

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF CIVIL ENGINEERING

COURSE STRUCTURE FOR SECOND YEAR B.TECH PROGRAMME

							Se			
			Sche	me o	f Inst	ruction	Exa	ion		
		Title of the Course	(Pe	riods	Per	Week)	(Maxii	mum M	larks)	
S1.										No. of
No	Course Code		L	Т	Р	Total	CIA	SEA	Total	Credits
1	18A2100201	Complex Variables and Fourier Series	3	0	0	3	40	60	100	3
2	18A2101401	Strength of Materials	2	1	0	3	40	60	100	3
3	18A2101402	Fluid Mechanics	2	1	0	3	40	60	100	3
4	18A2101403	Surveying & Geo-Matics	3	0	0	3	40	60	100	3
5	18A2101404	Building Construction Practice	3	0	0	3	40	60	100	3
6	18A2101301	Building Planning & Drawing	1	2	0	3	40	60	100	3
7	18A2101491	Surveying lab	0	0	3	3	40	60	100	1.5
8	18A2101492	Strength of materials Lab	0	0	3	3	40	60	100	1.5
9	18A2100801	Professional Ethics & Human Values	2	0	0	2	40	60	100	0
		Total	16	4	6	26	360	540	900	21

II YEAR I SEMESTER

II YEAR II SEMESTER

							S			
			Sche	eme o	f Inst	ruction	Ex	amina	ation	
		Title of the Course	(Pe	eriods	s Per	Week)	(Maxi	i mum	Marks)	
S1.										No. of
No	Course Code		L	Т	Р	Total	CIA	SEA	Total	Credits
1	18A2200201	Probability & Statistics	3	0	0	3	40	60	100	3
2	18A2201401	Concrete technology	2	1	0	2	40	60	100	3
3	18A2201402	Hydraulic Engineering	2	1	0	2	40	60	100	3
4	18A2201403	Engineering Geology	2	0	0	2	40	60	100	2
5	18A2201404	Structural Analysis -I	2	1	0	2	40	60	100	3
6	18A2201601 18A2201602	Open Elective –I i) Elements of Civil Engineering ii) Basic Surveying	2	0	0	2	40	60	100	2
7	18A2201491	Fluid Mechanics & Hydraulic Machines Lab	0	0	3	3	40	60	100	1.5
8	18A2201492	Engineering Geology Lab	0	0	2	2	40	60	100	1
9	18A2201493	Advanced Surveying Lab	0	0	3	3	40	60	100	1.5
10	18A2201494	Surveying Camp	0	0	4	4	40	60	100	2
11	18A2200802	IPR & Patents	2	0	0	2	40	60	100	0
		Total	15	3	12	40	440	660	1100	22

L - LECTURE T – TUTORIAL P - PRACTICAL

CIA – Continuous Internal Assessment SEA – Semester End Assessment

B.TECH CE II YEAR-I SEMESTER

18A2100201- COMPLEX VARIABLES AND FOURIER SERIES

Lectu	ıre – T	`utori a	al: 3-	0 Hou	rs			Ι	nterna	al Mar	ks:	40
Credi	its:		3					E	xtern	al Mar	ks:	60
Prere	quisit	es: Ma	athem	atics I	[
Cour	se Obj	ective	s:									
1. T	`o fami	liarize	the te	chniqu	ies in o	comple	ex vari	ables.				
2. T	`o fami	liarize	the te	chniqu	ies in I	Fourie	r serie	s.				
3. T	`o fami	liarize	the te	chniqu	ies in j	partial	differe	ential	equation	ons.		
4. T	`o equi	p the s	studen	ts to s	olve ap	oplicat	ion pro	oblems	s in the	eir disc	cipline	s.
Cour	se Ou	tcome	s:									
Upon	succ	essful	comp	letion	of the	cour	se, the	stude	ent wi	ll be a	ble to	
CO1	Write	an analy	ytic func	tion if e	ither rea	al part o	r imagir	nary par	t is know	wn and l	oy usin g	5
	Cauch	y-Riema	nn equa	tions or	apply l	Milne-Tl	nompson	n metho	d (L3)			
CO2	Evalua	ate the i	ntegral	of comp	lex func	tion ove	r the re	gion bou	unded by	y the clo	sed cur	ves by
	apply	either C	auchy-G	ioursat	theorem	or Cau	chy's int	egral for	rmula oi	Cauchy	's Resid	ue
CO3	Write	the infi	nito cori	os ovnar	nsion of	compley	y functio	n hy an	nlv			
005	Tavlor	's/Macla	aurin's/	Laurent	's series	(L3)	x functio	n by ap	piy			
CO4	Write	a Fourie	er series	expans	ion of a	periodio	c functio	n by us	ing Eule	r's form	ulae (L 3	3)
CO5	Solve	the Part	ial diffe	rence eq	uations	(L3)						
C06	Solve	one dim	ensional	wave a	nd heat	equatio	ns by us	ing part	ial diffe	rential e	quation	is (L3)
Cont	rihuti	on of (omes	towar	de ach	iever	ent o	f Prog	ram	- (-)
Outc	omes	(1 - Lc)	\mathbf{w} . 2-	Mediu	im. 3 -	- High)			1105	am	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	2	-	-	-	-	-	-	-	-
CO2	3	3	2	2	_	-	_	-	-	_	-	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-
CO6	3	3	2	2	-	-	-	-	-	-	-	-
	1	1	1	1	•	UNIT 1	[1	I	1	1	1
-			DICC		~ -							

Complex Variable – Differentiation & Integration

Complex function , Real and Imaginary parts of Complex function, Limit, Continuity and Derivative of complex function, Cauchy-Riemann equations, Analytic function, entire function, singular point, conjugate function, Harmonic functions, Milne-Thomson method.

Line integral of a complex function, Cauchy's theorem (only statement), Cauchy's Integral Formula.

UNIT II

Complex Variable- Series expansion, Residue Theorem & Evaluation of Real Integrals

Absolutely convergent and uniformly convergent of series of complex terms, Radius of convergence, Taylor's series, Maclaurin's series expansion, Laurent's series.

Zeros of an analytic function, Singularity, Isolated singularity, Removable singularity, Essential singularity, pole of order m, simple pole, Residues, Residue theorem, Calculation of residues, Residue at a pole of order m, Evaluation of real definite integrals: Integration around the unit circle, Integration around semi circle.

UNIT III

Fourier Series

Introduction- Periodic functions - Fourier series of -periodic function - Dirichlet's conditions - Even and odd functions - Change of interval- Half-range sine and cosine series.

UNIT IV

Partial Differentials Equations & Applications

Introduction, Formation of PDE, Solution of PDE, Linear equations of first order, Non-linear equations of first order.

Applications: Method of separation of Variables, One dimensional Wave and Heat equations.

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43/e, 2010.
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

REFERENCE BOOKS:

- 1. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7/e, Mc-Graw Hill, 2004.
- 2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, 2008.

18A2101401- STRENGTH OF MATERIALS

Lecture	- T 1	utoria	1: 2-	1 Hou	rs			I	nterna	al Mar	ks:	40
Credits	:		3					Е	xtern	al Mar	ks: (50
Prerequ	isite	es: Phy	ysics,	Math	ematio	cs II a	nd En	gineer	ing M	echan	ics.	
Course	Obje	ctives	5:									
 To imp To mal To ena design To mal 	art pr the the ble th proble the	ocedure student e studer ems. student	for drav able to a it to app able to a	ving shea nalyze fl bly the co nalyze sl	ar force a exural st oncepts o hear stre	nd bend resses ir of streng sses in b	ing mom beams c th of ma eams due	ent diagr lue to dif terials in e to diffe	ams for ferent lo enginee rent load	beams. ads. ering app ls.	olications	and
Course	Out	comes	5:									
Upon sı	ıcce	ssful o	compl	etion	of the	cours	se, the	stude	ent wi	ll be a	ble to:	5
CO1 Ur	nderst	and the o	concepts	s of stress	s, strain,	generali	zed Hook	e's law, e	elastic m	oduli anc	l strain e	nergy.
CO2 De	evelop	shear fo	rce and	bending	moment	diagram	is for diff	erent loa	d cases.			
CO3 Co	mput	e the flex	kural str	esses for	differen	nt load ca	ases and	different	cross-se	ections. I	Determin	e shear
st	resses	for diffe	rent cro	ss-sectio	ns.							
CO4 Kr	nowled	lge of be	nding co	oncepts a	nd calcu	lation of	section r	nodulus	and for c	letermina	ation of s	tresses
de	velop	ed in the	beams a	and defle	ctions du	ie to var	ious load	ing cond	itions			
CO5 Ur	nderst	and the	basic co	ncepts o	f Princip	al stress	es develo	oped in a	membe	r when i	t is subje	ected to
sti	resses	along di	fferent a	ixes.		1.	1		1.		0	
CO6 La	n Ana	lyze mei	nbers si	ibjected	to torsio	n, combi	ned tors	on and b	ending i	noment (& asses s	stresses
						springs s						
Outcom		1 - 1	vourse	. Oulc Modiu	m 3	LOwar - High	us acn	levem	lent o	Frog	ram	
F	\mathbf{N}	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	2	-	_	-	3	-	-	_	-
CO2	3	-	-	2	-	-	-	3	-	-	-	-
CO3	3	-	-	2	-	-	-	3	-	-	-	-
CO4	3	-	-	2	-	-	-	3	-	-	-	-
CO5	3	-	-	2	-	-	-	3	-	-	-	-
CO6	3	-	-	2	_	_	-	3	-	-	-	-
					1	UNIT	[

Simple Stresses and Strains: Types of stresses and strains – Hooke's law – Stress – strain diagram for mild steel – working stress – Factor of safety – lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of varying sections-Composite bars. Strain energy – Resilience – Gradual, Sudden, impact and shock loadings – simple applications. *LOs:*

1. Understand concepts of stresses, strains, elastic moduli and strain energy.

2. Evaluate relations between different moduli

3. Understand different types loadings

Shear Force and Bending Moment: Definition of beam – types of beams – Concept of Shear force

and bending moment – S.F and B.M diagrams for cantilever, simply supported and over changing beams subjected to point loads, uniformly distributed load, uniformly varying loads and combination of these loads – point of contra flexure – Relation between S.F, B.M and rate of loading at section of a beam.

LOs:

- 1. Draw the shear force and bending moment diagrams for cantilevers, simply supported beams and Overhanging beams with different loads
- 2. Understand the relationship between shear force and bending moments

UNIT II

Flexural Stresses:

Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/Y = E/R – Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hallow), I, T, Angle and Channel Sections – Design of simple beam sections.

LOs:

- 1. Derive bending equations
- 2. Compute the flexural stresses for different cross sections.
- 3. Design beam sections for flexure

Shear Stresses:

Derivation of formula-Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T and angle sections. Combined bending and shear.

LOs:

- 1. Determine shear stresses for different shapes.
- 2. Evaluate effect of combined bending and shear on sections

UNIT III

Deflection of Beams: Uniform bending – slope, deflection and radius of curvature – Differential equation for elastic line of a beam – Double integration and Macaulay's methods. Determination of slope and deflection for cantilever and simply supported beams under point loads, U.D.L. uniformly varying load-Mohr's theorems – Moment area method – application to simply supported and overhanging beams- analysis of propped cantilever beams under UDL and point loads.

LOs:

- 1. Compute slopes and deflections of beams with different boundary conditions
- 2. Understand types of loads acting on beams
- 3. Evaluate effect of different loads on propped cantilever beams

UNIT IV

Compound Stresses and Strains: Two dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr circle of stress, and its applications.

