Faculty Innovations in Teaching and Learning Process

Sl. No.	Item	Page No. (From - To)
1	ICT/Multimedia Learning Process	01 to 04
2	E-based Learning	05 to 09
3	Demonstration through Laboratory	10 to 12
4	Skill Development through APSSDC	13 to 15
5	Mind Map	16

Faculty Regular Innovative Methods in Teaching and Learning

Sl. No.	Item	Page No. (From - To)
6	Use of models as a teaching aid	17 to 18
7	Peer Group/ Team Teaching	19
8	Project Method	20 to 21
9	Group Discussion	22
10	Competitions	23 to 24

Following are the innovative tools used by the Faculty in Teaching and Learning Process

1. ICT/Multimedia Learning Process

- ➤ The faculty use multimedia elements which include video based learning, web based learning and PPTs in the classroom, to present the content in a more effective way and make the techniques of teaching a significant one.
- ➤ Demonstration with the working models, charts, components etc., in the class room for better understanding and conducing the seminars, group discussions, quiz etc.
- Faculty and Students can access lecture notes, PPT's, NPTEL video lectures that can be accessible in the institutional website.

Faculty members uploaded lecture notes, PPTs, Materials and supporting documents in institutional website, so students can access e-learning resources.

http://www.nrigroupofcolleges.com/e-resources-ece.html

Table 1.1 Lecture Notes, PPTs Links for Faculty and Students

S. No	Name of the Subject	Innovative method followed
1	Antennas & Wave Propagation	Lecture Notes,
2	Bio Medical Engineering	Lecture Materials
3	Computer Architecture & Organization	Lecture Notes
4	Electro Magnetic Fields & Transmission lines	Lecture Notes
5	Microprocessors & Microcontrollers	Lecture Notes, Material
6	Optical Communications	Lecture Notes
7	Radar Systems	Lecture Materials, PPTs
8	Random Variables & Stochastic Process	Lecture Notes, Material
9	Signals & Systems	Lecture Notes

10	Wireless Sensor and Networks	Lecture Materials, PPTs
11	IC Lab Manual	Sample Lab Manual
12	PDC Lab Manual	Sample Lab Manual
13	Satellite Communications	Lecture Materials, PPTs
14	Digital Image Processing	Lecture Materials, PPTs
15	Electronic Devices & Circuits	Lecture Materials, PPTs
16	Cellular Mobile Communications	Lecture Materials, PPTs
17	Electronic Circuit Analysis	Lecture Materials
18	Pulse & Digital Circuits	Lecture Materials, PPTs
19	Control Systems	Lecture Materials
20	Digital Logic Design	Lecture Materials
21	DSD DICA	Lecture Notes
22	STLD	Lecture Notes & Materials
23	VLSI	Lecture Notes

Table 1.2 NPTEL Links

Name of The Subject	NPTEL Link
Electronic Devices and Circuits	http://nptel.ac.in/courses/117105077/1
Signals and Systems	http://nptel.ac.in/courses/117101055/1
Switching Theory and Logic Design	http://nptel.ac.in/courses/117106086/1
Electronic Circuit Analysis	http://nptel.ac.in/courses/117106088/1
Electro Magnetic Waves & Transmission Lines	http://nptel.ac.in/courses/108106073/1
Random Variable and Stochastic Process	http://nptel.ac.in/courses/117104117/1
Pulse and Digital Circuits	http://nptel.ac.in/courses/117106114/1
Antenna Wave Propagation	http://nptel.ac.in/courses/117101057/1
Linear IC Applications	http://nptel.ac.in/courses/117106030/1
Digital IC Applications	http://nptel.ac.in/courses/117105080/1
Digital Communications	http://nptel.ac.in/courses/117101051/1
Digital Signal Processing	http://nptel.ac.in/courses/117105055/1
Bio Medical Engineering	http://nptel.ac.in/courses/102107028/1
Micro Processor and Micro Controller	http://nptel.ac.in/courses/106108100/1
Optical Communications	http://nptel.ac.in/courses/117101002/1
Very Large Scale Integration	http://nptel.ac.in/courses/117101105/1
Micro Wave Engineering	http://nptel.ac.in/courses/117105122/1
Digital Image Processing	http://nptel.ac.in/courses/117105079/1
Radar Systems	http://nptel.ac.in/courses/101108056/1
Cellular Mobile Communications	http://nptel.ac.in/courses/117104099/1
Electronic Measurement and Instrumentations	http://nptel.ac.in/courses/117108043/1

