

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING COURSE STRUCTURE FOR SECOND YEAR B.TECH PROGRAMME

	1	1								
			Schem	e of l	Instru	iction	Scheme o	f Exami	ination	No. of
Sl. No	Course Code	Title of the Course	(Perio	ds Pe	r wee	ekj	(Maximur	<u>n Mark</u>	<u>s)</u>	Credits
			L	Т	P/D	Total	CIA	SEA	Total	cieuits
1	18A2100202	Discrete Mathematical Structures	3	1	0	4	40	60	100	4
2	18A2105401	Data Structures	3	0	0	3	40	60	100	3
3	18A2105402	Data Base Management Systems	3	0	0	3	40	60	100	3
4	18A2105403	Digital Logic Design	2	0	2*	4	40	60	100	3
5	18A2105493	Internet of Things Lab	0	2	2	4	40	60	100	3
6	18A2105491	Data Structures Lab	0	0	2	2	40	60	100	1
7	18A2105492	Data Base Management System Lab	0	0	2	2	40	60	100	1
8	18A2105494	Python programming Lab	0	1	2	3	40	60	100	2
9	HSS Elective	Humanities elective-1	2	0	0	2	40	60	100	1
10	18A2100802	Professional ethics and Human Values	2	0	0	2	40	60*	100	0
Total			15	4	10					21

II YEAR I SEMESTER

* No External Evaluation List of Humanities Electives

А	Professional Communication Skills(18A2100601)	D	Psychology (18A2100604)
В	Visual Communication(18A2100602)	Е	Philosophy (18A2100605)
С	Sanskrit (18A2100603)	F	Foreign Languages (German/French) (18A2100606)

**Students can opt any one of the self-learning courses prescribed by the Department. Students register and complete the opted course in approved MOOCS platform on or before the Last Instruction Day of the current semester. They have to submit the certificate before the commencement of the next semester.

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

S.No	Course Code	Title of the Course	Schem (Peri			uction /eek)	Scheme of Examination (Maximum Marks)			
			L	Т	Р	Total	CIA	SEA	Т	Credits
1	18A2200201	Probability and Statistics	3	1	0	4	40	60	100	4
4	18A2205401	Web Technologies and Advanced Java Programming	3	0	0	3	40	60	100	3
3	18A2205402	Software Engineering	3	0	2*	5	40	60	100	4
2	18A2205403	Computer Organization	3	0	0	3	40	60	100	3
5	18A2205601	Open Elective-1 Data Structures	3	0	0	3	40	60	100	3
6	18A2205491	Web Technologies and Advanced Java Programming Lab	0	0	3	3	40	60	100	1.5
7	18A2205991	Aptitude and Reasoning	0	0	2	2	40	60*	100	1
8	18A2205791	Mini project	0	0	2	2	40	60*	100	1
Total			15	1	9					20.5

II YEAR II SEMESTER

* No External Evaluation

L - LECTURE T – TUTORIAL P - PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

B.TECH CSE II YEAR-I SEMESTER

18A2100202- DISCRETE MATHEMATICAL STRUCTURES

Lectu Pract		Tutor	ial- 3	-1-0				I	nterna	Marks	5:	40
Credi			4					Ε	xterna	l Mark	S:	60
Prere	quisit	tes:										
Cours	se Obj	ectives	S:									
Acqui	ring th	e releva	ance of	stateme	ents, inf	erences	and pre	edicates	in com	puter sc	cience.	
		group										
				ations a		-						
Expos	ure of	graphs,	, their re	epresent	tations,	types, t	rees and	d tree v	ariants.			
0	•											
		comes					1	J 4				
				tion of								
CO1			-	of Mathe		-			-	-	ess.	
CO2				e relatio						•		
CO3				underst		-		-		0		
CO4			-	of group				-		-	uter gra	ipnics
CO5 CO6				underst graph t		-		-			tionai	
C06		outer ne			neory to	5 provid	ie soluti		Touting	, applica	ations i	11
Conti	1			Outco	mes to	wards	achiev	oment	of Pro	oram	Ουτεοι	nec (
		ledium			nes to	warus	actificv	cinein	. 01 1 10	-51 ann	outto	nes (
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3	3	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-
CO3	2	2	2	-	-	-	-	-	-	-	-	-
C04	3	2	2	-	-	-	-	-	-	-	-	-
C05	2	2	2	-	-	-	-	-	-	-	-	
C06	3	3	3	-	-	-	-	-	-	-	-	
			tical lo			1						

Connectives, negation, conjunction, disjunction, conditional and bi-conditional, well formed formulae, tautologies, equivalence of formulae, duality, tautological implications, functionally complete set of connectives, principal disjunctive and conjunctive normal forms, inference calculus, rules of inference, indirect method of proof, conditional proof, automatic theorem proving.

UNIT II: Recurrence relations

Recurrence relations, solving linear recurrence relations by characteristic roots method, system of recurrence relations, non - linear recurrence relations.

UNIT III: Group theory

Groups, subgroups, Lagrange's theorem on finite groups, normal subgroups. group codes

UNIT IV: Graph theory & Trees

Definitions, finite and infinite graphs, incidence and degree, isolated pendant vertices,

isomorphism, sub graphs, walk, path and circuit, connected and disconnected graphs, components, Euler graphs, Euler graph theorem, operations on graphs, decomposition of Euler graphs into circuits, arbitrarily traceable Euler graphs, Hamiltonian paths and circuits, number of edge disjoint Hamiltonian circuits in complete graph with odd number of vertices, travelling salesman problem. Some properties of trees, pendant vertices, distance and centers, rooted and binary trees, spanning trees, fundamental circuit, shortest spanning trees, Kruskal's algorithm.

TEXT BOOKS:

 J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill, 1997. (Modules 1 and 3)
 Joe L. Mott, Abraham Kandel and T. P. Baker, Discrete Mathematics for computer
 scientists & Mathematicians, 2/e, Prentice Hall of India Ltd, 2012. (Module 2)

4. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India, 2006. (Modules 4 and 5).

REFERENCE BOOKS:

1. Keneth. H. Rosen, Discrete Mathematics and its Applications, 6/e, Tata McGraw-Hill, 2009.

2. Richard Johnsonburg, Discrete mathematics, 7/e, Pearson Education, 2008

E-RESOURCES:

18A2105401- DATA STRUCTURES

Lectur Practio	-	Tutori	al- 3-	-0-0				I	nternal	Marks:	1	40
Credit:			3					F	vtorna	l Marks	•	60
	s. Juisites	•	5					Ľ	λιει πα	1 11 11 15	•	00
IICIC	laisites	•										
C- Prog	grammi	ing										
	e Object											
1	To impa	art basic	knowl	edge of	data st	ructure	5.					
2	Be fami	liar with	basic	techniq	ues of a	lgorith	n analy	sis				
3	Be fami	liar with	writin	g recur	sive me	ethods						
4	To unde	erstand o	concep	ts abou	t search	ning and	sorting	g techni	ques			
5	To desi	gn and i	mplem	entatio	n of vai	rious ba	sic and	advanc	ed data	structu	ires like	e stack
	queues,	lists, tre	es and	graphs	5.							
6	To intro	oduce va	rious t	echniqı	ues for r	epresei	ntation	of the d	ata in tl	ne real v	vorld.	
	To und	lerstand	ing ab	out wr	iting a	lgorithr	ns and	step l	by step	appro	ach in	solvin
		ns with t	-		-	-		-	J I			
	e Outco											
		ful com										
C01	-	y to illus			-	-	m apply	y the lea	arning o	concepts	s to des	ign da
<u> </u>		ure for t					d		J :].			
CO2	-	y to desi	gn app	lication	is using	STACKS	and que	eues an	a împle	ments v	arious	types
CO3	queue		nnlom	ont ono	rations	on link	d list a	nd dom	onstrat	o thoir o	nnlicat	ione
CO3		ze and ir y to anal							onstrat	e then a	ppncat	IOIIS
C04 C05		y to dem							h troos	and its ?	nnlicat	ione
CO5		y to eva			· · · ·							
000		ations	iuate t	ne prop		unu ope	.1 actoris	ongra			nene en	c grap
Contri		of Cours	se Outo	comes	toward	s achie	vemen	t of Pro	gram (Dutcom	es (1 –	Low.
	m, 3 – H								0		· ·	,
	PO	PO	PO	PO	РО	РО	РО	РО	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3	2	2	-	-	-	-	-	-	-	3
CO2	3	2	3	2	-	-	-	-	-	-	-	3
CO3	3	2	3	2	-	-	-	-	-	-	-	3
CO4	3	2	3	2	-	-	-	-	-	-	-	3
CO5	3	2	3	2	-	-	-	-	-	-	-	3
	3	2	3	2								

UNIT I : Data Structures, Recursion, Searching, and Sorting.

Data Structures: Definition, Types of Data Structures, Arrays, structures, self-referential structures, Operations, Algorithm analysis Time Complexity and Space Complexity.

Recursion: Definition, Linear and Binary recursions, Iteration vs. Recursion.

Searching: Linear Search, Binary Search.

Sorting: Basic concepts, Divide-and-Conquer approach, Insertion Sort, Merge Sort, Quick Sort, and Heap Sort.

UNIT II: Linked Lists, Stacks, and Queues.

Linked Lists: Introduction, types of Linked Lists, operations, inserting a node in Single Linked List, deleting a node in Single Linked List, searching a node in Single Linked List, inserting, deleting, and searching a node in Double Linked List.

Stacks: Introduction, operations, applications, Stacks implementation using Arrays, Stacks implementation using Linked List, Expression Conversion: Infix to Postfix, Infix to Prefix.

Queues: Introduction, operations, applications, Queues implementation using Arrays, Queues implementation using Linked Lists, Circular Queue. Priority Queues

UNIT III: Trees.

Basic Tree Concepts, Terminology, operations, Tree traversals, **Binary Trees:** definition, properties, Binary Tree representations, operations, **Binary Search Tree:** definition, properties, applications, Inserting, Deleting, and Searching element in Binary Search Tree,

Threaded Binary Tree: definition, properties, Inserting a Node into a Threaded Binary Tree, **Heaps:** Definition of a Max Heap, properties.

UNIT IV: Graphs.

Graphs: Introduction, Terminology, Representation of graphs, types of graphs, applications, operations, Graph transversal techniques: Breadth First Search (BFS), Depth First Search (DFS), implementations. **Minimum Spanning Tree (MST):** definition, Prim's algorithm, Kruskal's algorithm, **Shortest paths:** Basic Concepts, Dijsktra's algorithm

TEXT BOOKS:

1. Fundamentals of DATA STRUCTURES in C, Horowitz, Sartaj Sahani, Susan Anderson – Freed, University Press

2.Data Structures, 2/e, Richard F, Gilberg , Forouzan, Cengage

REFERENCE BOOKS:

- 1 .Data Structures using C, 2nd Edition, by A. K. Sharma, Pearson India
- 2. Classic Data Structures, 2/e, Debasis, Samanta, PHI,2009
- 3. Data Structures and Algorithms, 2008, G.A.V.Pai, TMH
- 4. DATA STRUCTURE USING C, Udit Agarwal, KATSON Books
- 5. Data Structures using C,Reema Thareja, Oxford

E-RESOURCES:

- 1. https://en.wikipedia.org/wiki/Data_structure
- 2. <u>https://www.tutorialspoint.com/data structures algorithms/data structures basics</u>
- 3. http://nptel.ac.in/courses/106103069/

18A2105402- DATA BASE MANAGEMNET SYSTEMS

Lectu Pract		Futorial	- 3-0-0				I	nternal	Marks	5:	40
Pract Credi			3				F	xterna	l Mark	C •	60
	equisite		5				L		I Mai K	5.	00
C- Pro	ogramı	ning, Ma	athemati	CS							
Cours	se Obje	ctives:									
٠		-	actice dat	a modeli	ng usir	ng the o	entity-	relation	ship ar	nd deve	elopin
		ase desi	-								
٠			e use of S						learn S	SQL syr	itax.
٠			zation teo	-							
٠			he need						arn te	chniqu	es fo
			e consequ							_	
•			e indexin								
•			cepts of t	transacti	on mai	nageme	nt and	how t	hey pro	ovide s	ecurit
	and co	onsisten	су								
Cour	se Outo	omes:									
			npletion	of the co	ourse, t	the stu	dent w	rill be a	ble to:		
CO1			ne, unders							cture	
CO2			ly SQL as				-	-			broa
	range	of queri	es.								
CO3	-		gn ER dia	-			-				
CO4	-		reate ap	•		0		normal	form	s, fun	ction
	-		validatin	-		-					
CO5			gn applica							anagen	ient.
CO6			luct exper							<u>~ ·</u>	
			irse Outc 5 – High)	omes to	waras	achiev	emen		ogram	Outcol	nes (
	PO		PO PO	PO	PO	PO	PO	PO	PO	PO	PO
	1		3 4	5	6	7	8	9	10	11	12
CO1	_			_	_	_	-	-	-	-	
CO2	3			_	_	-	-	-	_	-	_
CO2	-	2		-	_	-	-	-	-	-	-
	-		3 -	_	_		-	_	3	-	-
(()4)			2		_	_	_	_	-	_	_
CO4 CO5	-		- I.)								
CO4 CO5 CO6	-		- 3	3	-	-	-	-	3	-	_

Databases and Database Users: Introduction, Characteristics of the Database Approach, Actors on the Scene, Workers behind the Scene, Advantages of Using the DBMS Approach.

Database System Concepts and Architecture: Data Models, Schemas, and Instances, Three-Schema Architecture and Data Independence, Database Languages and Interfaces, The Database System Environment, Centralized and Client/Server Architectures for DBMSs **UNIT II**

SQL: SQL Data Definition and Data Types, Specifying Constraints in SQL, Schema Change Statements in SQL, INSERT, DELETE, and UPDATE Statements in SQL, Basic Retrieval Queries in SQL, More Complex SQL Retrieval Queries, Views (Virtual Tables) in SQL.

The Relational Algebra: Unary Relational Operations: SELECT and PROJECT, Relational Algebra Operations from Set Theory, Binary Relational Operations: JOIN and DIVISION.

Data Modeling Using the Entity-Relationship (ER) Model: Using High-Level Conceptual Data Models for Database Design, A Sample Database Application, Entity Types, Entity Sets, Attributes, and Keys, Relationship Types, Relationship Sets, Roles, and Structural Constraints, Weak Entity Types, Relational Database Design Using ER-to-Relational Mapping.

UNIT III

Normalization: Functional Dependencies, Inference Rules, Equivalence, and Minimal Cover, Properties of Relational Decompositions, Algorithms for Relational Database Schema Design, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form.

File Structures, Hashing and Indexing: Placing File Records on Disk, Operations on Files, Files of Unordered Records (Heap Files), Files of Ordered Records (Sorted Files), Hashing Techniques, Types of Single-Level Ordered Indexes, Multilevel Indexes, Dynamic Multilevel Indexes Using B-Trees and B+-Trees. **UNIT IV:**

Transaction Processing: Transaction and System Concepts, Desirable Properties of Transactions, Characterizing Schedules Based on Recoverability, Characterizing Schedules Based on Serializability.