LOs:

1. Identify critical planes in two dimensional stress systems

2. Estimate principals stresses & Assess safety of structural elements under principal stresses

Torsion: Theory of pure torsion – Assumptions and Derivation of Torsion formula for circular shaft – Torsional moment of resistance – Polar section modulus – power transmission through shafts – Combined bending and torsion. Springs - Types of springs – deflection of closed coiled helical springs under axial pull – Carriage or leaf springs.

LOs:

- 1. Analyze members subjected to torsion, combined torsion and bending moment
- Calculate power transmission through shafts
 Estimate energy absorption in springs.

TEXT BOOKS:

- 3. R. K. Bansal, Strength of Materials, Lakshmi Publications House Pvt. Ltd.
- 4. Strength of Materials by R. K. Rajput, S. Chand & Co, New Delhi.

REFERENCE BOOKS:

1.	Sadhu Singh, Strength of Materials,	Khanna Publishers 11th edition 20	015.
----	-------------------------------------	-----------------------------------	------

- 2. S. Timoshenko, D.H. Young and J.V. Rao, Engineering Mechanics, Tata McGraw-Hill Company.
- 3. R. Subramanian, Strength of Materials, Oxford University Press.
- 4. Strength of Materials by S. Ramamrutham.

E-RESOURCES:

18A2101402- FLUID MECHANICS

Lecture – Tutorial: 2-1 Hours Internal Marks: 4	0
Credits: 3 External Marks: 6	0
Prerequisites: Engineering Mechanics, Mathematics II and Physics	
Course Objectives:	
1) To explain concepts of fluid mechanics used in Civil Engineering.	
 To explain basics of statics, kinematics and dynamics of fluids and various measuring techniq hydrostatic forces on objects. 	ues of
3) To impart ability to solve engineering problems in fluid mechanics	
4) To enable the students measure quantities of fluid flowing in pipes, tanks and channels	
5) To teach integral forms of fundamental laws of fluid mechanics to predict relevant pres	ssures,
velocities and forces.	
6) To strengthen the students with fundamentals useful in application-intensive courses dealing	g with
hydraulics, hydraulic machinery and hydrology in future courses.	
Course Outcomes:	
Upon successful completion of the course, the student will be able to:	
CO1 Understand the principles of huld statics, kinematics and dynamics	
CO2 Familiarize basic terms used in fluid mechanics	
CO3 Understand flow characteristics and classify the flows	
CO4 Apply the continuity, momentum and energy principles	
CO5 Estimate various losses in flow through channels	
CO6 Understand fundamentals of kinematics and equations Cartesian coordinates.	
Contribution of Course Outcomes towards achievement of Program	
Outcomes (1 – Low, 2- Medium, 3 – High)	
PO PO PO PO PO PO PO PO PO	PO
<u>1 2 3 4 5 6 7 8 9 10 11</u>	12
CO1 3 2 - 1	-
CO2 3	-
CO3 3	-
CO4 3 2 - 3 2	-
CO5 2 2 - 3 2	-
CO6 2 2 - 2	-
UNIT I	

Basic concepts and definitions:

Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton law of viscosity; vapour pressure, boiling point, cavity, surface tension, capillarity, Bulk modulus of elasticity, compressibility.

LOs: 1. Understand basic characteristics of fluids

2. Understand Newton's Law of Viscosity

UNIT II

Fluid statics:

Fluid Pressure: Pressure at a point, Pascal's law, pressure variation with temperature, density and altitude. Piezometer, U-Tube Manometer, Single Column Manometer, U Tube Differential Manometer. Pressure gauges.

Hydrostatic pressure and force: horizontal, vertical and inclined surfaces. Buoyancy and stability of floating bodies.

LOs: 1. Understand concepts of fluid statics.

2. Distinguish different equipment and their applications.

3. Demonstrate stability of floating bodies

UNIT III

Fluid kinematics:

Classification of fluid flow : steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one, two and three dimensional flows; Stream line, path line, streak line and stream tube; stream function, velocity potential function. One, two and three -dimensional continuity equations in Cartesian coordinates.

LOs: 1. Understand fundamentals of fluid kinematics

- 2. Differentiate types of fluid flows
- 3. Explain equations of different order Cartesian coordinates

UNIT IV

Fluid Dynamics:

Surface and body forces; Equations of motion - Euler's equation; Bernoulli's equation – derivation; Energy Principle; Practical applications of Bernoulli's equation : Venturimeter, orifice meter and Pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend; Vortex Flow – Free and Forced; Definitions of Reynolds Number, Froude Number, Mach Number, Weber Number and Euler Number;

Analysis Of Pipe Flow: Energy losses in pipelines; Darcy – Weisbach equation; Minor losses in pipelines; Hydraulic Grade Line and Total Energy Line; Concept of equivalent length; Friction factor for pipe flow.

LOs: 1. Demonstrate applications of Bernoulli's equations

- 2. Experiment with different equipments under fluid flow
- 3. Apply principles of fluid dynamics along with governing equations.
- 4. Estimate Energy losses in pipelines
- 5. Determine flow characteristics through closed conduits.

TEXT BOOKS:

- R. K. Bansal, A text of Fluid mechanics and hydraulic machines, Laxmi Publications (P) Ltd., New Delhi, 7th Edition.
- 2. P. M. Modi and S. M. Seth, Hydraulics and Fluid Mechanics, Standard Book House, 18th Edition

REFERENCE BOOKS:

- 1. N. Narayana Pillai, Principles of Fluid Mechanics and Fluid Machines, Universities Press Pvt Ltd, Hyderabad. 3rd Edition 2009.
- 2. K. Subrahmanya, Theory and Applications of Fluid Mechanics, Tata McGraw Hill.
- 3. C. S. P. Ojha, R. Berndtsson and P. N. Chadramouli, Fluid Mechanics and Machinery, Oxford University Press, 2010.
- 4. K. Subramanya, Open Channel flow, Tata Mc.Grawhill Publishers.

18A2101403- SURVEYING & GEOMATICS

Lectu	ıre – T	utoria	1: 3-	0 Hou	rs			I	nterna	l Mar	ks:	40
Credi	its:		3					E	xterna	1 Mar	ks:	50
Prere	quisit	es: No	ne									
Cour	se Obj	ective	s:									
1. Hig	hlight th	e purpos	e of surv	eying in	civil eng	ineering	construc	tion,				
2. Exp	olain diffe	erent typ	es of cur	ves, theii	require	ment and	d curve so	etting.				
3. FOI 4 Tra	mulate s	urvey op lization o	servatio	ns and pe ing instri	uments l	alculatioi ike FDM	1S Total sta	ntion and	GPS			
5. Dei	nonstrat	e basics	of photog	grammet	ry and m	happing p	rocess.	ition and	ur 5.			
6. Thi	row light	on remo	te sensir	ig elemei	nts.							
Cour	se Out	come	s:									
Upon	succe	essful	compl	etion	of the	cours	se, the	stude	ent will	be a	ble to	,
CO1	Unders	tand bas	ics of sur	veying a	nd ident	ifying the	e needs o	f surveyi	ng.			
CO2	Apply t	he know	ledge, teo	chniques	and surv	vey tools	in engine	eering pr	actices			
CO3	Calcula	te angles	, distanc	es and le	vels.							
CO4	Transla	ite the kr	nowledge	gained f	or imple	mentatio	on infrast	ructure f	facilities.			
CO5	Correla	te know	vledge to	o frontie	rs like	Hydrogr	aphy, El	ectronic	Distance	Measu	irement,	Global
	Positio	ning Syst	em, Phot	ogramm	etry and	Remote	Sensing.					
CO6	Identify	v data co	ollection	methods	s and pr	epare fie	eld notes	s. Estima	te errors	in mea	asureme	its and
	apply c	orrectior	15									
Cont	ributi	on of (Course	Outc	omes	towar	ds ach	ievem	ent of	Prog	ram	
Outc	omes	(1 - LC)	DW, 2-		m, 3	- Hign)	DO	DO	DO	DO	DO
	PO 1	PO	2	PO	PO	PO	P0	PO	PO	PO 10	PO 11	PO 10
001	L	2	3	4	ට 1	D	1	8	9	10	1 I	12
COI	-	3	-	-	I	-	-	-	-	-	-	-
CO2	-	3	-	-	1	-	-	-	-	-	-	-
CO3	-	3	-	1	-	-	-	-	-	-	-	-
CO4	-	3	-	-	1	-	-	-	-	-	-	-
CO5	-	3	-	-	1	-	3	1	-	-	-	-
CO6	-	-	-	-	-	-	2	1	-	-	-	-
	• •					UNIT I	[

Introduction to surveying:

Principles, Linear, angular and graphical methods, Survey stations, Survey lines- ranging, Bearing of survey lines, Levelling: Plane table surveying, Principles of levelling - booking and reducing levels; differential, reciprocal levelling, profile levelling and cross sectioning. Digital and Auto Level, Errors in levelling; contouring: Characteristics, methods, uses; areas and volumes.

LOs:

- 1. Understand basic procedures in surveying
- *Estimate errors in levelling Computing areas and volumes.*

UNIT II

Trigonometric Levelling and Curves:

Theodolite survey: Instruments, Measurement of horizontal and vertical angle; Horizontal and vertical control - methods -triangulation -network- Signals. Baseline - choices - instruments and accessories - extension of base lines -corrections - Satellite station - reduction to centre - Inter-visibility of height and distances - Trigonometric levelling - Axis single corrections. Curves - Elements of simple and compound curves – Method of setting out– Elements of Reverse curve - Transition curve – length of curve – Elements of transition curve - Vertical curves

LOs:

- 1. Measure angles using Theodolite
- 2. Carryout trigonometric levelling
- 3. Set simple and compound curve

UNIT III

Modern Field Survey Systems: Principle of Electronic Distance Measurement, Modulation, Types of EDM instruments, Distomat, Total Station – Parts of a Total Station – Accessories –Advantages and Applications, Field Procedure for total station survey, Errors in Total Station Survey; Global Positioning Systems- Segments, GPS measurements, errors and biases, Surveying with GPS, Co-ordinate transformation, accuracy considerations.

LOs:

- 1. Illustrate distance measurements using modern field survey systems
- 2. Carryout surveying using Total Station
- 3. Determine Coordinates using GPS

UNIT IV

Photogrammetry Surveying: Introduction, Basic concepts, perspective geometry of aerial photograph, relief and tilt displacements, terrestrial photogrammetry, flight planning; Stereoscopy, ground control extension for photographic mapping- aerial triangulation, radial triangulation, methods; photographic mapping- mapping using paper prints, mapping using stereo plotting instruments, mosaics, map substitutes. **LOs:**

1. Understand photogrammetry adopting various techniques.

2. Mapping areas using triangulation

3. Distinguish different types of plotting instruments

Remote Sensing: Introduction –Electromagnetic Spectrum, interaction of electromagnetic radiation with the atmosphere and earth surface, remote sensing data acquisition: platforms and sensors; visual image interpretation; digital image processing.

LOs:

1. Understand principles of remote sensing.

2. Carryout date acquisition and interpretation

TEXT BOOKS:

- 1. Arora, K.R. I, Surveying, Vol-I, II and II, Standard Book House, 2015.
- 2. C. Venkatramaiah, Text Book of Surveying, Universities Press Pvt Ltd, Hyderabad. Revised Edition 2011.

REFERENCE BOOKS:

- 1. Manoj K., Arora and Badjatia, Geomatics Engineering, Nem Chand & Bros, 2011.
- 2. Madhu N., Sathikumar, R. and Satheesh Gobi, Advanced Surveying: Total Station, GIS and Remote Sensing, Pearson India, 2006.
- 3. Chandra A.M., Higher Surveying, Third Edition, New Age International (P) Limited, 2002.
- 4. Anji Reddy M., Remote sensing and Geographical information system, B.S. Publications, 2001.