Satellite Communications	http://nptel.ac.in/courses/117105131/1
Wireless Sensor Networks	http://nptel.ac.in/courses/117102062/1

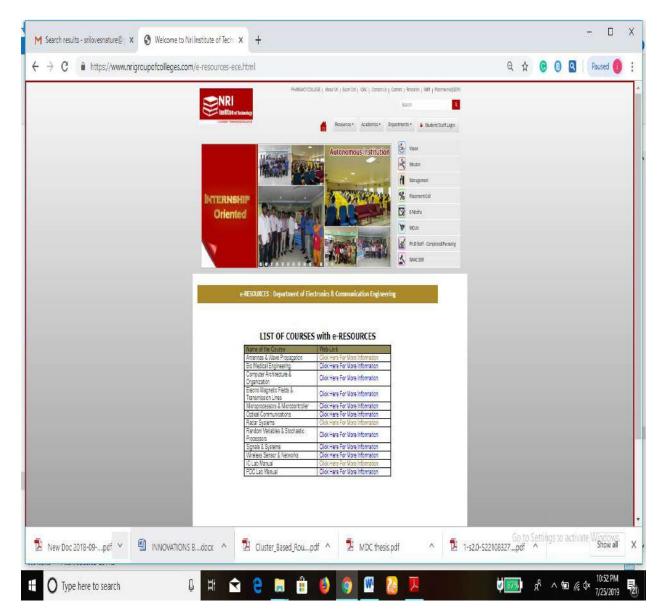


Fig 1.1 Screenshot of E-Resources links for subject materials in College Website.

2. E-based Learning

- > Students can access these links for their self-study, and also to get additional knowledge apart from curriculum. Students access these links through digital library.
 - I. http://ieeexplore.ieee.org