Concurrency Control Techniques: Two-Phase Locking Techniques for Concurrency Control, Concurrency Control Based on Timestamp Ordering, Validation (Optimistic) Concurrency Control Techniques

Database Recovery Techniques: Recovery Concepts, NO-UNDO/REDO Recovery Based on Deferred Update, Recovery Techniques Based on Immediate Update, Shadow Paging, The ARIES Recovery Algorithm

TEXT BOOKS:

1. Fundamentals of Database Systems, Elmasri Navrate, 6th edition, Pearson Education

REFERENCE BOOKS:

1. "Database System Concepts", . Korth, Slberchatz, Sudarshan, 6th Edition, McGraw – Hill

2. Peter Rob and Carlos Coronel, " Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.

3. Introduction to Database Systems, CJ Date, Pearson 4. DATA STRUCTURE USING C,<u>Udit Agarwal</u>,KATSON Books

4. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA McGraw Hill 3rd Edition

E-RESOURCES:

18A2105403- DIGITAL LOGIC DESIGN

Lectu Pract		Tutorial-	2-0-2				Ι	nterna	l Mark	s:	40
Credi	its:		3				F	Externa	l Mark	s:	60
Prere	equisite	es:									
Numł	oer Syst	ems, Matł	nematics-I	, Mathe	ematics	-II					
Course	e Objecti	ves:									
•	binary a To stud Boolea To stud To stud comple To imp	arithmetic, b dy the theor n expression ly the combin ly some of th ly the sequer x logic and s lement synch	hilosophy ur inary codes a y of Boolea s and their m national logic e programma tial logic cirr witching dev pronous state	nd error o n algebra inimizatio design o ible logic cuits desi ices, thei	letecting a and to on techni f various devices gn both i r minimi	and correstudy reques. logic an and their n synchrest	ecting bi epresenta d switch use in re onous ar	inary code ation of s ing device alization ad Asyncl	e. switching es and the of switch pronous r	functio eir realiz ning func nodes fo	ns using ation. tions.
	e Outcom		of the cour	a tha at	adont wi	ll he chl					
CO1			of the course of					different	logic gate	es.	
CO2			Switching fu				_				od.
CO3			n various c		onal cire	cuits like	e Encoc	lers, Dec	oders, N	Iultiplex	ers, De-
CO4			al logic circu		different	types of	Program	mable Lo	gic Desig	gns.	
CO5	Design	and Impleme	ent various se	quential	circuits li	ike flip fl	ops, regi	isters.			
CO6	Design	the state dia	grams with t	he knowl	edge of I	Mealy an	d Moore	e convers	ions, state	e machir	es using
	various	flip flops.									
	bution of	f Course Ou	tcomes towa	ards achi	evement	t of Prog	ram Ou	tcomes (1 – Low,	, 2- Med	ium, 3 –
High)	DC	DO D	0 80	DO	DO	DO	D.C.	D O	DO	DO	DC
	PO 1	PO P 2 3	0 PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	3 -	-	-	-	-	-	-	-	-	-
CO2	3	2 -		-	_	_	_	-	_	_	-
CO3	3	2 1	_	-	-	_	-	-	2	-	3
CO4	2		_	_	-	_	-	-	-	-	-
CO5	3	3 2	_	-	_	-	-	-	2	-	3
CO6	2	2 3	-	-	-	-	-	-	-	-	-
	1	ıI		I				I			

UNIT I

NUMBER SYSTEMS & BOOLEAN FUNCTIONS: Representation of numbers in different radix, conversation from one radix to another radix, r-1's compliments and r's compliments of signed numbers, weighted and non-weighted codes, Gray code, Error detection, error correction codes, parity checking, Hamming code, Boolean theorems, principle of complementation & duality, De-Morgans theorems, Basic logic gates and Universal gates, NAND-NAND and NOR-NOR realizations, Standard SOP and POS.

Practical's

- 1. Verification of Basic Logic Gates.
- 2. Implementing all individual gates with Universal Gates NAND & NOR.

Design a circuit for the given Canonical form, draw the circuit diagram and verify the De-Morgan laws **UNIT II**

MINIMIZATION TECHNIQUES & COMBINATIONAL LOGIC DESIGN: Minimization techniques: minimization of logic functions using Boolean theorems, minimization of switching functions using K-Map up to 5 variables, tabular minimization, Design of Half adder, full adder half subtractor, full subtractor, 4-bit binary subtractor, adder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit, 4 bit parallel adder, Carry look-ahead adder circuit, applications of adders and subtractors. Decoders, 7 segment decoder, Encoders, priority encoder, Multiplexer.

Practical's

- 1. Construct Half Adder and Full Adder using Half Adder and verify the truth table.
- 2. Design a Combinational Logic circuit for 4x1 MUX and verify the truth table.
- 3. Design a Combinational Logic circuit for 1x4 De- MUX and verify the truth table.

UNIT III

SEQUENTIAL LOGIC DESIGN: Classification of sequential circuits, Latches and Flipflops, Triggering, excitation tables, Asynchronous inputs, Conversion from one flip-flop to another flip flop. Registers-Types, modes of operations, bi-directional shift registers, universal shift register, Counters-synchronous & Asynchronous counters, design of Mod-counters, Counters using shift registers, Serial binary adder. **Practical's**

- 1. Verification of truth tables of the basic Flip- Flops with Synchronous and Asynchronous modes
- 2. Implementation of Master Slave Flip-Flop with J-K Flip- Flop and verify the truth table for *race around* condition.
- 3. Design a Decade Counter and verify the truth table.
- 4. Design the Mod 6 counter using D-Flip –Flop.
- 5. Construct 4-bit ring counter with T-Flip –Flop and verify the truth table.
- 6. Design a 8 bit right Shift Register using D-Flip -Flop and verify the truth table.

UNIT IV:

STATE MACHINES: Finite state machine, Analysis of clocked sequential circuits, state diagrams, state tables, reduction of state tables and state assignment, design procedures. Realization of circuits using various flip-flops. Melay to Moore conversion and vice-versa.

TEXT BOOKS:

1. Hill and Peterson "Switching Theory and Logic Design" Mc-Graw Hill TMH edition.

2.A. Anand Kumar "Switching Theory and Logic Design" PHI, 2009

EQUIPMENT REQUIRED:

Digital IC Trainer kit

REFERENCE BOOKS:

RP Jain, "Modern Digital Electronics", TMH, 2009.

Fundamentals of Logic Design by Charles H.Roth Jr, Cenage Learning, 2010

Digital Logic And Computer Design By M. Morris Mano

E-RESOURCES:

https://nptel.ac.in/courses/106108099/

https://swayam.gov.in/course/1392-digital-circuits-and-systems

http://www.nesoacademy.org/electronics-engineering/digital-electronics/digital

https://www.youtube.com/playlist?list=PLWPirh4EWFpHk70zwYoHu87uVsCC8E2S-

https://www.youtube.com/watch?v=X7M3rUxUpOc&list=PLbRMhDVUMngePP5JcezxImF-

FzOC9wstz&index=1

https://www.youtube.com/watch?v=IDf2vEcyDfs

https://www.youtube.com/watch?v=HcH0khFGwS8&list=PLbRMhDVUMngfV8C6ElNAUaQQz06wEhFM5

18A2105493- INTERNET OF THINGS LAB

Lectu Pract		Tutori	al- 0-	2-2				I	nterna	Mark	S:	40
Credi			3					F	xterna	l Mark	¢.	60
	equisit	P6'	5					L		i mai K	3.	00
	-	tems, M	lathem	atics-I	, Mathe	ematics	s-II					
Cour	se Obie	ectives	:									
				pact of	IoT ap	plicatio	ons, arc	hitectu	res in r	eal woi	rld	
Illusti	rate div	verse m	ethods	of dep	loying	smart (objects	and co	nnect t	hem to	netwo	rk
Comp	are dif	ferent A	Applica	ition pi	otocol	s for Io	Т					
Expos	se the s	tudent	to a va	riety o	fembe	dded b	oards a	nd IoT	Platfor	ms		
	-		-			g real v	world e	ntities	and ur	ndersta	nd the	role o
loT in	i variou	is doma	ains of	Indust	ry							
		comes:										
Upon			-						ill be a			
C01	-	oret th tectura	-		d challe	enges]	posed	by IoT	netwo	orks lea	ading t	o nev
CO2	-	in the e appli					s, arch	itectur	e of A	rduino	and d	eveloj
CO3									p simp d comp			
CO4	Interp		ferent	protoc	ols and				select w			
C05	Select	t IoT AI	PIs for a	an appl	lication	1						
C06	Desig		develo	p a so			iven ap	oplicati	on usii	ng APIs	s and t	est fo
Cont					nes to	wards	achiev	ement	t of Pro	ogram	Outco	nes (1
– Lov	-	edium,	1									
	PO 1	PO 2	PO 3	PO 4	РО 5	PO	PO 7	РО 8	РО 9	PO 10	PO 11	PO 12
CO1	2	Z	2	4	3	6	/	0	9	10	2	12
CO1 CO2	3	2		-	-	2	-	-	2	-		-
CO2	3		2	2		2		-	-	-	-	2
CO3	2	_	3			2				-	-	
C04	3	2	2		2	2	_	-	-	-	-	2
C05	-	2	3		2	2		_	_			2
000		4	5		4	4						4

UNIT I

Overview of IoT:

The Internet of Things: An Overview; The Flavour of the Internet of Things, The "Internet" of "Things", The Technology of the Internet of Things, Design Principles for Connected Devices, Calm and Ambient Technology, Privacy; Keeping Secrets, Web Thinking for Connected Devices, Small Pieces, Loosely Joined, First-Class Citizens On The Internet

UNIT II

Embedded Computing Basics; Microcontrollers; System-on-Chips; Choosing Your Platform; Arduino; Developing on the Arduino; Some Notes on the Hardware; Openness;

Raspberry Pi ; Cases and Extension Boards; Developing on the Raspberry Pi; Some Notes on the Hardware; Openness; Other notable platforms; Mobile phones and tablets; Plug Computing: Always-on Internet of Things

- 1. Select any one development board (Eg., Arduino or Raspberry Pi) and control LED using the board.
- 2. Using the same board as in (1), read data from a sensor. Experiment with both analog and digital sensors.
- 3. Control any two actuators connected to the development board using Bluetooth.
- 4. Create any cloud platform account, explore IoT services and register a thing on the platform.

UNIT III

Internet Principles; Internet Communications: An Overview of IP, TCP, The IP Protocol Suite (TCP/IP), UDP, IP Addresses, Static IP Address Assignment, Dynamic IP Address Assignment, IPv6.

- 1. Push sensor data to cloud.
- 2. Control an actuator through cloud.

Accesses the data pushed from sensor to cloud and apply any data analytics or visualization services.

UNIT IV:

Getting Started with an API, Mashing Up APIs, Scraping, Legalities, Writing a New API, MQ Telemetry Transport, Extensible Messaging and Presence Protocol, Constrained Application Protocol

- 1. Create a mobile app to control an actuator.
- 2. Identify a problem in your local area or college which can be solved by integrating the things you learned so far and create a prototype to solve it (Mini Project).

TEXT BOOKS:

1. 1. Adrian McEwen, Hakim Cassimally - Designing the Internet of Things, Wiley Publications, 2012

REFERENCE BOOKS:

- 1. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1 stEdition, VPT, 2014. (ISBN: 978-8173719547)
- 2. The Internet of Things, Enabling technologies and use cases Pethuru Raj, Anupama C. Raman, CRC Press.

E-RESOURCES:

https://www.arduino.cc/

https://www.raspberrypi.org/

18A2105491- DATA STRUCTURES LAB

	ure – tical:	Tutor	i al- 0	-0-2				I	nterna	l Marks	5:	40	
Cred			1					F	vtorna	l Mark	c.	60	
	equisi	00	1					–	лстпа	i Mai K	3.	00	
	To u To A Have	ectives ndersta pply lin	nd and lear an od und	d non l derstan	inear da ding o	ata stru of how	ictures severa	in prol al func	lament	lving. al algo	rithms	wor	
٠	Have	e a go	od un	dersta	nding	of the	funda	mental	l data	structu	ares u	sed i	
	com	outer so	cience		-								
•	-			gain kr	nowledg	ge in pr	actical	applica	ations o	of data s	tructu	res.	
						- •		••					
		comes											
Upoı		essful c	-										
C01		ement ching ar					sorting	g tech	niques.	Comp	are di	fferer	
CO2	Desig	gn linea	r data	structu	res sta	cks, qu	eues an	d linke	d lists.				
CO3		gn non ations	linear	data	structu	res tr	ees an	d Graj	phs, ar	nd imp	lemen	t thei	
C04	Be ca	pable t	o iden	tity the	approp	oriate d	lata stri	ucture	for give	n prob	lem		
		practic		-					-	-			
											Outco	mes (
C05	ributi	on of C	ourbe							0			
CO5 Cont	ributi w, 2- M	on of C edium		igh)									
CO5 Cont				igh) PO	РО	PO	РО	PO	PO	PO	PO	PO	
CO5 Cont	w, 2- M	edium	, 3 – H		P0 5	P0 6	P0 7	P0 8	РО 9	PO 10	PO 11	PO 12	
CO5 Cont – Lov	w, 2- M PO	edium PO	, 3 – H PO	PO	-		-	-		-	-	-	
CO5 Cont - Lov CO1	w, 2- M PO 1 3	edium PO 2 3	, 3 – H PO 3 2	PO 4 2	5		7	8	9	-	-	12 2	
CO5 Cont – Lov CO1 CO2	w, 2- M PO 1 3 3	PO 2 3 2	, 3 – H PO 3 2 3	PO 4 2 2	5	6 -	7	8	9 -	10 -	-	12 2 2	
CO5 Cont – Lov CO1 CO2 CO3	w, 2- M PO 1 3 3 3	PO 2 3 2 2 2	3 - H PO 3 2 3 3	PO 4 2 2 2 2	5 - -	6 -	7 - -	8 - -	9 - -	10 -	-	12 2 2 2 2	
CO5 Cont	w, 2- M PO 1 3 3	PO 2 3 2	, 3 – H PO 3 2 3	PO 4 2 2	5 - - -	6 - - -	7 - - -	8 - - -	9 - - -	10 - - -	-	12 2 2	

Exercise 1:

- a. Write a recursive C program to find the Factorial of an integer.
- b. Write a recursive C program to calculate the GCD of two numbers.
- c. Write a recursive C program for Towers of Hanoi: N disks are to be transferred from peg S to peg D with Peg I as the intermediate peg.
- d. Write a recursive C program to display the Fibonacci Series: 0, 1, 1, 2, 3, 5, 8, ...N.

Exercise 2:

- a. Write a recursive and non-recursive C program to implement Linear Search technique.
- b. Write a recursive and non-recursive C program to implement Binary Search

technique.

Exercise 3:

a. Write C program that implement Insertion sort, to sort elements in an ascending order.

b. Write C program that implement Merge sort, to sort elements in an ascending order.

c. Write C program that implement Quick sort, to sort elements in an ascending order.

Exercise 4:

- a. Write a C program to insert a node in a Single Linked List.
- b. Write a C program to delete a node in a Single Linked List.
- c. Write a C program to reverse elements in a Single Linked List.
- d. Write a C program to insert a node in a Doubly Linked List.

Exercise 5:

- a. Write C program that implement Stack (its operations) using arrays.
- b. Write C program that implement Queue (its operations) using arrays.
- c. Write C program that implement Queue using Two Stacks.

Exercise 6:

- a. Write C program that implement Stack using Linked List.
- b. Write C program that implement Queue using Linked List.
- c. Write a C program to implement the Circular Queue.

Exercise 7:

- a. Write a C program to insert elements in a Binary Search Tree (BST).
- b. Write a C program to delete element in a Binary Search Tree (BST).
- c. Write a C program to implement BST traversals: Inorder, Preorder, and Postorder.

Exercise 8:

- a. Write a C program to implement the Max Heap.
- b. Write C program that implement Heap sort, to sort elements in an ascending order.