LECL	ıre – 7	`utori a	1: 1-	2 Hou	rs			I	nterna	al Marl	ks:	40
Credi	its:		3					E	xtern	al Mar	ks:	60
Prere	quisit	es: En	ginee	ring d	rawing	g						
Cour	se Obj	ective	s:									
1. Ir	nitiatin	g the st	udent t	o differ	ent bui	lding by	ve-laws	and reg	gulation	15.		
2. I	mparti	ng the p	lannin	g aspec	ts of re	sidentia	ıl buildi	ings and	d public	c buildin	igs.	
3. G	iving ti	aining	exercis	es on va	arious s	signs an	d bond	s and di	ifferent	: buildin	g units	
4. I	mparti	ng the s	kills an	d meth	ods of 1	olannin	g of var	ious bu	ildings		0	
	I	0					0		- 0-			
Cour	se Ou	tcome	s:									
Upon	succ	essful	comp	letion	of the	cour	se, the	e stude	ent wi	11 be al	ble to	•
CO1	Stude	nt shou	ld be al	ole to p	lan vari	ious bui	ldings a	as per t	he buil	ding by-	laws.	
CO2	Stude	nt shou	ld knov	v the m	inimun	n standa	ards for	variou	s parts	of build	lings &	
	chara	cteristic	cs.									
CO3	The st	tudent s	should l	be able	to disti	nguish	the rela	tion be	tween	the plan	, eleva	tion
	and c	ross sec	tion an	d ident	ify the f	form an	d funct	ions am	ong th	e buildii	ngs.	
CO4	The st	udent i	s expec	ted to l	earn th	e skills	of draw	ving bui	lding e	lements	and n	lan
CO5	Stude	nt shou	ld he al	nle to u	ndersta	nd vari	ous bri	ck mase	nrv &	huilding	, eleme	nte
000	stand	ard dray	wings		iluci sta		003 011	ck mas	Jill y Q	Dunung	Science	.1105
	Stanu	aruura	wings.									
CO6	Stude	nt shou	ld be al	ole to d	evelop	drawin	g of bui	lding pl	an, sec	tion and	l elevat	tion.
Cont	ributi	on of (Course	e Outo	omes	towar	ds ach	lievem	ent o	f Prog	am	
Outc	omes	(1 - Lo	ow, 2-	Mediu	1m, 3	– High	.)					
	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO	PO 10
	1	2	3	4	5	6	1	8	9	10	ΤΤ	12
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO1		3	-	-	-	-	-	-	-	-	-	-
CO1 CO2	3				2	-	-	-	-	-	-	
CO1 CO2 CO3	32	1	-	-								
CO1 CO2 CO3 CO4	3 2 1	1 2	_	-	3	-	-	-	-	-	_	_
CO1 CO2 CO3 CO4 CO5	3 2 1 -	1 2 1	- - -	-	3 3	-	-	-	-	-	-	-

terminology- objectives of building byelaws- floor area ratio- floor space index- principles under laying building bye laws- classification of buildings- open space requirements – built up area limitations- height of buildings- wall thickness – lightening and ventilation requirements. Types of buildings and principals of planning of buildings LOS:

- 1. Understand building bye-laws
- 2. Understand planning components of building and standard dimensions.

UNIT II

Residential Buildings: Minimum standards for various parts of buildings requirements of different rooms and their grouping- characteristics of various types of residential buildings and relationship between plan, elevation and forms and functions

Public Buildings: Planning of educational institutions, hospitals, dispensaries, office buildings, banks, industrial buildings, hotels and motels, buildings for recreation, Landscaping requirements.

LOs:

- 1. Understand various requirements of building by visualizing the details.
- 2. Identify differences between residential buildings and public building standards.

UNIT III

Sign Conventions: Brick, stone, plaster, sand filling, concrete, glass, steel, cast iron, copper alloys, aluminium alloys etc., lead, zinc, tin etc., earth, rock, timber and marbles.

Bonds: English bond and Flemish bond - odd and even courses for one, one and half, two and two and half brick walls in thickness at the junction of a corner.

Doors, Windows, Ventilators: Panelled door, glazed door, panelled and glazed door, panelled windows glazed windows, fixed ventilators, swing ventilators.

Roofs: coupled roof, collar roofs, King Post truss and Queen Post truss.

LOs:

- 1. Identify sign conventions and symbols used in civil engineering drawing.
- 2. Understand detailed Drawing of building and structural elements and visualize.

UNIT IV

Planning and Designing of Buildings: Draw the Plan, Elevation and Sections of a Residential and Public buildings from the given line diagram.

LOs:

1. Understand basic terms plan section and elevation in drawing

2. Introduction to computer applications in developing drawing skills

TEXT BOOKS:

- 1. Planning, designing and Scheduling, Gurucharan Singh and Jagadish Singh
- 2. Building planning and drawing by M. Chakravarthi.
- 3. 3. 'A' Series & 'B' Series of JNTU Engineering College, Anantapur,

REFERENCE BOOKS:

- 1. Building drawing, M G Shah, C M Kale and S Y Patki, Tata McGraw Hill, New Delhi.
- 2. Principles of Building Drawing, M G Shah and C M Kale, Trinity Publications, New Delhi.
- 3. Civil Engineering drawing and House planning, B. P. Verma, Khanna publishers, New Delhi.
- 4. Civil Engineering Building practice, Suraj Singh: CBS Publications, New Delhi, and Chennai.

18A2101404- BUILDING CONSRUCTION PRACTICE

Lectu	ıre – T	`utor ia	1: 3-	0 Hou	rs			I	nterna	l Marl	KS:	40
Credi	its:		3					E	xterna	al Mari	ks:	60
Prere	quisit	es: No	ne									
Cours	se Obj	ective	s:									
1. Init	iating th	e studen	t with th	e knowle	dge of ba	asic build	ling mate	rials and	their pr	operties.		
2. Imj	parting t	he know	ledge of	course	pattern i	in masor	nry const	ruction	and flat	roofs an	d techni	ques of
for	ming fou	ndation,	columns	, beams, v	walls, slo	ped and	flat roofs	5.				
3. The	e studen	t is to b	e expos	ed to the	e variou	s patter	ns of flo	ors, wall	ls, differ	ent types	s of pai	nts and
var 4 Jm	nishes.	ha atu dan			iawaa af	f	de and an	ffalding				
4. IIII	barung u	re studer	ho ovnov	ne techn	iques of	iorinwoi	rogatos r	noisturo	contont	of the age	Trogato	
			De expos		SSIIIcatic	ni oi agg	regates, i	noisture	content	of the agg	gregate.	
Unon		accful	s. comni	etion	ofthe	0011#	so the	etuda	nt wi	1 ha al	hla ta	•
CO1	Get the	knowled	lge of dif	ferent co	nstructio	on mater	ials and t	heir proj	perties	ii be a		•
CO2	Know t	he classi	fication o	of aggrega	ates and	their str	uctural re	equireme	ents.			
CO3	Unders	tand pro	perties a	nd the co	mponen	ts of lim	e and cen	nent				
CO4	Unders	tand the	types of	masonrv	. uses of	timber a	and its pr	operties				
CO5	Identify	v compor	ents of t	uilding a	and types	s of floor	s and roo	f				
C06	Gain th	e knowle	edge of p	roofing r	naterials	and for	nworks					
Cont	ributi	on of (Outo	0000	towar	de och	ionom	ont of	Drogs	-	
Outc	omes	(1 - Lc	$\sim 2.$	Mediu	m 3	- High	us acii	leven		Flogi	am	
Outo	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	1	-	1	-	-	-	-	-	-	-	-
CO2	2	1	_	_	_	_	-	_	_	_	_	-
CO3	2	2	_	3	_	-	-	_	_	-	-	-
CO4	2	2	-	3	-	-	-	-	-	-	-	-
CO5	2	1	-	2	-	-	-	_	_	-	-	-
CO6	2	1	_	1	_	-	-	_	_	-	-	-
						UNIT	[

Stones, Bricks And Tiles Properties of building stones – relation to their structural requirements, classification of stones – stone quarrying – precautions in blasting, dressing of stone, composition of good brick earth, various methods of manufacturing of bricks. Characteristics of good tile - manufacturing methods, types of tiles. Uses of materials like Aluminium, Gypsum, Glass and Bituminous materials

LOs:

- Understand components of structures and their performance
 Explain construction materials their importance
 - Explain construction materials their importance

UNIT II

Lime And Cement Lime: Various ingredients of lime – Constituents of lime stone – classification of lime – various methods of manufacture of lime. Cement: Portland cement-Chemical Composition – Hydration, setting and fineness of cement. Various types of cement and their properties. Various field and laboratory tests for Cement. Various ingredients of cement concrete and their importance – various tests for concrete.

Aggregates: Classification of aggregate – Coarse and fine aggregates- particle shape and

texture – Bond and Strength of aggregate – Specific gravity – Bulk Density, porosity and absorption – Moisture content of Aggregate- Bulking of sand – Sieve analysis.

LO: 1Understand materials used for components of structures

2.Explain construction materials their importance

3.Compare different types of construction materials

UNIT III

Masonry -Types of masonry, English and Flemish bonds, Rubble and Ashlar Masonry. Cavity and partition walls. Wood: Structure – Properties- Seasoning of timber. Classification of various types of woods used in buildings- Defects in timber. Alternative materials for wood – Galvanized Iron, Fiber Reinforced Plastics, Steel, Aluminium.

LO: 1. Understand components of structures and their performance

UNIT IV

Building Components Lintels, arches, vaults, stair cases – types. Different types of floors – Concrete, Mosaic, Terrazzo floors, Pitched, flat roofs. Lean to roof, Coupled Roofs.

Finishing: Damp Proofing and water proofing materials and uses – Plastering Pointing, white washing and distempering. Paints: Constituents of paint – Types of paints – Painting of new/old wood- Varnish. Form Works and Scaffoldings.

LO: 1. Classify types of roofs based on features materials and engineering 2. Understand components of structures and their performance

TEXT BOOKS:

1. Building Material & Construction, S. S. Bhavikatti, Vices publications.

2. Building Construction, B.C. Punmia, Laxmi Publications private ltd.

REFERENCE BOOKS:

1. Building Materials, S. K. Duggal, New Age International Publications.

2. Building Materials, P. C. Verghese, PHI learning (P) ltd.

3. Building Materials, M. L. Gambhir, Tata McGraw Hill Publishing Co. Ltd. New Delhi.

4. Building construction, P. C. Verghese, PHI Learning (P) Ltd.

5. Building Materials, Construction and Planning, S. Mahaboob Basha, Anuradha Publications, Chennai.

18A2101491- SURVEYING LAB

Practi	ical		3	Hours				I	nterna	al Mar	ks:	40
Credit	ts:		1.	5				Е	xterna	al Mar	ks:	60
Preree	quisite	s: Sur	veying	g								
Cours	e Obje	ctives	:									
	To imp	art the	practica	al know	vledge i	n the fi	eld, it is	s essent	tial to in	ntroduc	e in	
curricu	ılum. Dr	awing o	of Plans	and M	aps and	d deter	mining	the are	a are pi	re requ	isites	
before	taking ι	ıp any (Civil En	gineeri	ng wor	ks.						
	5			-	2							
Cours	e Outo	comes	:									
Upon	succe	ssful c	omple	etion o	of the	cours	e, the	stude	ent wil	1 be a	ble to	•
CO1	Condu	ict surv	vey and	collect	field d	ata.						
CO2	Prepa	re field	notes f	f <mark>rom su</mark>	rvey da	ata						
CO3	Interp	oret sur	vey dat	a and c	omput	e areas	and vo	lumes.				
Contr	ibutio	n of C	ourse	Outco	mes t	toward	ls ach	ievem	ent of	Prog	am	
Outco	omes (1 – Lov	w, 2- I	Mediu	m, 3 –	High				- 8		
	PO	PO	PO	PO	PO	PO	PO	ΡΟ	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	3	-	1	1	-	-	-	-	-	-	2
CO2	2	1	_	1	1	-	_	-	-	_	-	-
004												

LIST OF EXPERIMENTS

1. Survey by chain survey of road profile with offsets in case of road widening.

2. Survey in an area by chain survey (Closed circuit)

3. Determination of distance between two inaccessible points by using compass.

4. Survey in an area using compass (Closed Traverse) – Local Attraction

5. Plane table survey; finding the area of a given boundary by the method of Radiation

6. Plane table survey; finding the area of a given boundary by the method of intersection.

7.Two Point Problem by the plane table survey.