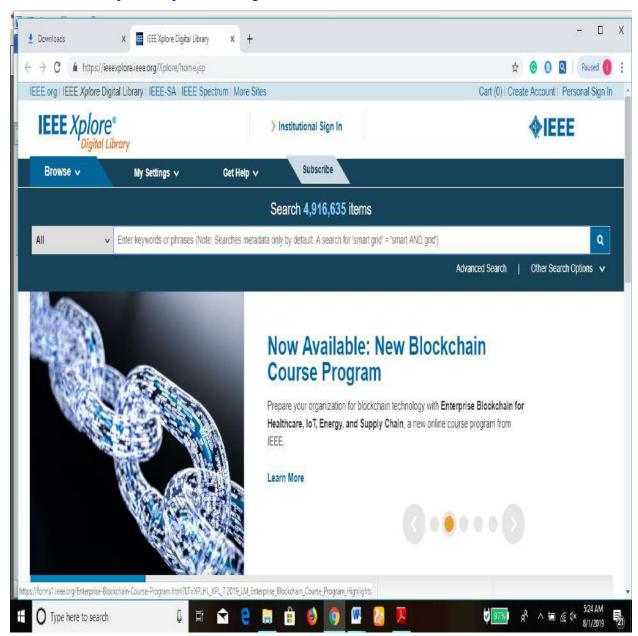


Fig. 2.1 Screenshot of IEEE Website

II. http://accessengineeringlibrary.com

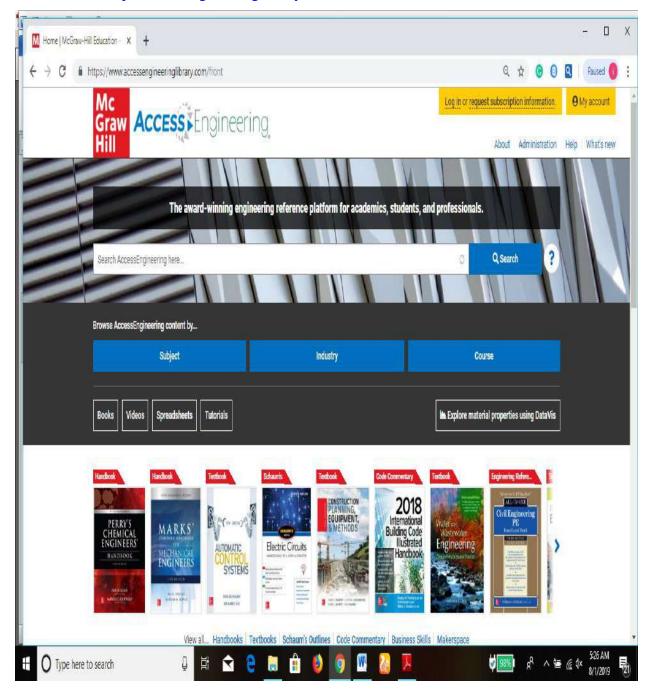


Fig. 2.2 Screenshot of Access Engineering Library.

III. http://www.sciencedirect.com

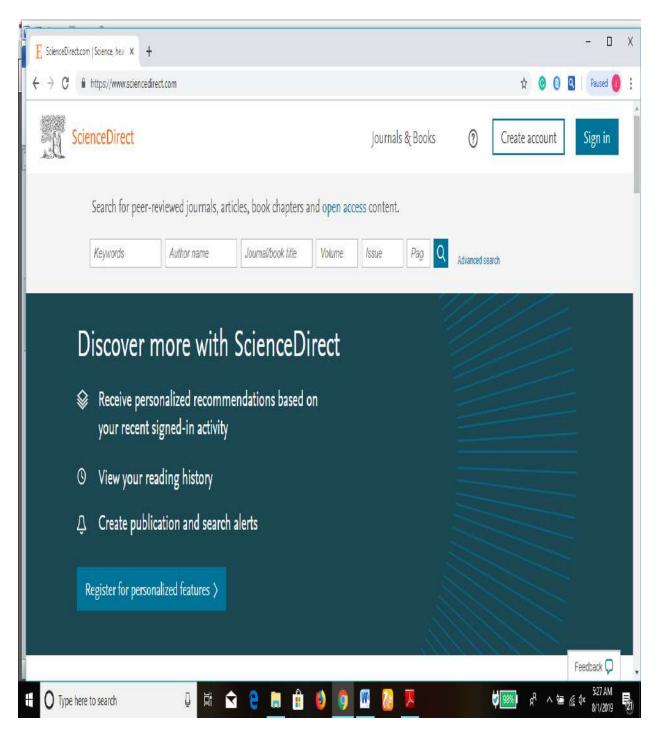


Fig. 2.3 Screenshot of Sciencedirect.com.

