications Modems, block diagram, modem classifications, Asynchronous and synchronous voice band modems.

#### UNIT III

#### **Data-Link Protocols and Data Communications Networks**

**Part-A:** Introduction, Data-Link Protocol Functions, Line discipline, flow control, error control, Character- and Bit-Oriented Data-Link Protocols, Asynchronous Data-Link Protocols, X-modem, Y-modem Synchronous Data-Link Protocols, binary synchronous communications.

**Part-B**: Synchronous Data-Link Control, Frame format, loop operation, message abort, Invert on zero encoding, High-Level Data-Link Control, subdivisions, information field, elements of procedure.

#### UNIT IV

#### Congestion Control and Quality of Service (QoS)

**Part-A:** Data traffic, congestion, congestion control-open loop and closed loop, congestion control in TCP and congestion control in frame relay.

**Part-B:** Flow Characterization, Flow Classes, Need For QoS, Techniques to improve QoS, scheduling, traffic shaping, resource reservation and admission control, integrated and differentiated Services.

#### **TEXT BOOKS:**

1. Advanced Electronic Communication Systems – W.Tomasi, 6th ed. 2014, PEI.

2. Data Communications and Networking – B.A.Forouzan, 4th ed.2008, TMH.

3. Data Communications and Computer Nerworks - Prakash C.Gupta, 2006, PHI.

#### **REFERENCES:**

1 Data and Computer Communications - William Stallings, 8th ed.2007, PHI

2. Computer Networks by Andrew S. Tanenbaum

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	-	2	-	-	-	-	-	-	-	-	2	-	-
CO2	-	3	3	-	-	-	2	2	-	-	-	-	-	-
CO3	2	3	-	3	-	-	-	-	-	-	-	-	-	3
CO4	2	-	3	-	-	-	-	-	-	-	2	-	-	2
CO5	-	3	2	-	-	2	-	2	-	-	-	-	3	
CO6	3	2	2		-	-	-	-	-	-	-	-	-	3

#### **IV Year - I Semester**

#### L T P C 3 0 0 3

#### PROFESSIONAL ELECTIVE-IV OPERATING SYSTEMS

Lecture – Tutorial: 3-0 Hours Internal Marks: 40										
<b>Credits:</b>		3	<b>External Marks:</b>	60						
Prerequis	ites: Basic Hardwa	re and Software concepts of Comput	er Systems and Organiza	ation.						
Course O	bjectives:									
• Stuc	ly the basic concept	ts and functions of operating systems								
• Und	lerstand the structur	e and functions of OS.								
• Lean	rn about Processes,	Threads and Scheduling algorithms.								
• Und	lerstand the princip	les of concurrency and Deadlocks.								
• Lean	rn various memory	management schemes.								
Course O	utcomes:									
Upon succ	cessful completion	of the course, the student will be a	ble to:							
CO1	Design various Sc	heduling algorithms.								
CO2	Apply the principl	es of concurrency.								
CO3	Design deadlock,	prevention and avoidance algorithms								
CO4	Compare and cont	rast various memory management sc	hemes.							
CO5	Design and Impler	nent a prototype file systems.								
CO6	CO6 Perform administrative tasks on Servers.									
	C	Course Content(Syllabus)								
		UNIT I								

**PART A: Introduction to Operating System Concept:** Types of operating systems, operating systems Concepts, operating systems services, Introduction to System call, System call types.

**PART B: Process Management** – Process concept, The process, Process State Diagram, Process control block, Process Scheduling- Scheduling Queues, Schedulers, Operations on Processes, Interprocess Communication, Threading Issues, Scheduling-Basic Concepts, Scheduling Criteria, Scheduling Algorithms.

#### <u>UNIT II</u>

**PART A: Memory Management:** Swapping, Contiguous Memory Allocation, Paging, structure of the Page Table, Segmentation.

#### PART B: Virtual Memory Management:

Virtual Memory, Demand Paging, Page-Replacement Algorithms, Thrashing.

#### UNIT III

**PART A: Concurrency:** Process Synchronization, The Critical- Section Problem, Synchronization Hardware, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization Examples.

**PART B: Principles of deadlock** – System Model, Deadlock Characterization, Deadlock Prevention,

Detection and Avoidance, Recovery form Deadlock

#### <u>UNIT IV</u>

**PART A: File system Interface-** the concept of a file, Access Methods, Directory structure, File system mounting, file sharing, protection.

**PART B: File System implementation-** File system structure, allocation methods, free-space management

Mass-storage structure overview of Mass-storage structure, Disk scheduling, Device drivers.

#### **TEXT BOOKS:**

1.Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin and Greg Gagne 9th Edition, John Wiley and Sons Inc., 2012.

2. Operating Systems – Internals and Design Principles, William Stallings, 7th Edition, Prentice Hall, 2011.

3. Operating Systems-S Halder, Alex A Aravind Pearson Education Second Edition 2016.

#### **REFERENCES:**

1. Modern Operating Systems, Andrew S. Tanenbaum, Second Edition, Addison Wesley, 2001.

2. Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata Mc Graw Hill Education", 1996.