8. Fly levelling : Height of the instrument method (differential levelling)

9. Fly levelling: rise and fall method.

10. Fly levelling: closed circuit/ open circuit.

11. Fly levelling; Longitudinal Section and Cross sections of a given road profile.

18A2101492- STRENGTH OF MATERIALS LAB

Practi	cal		3	Hours				Ι	nterna	al Mar	ks:	40
Credit	redits: 1.5 External Marks: 60 rerequisites: Strength of materials											
Prerec	quisite	s: Str	ength	of ma	terial	5						
Cours	e Obje	ctives	5:									
Cours	e Outo	comes	:									
1. Con	duct tens	sion test	on steel									
2. Con	duct con	npressio	n tests of	n spring	, wood, t	prick an	d concre	ete				
3. Con 4 Dete	ermine h	ural and	1 torsion of metal	test to d	etermine	elastic	constant	ts				
Contr	ibutio	n of C	ourse	Outco	omes t	oward	ls ach	ievem	ent of	f Progi	am	
Outco	omes (1	l – Lo	w, 2- I	Mediu	m, 3 –	High					1	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
CO1	1	2 1	3	4	5	6	7	8	9	10	11	12
	5	1	4		_	_	-	4	-	_	_	4
CO2	3	1	2	-	-	-	-	2	-	-	-	2
CO3	3	1	2	_	_	_	-	2	-	-	_	2
001	U	-	-									-
				LIS	T OF E	EXPER	RIMEN	ITS				
1.	Tensior	ı test o	n Steel	bar								
2.	Bending	g test o	n (Stee	l / Woo	od) Cant	tilever	beam.					
3.	Bending	g test o	n simp	le supp	ort bear	m.						
4.	Continu	ious be	eam – de	eflectio	n test							
5.	Torsion	i test										
6.	Hardne	ss test										
7.	Spring	test										
8.	Compre	ession	test on v	wood o	r brick.							
9.	Impact	test										
10.	Shear to	est	_		_	_	_					
11.	Verifica	ition of	Maxwe	ell's Rec	ciprocal	theore	em on b	eams.				
12.	Use of E	Electric	al resis	tance s	train ga	uges						
14.					u u i i ga	iuges						

18A2100801- PROFESSIONAL ETHICS AND HUMAN VALUES

(Common to CE, CSE and IT)

Lectu	ıre – T	utoria	1: 2-	0 Hou	rs			Ι	nterna	al Marl	ks:	40
Credi	ts:		0					E	xterna	al Mari	ks:	60
Prere	quisit	es: Ba	sic un	dersta	anding	g abou	t Engi	neerir	ıg prot	fessior	1.	
Cours	se Obj	ective	s:									
1) To 2) To 3) To	create av understa instill m	vareness ind socia oral and	on engir l respons social va	neering e sibility of lues and	thics and an engir loyalty.	l human neer.	values.					
Cour	se Out	come	s:									
Upon	succe	essful	compl	etion	of the	cours	se, the	stude	ent wi	ll be al	ble to:	:
CO1	Groom	sthems	elvesas	ethical, r	responsi	ibleands	societal	beings.				
CO2	Discuss	ethics ir	n society	and appl	y the eth	ical issue	es relateo	d to engi	neering.			
CO3	Exhibit	the unde	erstandir	ng of ethi	cal theor	ies in pro	ofessiona	ıl enviroi	nment.			
CO4	Recogn	ize their	roe as so	cial expe	erimente	rs (engin	eers) an	d compre	ehend co	des of etł	nics.	
CO5	Identify	/ the risk	s likely t	o come a	cross in t	the profe	ssional v	vorld, an	alyzing tl	hem and	find solu	itions.
CO6	Realize	the resp	onsibiliti	ies and ri	ights of e	ngineers	in the so	ociety.				
Cont	ributio	on of (Course	Outc	omes	towar	ds ach	ievem	ent of	f Progr	am	
Outc	omes	(1 – Lo	ow, 2-	Mediu	ım, 3 -	- High)			U		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	_	_	_	-	1	1	2	-	-	-	1
CO2	-	-	-	-	-	1	1	2	-	-	-	1
CO3	-	-	-	-	-	1	1	2	-	-	-	1
CO4	-	-	-	-	-	1	1	2	-	-	_	1
CO5	_	_	_	_	-	1	1	2	-	-	_	1
CO6	-	-	-	-	-	1	1	2	-	-	-	1
						UNIT I	[

Human Values: Objectives, Morals, Values, Ethics, Integrity, Work ethics, Service learning, Virtues, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Challenges in the work place.

UNIT II

Engineering ethics Senses of 'Engineering Ethics' — Variety of moral issues — Types of inquiry — Moral dilemmas — Moral Autonomy — Kohlberg's theory — Gilligan's theory — Consensus and Controversy — Models of professional roles — Theories about right action — Self-interest — Customs and Religion — Uses of Ethical Theories

UNIT III

Engineering as Social Experimentation: Engineering as experimentation, Engineers as responsible experimenters, Codes of ethics, Industrial standards, A balanced outlook on law, Case study: The challenger.

UNIT IV

Safety, Responsibilities and Rights: Safety and risk, types of risks, Assessment of safety and risk, Safe exit, Risk-benefit analysis, safety lessons from 'the challenger', Case study: Power plants, Collegiality and loyalty, Collective bargaining, Confidentiality, Conflict of interests, Occupational crime, whistle blowing, Intellectual property rights, professional rights.

TEXT BOOKS:

- A Text book on Professional Ethics and Human Values by R.S Naagarazan- New Age International Publishers.
- "Engineering Ethics includes Human Values" by M. Govindarajan, S. Natarajan and V. S. Senthil Kumar- PHI Learning Pvt. Ltd-2009

REFERENCE BOOKS:

"Professional Ethics and Human Values" by A. Alavudeen, R. Kalil Rahman and M. Jayakumaran-Laxmi Publications.

- <u>www.onlineethics.org</u>
- www.nspe.org
- <u>www.globalethics.org</u>
- <u>www.ethics.org</u>

B.TECH CE II YEAR-II SEMESTER

18A2200201-COURSE NAME-EM-IV-PROBABILITY AND STATISTICS

Lectu	ıre –		L-	Τ Ηοι	ırs			I	ntern	al Mar	·ks:	40
Tuto	rial:		2							-1 3/-	.1	60
Drore	lts: auisit	-061	3						xtern		rks:	60
Cour	se Ohi	iectiv	-6.									
1.To	familia	arize th	ne tech	าทเดเม	es in c	entral	tende	ncv. c	urve fi	itting.	correl	ation
and r	egress	sion.	10 0001			ontra	condo			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	001101	ation
2. To	famili	arize t	he tec	hniqu	es in t	probal	bility a	nd ra	ndom	variab	les.	
3. То	famili	arize t	he tec	hniqu	es in j	probal	bility d	istrib	ation.			
4. To	famili	arize t	he tec	hniqu	es in I	large a	and sm	all sa	mple t	ests.		
5.To	equip	the stu	adents	s to so	lve pr	oblem	s in th	eir dis	sciplin	es.		
Cour	se Ou	tcome	es:									
Upon	succ	essful	comp	letio	n of th	ie cou	ırse, tl	he stu	ıdent	will be	e able	to:
CO1	Studen	t will be	able to									
	≻	Find t	he meas	ures of c	entral to	endency	and relat	tion bety	veen the	m.(L1)		
CO2	Studen	t will be	able to			v						
	> Evaluate the correlation coefficient, rank coefficient and regression.(L5)											
CO3	Studen	ts will be	able to	/// clatio		.10110, 1 41		iciit ain	11051055	1011.(125)		
		× ••	1 4			e 4			e 1	•		
		→ Ui ele	iderstan ementary	d proba 7 proble	bilities o ms.(L2)	f events	and expe	ectations	of rando	om varia	bles for	
CO4	Studen	ts will be	able to	•								
	>	Solve 1	oroblem	related	to hino	mial and	nassion	distribu	tion (L.3)		
CO5	Studen	t will be	able to	, i ciutcu		inur und	pussion	u150110u		,		
		~									C . 1	
		Compa	are situa	itions in	which i	t is appi	ropriate	to consi	der the	relevand	ce of the	2
		NUTH		ution.(L	.4)							
C06	Studen	t will be	able to									
		Constr	uct hun	othoric	and car	avout ar	nronriat	o tosts	- chock	c ite ace	ontohili	5y (12)
Cont	rihuti			e Out		s tow	ards ac	chiev	ement	of Pr	ogran	1y.(LS)
Outc	omes	(1 – L	ow, 2-	Medi	ium, 3	3 – Hi	gh)				08-4	-
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
CO1	3	3	3 2	4		6		8	 	10		
001	2	2	-	-								
CO2	3 2	პ ე	2	2								
CO_{4}	3 2	3 2	2	2								
CO4	3	3	2	2							-	
C06	3	3	2	2								
000	•		-	-								
						UNIT	I					

Descriptive statistics and methods for data science

(Pre-requisite:Data science, Statistics Introduction, Population vs Sample, Collection of data, primary and secondary data, Type of variable: dependent and independent

Categorical and Continuous variables, Data visualization.---No Question selects from the above part)

Measures of Central tendency: Arithmetic Mean – Median – Mode - Geometric Mean-Harmonic Mean and Relations between them- Merits and Demerits.

Measures of Dispersion: Range – Quartile Deviation – Variance, Standard Deviation – Skewness- Kurtosis.

Curve Fitting and Principles of Least Squares.

Correlation - correlation - coefficient - rank correlation - Regression coefficients - Regression lines.

UNIT II

Probability

Probability, probability axioms, addition law and multiplicative law of probability, conditional probability, Baye's theorem, random variables (discrete and continuous), probability density functions, properties, mathematical expectation.

Distributions

UNIT III

Probability distribution - Binomial, Poisson approximation to the binomial distribution and normal distribution-their properties.

UNIT IV

Estimation and Testing of hypothesis:Large sample tests Small sample tests

Estimation-parameters, statistics, sampling distribution, point estimation, Formulation of null hypothesis, alternative hypothesis, the critical and acceptance regions, level of significance, two types of errors and power of the test.

Large Sample Tests: Test for single proportion, difference of proportions, test for single mean and difference of means. Confidence interval for parameters in one sample and two sample problems

Small Sample Tests: Student t-distribution (test for single mean, two means and paired t-test), testing of equality of variances (F-test), $\chi 2$ - test for goodness of fit, $\chi 2$ - test for independence of attributes.