IV. https://ndl.iitkgp.ac.in/

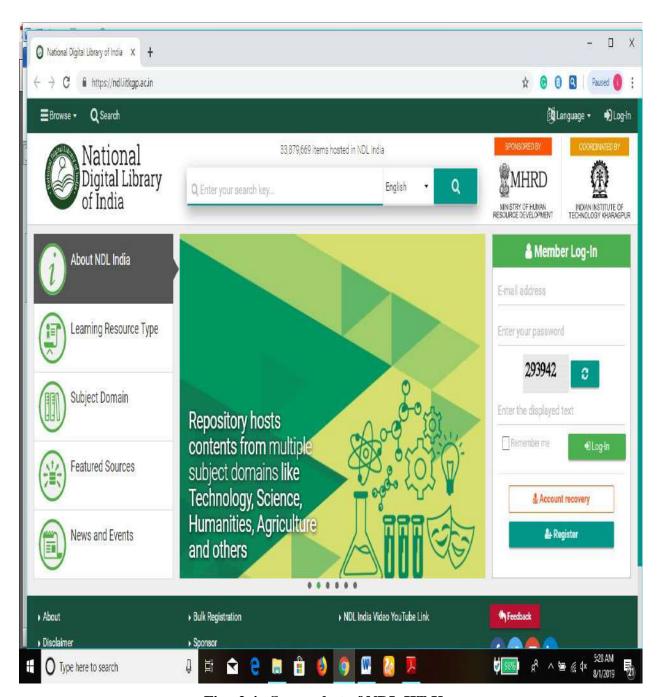


Fig. 2.4 Screenshot of NDL IIT Kgp.

V. http://103.209.90.82/video.aspx

Fig. 2.5 Screenshot of lecture materials APP

3. Demonstration through Laboratory

- ➤ Courses which do not have laboratory sessions, practical approach is followed by the faculty to imbibe knowledge in the course.
- ➤ Concepts will be explained in laboratories as learning by doing method. The Importance of this innovative method is student can get a deep knowledge of particular topic by observing the equipment or circuit practically.

Topic: Explanation of CRO Working Principle in Laboratory

Subject: Electronic Measurements and Instrumentation

Year& Semester: IV – II

Fig. 3.1 Explanation of CRO Working Principle in Laboratory

Topic: Explanation of RPS Working in Laboratory

Subject: Electronic Devices and Circuits

Year& Semester: II – I

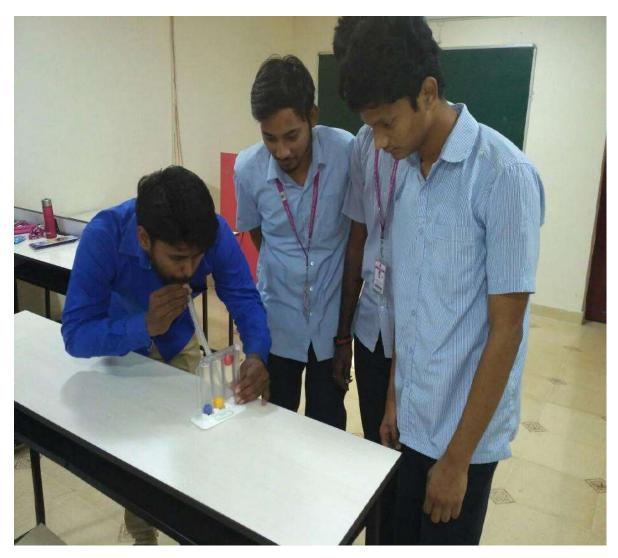


Fig. 3.2 Explanation of RPS Working Principle in Laboratory

Topic: Explanation Heart Respiration System

Subject: Bio Medical engineering

Year& Semester: III – II

 $Fig. \ \, 3.3 \quad \text{Explanation of Heart Respiration System}$

4. Skill Development through APSSDC

➤ Guest lecturers, workshops, seminars by the eminent people from Industry, Academic and Research Institutions are arranged by the State Government of AP.

Fig 4.1 Workshop Organized through APSSDC

Fig 4.2 Academic Projects Organized through APSSDC

NRI INSTITUTE OF TECHNOLOGY

(Approved by AICTE, New Delhi: Affiliated to JNTUK, Kakinada)

POTHAVARAPPAIN: (V), (via) Nama, Agiripalli (M), Krishna District, A.P.PIN: \$21,212 — Ph: 08656-J24999

Website: trigreapoten/leges.com — e-mail: nrigreapoten/leges/66mail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION BNGINEFRING

NRIC 7.5.3/RC 12

STUDENT WORKSHOP-INTIMATION

epartment:ECE	Date: 24/9/18
emester; I SEM	Activity: 907/01/2 WOLKShop 56/9/18
Name of the speaker(s)	G. Alekhya, D. Gireesha, P. Pavlan Kurnar, M. Ramu
Designation	Yrather cum developer
Institution/University/Organiz	ution: Andha piodesh State 9KM development co-oribialis NRI Englitute of Technology
Title of the Workshop:	SCILAB
Date & Time	1 24/9/18 to 26/9/18 \$ 9:20Mto 4:20PM
Venue	:UNIX LAB,
	NRI INSTITUTE OF TECHNOLOGY
Beneficiary	: N. B. Tach