3. Operating Systems: A Concept-Based Approach, D M Dhamdhere, Second Edition, Tata Mc Graw-Hill Education, 2007.

· ·	,		/	0 /										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO2	-	3	2	-	-	2	-	-	-	-	-	-	-	2
CO3	2	-	-	3	-	-	-	-	-	-	-	2	-	-
CO4	-	2	-	2	-3	-	-	-	-	-	-	-	-	-
CO5	2	-	3	-	-	-	-	-	-	-	-	2	3	-
CO6	-	3	2	-	-	-	-	-	-	-	-	-	-	-

#### **IV Year - I Semester**

#### PROFESSIONAL ELECTIVE-IV ANALOG IC DESIGN

Lecture	- Tutorial:	3-0 Hours		Internal Marks:	40						
Credits:		3		<b>External Marks:</b>	60						
Prerequ	isites: Electronic E	Devices and circuits, Line	ear IC Applicati	ons.							
Course	Objectives:										
Unde Transiste	Understand the behavior of MOS Devices and Small-Signal & Large-Signal Modeling of MOS Transistor and Analog Sub-Circuits.										
Stud	Study CMOS Amplifiers like Differential Amplifiers, Cascade Amplifiers, Output Amplifiers,										
and Ope	rational Amplifiers										
Desi	gn and to develop t	he Analog CMOS Circu	its for different	Analog operations.							
Unde	erstand the concept	s of Sample and Hold cir	rcuits and Oper	-Loop Comparators.							
Course	Outcomes:										
Upon su	ccessful completion	on of the course, the stu	dent will be al	ble to:							
CO1	Understand the kr	nowledge of MOS device	es and modeling	g.							
CO2	Use different style	es of CMOS Circuit mod	lelling to synthe	esize analog ICs.							
CO3	Apply appropriate	biasing techniques to in	nprove perform	nance of analog circuits	s.						
<b>CO4</b>	Design and Devel	op Analog Integrated Ci	rcuits using M	OS Transistor.							
CO5	Design and Devel	op CMOS Op Amps.									
CO6	Assess the perfor suitable for societ	rmance of sample and al use.	hold circuits a	and comparators in a	nalog ICs						
		Course Content(Syllab	us)								
		UNIT	<u>'I</u>								

**PART A: Basic MOS Devices:** The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, Latch up in CMOS Technology, Short Channel Effects in MOS Transistors.

**PART B: CMOS Device Modelling:** Weak Inversion in MOS Transistors Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Subthreshold MOS Model.

UNIT II

**PART A: Current Mirrors:** Current Sinks and Sources, Simple Current Mirrors, Simple Current

Mirror with Source Degeneration, Cascode Current Mirror and Wilson Current Mirror.

**PART B: Biasing Techniques:** CS Biasing, CG Biasing, Source Follower Biasing, Differential Pair Biasing.

UNIT III

**PART A: Single Stage Amplifiers:** Common Source Stage with resistive load, Source follower, Common Gate Stage, Cascode Stage.

**PART B: CMOS Operational Amplifiers:** Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

#### <u>UNIT IV</u>

#### PART A: Sample and Hold Circuits:

Performance of Sample and Hold Circuits, MOS Sample and Hold Basics, Examples of CMOS S/H circuits, Bipolar and BICMOS Sample and Hold circuits.

#### **PART B:Comparators**:

Using an Opamp for a Comparator, Charge-Injection Errors, Latched Comparators, Examples of CMOS and BiCMOS Comparators.

#### **TEXT BOOKS:**

1. Design of Analog CMOS Integrated Circuits, Behzad Razavi, Tata McGraw Hill, 2nd Edition, 2008.

2.Analog Integrated Circuit Design- David A.Johns, Ken Martin, Wiley Student Edn, 2013. **REFERENCES:** 

1. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.

2.CMOS Analog Circuit Design - Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	-	-	-	2	-	-	2	-	-	-	-	3	-
CO2	-	-	2	-	3	-	3	-	-	-	-	3	-	3
CO3	3	3	-	-	-	-	-	-	-	-	2	-	2	-
CO4	-	-	3	3	-	-	-	-	3	-	-	-	-	-
CO5	-	2	-	-	3	-	-	-	-	2	-	-	-	-
CO6	3	2	-	-	-	3	-	-	-	-	-	3	-	-

#### MANDATORY COURSE INDIAN CONSTITUTION

Lectur	e – Tutorial:	3-0 Hours	Internal Marks:	40
Credit	s:	0	External Marks:	60
Preren	uisites: Civics B:	asics of Political Science		00
Course	Objectives:			
	Inderstand the imp	ortance of constitution		
	Inderstand the stru	ature of executive legislature and judici	0497	
• (		clule of executive, legislature and judici	ary.	
• (	Understand philoso	pny of fundamental rights and duties.	· · · · · · · · · · · · · · · · · · ·	
	Onderstand the cen	tral and state relations, financial and adm	ninistrative duties.	
Linon	e Outcomes:	ion of the course the student will be a	bla tar	
Upon s	successiul complet	ion of the course, the student will be a		
	Understand the m	leaning, history, features and characteris	tics of Indian Constitution	on.
CO2	Gain knowledge Policy.	on fundamental rights duties and Prin	nciples and importance	of State
CO3	Understand the p	owers of Union, the States and Indian Pr	esident.	
<b>CO4</b>	Know about ame	ndments of the constitution and Emerger	ncy Provisions.	
CO5	Understand the f and judiciary.	unctioning of three wings of the gover	nment i.e., executive, le	gislative
<b>CO6</b>	Analyze the dece	ntralization of power between central, st	ate and local self-govern	iment.
		Course Content(Syllabus)		
		UNIT I		
Meanin constitı	g of the constit ution of India, Sa	cution law and constitutionalism, lient features and characteristics of	Historical perspective the constitution of In	re of the dia.
		<u>UNIT II</u>		
Fundar Scheme freedon	nental Rights u e of the fundaments as under Article 1	nder Indian constitution, scheme ntal Right to Equality, Scheme of the 9 Scope of the right to life and pers	of the fundamenta e fundamental Right t onal Liberty under Ar	1 Rights, co certain ticle 21.
T 1 1			. 1 1	• •
and the status of The hi	e states, Parliam of the President of storical perspec nent-Constitution	istribution of legislative and financi- entary form of government in India of India, Amendment of the constitu- tives of the constitutional ameno- nal Scheme in India. <b>UNIT IV</b>	-the constitution pow tional powers and pro- lments in India, Lo	vers and ocedure, ocal self
Emerge	ncv Provisions. N	Jational Emergency, President Rule.	Financial Emergency	
Statuto Commi	ory Institutions ssion, National C	Elections-Election Commission of ommission for Women.	India, National Huma	an Rights
TEXT I	BOOKS:			
1.The C 2. Dr. S 2015.	Constitution of In S. N. Busi, Dr. B.	dial, 1950 (Bare Act), Government P R. Ambedkar, <i>—Framing of Indian C</i>	ublication. <i>constitution</i> ∥, 1st Editio	on,