TEXT BOOKS:

1. Miller and Freund, Probability and Statistics for Engineers, 7/e, Pearson, 2008.

2. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

REFERENCE BOOKS:

1. S. Ross, a First Course in Probability, Pearson Education India, 2002.

W. Feller, an Introduction to Probability Theory and its Applications, 1/e, Wiley, 1968.

E-RESOURCES:

1.nptel

			18A2	20140)1- CO	NCRE	TE TE	CHNO	LOGY			
Lectu	ıre – T	utoria	1: 2-	1 Hou	rs			Ι	ntern	al Marl	KS:	40
Credi	its:		3					E	xtern	al Mar	ks:	60
Prere	quisit	es: Bu	ilding	Mate	rials, I	Buildi	ng Cor	nstruc	tion F	ractic	e	
Cour	se Obj	ective	s:									
1. T	o learn th	ne concep	ots of Co	ncrete pi	roduction	n and its	behaviou	ır in vari	ous Envi	ronments	i.	
2. T	o learn th	ie test pr	ocedure	s for the	determi	nation of	properti	es of con	crete.			
3. T	o unders	tand dur	ability p	roperties	s of concr	rete in va	rious env	vironmei	nts.			
Cour	se Out	come	s:									
Upon	succe	essful	comp	letion	of the	cour	se, the	e stud	ent wi	11 be a	ble to	•
CO1	Unders	tand the	basic co	ncepts of	fconcrete	e.						
CO2	Realize	the impo	ortance o	of quality	of concr	rete						
CO3	Familia	rize the l	basic ing	redients	of concr	ete and t	heir role	in the pr	oductior	n of concr	ete and i	its
CO4	Dehavio Test the	our in the	e field. Increte r	ronertie	s and the	e harden	ed concre	ete nrone	orties			
	Fueluet	o tho ing	rodionte	of concr	oto throu	igh lab t	et rocult	c docian	the con	proto miv		
005	Evaluat		i eulents					.s. uesign				
C06	Applica	tions Ur	asic con iderstan	cepts of s d the beb	special contraction of	oncrete a	ind their	producti us enviro	on and nments			
Cont	ributi	on of (Course	e Outc	omes	towar	ds ach	ieven	nent o	f Progi	am	
Outc	omes	(1 - Lc)	ow, 2-	Mediu	1m, 3 ·	- High	L)			8		
	PO	PO	ΡO	PO	ΡÔ	PŎ	́ РО	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	2	3	2	-	-	-	2	-	-	-	-
CO2	_	2	3	2	-	-	_	2	-	_	-	-
CO3	-	2	3	2	-	-	-	2	-	-	-	-
CO4	-	2	3	2	-	-	-	2	-	-	-	-
CO5	_	1	_	1	-	_	-	2	_	-	-	-
CO6	-	1	_	1	-	-	_	2	-	-	_	_

Cement General, Manufacture of Portland cement by dry process, Approximate oxide composition limits of OPC, Bogue's compounds, Hydration of cement, heat of hydration, structure of hydrated cement. Types Of Cements. Tests on cement-Soundness test, Setting times test, Compressive strength test and Fineness test by air permeability apparatus.

Aggregates And Testing Of Aggregates Classification of aggregates –size, shape and texture, Mechanical properties of aggregates. Tests for aggregates-strength, bulking of fine aggregate, Fineness modulus and Zoning of fine aggregate, Fineness modulus of coarse aggregate. Water Tolerable concentrations of impurities in mixing water, Use of sea water for mixing concrete.

UNIT II

Fresh Concrete Workability, factors affecting workability, Segregation and Bleeding in concrete, measurement of workability using slump cone test, Kelly ball test, Vee-Bee test, compaction factor test.

Hardened Concrete Factors affecting compressive strength of concrete, Cube compression test, split tensile strength test, flexural strength of concrete. Durability of concrete, factors affecting durability of concrete.

UNIT III

Production Of Concrete Batching of materials, mixing, transportation, placing, compaction and finishing of concrete. Curing of concrete and methods of curing.

Concrete Mix Design Basic considerations for concrete mix design, factors influencing the choice of mix proportions, Indian standard method of concrete mix design .ACI method of concrete mix design. Ready Mixed Concrete (RMC)

UNIT IV

Chemical And Mineral Admixtures Functions of admixtures, accelerators, retarders, air entraining admixtures, plasticizers and super plasticizers, water proofers, fly ash, silica fume, ground granulated blast furnace slag.

Special Materials In Construction And Concreting Techniques Ferro-cement, selfcompacting concrete, fiber reinforced concrete, high strength concrete. Shortcrete or guniting. Future Trends In Concrete Technology polymer concrete-properties, green building, maintenance, need for green buildings.

TEXT BOOKS:

1. Concrete technology by A.R.Santhakumar, Oxford University Press

2. Concrete technology by M.S.Shetty, S.Chand& Company Pvt. Ltd., New Delhi

REFERENCE BOOKS:

1. Properties of concrete by A.M.Neville, Longman Publishers

2. Concrete technology by M.L.Gambhir, Tata McGraw-Hill Publishing company Ltd., New Delhi

18A2201402- HYDRAULIC ENGINEERING

Lectu	ıre – T	'utoria	1: 2-	1 Ноці	rs			I	nterna	al Mari	ks:	40
Credi	ts:		3	1 110 4				Ē	xtern	al Mar	ks:	60
Prere	quisit	es: Ma	them	atical	Metho	ods , F	`luid N	Iechai	nics			
Cours	se Obj	ective	s:			•						
1) Ir	ntroduc	e conce	epts of l	aminar	and tu	rbulent	flows					
2) T	o teach	princip	oles of u	iniform	and no	on-unifo	orm flov	ws thro	ugh ope	en chan	nel.	
3) T	o impa	rt know	ledge o	n desig	n of tu	bines.						
4) T	o impa	rt know	vledge o	n desig	n of pu	mps.						
Cour	se Out	come	s:			•						
Upon	succe	essful	compl	etion	of the	cours	se, the	stude	ent wi	ll be a	ble to	
CO1	Under	stand c	haracte	eristics	of lami	nar and	turbul	ent flov	vs.			
CO2 Analyze characteristics for uniform flows in open channels.												
CO3 Analyze characteristics for non-uniform flows in open channels.												
CO4	Desig	n differe	ent type	es of tui	bines							
CO5	Desig	n of cen	trifugal	and m	ulti stag	ge pum	ps.					
CO6	Desig	n of rec	iprocat	ing pu	mp		-					
Cont	ributi	on of (ourse	Outc	omes	towar	ds ach	ievem	ent of	f Prog	ram	
Outc	omes	(1 – Lo	ow, 2-	Mediu	m, 3 -	- High	.)			8		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	-	_	-	-	-	-	-	-	-
CO2	3	-	_	1	-	-	2	2	_	-	_	_
CO3	3	_	_	1	_	_	2	2	_	_	_	_
CO4	2	-	-	3	-	-	1	2	-	-	-	-
CO5	2	_	-	3	-	_	1	2	-	-	-	-
CO6	2	_	-	3	_	_	1	2	-	_	_	-
						ііліт і	ſ					

Laminar & Turbulent flow in pipes:

Laminar Flow- Laminar flow through: circular pipes, annulus and parallel plates. Measurement of viscosity.

Turbulent Flow- Reynolds experiment, Transition from laminar to turbulent flow. Definition of turbulence, scale and intensity. Reynolds stresses semi-empirical theories of turbulence. Resistance to flow of fluid in smooth and rough pipes-Moody's diagram.

UNIT II

Uniform flow in Open Channels:

Open Channel Flow-Comparison between open channel flow and pipe flow, geometrical parameters of a channel, classification of open channels, classification of open channel flow, Velocity Distribution of channel section. Uniform Flow-Continuity Equation, Energy Equation and Momentum Equation, Characteristics of uniform flow, Chezy's formula, Manning's formula. Computation of Normal depth.

Non-Uniform flow in Open Channels:

Specific energy, critical flow, discharge curve, Specific force, Specific depth, and Critical depth. Measurement of Discharge and Velocity – Broad Crested Weir. Gradually Varied Flow- Dynamic Equation of Gradually Varied Flow. Hydraulic Jump and classification - Elements and characteristics- Energy dissipation.

UNIT III

Impact of Jets: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes - velocity triangles at inlet and outlet - Work done and efficiency
Hydraulic Turbines: Classification of turbines; pelton wheel and its design. Francis turbine and its design - Kaplan turbine and its design – efficiency - Draft tube: theory - characteristic curves of hydraulic turbines. Cavitation: causes and effects.

UNIT IV

Centrifugal pumps:

Working principles of a centrifugal pump, work done by impeller; heads, losses and efficiencies; minimum starting speed; Priming; specific speed; limitation of suction lift, net positive suction head (NPSH); Performance and characteristic curves; Cavitation effects; Multistage centrifugal pumps; troubles and remedies.

Reciprocating pumps:

Working principles of a Reciprocating pump, work done; heads, losses and efficiencies;

TEXT BOOKS:

- 1. 1. P. M. Modi and S. M. Seth, Hydraulics and Fluid Mechanics, Standard Book House
- 2. D. S. Kumar Fluid Mechanics & Fluid Power Engineering, Kataria & Sons.

REFERENCE BOOKS:

- 1. 1. Rajput, Fluid mechanics and fluid machines , S. Chand & Co
- 2. K. Subramanya, Open channel Flow, Tata McGraw Hill.
- 3. Srinivasan, Open channel flow by, Oxford University Press
- 4. Banga & Sharma, Hydraulic Machines, Khanna Publishers.

18A2201403- ENGINEERING GEOLOGY

Lectu	ıre – T	'utor ia	1: 2-	0 Houi	ſS			Ι	nterna	l Mar	ks:	40
Credi	its:		2					E	xterna	al Mar	ks:	60
Prere	quisit	es: No	ne									
Cours	se Obj	ective	s:									
1) To	unders	stand we	eatheri	ng proc	ess and	d mass :	movem	ent				
2) To	disting	uish geo	ologica	l forma	tions							
3) To	identif	y geolog	gical sti	ructure	s and p	rocess	of rock	mass q	uality.			
4) To	identif	y subsu	rface in	ıformat	ion and	l groun	dwater	potent	ial sites	throug	h	
geo	ophysic	al inves	tigatio	ns								
5) To	apply g	geologic	al prin	ciples o	f mitiga	ation of	natura	l hazar	ds and s	elect si	tes for	dams
an	d tunne	els	•	•	C							
Cour	se Out	comes	s:									
Upon	succe	essful (compl	etion	of the	cours	se, the	stud	ent wi	ll be a	ble to	
CO1	Gain basic knowledge on characteristics of rocks and minerals.											
CO2	Identi	fy and d	lifferen	tiate ro	cks usi	ng geol	ogical c	lassific	ation.			
CO3	Apply	concep	ts of st	ructura	l geolog	gy for c	ivil engi	ineerin	g struct	ures.		
CO4	Under	stand tl	he seisi	nic zon	es of In	dia.						
CO5	Under	standin	g abou	t Geoph	iysical i	investig	gation n	nethods	s & Carr	yout ge	o phys	ical
	invest	igations	s using	various	metho	ds						
CO6	Invest	igate th	e proje	ct site f	or meg	a/mini	civil en	gineer	ing proj	ects. Sit	e selec	tion
	for me	ega engi	neering	g projec	ts like	Dams, '	Гunnels	, dispo	sal sites	s etc.		
Cont	ributi	on of C	Course	Outc	omes	towar	ds ach	ieven	ient of	f Prog	ram	
Outc	omes	(1 – Lo	w, 2-	Mediu	m, 3 -	- High	.)			0		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	-	3	-	1	-	-	-	-	-	-	-
CO2	2	3	3	-	2	_	-	_	-	-	2	-
CO3	2	3	3	-	3	_	-	_	_	_	2	_
CO4	_	2	3	-	3	-	_	-	-	_	2	2
CO5	3	-	3	-	2	-	-	-	-	-	2	1
CO6	-	-	3	-	3	-	-	-	-	-	-	-
					1	UNIT 1	[

Earth Science

Application of Earth Science in Civil Engineering Practices, Understanding the earth, internal structure and composition. Weathering, erosion and denudations process on earth material and natural agencies, Geological work of wind, river underground water and glaciers Mineralogy: Mineral properties, composition and their use in the manufacture of construction materials – Quartz Group; Feldspar Group; Kaolin; Asbestos; Carbonate Group ; Gypsum; Mica Group; Ore minerals - Iron ores; pyrite; Chlorite

; Gypsum; Mica Group; Ore minerals - fron ores; pyrite; Chiorn

LO: 1. Explain the formation of earth and its internal structure

2. Understand weathering and formation of natural minerals

3. Explain composition of minerals and their utilization in construction industry.

UNIT II

Definition of rock - Rock forming processes - Geological classification of rocks - Dykes and sills, common structures and textures - Megascopic study, Chemical and Mineralogical Composition of rock (Granite, Gabbro, Dolerite, Basalt, Pegmatite, Laterite, Conglomerate, Sand Stone, Shale, Limestone, Tuff, Felsite, Gneiss, Schist, Quartzite, Breccia, Marble, Porphyries, Charnockite and Slate).