Exercise 9:

- a. Write a C program to implement the Breadth First Search technique on a Graph.
- b. Write a C program to implement the Depth First Search technique on a Graph.

Exercise 10:

- a. Write a C program to implement the Prim's algorithm to construct Minimum Spanning Tree.
- b. Write a C program to implement the Kruskal's algorithm to construct Minimum Spanning Tree.

TEXT BOOKS:

1 Data Structures using C,Reema Thareja, Oxford

2.DATA STRUCTURE USING C, Udit Agarwal, KATSON Books

3 Data Structures using C, 2nd Edition, by A. K. Sharma, Pearson India

REFERENCE BOOKS:

1. Keneth. H. Rosen, Discrete Mathematics and its Applications, 6/e, Tata McGraw-Hill, 2009.

2. Richard Johnsonburg, Discrete mathematics, 7/e, Pearson Education, 2008 **E-RESOURCES:**

18A2105492- DATABASE MANAGEMENT SYSTEMSLAB

Lecti Pract		Tutoria	al- 0	-2-2				I	nterna	l Marks	S:	40
Cred			1					E	xterna	l Mark	s:	60
	equisit	tes:	-						1001110	1 1-141 11	51	00
Ter	equisit											
C Pro	ogrami	ming, M	athen	natics								
Cour	se Obj	ectives:	:									
•	Desig	gn and i	mplen	ient a d	latabas	e scher	na for a	a given	proble	m-dom	ain	
•	Рори	ilate and	l quer	y a data	abase u	sing SQ	L DML	/DDL c	ommai	nds.		
•	-	are and				-		-				
•		rammin		0						d funct	ions, c	ursor
		ages.	5 /	·	Ċ	, -	•	_			, -	
•		erstand 1	eal tir	ne data	a base d	lesign r	nodels	and ca	n code	the mo	del	
•		erstand				-						s usir
		elated ne				-		1	- 0-			
Cour		comes:										
		essful co		tion of	f the co	ourse, t	he stu	dent w	ill be a	ble to:		
C01		ies for C	-			-					straint	S
CO2		ies to Re										
CO3		ies usin			0		-		•	-		s, Dat
	Func	tions an	d Con	versior	n Functi	ions.	0					
C04	Quer	ies usin	g Grou	ıp By, C	Order B	y, and l	Having	Clause	S			
C05	Quer	ies on Jo	oins ar	nd Corr	elated s	Sub-Qu	eries					
C06	Quer	ies on C	ontrol	ling Da	ita: Con	nmit, R	ollback	, and Sa	ave poi	nt		
Cont		on of Co									Outco	mes (
- Lov	w, 2- M	l <mark>edium,</mark>	3 - H i	igh)						_		-
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	1	-	-	-	-	-	-	-	-	-	-
CO2	2	3	3	_	1	-	_	-	-	_	_	-
CO2	1	2	2	_	2	_	_	_	_	_	_	_
	1	2	3	_	3	_	_	_	_	_	_	1
	1 1		1	_	2	_	_	_	_	_	_	-
CO4	1	2		1	4							
CO4 CO5 CO6	1	2	3	_	2	-	-	-	_	_	-	-

SQL

1. Queries for Creating, Dropping, and Altering Tables, Views, and Constraints

2. Queries to Retrieve and Change Data: Select, Insert, Delete, and Update

3. Queries using operators in SQL

4. Queries using Built-In Functions: String Functions, Numeric Functions, Date Functions and Conversion Functions.

5. Queries using Group By, Order By, and Having Clauses

- 6. Queries on Controlling Data: Commit, Rollback, and Save point
- 7. Queries on Joins and Correlated Sub-Queries

8. Queries on Working with Index, Sequence, Synonym

PL/SQL

1. Write a PL/SQL Code using Basic Variable, Anchored Declarations, and Usage of Assignment Operation

2. Write a PL/SQL Code Bind and Substitution Variables. Printing in PL/SQL

3. Write a PL/SQL block using SQL and Control Structures in PL/SQL

4. Write a PL/SQL Code using Cursors, Exceptions and Composite Data Types

5. Write a PL/SQL Code using Procedures, Functions, Triggers and Packages

TEXT BOOKS:

1 Fundamentals of Database Systems, Elmasri Navrate, 6th edition, Pearson Education

REFERENCE BOOKS:

- 1. "Database System Concepts", . Korth, Slberchatz, Sudarshan, 6th Edition, McGraw Hill
- 2. Peter Rob and Carlos Coronel, " Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.
- 3. Introduction to Database Systems, CJ Date, Pearson
- 4. Data base Management Systems, Raghurama Krishnan, Johannes Gehrke, TATA McGraw Hill 3rd Edition

18A2105494- PYTHON PROGRAMMING LAB

		Tutor	ial- ()-1-2				Ι	nterna	l Marks	:	40
Pract				•						1 Marla		()
Credi			2	<u>.</u>				Ē	xterna	l Marks	5:	60
Prere	equisi	tes:										
(Pro	oram	ming, N	Nathe	matics								
	-	ectives		matics								
•				lament	tals of p	ovthon	nrngr	ammir	ισ			
•					-	-			0	ta struc	tures	
•					of pytho					u sti ut	cui co	
•										of prog	rams	
•		-					-			ming m		പിറത്യ
•					-	·		-	-	troduct		
-	softv			Junu St	it ware	101 100	ii iiccu	5 unu j	51101 III	ti ouuce		cestin
Cour		comes	:									
				etion o	f the co	ourse. t	he stu	dent w	vill be a	ble to:		
C01			-							ind to b	uild so	ftwar
		eal need		P			F		88			
CO2	Stude	ents al	ole to	use ba	sic Dec	cision s	tructu	res, Bo	olean	ogic, va	ariable	type
				perato				-		0		51
CO3	Stude	ents ab	le to d	escribe	and us	e of Pyt	hon lis	ts, dict	ionarie	s, tuples	and s	ets.
CO4	To in	npleme	nt met	hods a	nd func	tions to	o impro	ove rea	dability	of prog	rams.	
CO5	Stude	ents a	able	to de	escribe	and	apply	v obje	ect-orie	nted j	progra	mmin
					oncepts							
C06	Stude	ents sł	nould	be abl	e to d	esign,	, code	test ar	nd deb	ug pyth	ion la	nguag
		rams.										
					mes to	wards	achie	vemen	t of Pro	ogram (Outcor	nes (
– Lov		edium								50		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
CO1	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	-	-	-	3	-	-	-	3	-	3	-
CO2	-	3	2	-	-	-	-	-	-	-	-	-
CO3	-	-	-	2	3	-	-	-	3	-	-	-
CO4	-	-	-	3	3	-	-	-	3	-	-	-
CO5	-	-	-	3	-	-		-	-	-	3	-
C06	-	-	-	-	2	-	-	-	3	-	3	-
	f E	erimen	.									

Exercise 1 - Basics

a) Running instructions in Interactive interpreter and a Python Script b) Write a program to purposefully raise Indentation Error and Correct it

Exercise 2 - Operations

a) Write a program to compute distance between two points taking input from the user

(Pythagorean Theorem)

b) Write a program add.py that takes 2 numbers as command line arguments and

prints its sum.

Exercise - 3 Control Flow

a) Write a Program for checking whether the given number is a even number or not.b) Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, ...,

1/10

c) Write a program using a for loop that loops over a sequence. What is sequence ?d) Write a program using a while loop that asks the user for a number, and prints a countdown

from that number to zero.

Exercise 4 - Control Flow - Continued

a) Find the sum of all the primes below two million.

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By

starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

b) By considering the terms in the Fibonacci sequence whose values do not exceed four million,

find the sum of the even-valued terms.

Exercise - 5 - DS

a) Write a program to count the numbers of characters in the string and store them in a

dictionary data structure

b) Write a program to use split and join methods in the string and trace a birthday with a

dictionary data structure.

Exercise - 6 DS - Continued

a) Write a program combine_lists that combines these lists into a dictionary.

b) Write a program to count frequency of characters in a given file. Can you use character

frequency to tell whether the given file is a Python program file, C program file or a text file?

Exercise - 7 Files

a) Write a program to print each line of a file in reverse order.

b) Write a program to compute the number of characters, words and lines in a file. **Exercise - 8 Functions**

a) Write a function ball_collide that takes two balls as parameters and computes if they are

colliding. Your function should return a Boolean representing whether or not the balls are

colliding.

Hint: Represent a ball on a plane as a tuple of (x, y, r), r being the radius

If (distance between two balls centers) <= (sum of their radii) then (they are colliding)

b) Find mean, median, mode for the given set of numbers in a list.

Exercise - 9 Functions - Continued

a) Write a function nearly_equal to test whether two strings are nearly equal. Two strings a and b

are nearly equal when a can be generated by a single mutation on b.

b) Write a function dups to find all duplicates in the list.

c) Write a function unique to find all the unique elements of a list.

Exercise - 10 - Functions - Problem Solving

a) Write a function cumulative_product to compute cumulative product of a list of numbers.

b) Write a function reverse to reverse a list. Without using the reverse function.

c) Write function to compute gcd, lcm of two numbers. Each function shouldn't exceed one line.

Exercise 11 - Multi-D Lists

a) Write a program that defines a matrix and prints

b) Write a program to perform addition of two square matrices

c) Write a program to perform multiplication of two square matrices

Exercise - 12 - Modules

a) Install packages requests, flask and explore them. using (pip)

b) Write a script that imports requests and fetch content from the page. Eg. (Wiki)

c) Write a simple script that serves a simple HTTPResponse and a simple HTML Page

Exercise - 13 00P

a) Class variables and instance variable and illustration of the self variable

i) Robot

ii) ATM Machine

Exercise - 14 GUI, Graphics

1. Write a GUI for an Expression Calculator using tk

2. Write a program to implement the following figures using turtle

Exercise - 15 - Testing

a) Write a test-case to check the function even_numbers which return True on passing a list of all

even numbers

b) Write a test-case to check the function reverse_string which returns the reversed string

Exercise - 16 - Advanced

a) Build any one classical data structure.

b) Write a program to solve knapsack problem.

TEXT BOOKS:

1 A Modern Approach, Vamsi Kurama, Pearson 2.Learning Python, Mark Lutz, Orielly

REFERENCE BOOKS:

Think Python, Allen Downey, Green Tea Press Core Python Programming, W.Chun, Pearson. Introduction to Python, Kenneth A. Lambert, Cengage

18A2100601- Professional Communication Skills

Lectur Practi	e – Tutorial- cal:	2-0-0	Internal Marks:	40
Credit	S:	1	External Marks:	60
Preree	quisites:			
Basic u	inderstanding of	English		
	e Objectives:			
•	experiences. Thi available pra	xpected to relate Soft Skills to real is provides an additional support i ctices. Attempt can be made to ts learn more from experience.	n training students on	already
٠		expected to bridge the gap betwe ences while encountering challeng		lge and
•		at the topics included in the cours erspective, to overcome a few curr al level.		
	e Outcomes:			
-	Develop effectiv	pletion of the course, the student e familiarity with soft skills along v e in their presentation skills.		iminate
CO2	Develop awaren	ess on setting suitable goals and of time management to climb the la		y using
LU3	kindle the true p	arners' analytical and logical skills professional spirit.		ing and
CO4		uation positively by managing stre		
	· · · · · · · · · · · · · · · · · · ·	nsible citizen by imbibing social eti te written documents using the acq	•	riting
	: KNOW YOUR S			ining.
		What are soft skills?, Soft Skills	vs Hard Skills. Why So	ft Skills
are im Writir	portant for succe	ess?, Can Soft Skills be cultivated? ative Writing, Summarization of		
Attitu Attitud	de: What is atti	ATTITUDE AND EMOTIONAL INT tude? Benefits of Positive Attitud		Positive
		ce: What is Emotional Intelligenc	e? How to balance En	notional
-	gence? and Crisis	6		
Writir	ig Skills : Memo	Writing, Writing Technical Abstrac	ts	

UNIT III: GOAL SETTING AND ADAPTABILITY

Goal Setting: What is a Goal? What are smart goals? Goal as Commitment. Steps to reach one's goals.

Adaptability: What is Adaptability? What is its necessity? Adaptability as a tool to capture opportunities.

Writing Skills: Writing Circulars, Writing Agenda and Minutes of Meeting UNIT IV: TIME MANAGEMENT AND SOCIAL CONSCIOUSNESS

Time Management: What is Time Management? Time Stealers. Strategies for effective Time Management. Time Management and Goal Setting go hand in hand.

Social Consciousness: Social Awareness and Civic Responsibility, Case Study based on Social Intelligence.

Writing Skills: Technical Reports, Writing Reviews of Projects or any Technical Topic **TEXT BOOKS**:

- 1. Pillai Sabina, Fernandez Agna, Soft Skills and Employability Skills, Cambridge Publishers.
- 2. Khera Shiv, You Can Win, Bloomsbury India, 1998.
- 3. Covey Sean, Seven Habits of Highly Effective Teens, New York, Fireside Publiishers, 1998.
- 4. Thomas A Harris, I am OK, You Are OK, New York-Harper And Row, 1972
- 5. Daniel Coleman, Emotional Intelligence, Bantam Book, 2006.
- 6. Carnegie Dale, How to Win Friends and Influence People, New York; Simon & Schuster, 1998.