Activity*; APSSDC ECE DEPARTMENT OF NRIIT

5. Mind Map

Mind Map is another innovative method used by faculty to improve the quality of both teaching and learning. Mind map is a way of supporting the students to make notes by using key words and images. They are much quicker to prepare and much easier to remember and review due of their visual effect.

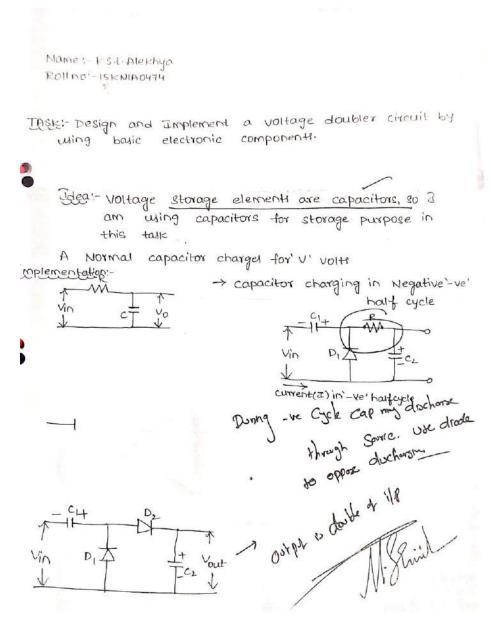


Fig 5.1 Sample sheet of Innovative method Mind Map

Other Innovative Methods

6. Use of models as a Teaching aid

Models are human inventions, based on an incomplete understanding of how nature works. It is a representation of an idea, object, event, process and system. Models play a crucial role in science and technology teaching. In engineering it is difficult to explain some complex subjects, students may be confused end easy to forget but use of model method we can easily solve this problems. Let see the following case. It shows easy to understand that the difficult topic

Fig 6.1 Explanation of Microwave Component (Multi Hole Directional Coupler)

Fig 6.2 Explanation of CRO Probe, Probe tips, BNC and N connectors

7. Peer Group/ Team Teaching

One of the most visible approaches to peer learning comes out of cognitive psychology, and is applied within a "mainstream" educational framework. "Peer learning is an educational practice in which students interact with other students to attain educational goals." The peer group learning practice is popularly called as cooperative learning.

Fig 7.1 Peer Group Team Learning and Teaching

8. Project Method

This method is highly used and very popular in Electronics Engineering. It deals with the many aspects of learning together. Projects have been defined as that form of coordinated activity that is directed towards the earning of a significant skill. It involves at least four steps of active learning viz. purposing, planning, executing and judging. The project should be purposeful, useful and practically applicable to the students, with clear, well defined objectives. The level of complexity of the project should match the ability level of the students.

Fig 8.1 Explanation of Home Automation Demo Kit

Fig 8.2 Explanation of Patient Monitoring System

9. Group Discussion

Group discussion or Panel discussion is a technique used in the teaching-learning process. It is a formal discussion or verbal exchange of ideas and opinions on a specific subject with a group consisting of 5 to 8 members. In this methodology, the group members are given a topic or a situation. After reflecting on the topic for few minutes, they are asked to discuss it amongst themselves.

Fig 9.1 Group Discussion on a specific topic related to their subjects

10. Competitions

Most of the times competitions like debates and elocutions also help the students a lot in learning as the competitions keep them at the best. Also these competitions help them address large crowds which is again is a very important part of personality development. The other things which encourage active participation of students are conducting Seminar, Symposium, and Workshop, Pick and speak competition, Questioning, and Quiz contests.

Fig. 10.1 Seminar Event in a class room

Fig. 10.2 Seminar Event in a class room