Structural Geology:

Out crop, strike and dip study of common geological structures associating with the rocks such as folds, faults unconformities, and joints – their important types. Their importance insitu and drift soils, common types of soils, their origin and occurrence in India

LO: 1. Understand classification of rocks

- 2. Demonstrate chemical composition
- 3. Identify mineral composition of rock
- 4. Explain formation of folds strike and dip of geological structures
- 5. Assess importance of soils
- 6. Locate origin of different types of rocks and soils and their origin India

UNIT III

Geomorphology, hydrogeology and seismology:

Ground water, Water table - ground water exploration. Site selection for dams and tunnels – analysis of failures in dams and tunnels - Seismic zones of India - Earth quakes, their causes and effects. Seismic waves, Richter scale. Landslides - causes and effects; Tsunami – causes and effects.

- LO: 1. Understand geomorphology
- 2. Identify procedures for site selection of important structures
- 3. Contrast seismic Zonation of India in stages
- 4. Understanding about Geophysical investigation methods
- 5. Carryout geo physical investigations using various methods.

UNIT IV

Geology of Dams, Reservoirs and Tunnels: Types and purpose of Dams, Geological considerations in the selection of a Dam site. Life of Reservoirs Purpose of Tunnelling, effects, Lining of Tunnels. Influence of Geology for successful Tunnelling.

TEXT BOOKS:

- 1. N. Chenna Kesavulu, Text Book of Engineering Geology, 2nd Edition (2009), Macmillan Publishers India.
- 2. Vasudev Kanithi, Engineering Geology, Universities Press Pvt Ltd, Hyderabad. 2012.

REFERENCE BOOKS:

- 1. Parbin Singh, Engineering and General Geology, 8th Edition (2010), S K Kataria & Sons.
- 2. J. C. Harvey, Geology for Geotechnical Engineers, Cambridge University Press (1982).
- 3. Richard E. Goodman, Engineering Geology, Rock in Engineering Construction by John Wiley & Sons, Inc. 1993.
- 4. Billings, M. P., Structural Geology, Prentice-Hall India, 1974, New Delhi

18A2201404- STRUCTURAL ANALYSIS

Lecture – Tutorial:	2-1 Hou	rs			I	nterna	al Marl	KS: 4	40				
Credits:	3				E	xterna	al Mar	ks:	60				
Prerequisites: Engin	neering M	lechar	nics, S	trengt	h of N	Iateria	als						
Course Objectives:													
1) To impart knowl	edge on Co	lumns &	& Struts	5									
To teach procedu	ire for anal	ysis of f	fixed be	ams.									
To teach procedu	ire for anal	ysis of o	continu	ous bea	ims.								
4) To enable the stu	dent under	go ana	lysis pr	ocedur	e of mo	ving loa	ads & th	eir infl	uence.				
Course Outcomes:													
Upon successful con	npletion	of the	cours	se, the	e stude	ent wi	ll be al	ble to	;				
CO1 Apply Rankine's	& Euler's t	heories	s for ana	alysis o	f colum	ns & sti	ruts						
CO2 Analyze indeterr	2 Analyze indeterminate propped cantilever beams												
CO3 Analyze fixed be	3 Analyze fixed beams using compatibility method												
CO4 Analyze continue	 Analyze continuous beams using Clapeyron's theorem of three moments Analysis 												
CO5 Analyze continue	ous beams	using sl	lope de	flection	equation	on							
CO6 Identify the beha	vior of stru	ictures	due to	the exp	ected lo	oads, in	cluding	the mo	oving				
loads, acting on t	he structu	e. Estir	nate th	e bendi	ng mon	nent an	d shear	forces	in				
beams for differe	ent fixity co	ndition	IS										
Contribution of Cou	rse Outc	omes	towar	ds ach	ievem	ent of	f Progr	am					
Outcomes (1 – Low,	2- Mediu	1 m, 3 ·	– High)									
PO PO P	O PO	PO	PO	PO	PO	PO	PO	PO	PO				
1 2	3 4	5	6	7	8	9	10	11	12				
CO1 3 2	- –	-	-	-	-	-	-	-	-				
CO2 3 -		-	-	-	1	-	-	-	-				
CO3 3 -		-	-	-	1	-	-	-	-				
CO4 3 -		-	-	-	1	_	-	-	-				
CO5 3 -		-	-	-	1	-	-	-	-				
CO6 2 2		-	-	-	1	-	-	-	-				

Columns and Struts:

Introduction – classification of columns – Axially loaded compression members – Euler's crippling load theory – derivation of Euler's critical load formulae for various end conditions – Equivalent length – Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula – eccentric loading and Secant formula – Prof. Perry's formula.

LO: 1. Classify columns

2. Understand Euler's theory on columns and assess crippling loads

3. Analyze compression members using different theories

4. Assess load carrying capacity using different formulae

Propped Cantilevers: Analysis of propped cantilevers-shear force and bending moment diagrams-Deflection of propped cantilevers.

LO: 1. Classify Propped Cantilevers

2. Analyze the beams subjected to loads

3. Study effect of sinking of supports of performance

UNIT II

Fixed Beams – Introduction to statically indeterminate beams with U. D. load, central point load, eccentric point load, number of point loads, uniformly varying load, couple and combination of loads - shear force and Bending moment diagrams-Deflection of fixed beams including effect of sinking of support, effect of rotation of a support.

LO. 1. Categorize fixed beams and their performance

2. Analyze the beams subjected to loads

3. Study effect of sinking of supports of performance

UNIT III

Continuous Beams: Introduction-Clapeyron's theorem of three moments Analysis of continuous beams with constant moment of inertia with one or both ends fixed continuous beams with overhang, continuous beams with different moment of inertia for different spans-Effects of sinking of supports-shear force and bending moment diagrams.

LO. 1. Categorize continuous beams and their performance

2. Analyze the beams subjected to loads

3. Study effect of sinking of supports of performance

Slope-Deflection Method: Introduction, derivation of slope deflection equation, application to continuous beams with and without settlement of supports.

LO. 1. Develop slope deflection expressions

2. Analyze structures with and without support sinking

UNIT IV

Moving Loads : Introduction maximum SF and BM at a given section and absolute maximum S.F. and B.M due to single concentrated load, U. D load longer than the span, U. D load shorter than the span, two point loads with fixed distance between them and several point loads-Equivalent uniformly distributed load-Focal length.

LO. 1. Categorize different types of moving loads and their performance

2. Analyze the beams subjected to loads

TEXT BOOKS:

- 1. Ramamurtham S., Theory of Structures, Dhanpat Rai Publishing Company (p) Ltd, 2009
- 2. C. S. Reddy, Basic Structural Analysis, Tata McGraw Hill

REFERENCE BOOKS:

- 1. Timoshenko & Young, Theory of Structures, Tata McGraw Hill
- 2. Junarkar S. B., Structural Mechanics Vol I & II, Charotar Publishers
- 3. C. K. Wang, Intermediate Structural Analysis, McGraw Hill

18A2201491- FLUID MECHANICS & HYDRAULIC MACHINES LAB

Practi	cal		3	Hours				I	nterna	al Mar	ks:	40
Credit	s:		1.	5				E	xtern	al Mar	ks:	60
Prereg	luisite	s: Flui	id me	chanic	cs, Flu	lid me	chani	cs & h	nydrau	lic ma	achine	es
Course	e Obje	ctives	:									
1. To	o impar	t the ex	perime	ental sk	tills in f	low me	asuren	nent an	d real f	luid flov	w prob	lems
2. T	o impar	rt exper	rimenta	l skills	to veri	fy the p	erform	ance cl	haracte	ristics o	of pum	ps and
tu	irbines											
Cours	e Outo	romes	•									
Cours		Junes	•									
1. Stu	udent w	vill be a	ble to u	ıtilize tl	he knov	wledge	in the c	lesign (of water	supply	<i>y</i> pipe	
ne	tworks	and me	easure	the rate	e of flov	v in pip	es and	channe	els.		F-F-	
2. St	udents	will hav	ve confi	dence i	n the h	vdrauli	c desig	n of tur	bines a	nd sho	uld be a	able
to	identif	v suitab	le pum	ps and	turbine	es for d	ifferent	t worki	ng cond	litions.		
Contr	ibutio	n of C	ourse	Outco	omes t	oward	ls ach	ievem	ent of	Progr	am	
Outco	mes (1	1 – Lov	w, 2- I	Aediu	m, 3 –	High)			8-		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	1	2	3	2	-	-	-	1	-	-	-	-
CO2	1	2	3	3	_	-	-	1	-	-	_	-
1. 2.	Calibra [;] Determ	tion of V ination	Venturi of Co	LIS ? meter a	F OF E & Orific t of dis	EXPER ce mete scharge	RIMEN r e for a	r TS small	orifice	by a co	onstant	t head
]	method	l.				U				5		
3.	Determ	ination	of Coe	efficient	t of dis	charge	for an	extern	al mou	th piec	e by va	riable
]	head m	ethod.				-				-	-	
4.	Calibra	tion of o	contrac	ted Red	tangul	ar Notc	h and /	'or Tria	ngular	Notch		
5.	Determ	ination	of Coe	efficien	t of los	s of he	ead in a	a sudde	en cont	raction	and fi	riction
1	factor.											
6.	Verifica	tion of	Bernou	ılli's eq	uation.							
7.	Reynolo	d's Expe	eriment	t								
8.	Impact	of jet of	n vanes	5								
9.	Perforn	nance te	est on F	Pelton v	vheel ti	urbine						
10.	Perforn	nance te	est on F	rancis	turbine) .						
11.	Perforn	nance te	est on H	Kaplan	turbine	•						

- 12. Efficiency test on centrifugal pump.
- 13. Efficiency test on reciprocating pump.