18A2100602- Visual Communications

	ıre – tical:	Tutoria	al- 2-0)-0			Iı	nternal I	Marks:		40
Cred			1				E	xternal	Marks:		60
Prer	equisit	es:									
				commu	nication co	mponer	nts				
Lour	se Obje	ectives:									
The c	core ob	jective o	of the p	aper is t	o create av	warenes	ss abou	t the the	eories and	l teo	chnic
			-	-	he paper o						
and a	analysis	s of visu	als. It a	also imp	arts knowl	edge of	makin	ig visual	s, video p	orod	uctio
	-	•			e required		· ·				
		the sy	llabus	focuses	on under	standin	g visua	als base	d on the	eorie	es an
	iples.	L on	م جامع م		a of -less	ing f			ion of .	¹	·.
					es of shoot f visualizat		ming, c	composit	tion of vi	sual	s wit
				-	out plannin		nroduc	tion tec	hniques d	of c	amor
		post pro		0	ut plainin	ig allu	produc		iniques (
					ncepts of s	softwar	e and i	its appli	cation re	quir	ed fo
		al prese			r					-1 -	
	0	1									
Cour	se Out	comes:									
Ilnoi											
opor	1		-		e course,						
-	The s	tudents	will ac	quire th	e fundame	ental an	d found	dation k	nowledge		-
C01	The s and c	tudents reating	will ac meanin	cquire th ng throu		ental an	d found	dation k	nowledge		-
C01	The s and c and d	tudents reating lesign m	will ac meanii iessages	cquire th ng throu s.	e fundame gh visuals	ental an . They v	d found vill acq	lation k juire ski	nowledge lls to pre	sent	idea
-	The s and c and d They	tudents reating esign m will be f	will ac meanin essages familiar	cquire th ng throu s. rised wit	e fundame gh visuals h commun	ental an . They v ication	d found will acq and pre	dation k juire ski esentatio	nowledge lls to pre on of idea	sent s vis	idea sually
CO1 CO2	The s and c and d They The s	tudents reating esign m will be f students	will ac meanin essages familiar s will s	equire th ng throu s. rised wit study va	e fundame gh visuals h commun rious theo	ental an They v ication ories an	d found will acq and pro d cond	dation k juire ski esentatio epts in	nowledge lls to pre on of idea: understa	sent s vis indii	idea sually
C01	The s and c and d They The s visua	tudents reating lesign m will be f students ls. They	will ac meanin nessages familiar s will s y will	equire th ng throu s. rised wit study va	e fundame gh visuals h commun	ental an They v ication ories an	d found will acq and pro d cond	dation k juire ski esentatio epts in	nowledge lls to pre on of idea: understa	sent s vis indii	idea sually
CO1 CO2 CO3	The s and c and d They The s visua differ	tudents creating lesign m will be f students ls. They rent purp	will ac meanin nessages familiar s will s y will poses.	equire th ng throu s. rised wit study va learn n	e fundame gh visuals h commun rious theo ew ways	ental an They v ication ories an of und	d found will acq and pro d conc erstand	lation k Juire ski esentatio epts in ding and	nowledge lls to pre on of idea: understa d presen	sent s vis indii tatio	t idea sually ng th on fo
CO1 CO2	The s and d and d They The s visua differ The s	tudents creating lesign m will be f students ls. They cent purj students	will ac meanin essages familiar s will s y will poses. s will le	equire th ng throu s. rised wit study va learn n earn the	e fundame gh visuals h commun rious theo ew ways e key aspe	ental an They v ication ories an of und cts of v	d found will acq and pro d cond erstand	dation ki juire ski esentatio repts in ding and spects i	nowledge lls to pre on of ideas understa d presen n art, car	sent s vis indii tatio mer	t idea sually ng th on fo a, an
CO1 CO2 CO3	The s and d and d They The s visua differ The s filmir	tudents creating lesign m will be f students ls. They ent purj students ng as we	will ac meanin essages familiar s will s y will poses. s will le ell as tra	equire th ng throu s. rised wit study va learn n earn the ade secr	e fundame gh visuals h commun rious theo ew ways e key aspe ets in com	ental an They v ication ories an of und cts of v	d found will acq and pro d cond erstand	dation ki juire ski esentatio repts in ding and spects i	nowledge lls to pre on of ideas understa d presen n art, car	sent s vis indii tatio mer	t idea sually ng th on fo a, an
CO1 CO2 CO3	The s and d They The s visua differ The s filmin to-da	tudents creating lesign m will be f students ls. They rent purj students ng as we te unden	will ac meanin essages familiar s will s y will poses. s will lo ell as tra rstandin	equire th ng throu s. rised wit study va learn n earn the ade secr ng of the	e fundame gh visuals h commun rious theo ew ways e key aspe ets in com field.	ental an They v ication ories an of und cts of v munica	d found will acq and pro d conc erstand visual a tion me	dation k juire ski esentatio epts in ding and spects i edia busi	nowledge lls to pre on of ideas understa d presen n art, can iness to g	sent s vis ndii tatic mer ain	t idea sually ng th on fo a, an an up
CO1 CO2 CO3	The s and d They The s visua differ The s filmin to-da After	tudents creating lesign m will be f students ls. They cent purp students ng as we te unden studyin	will ac meanin essages familiar s will s y will poses. s will le ell as tra rstandin ng the c	equire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t	e fundame gh visuals h commun rious theo ew ways e key aspe ets in com	ental an They v ication ories an of und cts of v municat	d found will acq and pro d conc erstand risual a tion me	dation k juire ski esentatio repts in ding and spects i edia busi produc	nowledge lls to pre on of ideas understa d presen n art, can iness to g tion plan	sent s vis ndii tatic mer ain	t idea sually ng th on fo a, an an up
CO1 CO2 CO3 CO4	The s and d They The s visua differ The s filmir to-da After and a	tudents creating lesign m will be f students ls. They ent purp students ng as we te unden studyin pplicati	will ac meanin familiar s will s y will poses. s will lo ell as tra rstandin ng the c on of te	equire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t echnolog	e fundame gh visuals h commun rious theo ew ways e key aspe ets in com field. he student	ental an They v ication ories an of und cts of v municat ts will a cts base	d found will acq and pro d conc erstand risual a tion me acquire ed on co	dation k juire ski esentatio repts in ding and spects i edia busi product ommunic	nowledge lls to pre on of ideas understa d presen n art, can iness to g tion plant cation.	sent s vis indin tatic mer ain ning	t idea sually ng th on fo a, an an up g skill
CO1 CO2 CO3 CO4 CO5 CO1	The s and d They The s visua differ The s filmir to-da After and a ributio w, 2- M	tudents creating lesign m will be f students ls. They ent purp students ig as we te unden studyin pplication on of Co edium,	will ac meanin familiar familiar s will s y will poses. s will lo ell as tra rstandin ng the c on of te ourse O 3 – Hig	equire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t echnolog outcome (h)	e fundame gh visuals h commun rious theo ew ways e key aspe ets in com field. he student y for proje s towards	ental an They v ication ories an of und cts of v municat ts will a cts base achiev	d found will acq and pre d conc erstand visual a tion me acquire d on co rement	dation k juire ski esentatic repts in ding and spects i edia busi product ommunic c of Prog	nowledge lls to pre on of idea understa d presen n art, can iness to g tion plan cation. gram Out	sent s vis indin tatic mer ain ning	t idea sually ng th on fo a, an an up g skill nes (
CO1 CO2 CO3 CO4 CO5 CO1	The s and d They The s visua differ The s filmir to-da After and a ributio w, 2- M	tudents reating esign m will be f students ls. They rent pur students ng as we te unden studyin pplication on of Co edium, PO	will ac meanin essages familiar s will s y will poses. s will lo ell as tra rstandin ng the c on of te ourse 0 3 – Hig PO	cquire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t course, t cohnolog Dutcome (h)	e fundame gh visuals h commun rious theo ew ways e key aspe ets in com field. he student y for proje s towards	ental an They v ication ories an of und cts of v municat ts will a cts base achiev PO	d found will acq and pro d conc erstand visual a tion me acquire d on co rement	dation k juire ski esentatic epts in ding and spects i edia busi product ommunic c of Prog	nowledge lls to pre on of ideas understa d presen n art, can iness to g tion plant cation. gram Out	sent s vis ndin tatio mer ain ning t con	t idea sually ng th on fc a, an an up g skill nes (
CO1 CO2 CO3 CO4 CO5 Cont – Lov	The s and d They The s visua differ The s filmir to-da After and a ributio w, 2- M PO 1	tudents creating lesign m will be f students ls. They ent purp students ig as we te unden studyin pplication on of Co edium,	will ac meanin familiar familiar s will s y will poses. s will lo ell as tra rstandin ng the c on of te ourse O 3 – Hig	cquire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t course, t cohnolog Dutcome (h)	e fundame gh visuals h commun rious theo ew ways e key aspe ets in com field. he student y for proje s towards	ental an They v ication ories an of und cts of v municat ts will a cts base achiev	d found will acq and pre d conc erstand visual a tion me acquire d on co rement	dation k juire ski esentatic repts in ding and spects i edia busi product ommunic c of Prog	nowledge lls to pre on of ideas understa d presen n art, can iness to g tion plant cation. gram Out	sent s vis ndin tatio mer ain ning	t idea sually ng th on fo a, an an up g skill
CO1 CO2 CO3 CO4 CO5 CO1	The s and d They The s visua differ The s filmir to-da After and a ributio w, 2- M	tudents reating esign m will be f students ls. They rent pur students ng as we te unden studyin pplication on of Co edium, PO	will ac meanin essages familiar s will s y will poses. s will lo ell as tra rstandin ng the c on of te ourse 0 3 – Hig PO	cquire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t course, t cohnolog Dutcome (h)	e fundame gh visuals h commun rious theo ew ways e key aspe ets in com field. he student y for proje s towards PO PO 5 6	ental an They v ication ories an of und cts of v municat ts will a cts base achiev PO	d found will acq and pro d conc erstand visual a tion me acquire d on co rement	dation k juire ski esentatic epts in ding and spects i edia busi product ommunic c of Prog	nowledge lls to pre on of ideas understa d presen n art, can iness to g tion plant cation. gram Out	sent s vis ndin tatio mer ain ning t con 0 1	t idea sually ng th on fo a, an an up g skill nes (
CO1 CO2 CO3 CO4 CO5 Cont – Lov	The s and d They The s visua differ The s filmir to-da After and a ributio w, 2- M PO 1	tudents reating esign m will be f students ls. They rent pur students ng as we te unden studyin pplication on of Co edium, PO	will ac meanin familiar familiar s will s y will poses. s will lo ell as tra- rstandin ng the c on of te ourse O 3 – Hig PO 3	cquire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t chnolog butcome (h) PO H 4	e fundame gh visuals. h commun rious theo ew ways e key aspe ets in com field. he student y for proje s towards PO PO 5 6 3 3	ental an They v ication ories an of und cts of v municat ts will a cts base achiev PO 7	d found will acq and pre d conc erstand visual a tion me acquire ed on co vement PO 8	dation kr juire ski esentatic repts in ding and spects i edia busi product ommunic c of Prog 9	nowledge lls to pre on of ideas understa d presen n art, can iness to g tion plant cation. gram Out PO P 10 1	sent s vis ndin tatio mer ain ning t con 0 1	tidea sually ng th on fo a, an an up g skill nes (12
CO1 CO2 CO3 CO4 CO5 Cont - Lov	The s and d They The s visua differ The s filmir to-da After and a ributio w, 2- M PO 1 3	tudents reating esign m will be f students ls. They rent pur students ng as we te unden studyin pplication on of Co edium, PO	will ac meanin nessages familiar s will s y will poses. s will le ell as tra- rstandin g the c on of te ourse 0 3 – Hig PO 3 2	cquire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t chnolog Dutcome (h) PO H 4 S	e fundame gh visuals. h commun rious theo ew ways e key aspe ets in com field. he student y for proje s towards PO PO 6 3 3 3 3	ental an They v ication ories an of und cts of v municat ts will a cts base achiev PO 7 2	d found will acq and pro d conc erstand visual a tion me acquire d on co rement PO 8 2	lation k juire ski esentatic repts in ding and spects i edia busi product ommunic c of Prog 9 1	nowledge lls to pre on of ideas understa d presen n art, can iness to g tion plant cation. gram Out PO P 10 1 1 1	sent s vis ndin tatio mer ain ning t con 0 1	idea sually ng th on fo a, an an up g skill nes (PO 12 1
CO1 CO2 CO3 CO4 CO5 Cont - Lov CO1 CO2	The s and d They The s visua differ The s filmir to-da After and a ributio w, 2- M PO 1 3	tudents reating esign m will be f students ls. They rent pur students ng as we te unden studyin pplication on of Co edium, PO 2 - -	will ac meanin familiar familiar s will s y will poses. s will le ell as tra rstandin ng the c on of te ourse O 3 – Hig PO 3 2	cquire th ng throu s. rised wit study va learn n earn the ade secr ng of the course, t course, t cohnolog Dutcome (h) PO H 4 S - 3 - 3	e fundame gh visuals. h commun rious theo ew ways e key aspe ets in com field. he student y for proje s towards PO PO 6 3 3 3 3 4 3	ental an They v ication ories an of und cts of v municat ts will a cts base achiev PO 7 2 2 2	d found will acq and pro d cond erstand visual a tion me acquire d on co rement PO 8 2 2 2	lation k juire ski esentatic repts in ding and spects i edia busi product ommunic c of Prog 9 1 1 1	nowledge lls to pre on of idea: understa d presen n art, can iness to g tion plant cation. gram Out PO P 10 1 1 1 1 1	sent s vis indin tatio mer ain ning tcon 0 1	idea sually ng th on fo a, an an up s skill nes (12 1 1

	3	-	2	-	3	3	2	2	1	1	1	1
JNIT	- 1											
ntro	ductio	on to Vi	sual Co	ommur	nication	ı – Imag	e and ı	inders	tandin	g – Ser	niotics ·	- Signs
						iption o				0		0
-				-		lements	-					
leptł	n, mov	vement.										
UNIT	- 2											
Still a	and Vi	ideo im	ages - S	Still Ca	mera –	Types of	of came	ras – F)ifferer	it aspe	cts of ca	mera -
			-			and com				-		
		-			-	al persp	-					
UNIT		0 0										
Tala			ch.		l				-			
					0	– mov roductio				0		
	-	-	-	-	-	get and			-		-	-
	_	-	-	-		Dubbir					-	
mixir			Sound		ung –	Dubbii	ig – Sp	cciai c	meets	anu gi	apines	- rma
UNI 4												
		und E	diting	softw	are: S	ound F	orge V	/ideo	editir	ng Sof	tware:	Adobe
Prem		NZC-										
	Ր BOC rence											
			nicatio	n _ In	nages	with m	οςςοπος	3rd	Edition	n Paul	Martir	I octor
Thon		commu	meatio	11 - 11	nages		essages	JIU	Luitioi	1, 1 aui	Martin	ILEStei
		orth, US	A 2003									
					luction	Handbo	ook. Cal	ifornia	. Thon	upson V	Vadswo	orth
	uatio						,		, -	r		-
At th	e end	of the o	course s	studen	ts shall	produc	e and s	ubmit	a vide	o capsı	le by a	pplying
the te	echnic	ques wh	ich the	y learn	n based	on the t	heoret	ical co	ncepts.			
Equi	pmen	it requi	red									
	came											
			0			-55mm						
2.	. Nik	on D56	00 with	AF-P	70-300	mm aro	und Rs	50,00)			
Trip	ods											
		ofession	al Trin	od aro	und 6 ()00 (2m	in)					
-		1000101	ur rrp	ouuro	una ojo	/ · · · · (
-		orac										
Digit	o can	101 as			7	1	100 hay	000				
Digito Vide		n XA11	Profess	sional (Jamcor	aer aro	unu ov,	000				
Digito Vide 1.	Cano	n XA11				toer aro		000				
Digito Vide 1. 2.	Cano Sony	n XA11 HXR-M	C 2500	Camco	order ai		5,000		nd Rs 6	5-75,0	00	