**REFERENCES:** 

1.M. P. Jain, *—Indian Constitution Law*, 7th Edition., Lexis Nexis, 2014.

2.D.D. Basu, -Introduction to the Constitution of Indial, Lexis Nexis, 2015.

3. SubhashKashyap, Our Parliament, National Book Trust, New Delhi

4. Peu Ghosh, Indian Government & Politics, Prentice Hall of India, New Delhi

5. B.Z. Fadia&KuldeepFadia, Indian Government &Politics, Lexis Nexis, New Delhi

(														
	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	-	-	-	3-	-	-	-	-	-	-	-	-
CO2		3	2	-	-	-	-	2	-	-	-	-	-	-
CO3	3	-	2	-	-	-	3	-	3	-	-	2	-	-
CO4	-	-	3	-	-	-	-	2	-	-	-	2	-	-
CO5		2	-	3	-	-	-	-	-	-	-	-	-	-
CO6	3	2	-	-	-	-	-	-	-	-	-		-	-

#### Microwave Engineering and Optical Communication lab

Minimum 10 experiments should be conducted. { 6 experiments from part A and 4 experiments from part B}

Pre-Requisites: Analog Communication and Digital Communication.

#### Course Outcomes: The Students will be able to

- Verify characteristics of various microwave sources by conducting experiments with microwave bench setup.
- Analyze various parameters of Waveguide Components by conducting experiments with microwave bench setup.
- Estimate the power measurements of RF Components such as directional Couplers and circulators.
- Demonstrate characteristics of various optical sources by conducting experiments.
- Analyze the characteristics of optical fiber by conducting experiments and measuring various parameters.
- To demonstrate the Working of various Microwave Devices and components through microwave bench setup.

#### Part-A

#### Microwave Communications (Any Six Experiments)

- 1. Characteristics of the Reflex Klystron Tube
- 2. Characteristics of Gunn Diode
- 3. Determination of Voltage Standing Wave Ratio (VSWR)
- 4. Waveguide Parameters Measurement
- 5. Attenuation Measurement
- 6. Characteristics of Multihole Directional Coupler
- 7. Scattering Parameters of Circulator
- 8. Scattering Parameters of Magic Tee

#### Part-B

#### **Optical Communications (Any Four Experiments)**

- 1. V-I Characteristics of LED
- 2. Characteristics of Laser Diode

- 3. Measurement of Numerical Aperture of Optical fiber
- 4. Measurement of Losses in Analog Optical Link
- 5. Measurement of Data Rate Using Digital Optical Link

#### **Equipment required for Laboratories:**

- 1. Klystron Power Supply
- 2. Gunn Power Supply
- 3. VSWR Meter
- 4. Reflex klystron Tube
- 5. Gunn Diode
- 6. PIN diode
- 7. Waveguide Components
- 8. Microwave Bench setup with klystron Tube
- 9. Microwave Bench setup with Gunn diode
- 10. Optical Fibre Link Setup with LED
- 11. Optical Fibre Link Setup with LASER diode
- 12. CRO 0 30 M Hz.