18A2201492- ENGINEERING GEOLOGY LAB

Practi	cal		2	Hours				I	nterna	al Mar	ks:	40
Credit	s:		1					E	xtern	al Mar	ks:	60
Prerec	luisite	s: Eng	gineer	ing ge	ology							
Cours	e Obje	ctives	5:									
Cours	e Outo	omes	•									
. Iden	tify min	erals a	• nd rocl	ζS								
2. Mea	sure str	ike and	l dip of	the bed	dding pl	lanes						
. Inter	rpret ge	ologica	ıl maps									
Contr	ibutio	n of C	ourse	Outco	omes t	oward	ls ach	ievem	ent of	f Prog	am	
Outco	mes (1	l – Lo	w, 2- I	Mediu	m, 3 –	High)						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
CO1	L	2	उ २	4 २	5	1	1	8	9	10	11	12
	-	2	0	0	4	1	1					
$\frac{CO2}{CO2}$	2	ろっ	2	2	2	1	1	2	-	-	-	-
		grouj Gyps	p & Talo um, etc	c, Chlor 	ite, Oliv	/ine, Ky	anite, A	Asbesto	s, Tour	melene	, Calci	te,
	b.	Ore f	orming	minera	als – Ma	agnetite	, Hema	itite, Py	rite, Py	ralusite	e, Grap	hite,
2 M		Chro	mite, et	C		(1.					
Z. Mega	iscopic	aescrip	otion an	a laen	tificatio	n of roo	CKS.	o Cabb	ro Dol	orito Si	zonito	
	a) 1 (gneou: Cranite	Porvnl	- Type	s ui ui a asalt et	inite, re	gillatit	e, Gabb	10, D01	erne, sy	/ennte,	
	b) S	Sedime	ntary r	ocks – S	Sand st	one. Fei	rugine	eous sai	nd ston	e. Lime	stone.	Shale.
	l	Laterite	e, Congl	amora	te, etc					-,	,	
	c) I	Metam	orphic	ocks –	Biotite	– Gran	ite Gne	iss, Slat	e, Muse	covite 8	z	
	I	Biotites	schist, N	/larble,	Khonda	alite, et	с					
3. Inter	pretatio	on and	drawin	g of see	ctions fo	or geolo	ogical n	naps sh	owing	tilted be	eds, fa	ults,
unconf	ormitie	s etc.										
4. Simp	le Struc	tural G	eology	proble	ms.							
5. Bore	hole pr	oblems	5									

18A2201493- ADVANCED SURVEYING LAB

Drono guigitog, Surray			
Credits:	1.5	External Marks:	60
Practical	3 Hours	Internal Marks:	40

Prerequisites: Surveying Course Objectives:

To impart the practical knowledge in the field, it is essential to introduce in curriculum. Drawing of Plans and Maps and determining the area are pre requisites before taking up any Civil Engineering works.

Course Outcomes:

- 1. Conduct survey and collect field data.
- 2. Prepare field notes from survey data
- 3. Interpret survey data and compute areas and volumes.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

outeo	mcs (1		**, ~ *	ncuiu.	, o							
	РО 1	PO 2	РО 3	РО 4	PO 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12
CO1	2	3	-	1	1	-	-	-	_	-	-	2
CO2	2	1	-	1	1	-	-	-	_	-	-	_
CO3	3	3	-	2	1	-	-	-	-	-	-	2

LIST OF EXPERIMENTS

- 1. Theodolite Survey: Determining the Horizontal and Vertical Angles by the method of Repetition method.
- 2. Theodolite Survey: Finding the distance between two inaccessible points.
- 3. Theodolite Survey: Finding the height of far object.
- 4. Tachometric Survey: Heights and distance problems using tachometric principles.
- 5. One Exercise on Curve setting.
- 6. One Exercise on contours.
- 7. Total Station: Introduction to total station and practicing setting up, levelling up and elimination of parallax error.
- 8. Total Station: Determination of area using total station.
- 9. Total Station: Traversing
- 10. Total Station: Contouring
- 11. Total Station: Determination of Remote height.
- 12. Total Station: distance between two inaccessible points.

18A2201494- SURVEY CAMP

	cal		3	Hours	3			I	nterna	l Mar	ks:	40
Credi	ts:		2					Е	xterna	al Mar	ks:	60
Preree	quisite	s: Sur	vevin	g								
Cours	e Obje	ctives	:	9								
	To impa	art the	practic	al know	vledge i	n the fi	eld, it is	sessen	tial to ir	ntroduc	e in	
curricu	lum. Dr	awing o	of Plans	and M	aps and	d deteri	nining	the are	a are pi	e reau	isites	
pefore	taking 1	in anv ('ivil Fn	σineeri	ng wor	ke	0		r	1-		
	taking t	ip any (gineen	ing wor	K3.						
Cours	e Outo	comes	•									
			•									
1 C	onducto	CURVOV	and col	loct fiol	d data							
1. U 2 F		Ciald and			iu uata.							
Z. P	repare	field no	tes iro	m surve	ey data							
3. Ir	nterpret	survey	data a	nd com	pute ar	eas and	l volum	les.				
-												
-												
Contr	ibutio :	n of C	ourse	Outco	omes t	oward	ls achi	ievem	ent of	Progr	am	
Contr Outco	ibutio omes (1	n of C 1 – Lov	ourse w, 2- I	Outco Mediu	omes 1 m, 3 –	oward High)	ls achi	ievem	ent of	Progr	am	
Contr Outco	ibutio omes (1 PO	n of C 1 – Lov PO	ourse w, 2- I PO	Outco Mediu PO	omes 1 m, 3 – PO	oward High) PO	ls achi PO	ievem PO	ent of PO	Progr PO	am PO	РС
Contr Outco	ibutio omes (1 PO 1	n of Co 1 – Lov PO 2	ourse w, 2- I PO 3	Outco Mediu PO 4	omes (m, 3 – PO 5	coward High) PO 6	ls achi PO 7	ievem PO 8	ent of PO 9	Progr PO 10	ram PO 11	PC 12
Contr Outco	ibutio omes (2 PO 1 2	n of Co 1 - Lov PO 2 3	ourse w, 2- I PO 3 -	Outco Medium PO 4	omes 1 m, 3 – PO 5 1	oward High) PO 6	ls achi PO 7	ievem PO 8 -	ent of PO 9 -	Progr PO 10	PO 11 -	PC 12 2
Contr Outco	ibution pmes (2 PO 1 2	n of C 1 – Lov PO 2 3	ourse w, 2- I PO 3 -	Outco Medium PO 4 1	omes (m, 3 – PO 5 1	oward High) PO 6 -	ls achi PO 7 -	ievem PO 8 -	ent of PO 9 -	Progr PO 10 -	ram PO 11 -	PC 12 2
Contr Outco CO1 CO2	ibutio pmes (2 PO 1 2 2	n of C 1 – Lov PO 2 3 1	ourse w, 2- I PO 3 -	Outco Medium PO 4 1	mes t m, 3 – PO 5 1	oward High) PO 6 -	ls achi PO 7 -	ievem PO 8 -	ent of PO 9 -	Progr PO 10 -	ram PO 11 -	PC 12 2
Contr Outco CO1 CO2 CO3	ibution omes (2 PO 1 2 2 3	n of C 1 – Lov PO 2 3 1 3	ourse w, 2- I PO 3 - -	Outco Medium PO 4 1 1 2	mes t m, 3 - PO 5 1 1 1	oward High) PO 6 - -	ls achi PO 7 - -	PO 8 - -	ent of PO 9 - -	Progr PO 10 - -	ram PO 11 - -	P(12 2 - 2
Contr Outco CO1 CO2 CO3 Surve	ibution pmes (1 PO 1 2 2 3 ying ca	n of C 1 – Lov 2 3 1 3 mp wi	ourse w, 2- I PO 3 - - - 11 be c	Outco Medium PO 4 1 1 2 onduc	mes t m, 3 – PO 5 1 1 1 ted for	ioward High) PO 6 - - - a wee	ls achi PO 7 - - - k sch	PO 8 - - edule	PO 9 - - to car	Progr PO 10 - - - - ryout s	ram PO 11 - - survey	PC 12 2 - 2 y in
Contr Outco CO1 CO2 CO3 Surve nearb	ibution pmes (2 PO 1 2 2 3 ying ca y villag	n of C 1 – Lov PO 2 3 1 3 ump wi ges usin	ourse w, 2- I PO 3 - - - 11 be c ng sur	Outco Medium PO 4 1 1 2 onduc vey eq	mes t m, 3 – PO 5 1 1 1 ted for uipme	High) PO 6 - - c a wee ents (D	ls achi PO 7 - - - ek sch umpy,	PO 8 - - edule /Auto	ent of PO 9 - - to car level, 7	Progr PO 10 - - ryout s Fotal S	ram PO 11 - - - survey Station	PC 12 2 - 2 y in

rectu	re – Tutoria	1: 2-	0 Hou	rs			Ι	ntern	al Marl	s:	40
Credit	ts:	0					E	Extern	al Mar	ks:	00
Prerec	quisites: Pro	ofessio	nal Et	hics							
Cours	e Objective	s:									
1)	To impart kno	owledge	on inn	ovation	is and c	reation	s.				
2)	To encourage	student	s on de	velopir	ng Entre	epreneu	urship S	Skills			
3)	To teach proc	edure fo	or regist	tration	s of vari	ious int	ellectu	al prop	erty rigł	nts.	
4)	To bring awaı	eness o	n cyber	crimes							
Cours	e Outcomes	5:									
Upon	successful (comple	etion o	of the	cours	e, the	stude	nt wil	l be ab	le to:	
CO1	Understand	the nee	d for In	tellectı	ial Prop	erty Ri	ghts an	ıd its in	nportanc	ce	
CO2	Study of Info	ormatio	n Techr	nology /	Act 200	0 and c	lassific	ation o	f Cyberc	rimes	
CO3	Study of Cop	oyrights	Act an	d its re	gistrati	ons pro	ocess				
CO4	Study of Pat	ents Act	and it'	s infrin	gement	-					
CO5	Study of Tra	demark	s Act ar	nd it's r	egistra	tion for	malitie	S			
	Understand	the imp	ortance	e of Tra	de secr	ets and	l mainta	aining t	rade sec	rets	
CO6	Understand						•	ent of	Progra	m	
CO6 Contr	ibution of C	ourse	Outco	omes t	oward	ls achi	ievem		TIOSIC	2111	
CO6 Contr Outco	ibution of C mes (1 – Lo	ourse w, 2- I	Outco Mediur	omes t m, 3 –	oward: High)	s ach	ievem		IIUgia		
CO6 Contr Outco	ibution of Comes (1 – Lo PO PO PO	Course w, 2- I PO	Outco Mediur PO	omes t m, 3 – PO	oward High) PO	s achi PO	PO	PO	PO	PO	PO
CO6 Contr Outco	ibution of C mes (1 – Lo PO PO 1 2	Course w, 2- I PO 3	Outco Mediur PO 4	omes t m, 3 – PO 5	oward High) PO 6	s achi PO 7	PO 8	PO 9	PO 10	PO 11	P0 12
CO6 Contr Outco	ibution of Comes (1 – Lo PO PO 1 2 2 2	Course w, 2- 1 PO 3 -	Outco Mediur PO 4 -	omes t m, 3 – PO 5 -	oward High) PO 6 -	ls achi PO 7 -	PO 8 3	PO 9 -	PO 10 -	PO 11 -	PO 12 -
CO6 Contr Outco CO1 CO2	ibution of Comes (1 – Loop PO PO 1 2 2 2 3 -	Course w, 2- 1 PO 3 -	Outco Medium PO 4 -	omes t m, 3 – PO 5 -	oward High) PO 6 -	s ach: PO 7 -	PO 8 3 3	PO 9 -	PO 10 - 2	PO 11 -	PO 12 -
CO6 Contr Outco CO1 CO2 CO3	ibution of Comes (1 – Loop PO PO 1 2 2 2 3 - 2 -	Course w, 2- 1 PO 3 - - 2	Outco Medium PO 4 - -	omes t m, 3 – PO 5 - -	oward High) PO 6 - -	s ach: PO 7 - -	PO 8 3 3 3	PO 9 - -	PO 10 - 2 -	PO 11 - -	PO 12 - -
CO6 Contr Outco CO1 CO2 CO3 CO4	ibution of C ibution of C PO PO 1 2 2 2 3 - 2 - 2 - 2 - 2 -	Sourse w, 2- 1 PO 3 - - 2 -	Outco Medium PO 4 - - 2	omes t m, 3 – PO 5 - - - -	coward High) PO 6 - - -	s ach: PO 7 - - - -	PO 8 3 3 3 3 3	PO 9 - - -	PO 10 - 2 -	PO 11 - - -	PO 12 - - -
CO6 Contr Outco CO1 CO2 CO3 CO4 CO5	ibution of C ibution of C PO PO 1 2 2 2 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Course w, 2- 1 PO 3 - 2 - 2	Outco Mediun PO 4 - - 2 -	omes t m, 3 – PO 5 - - - - - -	ioward High) PO 6 - - - - -	s ach: PO 7 - - - - -	PO 8 3 3 3 3 3 3	PO 9 - - - -	PO 10 - 2 - - -	PO 11 - - - - -	PC 12 - - - - -

UNITI

Introduction to Intellectual Property Rights (IPR)

Concept of Property - Introduction to IPR – International Instruments and IPR - WIPO -TRIPS – WTO –Laws Relating to IPR - IPR Tool Kit - Protection and Regulation - Copyrights and Neighboring Rights – Industrial Property – Patents - Agencies for IPR Registration – Traditional Knowledge –Emerging Areas of IPR – Layout Designs and Integrated Circuits – Use and Misuse of Intellectual Property Rights.