18A2100603- Sanskrit

	tical:				Internal Marks:	
Cred	its:		1]	External Marks:	60
Prer	equisite	es:				
Basic	unders	tanding of	languages			
	se Obje		languages			
			lerstanding and conver			
-	-	-	ure method, Questions		-	ook stud
			ebate or collaboration ed all most all Indian			rahula
			of one's mother tongue			
			lents for the proper			Herita
Tradi	itions, T	hinking, et	hics and values of our			
	se Outc					
			oletion of the course,			
CO1	Readii	ng, Writing	undorstanding and co	munantianal		4
					skills are develope	u.
CO2	Unity	in diversit	y of our country is wel	l understood.	•	u.
CO2 CO3	Unity The or	in diversit	y of our country is wel evelopment of Indian I	l understood.	•	u.
	Unity The or	in diversit	y of our country is wel	l understood.	•	u.
CO2 CO3	Unity The or Prope	in diversit rigin and d r usage of l	y of our country is wel evelopment of Indian I	l understood. Languages is v	well understood	
CO2 CO3 CO4 CO5	Unity The or Prope	in diversit rigin and d r usage of I rit words t	cy of our country is wel evelopment of Indian I Language is achieved.	l understood. Languages is v	well understood	
CO2 CO3 CO4	Unity The or Prope Sanski identi	in diversit rigin and d r usage of l rit words t fied.	ty of our country is wel evelopment of Indian I Language is achieved. that are familiar to us	l understood. .anguages is v which we ar	well understood	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identi	in diversit rigin and d r usage of l rit words t fied.	cy of our country is wel evelopment of Indian I Language is achieved.	l understood. .anguages is v which we ar	well understood	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identi	in diversit rigin and d r usage of l rit words t fied.	ey of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well	l understood. .anguages is v which we ar	well understood	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identi The g	in diversit rigin and d r usage of rit words t fied. reat Indiar TOPIC N	ey of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well AME	l understood. .anguages is v which we ar	well understood e using in our lang POEMS	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identii The g	in diversit rigin and d r usage of rit words t fied. reat Indiar TOPIC N विदुरानीति	ty of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well AME नेः	l understood. .anguages is v which we ar	well understood e using in our lang	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identii The g UNIT	in diversit rigin and d r usage of rit words t fied. reat Indiar TOPIC N विदुरानीति (Vidhura	ty of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well <u>AME</u> नेः neethi)	l understood. .anguages is v which we ar	well understood re using in our lang POEMS 1 - 16	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identi The g	in diversit rigin and d r usage of rit words t fied. reat Indiar TOPIC N विदुरानीति (Vidhura) भर्त्तृहरि नी	y of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well <u>AME</u> तेः neethi) तिशतकमू	l understood. .anguages is v which we ar	well understood e using in our lang POEMS	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identii The g UNIT	in diversit rigin and d r usage of l rit words t fied. reat Indiar TOPIC N विदुरानीति (Vidhura भर्त्तृहरि नी (Bhartru	y of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well AME नेः neethi) तिशतकमू hari – Neetisatakam)	l understood. .anguages is v which we ar	well understood re using in our lang POEMS 1 - 16 1-16	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identii The g UNIT	in diversit rigin and d r usage of l rit words t fied. reat Indiar विदुरानीति (Vidhura भर्त्तृहरि नी (Bhartru संभाषणसं	y of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well AME तेः neethi) तिशतकमू hari – Neetisatakam) स्कृतमु	l understood. .anguages is v which we ar	well understood re using in our lang POEMS 1 - 16 1-16 1-16	
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identi The g UNIT I II	in diversit rigin and d r usage of l rit words t fied. reat Indiar TOPIC N विदुरानीति (Vidhura भर्त्तृहरि नी (Bhartru संभाषणसं (Prescrib	y of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well <u>AME</u> नेः neethi) तिशतकम् hari – Neetisatakam) स्कृतमु bed Text by NRIIT)	l understood. .anguages is v which we ar	well understood re using in our lang POEMS 1 - 16 1-16 1-16 Lesson From	guages a
CO2 CO3 CO4 CO5	Unity The or Prope Sanski identi The g UNIT I II	in diversit rigin and d r usage of l rit words t fied. reat Indiar TOPIC N विदुरानीति (Vidhura भर्त्तृहरि नी (Bhartru संभाषणसं (Prescrib संस्कृतभा	y of our country is wel evelopment of Indian I Language is achieved. that are familiar to us n culture roots are well AME तेः neethi) तिशतकमू hari – Neetisatakam) स्कृतमु	l understood. .anguages is v which we ar	well understood re using in our lang POEMS 1 - 16 1-16 1-16	guages a

- 2. नीतिशतकम् of भर्तृहरिः
- 3. "TEACH YOURSELF SANSKRIT" (Graded Text Books) published by Rashtriya Sanskrit Sansthan, MHRD, Govt. of India, New Delhi.

18A2100604- Psychology

Lectu Pract		Tutor	ial- 2	-0-0				I	nterna	l Mark	s:	40
Credi	its:		1					E	xterna	l Mark	S:	60
Prere	equisit	es:										
		standir ective s	-	ıt comn	nunicat	tion cor	nponer	nts				
1.				• •			10logy t	•		e.		
2.				-			ehavior					
3.	Unde	erstand	how t	the kno	wledge	e gaine	ed from	this c	ourse	can be	used i	n their
	perso	onal an	d profe	essiona	l lives.							
Cour	se Out	comes	:									
Upon	l succe	essful c	comple	tion of	the co	ourse, t	he stu	dent w	ill be a	ble to:		
C01		tudent of knov		able to	underst	and the	inter re	lationsl	nip of k	nowled	ge and o	our
CO2			-	ps the c	liscrimi	nation l	between	true ar	nd false	knowle	dge	
CO3				-			an socie				C	
CO4			extend	s his m	ental ho	orizons	in unde	rstandir	ng differ	ent star	nds of n	noral
	order											
				vely gra	sps the	ways o	funders	standing	g the wo	orld and	our	
C05	envir	onment										
C06	The s	tudents	gains a	n insig	ht into t	he very	nature	of Scie	nce and	Techno	ology	
		on of C edium			mes to	wards	achiev	ement	t of Pro	ogram	Outco	nes (1
LUV	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
C01	1	2	-	-	-	2	-	3	-	-	-	2
CO2	1	2	-	2	-	2	-	2	-	-	-	2
CO3	1	-	-	-	-	3	-	3	-	-	-	-
C04	1	-	-	-	-	3	-	3	-	-	-	-
C05	1	-	=	-	-	2	-	-	-	-	-	2
C06	3	3	3	3	3	3	3	-	-	3	3	3
UNIT	'- 1: In	troduc	tion									
Psvch	nologv	as a sti	udv of F	numan	behavi	or						

Scope and fields of psychology

- Goal setting
- Time management

UNIT-2 - Communication skills

- Non verbal communication
- Interpersonal skills
- Intrapersonal skills

UNIT- 3 - Life skills

- Emotional Intelligence
- Building resilience
- Stress management
- Mind management

UNIT 4 - Career skills

- Employability skills
- Presentation skills
- Leadership skills
- Team building
- Career planning

TEXT BOOKS:

- 1. Introduction to Psychology N.L. Munn
- 2. Emotional Intelligence Daniel Goleman

18A2100605- Engineering Philosophy

Lectu Prac	ıre – Tutorial- tical:	2-0-0	Internal Marks:	40
Cred		1	External Marks :	60
Prer	equisites: understanding			
Cour	se Objectives:			
	building especial from profound an It enables the s internal structure It helps the stud thoughts and its The student is al culture, society a	ins knowledge and unders Ily Indian philosophical syst and novel ideas. tudent to understand the me e, rigor, nature and validity o lent get training in the gene application for the benefit of ble to relate philosophy bot and lived experience.	tems i.e., darsanas, which role of rigorously scruti f argumentation and thes ration of new ideas, form society. h Indian and western to	n originate nizing the is. nulation of
C01	The course in P	hilosophy is expected to bang the courses interactive.		heory and
CO2	knowing, self an would enable the	nilosophy, which includes et d society, theory and pract student in gaining knowledg ng one's goals and purpose	ice, self and transcenden e about one's meaning an	ce. These d purpose
CO3	•	provide a new understanding arrent problems, both at the		
	Unit I- Characteri	stic Features of Philosophy	7	
	 (b) The essence Brahman (c) A brief survey (d) Greek Philoso Leucippus, Socrate 	the content of the Vedas of the fundamental Upani of heterodox and orthodox s ophyThales, Heraclitus, Pa es, Plato and Aristotle	systems of Indian philoso	phy
		ge and Its Sources between knowledge (<i>Vidyā</i>)	and Ignorance (Avidua)	
	(b)Sources of know (c) Language: Wor (d)Socratic Method	vledge in Indian philosophy d as the root of knowledge (H d of knowledge as recollectio or of the divided line	Bhartrahari's Vākyapadīya	ım)
	Unit III Standards	s of Morality		

(a) The subject-matter of ethics

(b) Puruşārthas (dharma, artha, kāma, and mikşa)

(c) Law of karma

(d) Western Ethics: Hedonism, Utilitarianism, Categorical Imperative

Unit IV Knowledge as Invention

(a) Caraka, Suşruta Aryabhatta, Bhasakra

(b) Galileo, Copernicus, Kepler, Newton, Einstein

TEXT BOOKS:

C.D. Sharma, *A Critical Survey of Indian Philosophy*, Delhi: Motilal Banarsidass, 2000.

P.T.Raju, *Structural Depths of Indian Thought*, Delhi: South Asia Publishers,1985. Frank Thilly, *History of Philosophy*, USA: Sagwan Press, 2015.

W.T.Grace, *A Critical History of Greek Philosophy*, Oregon: The Foating Press, 2010. Bal Ram Singh (ed.), *Science and Technology in Ancient Indian Texts*, New Delhi: D.K. Printworld, 2012.

18A2100802- PROFESSIONAL ETHICS AND HUMAN VALUES

Pract		Tutor	al - 0	-2-0				I	nternal	Marks	:	40
l rea	tical: its:		0					F	vterna	l Marks		60*
	equisit	es:	0						Atel nu	1 1/10/113	•	00
	-											
			-	ıt Engir	neering	profes	sion					
Cour	se Objo											
٠					-	-			n value	s.		
•	To ur	ndersta	ind soc	ial resp	onsibi	lity of a	n engir	neer.				
Toin	atill ma	nol on a	dagaio	lualuar	andla							
	sen nie se Out			l values	s and 10	yaity.						
				tion of	ftha ca	urco t	ho ctu	dont w	ill ha a	hla tai		
									ill be a			
C01									al being	,	oorin	
CO2										to engin		<u>.</u>
CO3										environ		
CO4	of eth		neir ro	ie as so	ocial ex	perime	mers (engine	ersj an	d compr	enenc	
CO5			rielze li	ikolu to	como	across	in tha r	arofoco	ional	orld, an	aluzin	a tha
605		nd solu		ikely to	come	acioss	in the p	JIOIESS	IOIIAI W	onu, an	aryzin	g the
	anu n	nu son	utions.									
CUE	Doali	zo tho y	rocnon	cibilitic	o and r	ights o	fongin	oore in	the coc	iotu		
									the soc		Jutco	mas (
Cont	ributio	on of C	ourse	Outco						iety. Ogram C)utco	mes (
Cont	ributio v, 2- M	on of C edium	ourse , 3 – H	Outco igh)	mes to	wards	achiev	/ement	t of Pro	ogram (1	
Cont	ributio v, 2- M PO	on of C edium PO	ourse , 3 – H PO	Outco igh) PO	mes to PO	wards PO	achiev PO	vement PO	t of Pro	ogram () PO	РО	PO
Cont - Lov	ributio v, 2- M	on of C edium	ourse , 3 – H	Outco igh)	mes to	wards PO 6	achiev PO 7	PO 8	t of Pro	ogram (1	P0 12
Cont - Lov	ributio v, 2- M PO 1	on of C edium PO 2	ourse , 3 – H PO 3	Outcor igh) PO 4	mes to PO 5	wards PO 6 1	PO 7 1	PO 8 2	r of Pro PO 9	PO 10	P0 11	PO 12 1
Cont - Lov CO1 CO2	ributio v, 2- M PO 1	on of C edium PO 2 -	ourse , 3 – H PO 3	Outcor igh) PO 4	mes to PO 5	PO 6 1 1	PO 7 1 1	PO 8 2 2 2	PO PO 9 -	PO 10	P0 11	PO 12 1 1
- Lov CO1 CO2 CO3	ributio v, 2- M PO 1 - -	on of C edium PO 2 - -	ourse , 3 – H PO 3 - -	Outco igh) PO 4 - -	PO 5 - -	PO 6 1 1 1	PO 7 1 1 1	PO 8 2 2 2 2 2	PO 9 - -	PO PO 10 - -	P0 11	PO 12 1 1 1
Cont - Lov CO1 CO2 CO3 CO4	ributio v, 2- M PO 1 - -	on of C edium PO 2 - - -	ourse , 3 – H PO 3 - - -	Outco igh) PO 4 - -	PO 5 - -	PO 6 1 1 1 1 1 1	PO 7 1 1 1 1 1 1	PO 8 2 2 2 2 2 2 2 2	PO 9 - - -	PO PO 10 - -	P0 11	PO 12 1 1 1 1 1
Cont - Lov CO1 CO2 CO3	ributio v, 2- M PO 1 - -	on of C edium PO 2 - - - -	ourse , 3 – H PO 3 - - - - -	Outcor igh) PO 4 - - - -	PO 5 - - - - -	PO 6 1 1 1	PO 7 1 1 1	PO 8 2 2 2 2 2	PO 9 - - - - - -	PO PO 10 - - - - -	P0 11	PO 12 1 1 1

UNIT III

Engineering as Social Experimentation: Engineering as experimentation, Engineers as responsible experimenters, Codes of ethics, Industrial standards, A balanced outlook on law, Case study: The challenger.

UNIT IV

Safety, Responsibilities and Rights: Safety and risk, types of risks, Assessment of safety and risk, Safe exit, Risk-benefit analysis, safety lessons from 'the challenger', Case study: Power plants, Collegiality and loyalty, Collective bargaining, Confidentiality, Conflict of interests, Occupational crime, whistle blowing, Intellectual property rights, professional rights.

TEXT BOOKS:

- A Text book on Professional Ethics and Human Values by R.S Naagarazan- New Age International Publishers.
- "Engineering Ethics includes Human Values" by M. Govindarajan, S. Natarajan and V. S. Senthil Kumar- PHI Learning Pvt. Ltd-2009

REFERENCE BOOKS:

"Professional Ethics and Human Values" by A. Alavudeen, R. Kalil Rahman and M. Jayakumaran- Laxmi Publications.

E-RESOURCES:

- www.onlineethics.org
- www.nspe.org
- www.globalethics.org
- www.ethics.org

B.TECH CSE II YEAR-II SEMESTER

18A2200201-PROBABILITY AND STATISTICS

Lecture – Tutorial:	3-1	Internal Marks:	40
Credits:	4	External Marks:	60
Prerequisites:		· · · ·	
Course Objectives:			
and regression. 2. To familiarize the te 3. To familiarize the te 4. To familiarize the te	chniques in central tendence echniques in probability and echniques in probability dis echniques in large and small ts to solve problems in thei	d random variables. tribution. ll sample tests.	ation

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Student will be able to Find the measures of central tendency and relation between them.(L1)

CO2 Student will be able to **Evaluate the correlation coefficient, rank coefficient and regression.(L5)**

CO3 Students will be able to Understand probabilities of events and expectations of random variables for elementary problems.(L2)

CO4 Students will be able to Solve problems related to binomial and passion distribution.(L3)

CO5 Student will be able to Compare situations in which it is appropriate to consider the relevance of the Normal distribution.(L4)

CO6 Student will be able to Construct hypothesis and carryout appropriate tests to checks its acceptability.(L3)

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

- 0						•			-	 	-	0 /					
	Г	PO	I	PO		PO		PO	PO	PO	PO	PO	PO	PO	РО	P	0
		1		2		3		4	5	6	7	8	9	10	11	12	2
CO1	3		3		2		2										
CO2	3		3		2		2										
CO3	3		3		2		2								-		
CO4	3		3		2		2								-		
CO5	3		3		2		2										
CO6	3		3		2		2										

UNIT I

Unit 1: Descriptive statistics and methods for data science

(Pre-requisite:Data science, Statistics Introduction, Population vs Sample, Collection of data, primary and secondary data, Type of variable: dependent and independent Categorical and Continuous variables, Data visualization.---No Question selects from the above part)

Measures of Central tendency: Arithmetic Mean – Median – Mode - Geometric Mean-Harmonic Mean and Relations between them- Merits and Demerits.

Measures of Dispersion: Range – Quartile Deviation – Variance, Standard Deviation – Skewness - Kurtosis.

Curve Fitting and Principles of Least Squares.

Correlation - correlation coefficient - rank correlation - Regression coefficients Regression lines.

UNIT 2: Probability

Probability, probability axioms, addition law and multiplicative law of probability, conditional probability, Baye's theorem, random variables (discrete and continuous), probability density functions, properties, mathematical expectation.

Unit3: Distributions

Probability distribution - Binomial, Poisson approximation to the binomial distribution and normal distribution-their properties.

Unit 4: Estimation and Testing of hypothesis:Large sample tests Small sample tests

Population, sample distribution of mean, point estimation of mean and variance, confidence limits and intervals for mean, standard error, sample distribution of variance.