--00000---

# AUTONOMOUS SYLLABUS IV - II

#### PROFESSIONAL ELECTIVE-V WIRELESS COMMUNICATIONS AND NETWORKS

Lecture – Tutorial:	3-0 Hours	Internal Marks:	40
Credits:	3	External Marks:	60
Prerequisites: Antenn	as and Wave Propagation	n, Cellular Mobile communication,	Analog
Communication, Digital	Communication.		
Course Objectives:			
• To understand the	functions of wireless com	munication system and evolution of	different
wireless communication	systems and standards.		
• To be able to compa	re recent technologies used f	for wireless communication.	
• To analyze and be	able to explain the archite	ecture, functioning, protocols, capabili	ities and
applications of various v	vireless communication netv	works.	
• To understand the o	concepts and be able to ex	plain multiple access techniques for	Wireless
Communication.			
<b>Course Outcomes:</b>			
Upon successful compl	etion of the course, the stu	dent will be able to:	
CO1 Understand th	e functioning of wireless co	ommunication system and evolution of	different
wireless comm	unication systems and stand	lards.	
CO2 Compare diffe	rent technologies used for w	rireless communication systems.	
CO3 Explore the an	chitecture, functioning, pro	ptocols, capabilities and application of	various
wireless comm	unication networks.		
CO4 Analyze variou	is multiple access technique	s for Wireless Communication.	
CO5 Evaluate desig	gn challenges, constraints	and security issues associated with	wireless
networks.			
CO6 Acquire knowl	edge about various wireless	data services and their performance.	
	Course Conten	t(Syllabus)	
	UNIT	<u>'I</u>	
PART A: Mobile Radie	o Propagation: Large-Scale	e Path Loss:	
Introduction to Radio	Wave Propagation, Free S	Space Propagation Model, Relating P	ower to
Electric Field, Basic Pr	opagation Mechanisms, Ref	flection: Reflection from Dielectrics, l	Brewster
Angle, Reflection from	prefect conductors, Grour	nd Reflection (Two-Ray) Model, Diff	raction:
Fresnel Zone Geomet	ry, Knife-edge Diffractio	n Model, Multiple knife-edge Dif	fraction,
Scattering.			
PART B: Outdoor Pre	opagation Models- Longle	y-Ryce Model, Okumura Model, Hata	1 Model,
PCS Extension to Hat	a Model, <b>Indoor Propaga</b>	ation Models- Partition losses (Same	e Floor),
Partition losses betwee	n Floors, Log-distance par	th loss model, Ericsson Multiple Br	eakpoint

Model, Attenuation Factor Model.

#### UNIT II

#### PART A:Mobile Radio Propagation: Small –Scale Fading and Multipath

**Small Scale Multipath propagation**-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel, **Small-Scale Multipath Measurements**-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, **Parameters of Mobile Multipath Channels**-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time.

**PART B:Types of Small- Scale Fading-** Fading effects Due to Multipath Time Delay Spread, Flat fading and Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow

fading, **Statistical Models for multipath Fading Channels**-Clarke"s model for flat fading, spectral shape due to Doppler spread in Clarke"s model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

#### <u>UNIT III</u>

**PART A: Equalization and Diversity-**Introduction, Fundamentals of Equalization, Training a Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Nonlinear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer.

**PART B: Algorithms for adaptive equalization**-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. **Diversity** -Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, **Practical Space Diversity Consideration**-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

#### <u>UNIT IV</u>

**PART A: Wireless Networking.**Introduction to Wireless Networks. Differences Between Wireless and Fixed Telephone Networks. Development of Wireless Networks. Fixed Network Transmission Hierarchy. Traffic Routing in Wireless Networks.

**PART B: Wireless Data Services:** Common Channel Signaling (CCS). Integrated Services Digital Network (ISDN). Signaling System No. 7 (SS7). Network Service part (NSP) of SS7, The SS7 user parts, Signaling Traffic in SS7, SS7 services, Performance of SS7.

#### **TEXT BOOKS:**

1 Wireless Communications, Principles, Practice – Theodore, S. Rappaport, 2nd Ed., 2002, PHI.

2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.

3. Mobile Cellular Communication – Gottapu Sasibhushana Rao, Pearson Education, 2012. **REFERENCES:** 

1. Principles of Wireless Networks – KavehPahLaven and P. Krishna Murthy, 2002, PE

2. Wireless Digital Communications – KamiloFeher, 1999, PHI.

3. Wireless Communication and Networking - William Stallings, 2003, PHI.

4. Wireless Communication – UpenDalal, Oxford Univ. Press.

5. Wireless Communications and Networking – Vijay K. Gary, Elsevier.

· ·			/	0 /										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	3	-	2	-	-	-	-	-	-	-	-	-	3
CO2	3	-	-	-	3	-	3	-	-	3	-	-	-	2
CO3	3	3	-	-	-	-	-	3	-	-	-	-	3	-
CO4	-	-	3	-	3	-	-	-		-	-	2	-	-
CO5	3	2	2	-	3	-	-	-	-	-	-	-	-	3
CO6	-	2	-	-	-	2	-	-	-	-	2	-	-	-

#### **IV Year - II Semester**

#### L T P C 3 0 0 3

#### PROFESSIONAL ELECTIVE-V SOFT COMPUTING TECHNIQUES

Lecture	- Tutorial:	3-0 Hours	<b>Internal Marks:</b>	40							
<b>Credits</b> :		3	<b>External Marks:</b>	60							
Prerequ	isites: Electronic D	evices and circuits, Linear IC Applica	tions.								
Course	Objectives:										
• T	o provide an intro	duction to the basic principles, tech	nniques, and applications	of soft							
comput	computing.										
• To 11	To understand the basic areas of Soft Computing including Artificial Neural Networks Fuzzy										
Logic a	nd Genetic Algorith	ims		<i>s</i> , <i>i uEEj</i>							
• To	provide the math	ematical background for carrying out	the optimization associa	ted with							
neural r	etwork learning.										
• To	o develop some far	niliarity with current research proble	ms and research methods	in Soft							
Compu	ting by working on	a research or design project.									
Course	Outcomes:										
Upon su	ccessful completio	on of the course, the student will be	able to:								
CO1	Understand huma	n intelligence and artificial intelligence	e.								
CO2	Know how intelli	gent system works.									
CO3	Apply basics of F	uzzy logic and neural networks.									
<b>CO4</b>	Analyze the fuzz	y sets, fuzzy logic and use of heuristic	s based on human experie	ence.							
CO5	Relate with neur	al networks that can learn from avai	lable examples and gene	ralize to							
	form appropriate	rules for inference systems.									
CO6	Understand genet	ic algorithms and other random search	h procedures useful while	seeking							
	global optimum in self-learning situations.										
		Course Content(Syllabus)									
		<u>UNIT I</u>									
Part-A	(Introduction to S	oft Computing): What is Soft Com	puting? Difference betwe	en Hard							

**Part-A** (Introduction to Soft Computing): What is Soft Computing? Difference between Hard and Soft computing, Requirement of Soft computing, Major Areas of Soft Computing, Applications of Soft Computing.