LO: 1. Classify intellectual property rights 2.Understand the importance of IPR **Cyber Law and Cyber Crime**

Introduction to Cyber Law – Information Technology Act 2000 - Protection of Online and Computer Transactions -E-commerce - Data Security – Authentication and Confidentiality -Privacy - Digital Signatures – Certifying Authorities - Cyber Crimes - Prevention and Punishment – Liability of Network Providers.

LO: 1. Classification of cyber crimes

2. Awareness and preventive measures of cyber crimes

UNIT II

Copyrights and Neighboring Rights

Introduction to Copyrights – Principles of Copyright Protection – Law Relating to Copyrights - Subject Matters of Copyright – Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of Performers – Copyright Registration – Limitations – Infringement of Copyright – Relief and Remedy –

Case Law - Semiconductor Chip Protection Act.

LO. 1. Categorize subject matters of copyrights

2. Understand the registration process of copyrights

3. Study effect of Infringement under Copyright Act

UNIT III

Patents: Introduction to Patents - Laws Relating to Patents in India – Patent Requirements – Product Patent and Process Patent - Patent Search - Patent Registration and Granting of Patent - Exclusive Rights – Limitations – Ownership and Transfer –– Revocation of Patent – Patent Appellate Board - Infringement of Patent – Double Patenting –Patent Cooperation Treaty – New developments in Patents – Software Protection and Computer related Innovations.

LO. 1.Analyze Patent requirements and its registration formalities 2.Study the effect of Infringement under Patent Act

UNIT IV

Trademarks: Introduction to Trademarks – Laws Relating to Trademarks – Functions of Trademark – Distinction between Trademark and Property Mark – Marks Covered under Trademark Law - Trade Mark Registration – Trade Mark Maintenance – Transfer of rights -Deceptive Similarities - Likelihood of Confusion - Dilution of Ownership –Trademarks Claims and Infringement – Remedies – Passing Off Action.

LO. 1. Analyze functions of Trademark and its registration formalities

2.Study the effect of Infringement under Trademark Act

Trade Secrets

Introduction to Trade Secrets – General Principles - Laws Relating to Trade Secrets -Maintaining Trade Secret –Physical Security – Employee Access Limitation – Employee Confidentiality Agreements – Breach of Contract –Law of Unfair Competition – Trade Secret Litigation – Applying State Law.

LO. 1. Understand the importance of Tradesecrets

2. Understand how to maintain Tradesecrets

TEXT BOOKS:

- 1. Deborah E.Bouchoux: Intellectual Property, Cengage Learning, New Delhi.
- 2. PrabhuddhaGanguli: Intellectual Property Rights, Tata Mc-Graw –Hill, New Delhi

REFERENCE BOOKS:

- 1 Intellectual Property Rights (Patents & Cyber Law), Dr. A. Srinivas. Oxford University Press, New Delhi.
- 2 R.Radha Krishnan, S.Balasubramanian: Intellectual Property Rights, Excel Books. New Delhi.
- 3 M.Ashok Kumar and MohdIqbal Ali: Intellectual Property Rights, Serials Pub.

- <u>https://www.wipo.int/edocs/pubdocs/en/intproperty/450/wipo_pub_450.pdf</u>
- https://www.icsi.edu/media/webmodules/publications/9.4%20Intellectual%20Property%20Rights.pdf
- <u>https://lecturenotes.in/notes/20883-note-for-intellectual-property-rights-ipr-by-gyan-prakash</u>

Open Elective-1 (Offered by Department of civil engineering)

18A2201601- ELEMENTS OF CIVIL ENGINEERING

Lectu	ıre – 1	utorial:	2-0) Hou	rs			Ι	nterna	al Marl	ks:	40
Credi	ts:		2					E	xterna	al Mar	ks:	60
Prere	quisit	es: Eng	ineeı	ring M	lechan	nics, S [.]	trengt	h of N	Iateria	als		
Cours	se Obj	ectives	:									
≻ To	inculca	ate the es	sentia	ls of civ	vil engi	neering	field to	the stu	udents o	of all br	anches	
≻ To	provid	e the stud	lents	an illus	tration	of the s	significa	ance of	the civi	l engine	ering	
pro	ofessio	n satisfyiı	ng soc	ietal ne	eds.							
Cour	se Ou	tcomes:										
Upon	succ	essful c	ompl	etion	of the	cours	se, the	e stude	ent wi	ll be		
able	to:											
CO1	Attair	i basic kr	owled	dge on	simple	stress &	& strair	is and c	vivil eng	gineerir	ng mate	erials.
CO2	Attair	h basic kr	owled	dge on	sub-str	ucture	and sup	ber stru	cture of	f a build	ling.	
CO3	Attain	basic kn	owled	lge on p	orincipl	es of su	rveying	g, vario	us type	s of sur	veying.	
CO4	Attain	basic kn	owled	lge on v	various	types o	f transp	oortatio	on syste	ms.		
CO5	Attain	basic kn	owled	lge on v	various	types o	fbridg	es				
CO6	Attain	basic kn	owled	lge on p	ourpose	e, comp	onents	and vai	ious ty	pes of d	ams.	
Cont	ributi	on of Co	ourse	Outc	omes	towar	ds ach	ieven	ient of	f Progi	am	
Outc	omes	(1 – Lov	v, 2 - 1	Mediu	m, 3 -	- High)					
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	-	-	-	2	-	2	-	-	-	-
CO2	3	-	_	_	-	1	-	1	-	-	-	-
CO3	3	2	-	_	_	1	_	1	-	_	_	_
CO4	3	-	-	-	-	1	-	1	-	-	-	-
CO5	3	2	-	-	-	-	-	1	-	-	-	-
CO6	3	2	-	_	-	2	-	1	-	-	_	-
					•	UNIT I						
SIMPI	LE STR	ESS AND	STRA	INS:								
Defini	tion of	Mechanic	cs- Ext	ernal a	nd Inte	ernal for	ces-Str	ess and	l Strain	-Elastic	ity and	
Hooke	e's Law	- Relation	s betv	ween el	astic co	onstants	5.					
CIVIL	ENGIN	EERING	MATE	RIALS								

Classification of bricks, Manufacture of bricks, Laboratory and field tests on bricks, stones; Grades of Steel and Cement Concrete.

MASONRY:

UNIT II

Bonds in Brick Masonry, Stone Masonry; Types of Flooring and Roofing.

SUB-STRUCTURE:

Soil –Types; Introduction to Foundations – Classifications; Bearing capacity of Soil -Improvement

SURVEYING:

UNIT III

Objectives, Types, Principles of Surveying; Measurement of distances and angles **TRANSPORTATION ENGINEERING:**

Roads- Classification; Road Network Patterns; Cross section of roads; Traffic signs

UNIT IV

BRIDGES:

Necessity of bridges; Components; Classification; Preliminary data to be collected, selection of bridge site; Investigation for major bridges.

DAMS:

Purpose of Dams; Components; Classification; selection of site for construction.

TEXT BOOKS:

- 1. Palanichamy, M. S.:"Basic Civil Engineering", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2002.
- 2. Premalatha, J. and Kasir.: "Basic Civil Engineering", Coimbatore

REFERENCE BOOKS:

- 1. Jayagopal,L.S. and Rudramoorthy,R., Basic Civil and Mechanical Engineering ,Vikas Publishing House Pvt. Ltd., New Delhi, 1999.
- 2. Gopi, Satheesh, Basic Civil Engineering, New Delhi Pearson 2010.

- ncees.org/exmas/fe-exma/
- www.aboutcivil.com/

Lecture – Tutorial:			al: 2-	2-0 Hours				Internal Marks:			s:	40	
Credits:			2	2 Extern					xtern	al Mark	KS:	60	
Prerequisites:													
Course Objectives:													
To understand the importance of surveying in the field of civil engineering													
To study the basics of linear/angular measurement methods like chain surveying,													
compass surveying													
To understand calculations of areas and volumes of a given boundary.													
Course Outcomes:													
Upon successful completion of the course, the student will be able to:													
CO1	CO1 Understand the principles of surveying and types of scales												
CO2	2 Understand the principles of chain surveying.												
CO3	Attain basic knowledge on compass surveying and various types of compass.												
CO4	O4 Attain basic knowledge on bearings and included angles from bearings												
CO5	5 Compute areas of a given section.												
CO6	CO6 Compute volumes of a given section.												
Contribution of Course Outcomes towards achievement of Program													
Outcomes (1 – Low, 2- Medium, 3 – High)													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2	-	-	-	2	-	2	-	-	-	-	
CO2	3	2	-	-	-	1	-	1	-	-	-	-	
CO3	3	2	-	-	-	-	-	1	-	-	-	-	
CO4	3	2	-	-	-	-	-	1	-	-	-	-	
CO5	3	2	-	-	-	-	-	1	-	-	-	-	
CO6	3	2	-	-	-	2	-	1	-	-	-	-	
					•	UNIT 1	ſ						

BASICS OF SURVEYING:

Surveying: Definition; Classification; Principles of surveying; Plan and map; Scales used for Maps and plans. Accuracy, Precision, Sources of errors; Types of errors.

UNIT II

CHAIN SURVEYING:

Principles of chain surveying; Basic definitions; Different methods; Ranging out; Chaining a line on a flat ground; Chaining on an uneven or a sloping ground; Chain & Tape corrections; Degree of accuracy.

COMPASS SURVEYING:

UNIT III

Traverse Bearings (WCB&RB); Prismatic compass, Surveyor compass, Magnetic Dip and Declination; Local attraction; included angles from bearings; Limits of accuracy.

UNIT IV

AREAS& VOLUMES

Introduction; Boundaries with offsets at irregular intervals; Area of cross sections – two level sections only; Trapezoidal rule; Prismoidal formula; Capacity of a reservoir.

TEXT BOOKS:

- 1. Surveying Vol I & II by K R Arora, Standard Book house.
- 2. Plane Surveying by AM Chandra, New Age International (P) Ltd.

REFERENCE BOOKS:

- 1. Fundamentals of surveying by S.K. Roy 1999, Prentice- Hall of India, New Delhi.
- 2. Surveying Vol.1 by B.C. Punmia, Laxmi Publications.
- 3. Advanced Surveying, by S. Gopi, R.S. Kumar and N. Madhu, 2007, Pearson education, New Delhi.

E-RESOURCES:

• <u>http://nptel.ac.in/courses/webcourse-contents/IIT</u> ROORKEE/SURVEYING/home.htm