Formulation of null hypothesis, alternative hypothesis, the critical and acceptance regions, level of significance, two types of errors and power of the test.

Large Sample Tests: Test for single proportion, difference of proportions, test for single mean and difference of means. Confidence interval for parameters in one sample and two sample problems

Small Sample Tests: Student t-distribution (test for single mean, two means and paired t-test), testing of equality of variances (F-test), χ^2 - test for goodness of fit, χ^2 - test for independence of attributes.

Textbooks:

- 1 Miller and Freund, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2 S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

Reference Books:

- 1 S. Ross, a First Course in Probability, Pearson Education India, 2002.
- 2 W. Feller, an Introduction to Probability Theory and its Applications, 1/e, Wiley, 1968.

18A2205401- WEB TECHNOLOGIES AND ADVANCED JAVA PROGRAMMING

Lecture - Practical:	Tutoria	al- 3-()-0				Ir	ternal	Marks		40
Credits:		3					E	xternal	Marks	:	60*
Prerequis	ites:	0						1001 1141		•	00
Course Ob	jectives:										
Γo understa		-	• 1		-	Languag	e and C	lascadin	g Style	Sheets	
Го learn Jay	-										
Fo learn Jay											
Го learn Se											
Fo learn the		of pure	Dynam	ic Web	Applica	ation usi	ing JDB	C			
Course Ou	tcomes:										
U <mark>pon succ</mark>	essful con	mpleti	on of t	he cou	rse, the	e stude	nt will	be able	e to:		
	lent able to							ns using	g feature	s of H7	ſML
-	lement web										
CO3 Stuc	lent will A	pply the	e conce	pts of s	erver si	de techn	ologies	for dyn	amic we	eb appli	icatior
	ity to desig		veb bas	ed appl	ications	using e	effective	data ba	se acces	ss with	rich
clier	nt interaction	on									
CO5 Abil	ity to Deve	elop rei	isable c	compon	ent for (Graphic	al User	Interfac	e applic	ations	
Contribut	ion of Co	urse O	utcom	es tow	vards a	chieve	ment o	of Prog	ram O	utcom	es (1
Low, 2- M	edium, 3 -	- High)									
PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
1	2	3	4	5	6	7	8	9	10	11	12
- 201	_	3	_	_	_	_	_	_	_	_	2
CO2 -		2									2
	-	3	-	-	-	-	-	-	-	-	2
	-	2	-	-	-	-	-	-	-	-	
CO4 -	3	3	2	-	-	-	-	-	-	-	2
CO5 UNIT I	3	-	3	2	-	-	-	-	-	-	3
HTML tags script, objec U NIT II Working w	cts in Java	Script,	Dynam	nic HTN	/IL with	Java Sc	cript.		Introdu s, Docu		
	LT, DOM a	and SA	X.								
model, XSI											
model, XSI											
UNIT III	rs and Serv	ilets: T	omcaty	weh ser	ver Int	roductic	on to Se	rvlets• I	ifecycl	eofa	Servle
UNIT III Web Server									•		
UNIT III	Servlet A	PI, The	e javax.	servlet	Packag	e, Read	ing Ser	vlet para	ameters	, and R	eadin
UNIT III Web Server JSDK, The Initializatio	Servlet A n parame	PI, The ters. T	e javax. The jav	servlet /ax.serv	Packag let HT	e, Read TP pa	ing Ser ckage,	vlet para	ameters	, and R	eadin
U NIT III Web Server ISDK, The	Servlet A n parame	PI, The ters. T	e javax. The jav	servlet /ax.serv	Packag let HT	e, Read TP pa	ing Ser ckage,	vlet para	ameters	, and R	eadin

Database Access: Database Programming using JDBC, studying javax.sql.* package, accessing a database from a JSP page,

Introduction to JSP: The Problem with Servlet. The Anatomy of a JSP Page, JSP Processing. JSP application design with MVC

JSP Application Development: Generating Dynamic Content, Using Scripting ElementsImplicit JSP Objects, Conditional Processing – Displaying Values Using an Expression to Set an Attribute, Declaring Variables and Methods Error Handling and Debugging Sharing Data Between JSP pages, Requests, and Users Passing Control and Date between Pages – Sharing Session and Application Data – Memory Usage Considerations

TEXT BOOKS:

- The Complete Reference, Java 2, 3ed, Patrik Naughton, Herbert Schildt, TMH
- Programming the World Wide Web, Robet W Sebesta, 7ed, Pearson.
- Web Technologies, Uttam K Roy, Oxford Java Server Pages , Hans Bergstan, Oreilly

REFERENCE BOOKS:

- Web Technologies, HTML< JavaScript, PHP, Java, JSP, XML and AJAX, Black book, Dream Tech.
- An Introduction to Web Design, Programming, Paul S Wang, Sanda S Katila, Cengage
- An introduction to Web Design and Programming, Wang Thomson
- Web application technologies concepts, Knuckles, John Wiley.
- Programming world wide web, Sebesta, Pearson
- Beginning Web Programming, Jon Duckett , Wrox, Wiley Java server pages, Pekowsky, Pearson

E-RESOURCES:

- 1. https://www.w3schools.com/
- 2. <u>https://www.tutorialspoint.com/perl/</u>
- 3. https://www.railstutorial.org/book
- 4. https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

18A2205402- SOFTWARE ENGINEERING

Pract	ıre – tical:	Tutor	ial- 3	-0-2*				Iı	nternal	Marks	:	40
Credi			5					E	xterna	l Marks	3:	60*
Prere	equisit	es:									L	
	_											
	se Obje											
				requirer								
				ect and r					2			
		-	•	ontrol ar			-		oftware	.		
				and esti								
			-	ntation i	ssues, v	alidatio	n and ve	erificatio	on proce	edures		
	se Out											
Upon			-	tion of t		•						
CO1								ring, app	olication	ns, agile	develop	oment
		-		nt softw	-							
CO2	Analy	ze the p	orincipl	es of rec	quireme	nt engir	leering					
CO3	Create	e archite	ectural	design f	or a giv	en proje	ect.					
CO4	Apply	v differe	ent testi	ng techn	iques							
Cont	ributio	n of C	ourse	Outcon	nes tov	wards a	achieve	ement	of Prog	gram O	utcome	es (1
Low.	2- Mec	lium, 3	8 – Higl	1)					_			
- ,	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
- ,			-	4	E	6	7	8	9	10	11	12
	1	2	3	4	5	U	-	•	-	-		
CO1	1 3	2 3	3	4 3	3			2	2	2	3	2
											3	
C01	3	3	3	3	3			2	2	2		2 2 2
CO1 CO2	3	3	3	3	3			2 2	2 2	2 2	3	2

Application Domains, Legacy Software, The Unique Nature of Web Apps, Software Engineering, The Software Process, Software Engineering Practice, The Essence of Practice, General Principles, Software Myths.

The Software Process: Process Models, A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal and Team Process Models, Process Technology, Product and Process.

Agile Development: What Is Agility? Agility and the Cost of Change, What Is an Agile Process? Extreme Programming (XP). Other Agile Process Models, A Tool Set for the Agile Process.

Practice Session:

1. Write down the problem statement for a suggested system of relevance

UNIT II

Understanding Requirements: Requirements Engineering, Establishing the Groundwork, Eliciting Requirements, Developing Use Cases, Building the Requirements Model, Negotiating Requirements, Validating Requirements.

Requirements Modeling: Scenarios, Information and Analysis classes: Requirements Analysis, Scenario-Based Modeling, UML Models That Supplement the Use Case, Data Modeling Concepts, Class-Based Modeling.

Requirements Modeling: Flow, Behavior, Patterns, And Web apps: Requirements Modeling Strategies, Flow-Oriented Modeling, Creating a Behavioral Model, Patterns for Requirements Modeling, Requirement modeling for WebApps.

Practice Session:

1. Do requirement analysis and develop Software Requirement Specification Sheet (SRS) for suggested system.

UNIT III

Design Concepts: Design within the Context of Software Engineering, the Design Process, Design Concepts, the Design Model. **Architectural Design**: Software Architecture, Architectural Genres, Architectural Styles, Architectural Design, Assessing Alternative Architectural Designs.

Modeling Component-Level Design: What Is a Component? Designing Class-Based Components, Conducting Component Level Design, and Component level design for Web Apps. **Performing User Interface Design:** The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps.

Practice Session:

- 1. Preparation of Design Documents for suggested system.
- 2. Study and usage of any Design phase CASE tool.

UNIT IV

Software Testing Strategies: A Strategic Approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Test Strategies for Object-Oriented Software, Validation testing, System testing, the art of debugging.

Testing Conventional Applications: Software Testing Fundamentals, Internal and External Views of Testing, White Box Testing, Basis Path Testing, Control Structure Testing, Black-Box Testing, Model-Based Testing, Testing for Specialized Environments, Architectures, and Applications, Patterns for Software Testing.

Practice Session:

- 1. Preparation of Testing Phase related documents for some problems
- 2. To perform unit testing and integration testing
- 3. To perform various white box and black box testing techniques.

TEXT BOOKS:

Roger S.Pressman, "Software Engineering- A Practitioner's Approach". Tata McGraw-Hill International 7th ed, 2010

REFERENCE BOOKS:

Ian Somerville, "Software Engineering". 9th ed, Pearson Education. 2011. Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli, "Fundamentals of Software Engineering".2 ed, PHI. 2009

RajibMall, Fundamentals of Software Engineering. 3 ed, PHI. 2009.

Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.

E-RESOURCES:

- 1. <u>http://www.dcnicn.com/BusinessNews/WVU-MIS13Apr00/Software-Engineering.pdf</u>
- 2. http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Presentations/PDF/ch1.pdf
- 3. http://sites.computer.org/ccse/SE2004Volume.pdf
- 4. http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
- 5. <u>http://www.dau.mil/pubs/pdf/SEFGuide 01-01.pdf</u>

18A2205403- COMPUTER ORGANIZATION

		Tutor	ial- 3	-0-0				I	nternal	Marks		40
Pract												
Credi			3	3			Ε	xternal	Marks	5:	60*	
Prere	equisit	tes:										
Cour	aa Ahi	octivos										
		ectives: the arch		ofan	odern (compute	er with	its vari	ous prod	ressing	units	Also th
		measure						its vair	ous pro	cosing	units. 1	1150 ti
		this the						puter.				
		comes:		-)			01 0011	p				
		essful co		ion of	the cou	irse, th	e stude	nt will	be able	e to:		
CO1		to under	-								l Contro	ol unit
CO2		ents can			-			<u> </u>				
CO3	Abili	ty to unc	lerstand	l memor	ry hiera	rchy and	l its imp	act on o	compute	r cost/p	erforma	ance
CO4	Abili	ty to und	lerstand	l the adv	vantage	of instr	uction le	evel par	allelism	and pip	elining	for
		performa			0			···· ·· · · · ·		F-F	8	
Cont	ributio	on of Co	ourse	Outcon	nes tov	wards a	achieve	ement	of Prog	ram O	utcom	٥ς (1
												cs (I
		dium, 3	– Higł	1)								U 3 (1
		dium, 3 PO	– Higł PO	n) PO	PO	PO	PO	РО	РО	PO	РО	P0
Low,	2- Me PO 1	dium, 3 PO 2		-	P0 5	P0 6		P0 8	P0 9	PO 10	P0 11	
Low,	2- Me PO	dium, 3 PO	PO	PO	-	_	РО	-	-	-	-	PO
Low, CO1	2- Me PO 1	dium, 3 PO 2	P0 3	PO 4	5	6	P0 7	8	9	10	11	P0 12
Low, CO1 CO2	2- Me PO 1 3	dium, 3 PO 2 3	PO 3 	PO 4 	5	6 	PO 7 	8	9	10	11 	P0 12
Low, CO1 CO2 CO3	2- Me PO 1 3	dium, 3 PO 2 3 3	PO 3 	PO 4 3	5 	6 	PO 7 	8	9 	10 	11 	P0 12
Low, CO1 CO2 CO3 CO4	2- Me PO 1 3 3 3 3 3	dium, 3 PO 2 3 3 3 3	PO 3 	PO 4 3 	5 	6 	PO 7 	8 	9 	10 	11 	PO 12
Low, CO1 CO2 CO3 CO4 UNIT	2- Me PO 1 3 3 3 3 3 7	dium, 3 PO 2 3 3 3 3	PO 3 	PO 4 3 	5 	6 	PO 7 	8 	9 	10 	11 	PO 12
Low, CO1 CO2 CO3 CO4 UNIT Basi	2- Me PO 1 3 3 3 3 3 7 1 ic Stru	dium, 3 PO 2 3 3 3 3 3 3	PO 3 Of Cor	PO 4 3 mputers	5 5 : Cor	6 mputer	PO 7 	8 	9 	10 	11 	PO 12
Low, CO1 CO2 CO3 CO4 UNIT Basi conc	2- Me PO 1 3 3 3 3 7 1 ic Strucepts, B	dium, 3 PO 2 3 3 3 3 3 3 cture (PO 3 Of Con tures, S	PO 4 3 oftware	5 s : Cor , Perfor	6 mputer mance.	P0 7 Types,	8 Functio	9 onal uni	10 t, Basid	11 c Oper	P0 12 ational
Low, CO1 CO2 CO3 CO4 UNIT Basi conc Regi	2- Me PO 1 3 3 3 7 1 ic Stru cepts, B ister T	dium, 3 PO 2 3 3 3 3 3 cture (5 us struct	PO 3 Of Con tures, S and M	PO 4 3 oftware ficro-O	5 5 : Cor , Perfor	6 mputer mance.	PO 7 Types, gister Tr	8 Function	9 onal uni	10 t, Basid	11 c Oper	P0 12 ational
Low, CO1 CO2 CO3 CO4 UNIT Basi conc Regi Bus	2- Me PO 1 3 3 3 7 1 ic Stru cepts, B ister T and r	dium, 3 PO 2 3 3 3 3 3 3 cture (PO 3 Of Con tures, S and N Transf	PO 4 3 oftware ficro-O čers, At	5 s : Cor , Perfor peratio	6 mputer mance. ons: Reg	PO 7 Types, gister Tr	8 Function	9 onal uni	10 t, Basid	11 c Oper	P0 12 ational

Basic Computer Organization and Design: Instruction codes, Computer Registers,

Computer Instructions, Timing and Control, Instruction cycle, Memory Reference Instructions,

Input-Output and Interrupts

UNIT II

Central Processing Unit: General register Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer (RISC).

Micro Programmed Control : Control memory, Address sequencing, microprogram example,

design of control unit.

UNIT III

Computer Arithmetic : Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associative

Memory, Cache Memory, Virtual Memory, Memory Management Hardware. Input Output

UNIT IV

Organization: Peripheral Devices, Input-output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), Input-Output Processor.,Serial Communication. Standard I/O Interfaces: PCI Bus, USB

Pipeline and vector processing: parallel processing, pipelining, Arithmetic pipeline,

Instruction pipeline, RISC Pipeline, Vector Processing

TEXT BOOKS:

1 Morris M. Mano, Computer Systems Architecture.3 Ed, Pearson/PHI, 2013

[2] Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th Edition, Tata McGraw Hill, 2002.

REFERENCE BOOKS:

John P.Hayes, 'Computer architecture and Organisation', Tata McGraw-Hill, Third edition, 1998.