**Part-B**: various types of soft computing techniques, Fuzzy Computing, Neural Computing Genetic Algorithms, Associative Memory, Adaptive Resonance Theory, Classification, Probabilistic reasoning.

#### <u>UNIT II</u>

#### Part-A (Fundamentals of Artificial Neural Network):

What is Neural Network, Learning rules and various activation functions, Single layer Perceptrons, Back Propagation networks, Architecture of Back propagation(BP) Networks, Back propagation Learning, Variation of Standard Back propagation Neural Network, Introduction to Associative Memory.

**Part-B:** Introduction, Model of Artificial Neuron, Architectures, Learning Methods, Deep learning, Taxonomy of ANN Systems, Single- Layer ANN System, Supervised Learning Neural Networks, Perceptrons, Adaline, Mutilayer Perceptrons Applications of ANN in research.

#### UNIT III

#### Part-A (.Fuzzy Set Theory & Fuzzy Systems) :

Fuzzy set theory, Fuzzy set versus crisp set, Crisp relation & fuzzy relations, introduction & features of membership functions, Extension Principle, Fuzzy If-Then Rules, Sugeno Fuzzy Models, Fuzzification, Defuzzification, Applications.

**Part-B:** (Fuzzy Logic) : Fuzzy Sets – Properties – Membership Functions – Fuzzy Operations. Fuzzy Logic and Fuzzy Inference System

#### <u>UNIT IV</u>

#### **Part-A( Genetic Algorithms and Hybrid Systems) :**

Fundamentals of Genetic Algorithms, basic concepts, working principle, encoding, fitness function, reproduction, Genetic modeling,

**Part-B:** Hybrid Systems: Integration of Neural Networks, Fuzzy Logic and Genetic Algorithms, Research orientation of soft computing techniques.

#### **TEXT BOOKS:**

1 J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2004.

2. Simon O. Haykin "Artificial Neural Network", PHI, 2003

3. Elaine Rich, Kevin Knight, Artificial Intelligence TMH, 2009

#### **REFERENCES:**

1 Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.

2. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.

3. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.

4. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence – PC Tools", AP Professional, Boston, 1996.

5. Dan W. Patterson, Introduction to AI and Expert System, PHI, 2009.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	-	2	-	3	-	-	-	-	-	-	2	-	-
CO2	-	3		2	-	-	-	2	-	-	-	-	-	3
CO3	2	3	-	3	-	3	-	-	-	-	-	-	-	-
CO4	2	-	3	3	-	-	-	-	2	-	2	-	-	2
CO5	2	3	-	-	-	-	-	2	-	-	-	-	3	-
CO6	-	3	2	-	-	-	-	-	-	3	-	-	-	-

#### IV Year – II Semester

#### L T P C 3 0 0 3

#### PROFESSIONAL ELECTIVE-V DIGITAL IC DESIGN

		DIGITILITO DEDIGIT		
Lecture – 7	Futorial:	3-0 Hours	<b>Internal Marks:</b>	40
<b>Credits:</b>		3	<b>External Marks:</b>	60
Prerequisit	tes: Electronic Dev	ices and circuits, Linear IC Application	ns.	
Course Ob	jectives:			
• Underst	and the behavior o	f MOS Devices and Small-Signal &	Large-Signal Modeling	of MOS
Transistor a	and Analog Sub-Cir	cuits.		
• Study C	CMOS Amplifiers	like Differential Amplifiers, Cascade	e Amplifiers, Output A	mplifiers,
and Operati	onal Amplifiers.	1 /	1 / 1	1 /
• Design	and to develop the	Analog CMOS Circuits for different A	Analog operations.	
• Underst	and the concepts of	Sample and Hold circuits and Open-	Loop Comparators.	
Course Ou	tcomes:			
Upon succ	essful completion (	of the course, the student will be abl	e to:	
CO1	Understand the kn	owledge of MOS devices and modeli	ng.	
CO2	Use different style	s of CMOS Circuit odeling to synth	esize analog Ics.	
	2		e	
CO3	Apply appropriate	biasing techniques to improve perfor	mance of analog circuits	•
			U	
CO4	Design and Devel	op Analog Integrated Circuits using N	IOS Transistor.	
CO5	Design and Devel	op CMOS Op Amps.		
CO6	Assess the perfor	mance of sample and hold circuits	and comparators in a	nalog Ics
	suitable for societa	al use.	and comparations in a	
		Course Content(Syllabus)		
		UNIT I		

**PART A: Basic MOS Devices:** The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, Latch up in CMOS Technology, Short Channel Effects in MOS Transistors.

**PART B: CMOS Device Modelling:** Weak Inversion in MOS Transistors Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Subthreshold MOS Model.

#### <u>UNIT II</u>

**PART A: Current Mirrors:** Current Sinks and Sources, Simple Current Mirrors, Simple Current Mirror with Source Degeneration, Cascode Current Mirror and Wilson Current Mirror.

**PART B: Biasing Techniques:** CS Biasing, CG Biasing, Source Follower Biasing, Differential Pair Biasing.

#### <u>UNIT III</u>

**PART A: Single Stage Amplifiers:** Common Source Stage with resistive load, Source follower, Common Gate Stage, Cascode Stage.

**PART B: CMOS Operational Amplifiers:** Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

#### <u>UNIT IV</u>

#### PART A: Sample and Hold Circuits:

Performance of Sample and Hold Circuits, MOS Sample and Hold Basics, Examples of CMOS S/H circuits, Bipolar and BICMOS Sample and Hold circuits.

#### **PART B: Comparators**:

Using an Opamp for a Comparator, Charge-Injection Errors, Latched Comparators, Examples of CMOS and BiCMOS Comparators.

#### **TEXT BOOKS:**

1. Design of Analog CMOS Integrated Circuits, Behzad Razavi, Tata McGraw Hill, 2nd Edition, 2008.

2.Analog Integrated Circuit Design- David A.Johns, Ken Martin, Wiley Student Edn, 2013. **REFERENCES:** 

1. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.

2.CMOS Analog Circuit Design – Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.

	PO	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	3	-	-	2	-	-	-	-	-	2	-	-	2
CO2	3	3	-	-		-	-	-	-	-	-	3	3	-
CO3	3	3	-	-	-	-	2	-	-	3	-	-	-	-
CO4	-	-	3	3	3	-	-	-	2	-	-	-	3	-
CO5	3	2	-	-	3	-	-	-	-	-	-	-	3	-
CO6	3	2	-	-	-	3	-	3	-	-	-	3	-	-

#### IV Year – II Semester

#### L T P C 3 0 0 3

#### PROFESSIONAL ELECTIVE-VI COMPUTER NETWORKS

Lecture -	- Tutorial:	3-0 Hours	<b>Internal Marks:</b>	40							
<b>Credits:</b>		3	<b>External Marks:</b>	60							
Prerequi	sites: Basic concep	ts of networks, Analog Communicat	ion, Digital Communicat	ion.							
Course (	<b>Objectives:</b>										
• Un	• Understand the layered communication architectures (OSI and TCP/IP).										
• Un	derstand various ne	twork topologies required for comm	unications.								
• De	monstrate the Funct	ions of various protocols of Data link	layer and understand the	basics of							
e	rror detection inclu	ding parity, checksums, and CRC.									
• De	monstrate Functioni	ng of various Routing protocols.									
• An	alyze the Functions	of various Transport layer protocols.									
• Un	derstand the signific	ance of application layer protocols.									
Course (	<b>Dutcomes:</b>										
Upon suc	cessful completion	n of the course, the student will be	able to:								
CO1	Acquire knowled	ge about different network models	like OSI and TCP/IP and	d various							
	network topologie	s like WAN, LAN and MAN.									
CO2	Distinguish differ	ent modes of wired transmission m	edia such as copper wir	e, twisted							
	pair wire, OFC an	d wireless transmission media.									
CO3	Analyze various	error detection techniques and function	ons of various protocols of	of Data							
<u> </u>	link layer.										
04	Analyze MAC lay	er protocols and LAN technologies.									
CO5	Design different	outing protocols and acquire knowle	dge on significance of va	arious							
<u> </u>	Flow control and	Congestion control Mechanisms.									
CO6	Acquire Knowled	ge on functioning of various Applica	tion layer Protocols.								
		Course Content(Syllabus)									
		<u>UNIT I</u>									

**PART A: Introduction**: Network Topologies WAN, LAN, MAN. Reference models- The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models.

**PART B:** Data Link Layer Design Issues, Error Detection and Correction, Elementary Data Link Protocols, Sliding Window Protocols

#### **UNIT II**

**PART A: The Data Link Layer** - Services Provided to the Network Layer – Framing – Error Control – Flow Control, Error Detection and Correction, Sliding Window Protocols-A One Bit Sliding Window Protocol-A Protocol Using Go-Back-N- A Protocol Using Selective Repeat.

**PART B: The Medium Access Control Sublayer** -The Channel Allocation Problem-Static Channel Allocation-Assumptions for Dynamic Channel Allocation, Multiple Access Protocols-Aloha-Carrier Sense Multiple Multiple Access Protocols- Collision-Free Protocols-Limited Contention Protocols-Wireless LAN Protocols.

#### <u>UNIT III</u>

**PART A: The Network Layer -** Design Issues – Store and Forward Packet Switching-Services Provided to the Transport layer- Implementation of Connectionless Service-Implementation of Connection Oriented Service- Comparison of Virtual Circuit and Datagram Networks

**PART B: Routing Algorithms**-The Optimality principle-Shortest path Algorithm, Congestion Control Algorithms-Approaches to Congestion Control-Traffic Aware Routing-Admission Control-Traffic Throttling-Load Shedding.

#### <u>UNIT IV</u>

**PART A: Transport Layer:** Introduction and Transport Layer Services : Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet, Multiplexing and De-multiplexing.