E-RESOURCES:

https://www.tutorialspoint.com/computer_organization/index.asp

https://www.geeksforgeeks.org/computer-organization-basic-computer-instructions/

OE- MICROPROCESSOR AND ITS APPLICATIONS

	ıre –	Tutor	ial- 3-	0-0-				Iı	nternal	Marks		40
Pract	tical:											
Credi			3					Ε	xterna	l Marks	5:	60*
	equisit											
Numb	oer syst	ems & o	digital l	ogic de	sign coi	ncepts,	Basic co	ompilat	ion pro	cess		
Cour	se Obje	ectives	:									
						-			Signific	ance of	8086	
							ment to					
To kn	low the	archite	ecture d	letails o	of 8051	microc	ontroll	er.				
To stu	udy and	l desigr	n the co	ncepts	of Cour	nters/ti	mers ai	nd seria	l port o	of 8051.		
To un	dersta	nd the a	archited	cture of	ARM7	and its	THUMI	3 instru	ction se	et.		
To dis	scuss tł	ne inter	facing	of 8051	to vari	ous per	ripheral	device	s.			
Cour	se Out	comes:										
Upon	n succe	ssful co	omplet	ion of	the cou	ırse, th	e stude	ent will	be abl	e to:		
C01									ctures a			naliti
CO2		0		-		-		sed syst	ems for	real ti	me	
						age like						
CO3									ts functi			
CO4				mporta	ance of	f Time	rs/Cou	nters a	and Ser	rial p	orts o	f 805
	micro	contro	ller									
C05	To De	scribe	the bas	ics of A	RM an	d ARM7	7 archit	ecture	and its	functio	nalities	
C06	To Int	terface	externa	al perip	herals	and I/O	device	s and p	rogram	the 80	51	
		contro				,			0			
Cont	ributio	n of C	ourse	Outcon	nes tov	wards a	achieve	ement	of Prog	gram O	utcom	es (1
			– High						_	-		-
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	2	-	3	-	-	-	-	-	2	-
CO3	3	2	3	2	2	-	-	-	-	-	2	-
C04	2	2	2	-	-	-	-	-	-	-	-	-
	3	2	2	2	3	-	_	_	-	-	2	
C05	5	~	-								~	-
CO5 CO6	2	2	2	3	2	-	-	-	-	-	-	-

UNIT-I

Microprocessor Architecture: Introduction to Microprocessors, Families of a Microprocessor, 8086 Microprocessor- Features, Architecture, Pin diagram of 8086.

8086 Architecture Modes: Register Organization, 8086 System Timing, Minimum Mode and Maximum Mode of Operation

UNIT II UNIT-II

Instruction Set: Addressing Modes, Instruction Set, Assembler Directives, and Program development steps.

Programming and Interrupts: Assembly Language Program Development Tools, Programs with an Assembler, Interrupt Structure, Interrupt Service Routine, Interrupt Vector Table,

UNIT III UNIT-III

Microcontroller: 8051 Microcontroller Architecture, Pin Diagram, Addressing Modes, Instruction Set and Programs, 8051 Memory and I/O Interfacing.

8051 Interfacing: Modes of Timer Operation, Serial Port Operation, Interrupt Structure of 8051, Interfacing of Seven Segment Displays, Stepper Motor.

UNIT IV UNIT-IV

ARM: Introduction to 16/32 Bit Processor, Internal Architecture of ARM 7, Register Organization, ARM and THUMB Operating Modes, Development Tools.

Peripherals and Interfacing: 8255 PPI – Various Modes of Operation and Interfacing to 8086, Keyboard and Seven Segment Displays, Stepper Motor, D/A and A/D Converter Interfacing.

TEXT BOOKS:

TEXT BOOKS:

- 1. Advanced Microprocessor and Peripherals (Architecture, Programming & Interfacing) by A.K. Ray & K.M. Bhurchandi TMH Publication.
- 2. Microcontrollers [theory and applications] TMH publication by Ajay V. Deshmukh.
- 3. Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd Edition, by Raj Kamal, Pearson Publications.

REFERENCE BOOKS:

- 1. Microprocessor and Interfacing by Douglas Hall 2nd Edition.
- 2. The 8051 Microcontroller & Embedded Systems by Mazidi & Mazidi Pearson / PHI publication.

E-RESOURCES:

https://freevideolectures.com/course/3018/microprocessors-and-microcontrollers/1 https://www.tutorialspoint.com/microprocessor https://www.javatpoint.com/microprocessor

18A2205491- WEB TECHNOLOGIES AND ADVANCED JAVA PROGRAMMING LAB

Lecture – Tutorial· Practical:	0-0-3	Internal Marks:	40
Credits:	3	External Marks :	60*
Prerequisites:			
JAVA PROGRAMMING,	DBMS		

Course Objectives:

HyperText Markup Language (HTML) and Cascading Style Sheets (CSS) for laying out

(formatting) pages that contain text, images and graphics.

Extensible Markup Languages (XML is used to store and transport data among webpages), a

mechanism for defining new tag sets and interchanging data among web applications.

Client-side Programming using JavaScript for validating the data.

Server-Side Programming using servlets are to generate static content and Java

Server Pages are used to generate dynamic content.

Creating a pure Dynamic Web Application which retrieves the data from

Database according to the client request using JDBC.

Course Outcomes:

Cour	se outcomes.
Upon	successful completion of the course, the student will be able to:
C01	Create a website statically or dynamically.
CO2	Get knowledge on displaying and decorating the contents in a webpage.
CO3	Learn the concepts of store and transport the data among webpages.
CO4	Generate static or dynamic content according to the client's request.
CO5	Create objects with which the client can communicate with server.
C06	Provide User Authentication by using cookies and back end operations using JDBC.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	P0 1	РО 2	PO 3	PO 4	РО 5	РО 6	P0 7	PO 8	РО 9	PO 10	PO 11	PO 12
	T		3	4	3	U	/	0	9	10	11	12
C01	3	3										
CO2	3	3		3								3
CO3	3	3										
CO4	3	3										3
CO5	3	3										3
C06	3	3										

Week-1:

Design the following static web pages required for an online book store web site. 1) **HOME PAGE:** The static home page must contain three **frames**. Top frame : Logo and the college name and links to Home page, Login page, Registration page, Catalogue page and Cart page (the description of these pages will be given below). Left frame : At least four links for navigation, which will display the catalogue of respective links. For e.g.: When you click the link "CSE" the catalogue for CSE Books should be displayed in the Right frame.

Right frame: The *pages to the links in the left frame must be loaded here*. Initially this page contains

description of the web site.

Logo	Web Site Name								
Home	Login	Registration	Catalogue	Cart					
CSE ECE EEE CIVIL		Description of	the Web Site						

2) LOGIN PAGE:

This page looks like below:

Logo	Web Site Name									
Home	<mark>Login</mark>	Registration	Catalogue	Cart						
CSE ECE EEE CIVIL		Login : Password: Submit	Reset							

3) CATOLOGUE PAGE:

The catalogue page should contain the details of all the books available in the web site in a table.

The details should contain the following:

- 1. Snap shot of Cover Page.
- 2. Author Name.
- 3. Publisher.
- 4. Price.
- 5. Add to cart button.

Logo	Web Site Name								
Home	Login	Registration	Catalogue	Cart					
CSE ECE		Book : XML Bible Author : Winston Publication : Wiely	\$ 40.5	Add to cart					
EEE	Bilale	20 							
CIVIL		Book : Al Author : S.Russel Publication : Princeton hall	\$ 63	Add to cart					
		Book : Java 2 Author : Watson Publication : BPB publications	\$ 35.5	Add to cart					
	HIML 4	Book : HTML in 24 hour Author : Sam Peter Publication : Sam publication	s \$50	Add to cart					

Note: Week 2 contains the remaining pages and their description.

Week-2:

4) CART PAGE: The cart page contains the details about the books which are added to the cart.

The cart page should look like this:

Logo	Web Site Name									
Home	Login	Registratio	in	Catalogue	Cart					
CSE ECE	Book name	Price	Quantity	Amount						
EEE	Java 2	\$35.5	2	\$70						
CIVIL	XML bible	\$40.5	1	\$40.5						
			Total amount	- \$130.5						

5) REGISTRATION PAGE:

Create a "registration form "with the following fields

- 1) Name (Text field)
- 2) Password (password field)
- 3) E-mail id (text field)
- 4) Phone number (text field)
- 5) Sex (radio button)
- 6) Date of birth (3 select boxes)
- 7) Languages known (check boxes English, Telugu, Hindi, Tamil)
- 8) Address (text area)

WEEK 3: VALIDATION:

Write JavaScript to validate the following fields of the above registration page.

- 1. Name (Name should contains alphabets and the length should not be less than 6 characters).
- 2. Password (Password should not be less than 6 characters length).
- 3. E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com)

4. Phone number (Phone number should contain 10 digits only).

Note : You can also validate the login page with these parameters.

Use PHP to connect with the database to store the above details.

Week-4:

Design a web page using **CSS** (Cascading Style Sheets) which includes the following: 1) Use different font, styles:

2) Set a background image for both the page and single elements on the page. You can define the background image for the page like this:

BODY {background-image:url(myimage.gif);}

3) Control the repetition of the image with the background-repeat property.

As background-repeat: repeat

Tiles the image until the entire page is filled, just like an ordinary background image in plain HTML.

4) Define styles for links as A:link A:visited A:active A:hover Example: <style type="text/css"> A:link {text-decoration: none} A:visited {text-decoration: none} A:active {text-decoration: none} A:hover {text-decoration: none} A:hover {text-decoration: underline; color: red;} </style>

```
5) Work with layers:
For example:
LAYER 1 ON TOP:
```

<div style="position:relative; font-size:50px; z-index:2;">LAYER 1</div> <div style="position:relative; top:-50; left:5; color:red; font-size:80px; zindex: 1">LAYER 2</div> LAYER 2 ON TOP: <div style="position:relative; font-size:50px; z-index:3;">LAYER 1</div> <div style="position:relative; top:-50; left:5; color:red; font-size:80px; zindex: 4">LAYER 2</div>

6) Add a customized cursor:

Selector {cursor:value}

For example:

<html></html>
<head></head>
<style type="text/css"></th></tr><tr><th>.xlink {cursor:crosshair}</th></tr><tr><th>.hlink{cursor:help}</th></tr><tr><th></style>
<body></body>

CROSS LINK
HELP LINK

Week-5:

Write an XML file which will display the Book information which includes the following:

- 1) Title of the book
- 2) Author Name
- 3) ISBN number
- 4) Publisher name
- 5) Edition
- 6) Price

Write a Document Type Definition (DTD) to validate the above XML file.

Display the XML file as follows.

The contents should be displayed in a table. The header of the table should be in color GREY. And the

Author names column should be displayed in one color and should be capitalized and in bold. Use your own colors for remaining columns.

Use XML schemas XSL and CSS for the above purpose.

Note: Give at least for 4 books. It should be valid syntactically.

Hint: You can use some xml editors like XML-spy

Week-6:

1) Install TOMCAT web server and APACHE.

While installation assign port number 4040 to TOMCAT and 8080 to APACHE. Make sure that these ports are available i.e., no other process is using this port.

2) Access the above developed static web pages for books web site, using these servers by putting the web pages developed in week-1 and week-2 in the document root.

Access the pages by using the urls : http://localhost:4040/rama/books.html (for tomcat) http://localhost:8080/books.html (for Apache)

Week-7: User Authentication : Assume four users user1,user2,user3 and user4 having the passwords pwd1,pwd2,pwd3 and pwd4 respectively. Write a servelet for doing the following.

1. Create a Cookie and add these four user id's and passwords to this Cookie.

2. Read the user id and passwords entered in the Login form (week1) and authenticate with the values (user id and passwords) available in the cookies.

If he is a valid user(i.e., user-name and password match) you should welcome him by name(user-name) else you should display "You are not an authenticated user ".

Use init-parameters to do this. Store the user-names and passwords in the webinf.xml and access them in the servlet by using the getInitParameters() method.

Week-8:

Install a database(Mysql or Oracle).

Create a table which should contain at least the following fields: name, password, email-id, phone number(these should hold the data from the registration form).

Practice 'JDBC' connectivity.

Write a java program/servlet/JSP to connect to that database and extract data from the tables and display them. Experiment with various SQL queries.

Insert the details of the users who register with the web site, whenever a new user clicks the submit button in the registration page (week2).

Week-9:

Write a JSP which does the following job:

Insert the details of the 3 or 4 users who register with the web site (week9) by using registration form. Authenticate the user when he submits the login form using the user name and password from the database (similar to week8 instead of cookies).

Week-10:

Create tables in the database which contain the details of items (books in our case like Book name, Price, Quantity, Amount)) of each category. Modify your catalogue page (week 2)in such a way that you should connect to the database and extract data from the tables and display them in the catalogue page using JDBC.

18A2205991--Aptitude and Reasoning

Lecture – Tutorial-Practical:	0-0-2	Internal Marks:	40
Credits:	1	External Marks:	60*

UNIT – I

- 1. PERCENTAGES
- 2. SIMPLE INTEREST & COMPOUND INTEREST
- 3. PROFIT AND LOSS

UNIT – II

- 1. TIME AND WORK
- 2. PIPES AND CISTERN
- 3. TIME, SPEED AND DISTANCE

UNIT-III

- 1. DATA INTERPRETATION
- 2. SYLLOGISMS, AVERAGES

UNIT- IV

- 1. VISUAL /DIAGRAMATIC REASONING
- 2. CODING AND DECODING
- 3. NUMBER SERIES
- 4. PROBLEMS ON AGES

TEXT BOOKS:

- 1) APTIPEDIA, WILEY
- 2) Quantitative Aptitude, RS AGARWAL, S.Chand Publishers

REFERENCE BOOKS:

1. HOW TO PREPARE FOR Quantitative Aptitude, ARUN SHARMA, Mc GRAW HILL

18A2205791Mini project							
Lecture – Tutorial-Practical:	0-0-2	Internal Marks:	40				
Credits:	1	External Marks:	60*				

The mini project is designed to help students develop practical ability and knowledge about practical tools/techniques in order to solve real life problems related to the industry, academic institutions and computer science research. The course Mini Project is one that involves practical work for understanding and solving problems in the field of computing. Any computer science project usually consists of the following: analysis, design, coding/implementation and testing of some information system or subsystem, such as, a piece of software. The subsystem does not have to be a computer program; a design document might be the appropriate output from a design study. The design and development of hardware system/subsystem would also be an appropriate project, however, in this course we expect a software system or subsystem. This course will also develop your investigative, research and report writing skills and will provide an opportunity for you, to investigate a chosen topic in considerable depth. Mini Project provides the opportunity for students to demonstrate the application of their programming and research skills, and to apply their knowledge to complex computing problems.

Students can take up small problems in the field of Computer Science and Engineering as mini project.

Project can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

A batch of 3 students can form it as group

The type of the project selection could be an application, product, a review or a research work. Project Review Committee will conduct 3 internal Reviews and one Final Review for 100 Marks.