**PART B: Connectionless Transport:** UDP -UDP Segment Structure, UDP Checksum, Principles of Reliable Data Transfer-Building a Reliable Data Transfer Protocol, Pipelined Reliable Data Transfer Protocols, Go-Back-N(GBN), Selective Repeat(SR),**Connection Oriented Transport:** TCP - The TCP Connection, TCP Segment Structure. **Application Layer:** The DNS, Electronic Mail, FTP Commands and Replies

#### **TEXT BOOKS:**

1.Computer Networks, Tanenbaum and David J Wetherall, 5th Edition, Pearson Edu, 20102.Computer Networks: A Top Down Approach, Behrouz A. Forouzan, Firouz Mosharraf, McGraw Hill Education

#### **REFERENCES:**

1.Larry L. Peterson and Bruce S. Davie, "Computer Networks - A Systems Approach" (5th ed), Morgan Kaufmann/ Elsevier, 2011

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	-	2	-	-	-	-	-	-	-	3	3	-
CO2	2	-	2	-	1	-	-	-	3	-	-	-	-	-
CO3	3	2	-	2	-	3	-	-	-	-	-	-	-	2
CO4	2	-	1	-	-	-	-	2	-	-	2	-	3	-
CO5	-	2	2	-	2	-	2	-	-	-	-	-	-	-
CO6	3	-	2	-	2	-	-	-	-	2	-	2	-	2

#### **IV Year - II Semester**

#### L T P C 3 0 0 3

### PROFESSIONAL ELECTIVE-VI

		ILLI OF THINGS AND	J AI I LICAI	1013						
Lecture -	- Tutorial:	3-0 Hours		Internal Marks:	40					
Credits:		3		External Marks:	60					
Prerequi	sites: Embedded Sy	ystems, Microcontrollers,	, Operating Sys	stems.						
Course C	bjectives:									
• To	Understand Smart	Objects and IoT architect	ure.							
• To	• To introduce the concept of M2M (machine to machine) with necessary protocols.									
• To	• To acquaint with the various security concepts in IoT architecture.									
• To	build simple IOT s	ystem using Arduino and	Raspberry PI	platform.						
• To	understand data and	alytics and cloud in the c	ontext of IOT.							
Course C	Outcomes:									
Upon suc	cessful completion	n of the course, the stud	ent will be abl	le to:						
CO1	Summarize on the	e term 'internet of things'	' in different c	ontexts and to analyz	ze various					
	protocols for IoT.									
CO2	Comprehend and a	analyze Software defined	networks.							
CO3	Explore IT Acces	s Technologies and secu	rity for IEEE	802.15.4, 802.15.4g, 8	302.15.4e,					
	802.11ah and Lora	a WAN.								
CO4	Explore and learn	about Internet of Things	s with the help	of preparing projects	designed					
	using Arduino and	l Raspberry Pi.								
CO5	Apply data analyt	ics and use cloud offering	gs related to de	esign and develop a so	olution for					
	a given application	n using APIs and test for	errors in the ap	oplication.						
CO6	Implement real fi	eld problem by gained k	mowledge of l	industrial applications	with IoT					
	capability.									
		Course Content(	(Syllabus)							
		<u>UNIT I</u>	[							
	NUTDODUCTIO	N TO INTERNET OF	THINCC.							

#### PART A: INTRODUCTION TO INTERNET OF THINGS:

Definition and characteristics of IOT, Evolution of IOT, Logical view of IOT ecosystem, Functional blocks of IOT: Sensors, Actuators, Smart Objects and connecting smart objects, Physical design of IOT-IOT Protocols, IOT Communication models, Calm and Ambient Technologies.

#### PART B:FUNDAMENTALS OF IOT:

The Internet of Things: An overview, The Flavor of the IOT, Design principles for connected devices, IOT Architectures, OneM2M, IOT World Forum (IoTWF) and alternative IOT Models.

<u>UNIT II</u>

#### PART A: IOT and M2M:

Software defined networks, Network Function Virtualization, Difference between SDN and NFV for IOT, Basics of IOT system management with NETCONF, YANG-NETCONF, YANG, and NETOPEER.

PART B: IOT PRINCIPLES & IOT COMMUNNICATION ARCHITECTURE:

IOT nodes, IOT Edges, 6 LOWPAN, Optimizing IP for IOT: IP, TCP, The IP Protocol suite (TCP/IP), UDP, IP Address, Static IP Address Assignment, Dynamic IP Address Assignment, IPV4 & IPV6.

#### <u>UNIT III</u>

#### **PART A: IOT PROTOCOLS:**

IT Access Technologies: Physical and MAC Layer, Topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 802.11ah and Lora WAN.

#### PART B: IOT PHYSICAL DEVICES & END POINTS:

Embedded Computing basics, Microcontrollers, System-On-Chip, IOT system building blocks, Arduino, Raspberry PI – Installation, Interfaces (Serial, SPI, I2C).

#### <u>UNIT IV</u>

#### PART A: IOT PHYSICAL SERVERS AND CLOUD OFFERINGS:

Introduction to Cloud Storage models and Communication API Servers- Web Server for IOT, Cloud for IOT, Getting started with an API, Mashing up API, Scraping, Legalities, Writing a New API, Application Layer Protocols: MQTT, COAP, Extensible Messaging and presence protocol (xmpp).

#### PART B: INTRODUCTION TO INDUSTRY 4.0 AND HOT:

Defining Industry 4.0, Characteristics of Industry 4.0, and Benefits to Business, Industry 4.0 Design Principles, Building blocks of Industry 4.0, Industry 4.0 Reference Architecture, and Smart Factories. Concept of 5G Technology: A New Step to IOT Platform. Case study/ Industrial Application.

#### **TEXT BOOKS:**

1 Adrian McEwen, Hakim Cassimally - Designing the Internet of Things, Wiley Publications, 2012.

2. Internet of Things - A Hands-on Approach, ArshdeepBahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547.

3. The Internet of Things – Key applications and Protocols, Olivier Hersent, David Boswarthick, Omar Elloumi and Wiley, 2012.

4. IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, Cisco Press, 2017.

5. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

6. Industry 4.0; The Industrial Internet of Things, Alasdair Gilchrist.

#### **REFERENCES:**

1. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015 3. Editors Ovidiu Vermesan.

2. Internet of Things Architecture Final Architectural Reference Model for the IoT v3.0, <u>http://www.iot-a.eu/public</u>.

3. From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", Jan Ho[°] ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle and Elsevier.

4. The Internet of Things, Enabling technologies and use cases – Pethuru Raj, Anupama C. Raman, CRC Press.

Contribution of Course Outcomes towards achievement of Program Outcomes														
(1 – Low, 2- Medium, 3 – High)														
	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	-	-	-	2	3	-	-	3	-	2	2	3	-
CO2	-	2	-	3	-	-	-	-	2	-	-	-	-	3
CO3	-	3	2	-	-	1	-	2	-	3	3	2	2	-
CO4	3	-	-	3	-	-	-	-	3	-	-	3	-	-
CO5	-	2	-	-	-	-	-	-	2	-	2	-	-	3
CO6	-	-	2	-	2	-	2	-	-	2	-	2	-	-

#### **IV Year - II Semester**

#### L T P C 3 0 0 3

#### PROFESSIONAL ELECTIVE-VI ARTIFICIAL INTELLIGENCE

Lecture	- Tutorial:	3-0 Hours		<b>Internal Marks:</b>	40					
<b>Credits:</b>		3		<b>External Marks:</b>	60					
Prerequisites: Data Structures, Algorithms and Probability										
Course Objectives:										
• To learn the difference between optimal reasoning vs human like reasoning.										
• To understand the notions of state space representation, exhaustive search, heuristic search										
along with the time and space complexities.										
• To learn different knowledge representation techniques										
• To understand the applications of AI: namely Game Playing, Theorem Proving, Expert										
Systems, Machine Learning and Natural Language Processing										
Course Outcomes:										
Upon successful completion of the course, the student will be able to:										
CO1	Formulate an efficient problem space for a problem expressed in English.									
CO2	Identify a search algorithm for a problem and characterize its time and spacecomplexities.									
CO3	Acquire skills for representing knowledge using the appropriate technique.									
CO4	Apply AI techniques to solve problems of Game Playing, Expert Systems, Machine Learning and Natural Language Processing.									
CO5	Apply the knowledge to develop the solutions for real life problems.									
<b>CO6</b> Develop new algorithms to contribute to the research arena.										
Course Content(Syllabus)										
<u>UNIT I</u>										

**PART A: Introduction:** History, Intelligent Systems, Foundations of AI, Sub areas of AI, Applications.

**PART B: Problem Solving:** State-Space Search and Control Strategies: Introduction, General Problem Solving, Characteristics of Problem, Exhaustive Searches, Heuristic Search Techniques, Iterative-Deepening A*, Constraint Satisfaction.

#### <u>UNIT II</u>

**PART A: Logic Concepts and Logic Programming:** Introduction, Propositional Calculus, Propositional Logic, Natural Deduction System, Resolution Refutation in Propositional Logic, Predicate Logic, Logic Programming.

**PART B: Representing Knowledge Using Rules:** Logic programming, Procedural Vs Declarative knowledge, Forward Vs Backward Reasoning, Matching, Control Knowledge.

#### UNIT III

**PART A: Knowledge Representation:** Introduction, Approaches to Knowledge Representation, KnowledgeRepresentation using Semantic Network, Extended Semantic Networks for KR.

PART B: Knowledge Representation using Frames: Conceptual dependencies, Scripts.

#### <u>UNIT IV</u>

**PART A: Natural Language Processing:** Steps in The Natural Language Processing, Syntactic Processing and Augmented Transition Nets, Semantic Analysis, NLP Understanding Systems.

**PART B: Fuzzy Logic:** Crisp Sets, Fuzzy Sets, Fuzzy Logic Control, Fuzzy Inferences & Fuzzy Systems Planning with state-space search – partial-order planning – planning graphs – planning and acting in the real world.

AI Programming languages: Overview of LISP and PROLOG, Production System in Prolog. **TEXT BOOKS:** 

1. Artificial Intelligence, Elaine Rich and Kevin Knight, Tata Mc graw-Hill Publications.

2. Introduction To Artificial Intelligence & Expert Systems, Patterson, PHI publications. **REFERENCES:** 

1. Artificial Intelligence, George F Luger, Pearson Education Publications

2.Artificial Intelligence : A modern Approach, Russell and Norvig, Printice Hall

3. Artificial Intelligence, Robert Schalkoff, Mcgraw-Hill Publications

4. Artificial Intelligence and Machine Learning, Vinod Chandra S.S., Anand Hareendran S.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	2	-	-	-	-	3	-	-	-	-	-	-
CO2	-	2	2	1	-	3	-	-	-	-	-	-	3	-
CO3	3	-		-	1	-	3	-	-	3	-	-	-	-
CO4	-	2	3	-	-	-	-	-	-	-	-	-	3	2
CO5	3	-	2	-	2	-	-	-	-	3	2	-	-	-
CO6	-	2	3	1	-	-	-	-	1	-	-	-	3	1