Review I (Project Synopsis ,analysis)	20 Marks
Review II(Project Design)	20 Marks
Review III(Project Implementation)	20 Marks
Final Review (Project Evaluation with conclusion and report)	40 Marks

OPEN ELECTIVE I

OPEN ELECTIVE I 18A2205601- DATA STRUCTURES

Lecture	– Tutoria	al- 2-	0-2				I	nternal	Marks:		40
Practical Credits:	1::	3					F	xternal	Marks		60
Prerequi	isites:	5					L	Atel hai	Marks	•	00
	amming										
	bjectives:	11	f								
	o impart basic		U								
8 Be	e familiar with	basic t	echniqu	ues of a	lgorithi	n analys	sis				
9 Be	e familiar with	writin	g recurs	sive me	thods						
10 To	o understand c	oncept	s about	search	ing and	lsorting	techni	aues			
	o design and ii	•			0	C		•	ctructu	roc lik	o etacl
	-	-			1005 08	SIC dIIU	auvailt	cu uată	suuctu	ICS IIK	= Stati
qu	ieues, lists, tre	es and	graphs.								
12 To	o introduce va	rious te	echniqu	es for r	epresei	ntation o	of the d	ata in th	e real w	vorld.	
Тс	o understandi	ng ah	out wr	iting a	lgorithr	ns and	sten l	ov sten	approz	ach in	solvi
	oblems with t	0		0	0		-	by beep	approt		00111
Ĩ		1									
Course O	Outcomes:										
	ccessful comp	oletion	of the	course	, the st	udent w	vill be a	able to:			
-	Ability to illust								oncepts	to des	ign da
	structure for t										
	Ability to desig	gn appl	lication	s using	stacks	and que	eues an	d implei	ments v	arious	types
	queues Analyze and in	nlomo	ntopor	ations	on link	d list ar	nd dom	onctrate	thoir a	nnlicat	ione
	Ability to analy	-	-					onstrate	e then a	ppiicat	IONS
	Ability to dem		-		-			h trees a	and its a	opplicat	ions
	Ability to eval			-			-				
	applications				•		0	•	•		0 1
	ition of Cours	e Outo	comes t	oward	s achie	vement	t of Pro	gram O	utcom	es (1 -	Low,
	, 3 – High)	DO	DO	DC	DO	DC	DC	DC	DC	DO	DO
	PO PO 1 2	PO 3	PO 4	РО 5	РО 6	PO 7	РО 8	РО 9	PO 10	PO 11	PO 12
	L 4		2	-	U		U			11	14
	2 2	2		-	-	-		-	-		3
CO1	3 3	2								-	3
CO1 CO2	3 2	3	2	-	-		_	-	-	-	3
CO1 CO2 CO3	3 2 3 2	3 3	2 2	-	-	-	-	-	-	-	33
CO1 CO2	3 2	3	2	-			- - - -	-	-		3

UNIT I : Data Structures, Recursion, Searching, and Sorting.

Data Structures: Definition, Types of Data Structures, Arrays, structures, self-referential structures, Operations, Algorithm analysis Time Complexity and Space Complexity. **Recursion:** Definition, Linear and Binary recursions, Iteration vs. Recursion.

Searching: Linear Search, Binary Search.

Sorting: Basic concepts, Divide-and-Conquer approach, Insertion Sort, Merge Sort, Quick Sort, and Heap Sort.

UNIT II: Linked Lists, Stacks, and Queues.

Linked Lists: Introduction, types of Linked Lists, operations, inserting a node in Single Linked List, deleting a node in Single Linked List, searching a node in Single Linked List, inserting, deleting, and searching a node in Double Linked List.

Stacks: Introduction, operations, applications, Stacks implementation using Arrays, Stacks implementation using Linked List, Expression Conversion: Infix to Postfix, Infix to Prefix.

Queues: Introduction, operations, applications, Queues implementation using Arrays, Queues implementation using Linked Lists, Circular Queue. Priority Queues

UNIT III: Trees.

Basic Tree Concepts, Terminology, operations, Tree traversals, **Binary Trees:** definition, properties, Binary Tree representations, operations, **Binary Search Tree:** definition, properties, applications, Inserting, Deleting, and Searching element in Binary Search Tree,

Threaded Binary Tree: definition, properties, Inserting a Node into a Threaded Binary Tree, **Heaps:** Definition of a Max Heap, properties.

UNIT IV: Graphs.

Graphs: Introduction, Terminology, Representation of graphs, types of graphs, applications, operations, Graph transversal techniques: Breadth First Search (BFS), Depth First Search (DFS), implementations. **Minimum Spanning Tree (MST):** definition, Prim's algorithm, Kruskal's algorithm, **Shortest paths:** Basic Concepts, Dijsktra's algorithm

TEXT BOOKS:

1. Fundamentals of DATA STRUCTURES in C, Horowitz, Sartaj Sahani, Susan Anderson – Freed, University Press

2.Data Structures, 2/e, Richard F, Gilberg , Forouzan, Cengage

REFERENCE BOOKS:

1 .Data Structures using C, 2nd Edition,by A. K. Sharma, Pearson India

2. Classic Data Structures, 2/e, Debasis, Samanta, PHI,2009

3. Data Structures and Algorithms, 2008, G.A.V.Pai, TMH

4. DATA STRUCTURE USING C, Udit Agarwal, KATSON Books

5. Data Structures using C,Reema Thareja, Oxford

E-RESOURCES:

- 4. https://en.wikipedia.org/wiki/Data_structure
- 5. <u>https://www.tutorialspoint.com/data structures algorithms/data structures basics</u>
- 6. http://nptel.ac.in/courses/106103069/

Open Elective II

- OBJECT ORIENTED PROGRAMMING USING C++ (Open Elective II)

	ıre – tical::	Tutoria	al- 2-	0-2				I	nternal	Marks	5:	40
Cred			3					E	xterna	l Marks	S:	60
Prer	equisit	es:										
	ogramn											
	se Obje											
1.	3 To im	part bas	sic kno	wledge	of the	concep	ts of Ob	oject Or	iented	Program	nming.	
14	4 Be far	niliar w	ith ove	erview (of C++ p	orograr	nming.					
1	5 Be far	niliar w	ith wri	ting ree	cursive	metho	ds					
1	6 To un	derstan	d conc	epts ab	out arr	ays, po	inters a	and refe	rences.			
1	7 To de	sign and	l imple	ementat	tion of o	dynami	ic progr	ammin	g. And o	overloa	ding.	
18	8 To lea	arn and	develo	p progr	ams or	ı inheri	tance, l	Polymo	rphism	and Te	mplate	s.
19	9 To un	derstan	d and a	apply e	xceptio	n hand	ling in j	prograr	nming.			
2	0 Be far	niliar w	ith Sta	ndard 1	ſempla	te Libra	ary.					
	se Outo				•		5					
		ssful co	mpleti	ion of t	he cou	rse, th	e stude	ent will	be abl	e to:		
C01		y to u	-								oject C	riente
	-	amming				0			•		,	
CO2		y to und				0		cations	using t	he conc	cepts of	arrays
	-	nic men										
CO3	Ability to understand, analyze and develop programs using the concepts o											
CO 4	Inheritance, Polymorphism and Templates.											
C04	Ability to understand, analyze and apply exception handling in programming and understand the concepts of Standard Template Library											
Cont		n of Co							of Prod	ram ()	utcom	es (1
		ium, 3				lai ub v		linent	01 1 1 0 į	, uni 0	uttom	U U (1
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
C01	3	3	-	-	-	-	-	-	-	-	-	3
CO2	3	3	3	-	-	-	-	-	-	-	-	3
<u>UU2</u>		-	2			-		-	-	-		ົ
CO2	3	3	3	-	_		-					3

UNIT I : Overview of C++, Classes and Objects.

An Overview of C++: The Origins of C++, Object Oriented Programming Concepts, Differences between Object-Oriented Programming and Procedure Oriented Programming, Advantage of OOP- Object Oriented Language, C++ fundamentals, The C++ Keywords, The General Form of a C++ Program

Classes and Objects: Classes & Methods, Friend Functions, Friend Classes, Inline Functions, Constructors, Destructors, Parameterized Constructors, Static Class Members, static Methods, Static Classes, Scope Resolution Operator, Nested Classes, Local Classes,

Passing and Returning Objects, Object Assignment

- 1. Create a class HUGEINT by which we would be able to use much wider range of integers. Perform addition operation on two HUGEINTs.
- 2. Create a Friend Function to sum two numbers of a class and Friend Class to perform other arithmetic operations.
- 3. Create a class TIME with appropriate data members to represent TIME. Construct a class implementation section to compare two TIMEs which return the later TIME, to increment TIME by one second, to decrement TIME by one second and appropriate constructors to create TIME objects and also implement destructor of TIME class.

UNIT II: Arrays, Pointers, References and the Dynamic Allocation, Function and Operator Overloading.

Arrays, Pointers, References and the Dynamic Allocation: Arrays of Objects, Pointers, References, Dynamic Allocation Operators.

Function Overloading: Function Overloading, Overloading Constructor Functions, Copy Constructors, Finding the Address of an Overloaded Function, Overload Anachronism, Default Arguments, Function Overloading and Ambiguity.

Operator Overloading: Creating Member Operator Function, Overloading Using a Friend Function, Overloading new delete, Overloading Special Operators & Comma Operator

- 1. Demonstrate Call by value, Call by address and Call by reference.
- 2. Create a class to demonstrate Function overloading.
- 3. Define Complex class. Allow possible operations on Complex by overloading operators (Arithmetic (+,-,*) and unary '-').

UNIT III: Inheritance, Virtual Functions & Polymorphism, Templates.

Inheritance: Base-Class Access Control, Inheritance and protected members, Inheriting Multiple Base Classes, Constructors, Destructors and Inheritance, Granting Access, Virtual Base Classes.

Virtual Functions & Polymorphism: Virtual Functions, The Virtual Attribute is inherited, Virtual Functions are Hierarchical, Pure Virtual Functions, Using Virtual Functions, Early Vs Late Binding.

Templates: Generic Functions, Applying Generic Functions, Generic Classes, Type name and export Keywords, Power of Templates.

- 1. Demonstrate all possible types of inheritance.
- 2. Calculate areas of various polygons demonstrating polymorphism.
- 3. Implement different types of stacks using Templates.

UNIT IV: Exception Handling, Introducing Standard Template Library.

Exception Handling: Fundamentals, Derived-Class Exceptions, Exception Handling Options, Understanding terminate() and unexpected(), uncaught_exception(), exception and bad_exception Classes, Applying Exception Handling.

Introducing Standard Template Library: An Overview of STL

- 1. Demonstrate exception handling (catch and catch all).
- 2. Demonstrate rethrowing of exceptions.
- 3. Write a Program to implement List and List Operations

TEXT BOOKS:

- 1. The Complete Reference C++ Herbert Schieldt, 4/e, Tata McGraw Hill.
- 2. Programming in C++, Ashok N Kamathane, Pearson 2nd Edition.

REFERENCE BOOKS:

1 . BjarneStroustrup, "The C++ Programming Language", Special Edition, Pearson Education.

- 2. C++ How to Program Dietel&Dietel
- 3. Programming in C++ Barkakati
- 4. Mastering C++ by Venugopal
- 5. A First Book of C++, Gary Bronson, Cengage Learing.

E-RESOURCES:

- 7. https://swayam.gov.in/nd1_noc19_cs38/preview,
- 8. https://swayam.gov.in/nd1_noc19_cs39/preview
- 9. https://www.w3schools.com/cpp/
- 10. http://www.cplusplus.com/doc/tutorial/
- 11. https://www.tutorialspoint.com/cplusplus/index.htm
- 12. https://www.guru99.com/cpp-tutorial.html
- 13. https://www.programiz.com/cpp-programming

SUBJECTCODE- JAVA PROGRAMMING (Open Elective II)

Practical::Internal Marks:Credits:3External Marks:Prerequisites:CC ProgrammingCourse Objectives:To introduce the object oriented programming concepts.To understand object oriented programming concepts, and apply them in solving ProbTo introduce the principles of inheritance and polymorphism; and demonstrate how the to the design of abstract classesTo introduce the implementation of packages and interfacesTo introduce the concepts of exception handling and multithreading.To introduce the design of Graphical User Interface using applets.	
Prerequisites: C Programming Course Objectives: To introduce the object oriented programming concepts. To understand object oriented programming concepts, and apply them in solving Prob To introduce the principles of inheritance and polymorphism; and demonstrate how the to the design of abstract classes To introduce the implementation of packages and interfaces To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	lems.
C Programming Course Objectives: To introduce the object oriented programming concepts. To understand object oriented programming concepts, and apply them in solving Prob To introduce the principles of inheritance and polymorphism; and demonstrate how the to the design of abstract classes To introduce the implementation of packages and interfaces To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	
Course Objectives: To introduce the object oriented programming concepts. To understand object oriented programming concepts, and apply them in solving Prob To introduce the principles of inheritance and polymorphism; and demonstrate how the to the design of abstract classes To introduce the implementation of packages and interfaces To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	
To introduce the object oriented programming concepts. To understand object oriented programming concepts, and apply them in solving Prob To introduce the principles of inheritance and polymorphism; and demonstrate how the to the design of abstract classes To introduce the implementation of packages and interfaces To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	
To understand object oriented programming concepts, and apply them in solving Prob To introduce the principles of inheritance and polymorphism; and demonstrate how the to the design of abstract classes To introduce the implementation of packages and interfaces To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	
to the design of abstract classes To introduce the implementation of packages and interfaces To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	ey relate
to the design of abstract classes To introduce the implementation of packages and interfaces To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	, j relate
To introduce the implementation of packages and interfaces To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	
To introduce the concepts of exception handling and multithreading. To introduce the design of Graphical User Interface using applets.	
To introduce the design of Graphical User Interface using applets.	
Course Outcomes:	
Upon successful completion of the course, the student will be able to:	
CO1 Able to solve real world problems using OOP techniques.	
CO2 Able to understand the use of abstract classes and Packages in java.	
CO3 Able to develop and understand exception handling and Interfaces in java	
CO4 Able to understand multithreaded applications with synchronization and design	GUI
based applications and develop applets for web applications	
Contribution of Course Outcomes towards achievement of Program Outcomes	nes (1 -
Low, 2- Medium, 3 – High)	
PO	PO
1 2 3 4 5 6 7 8 9 10 11	12
CO1 3 3	3
CO2 3 3 3	3
CO3 3 3 2 - - - 2 -	3
CO4 3 3 3 2 2	3
UNIT I	
Introduction to OOP, Procedural Programming Language and Object Oriented L	anguage
Principles of OOP, Applications of OOP, History of Java, Java features, Java	a Virtua
Machine (JVM), Java Program Structure, Variables, Primitive data types, Id	entifiers
Literals - Examples, Operators, expressions - Examples, Precedence Ri	
Associativity, Primitive Type Conversion and Casting, Flow of Control, Cla	sses and
objects, Class Declaration, Creating Objects, Methods, Method Overloading UNIT II	

UNIT II

Constructors – Examples, Constructor Overloading, Garbage collector, Importance of static keyword and examples, this keyword – Examples, Arrays, command line arguments, Nested Classes., Inheritance, types of inheritance, Forms of Inheritance, super keyword, final keyword, Polymorphism an its and implementation, Method overriding, Creating the packages, using packages, importance of CLASSPATH, Access Protection, importing packages.

UNIT III

Interfaces, implementing interfaces, Nested Interfaces, Variables in interfaces, Multiple inheritance of interfaces, Differences between abstract class & interfaces, Exception handling, importance of try, catch, throw, throws and finally block, userdefined exceptions, Assertions.

UNIT IV

Multithreading: Introduction, differences, Thread life cycle, Creation of threads, Thread priorities, Thread Synchronization, Communication between Threads. Reading data from files and writing data to files, Files & random access file, Applet class, Applet structure, Applet life cycle, sample Applet programs,

TEXT BOOKS:

1. The Complete Reference Java, 8th edition, Herbert Schildt, TMH.

2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.

REFERENCE BOOKS:

- 1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons.
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.
- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
- 5. Java Programming and Object oriented Application Development, R. A. Johnson, Cengage Learning.

E-RESOURCES:

http://www.javatpoint.com/ java.sun.com/docs/books/tutorial/java/TOC.html http://www.learnjavaonline.org/ http://www.tutorialspoint.com/java/ www.java.com/en/download/faq/develop.xml www.oracle.com > Java > Java SE www.w3schools.com