

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE STRUCTURE FOR SECOND YEAR B.TECH PROGRAMME

		Title of the Course	Inst	Sch ructi Per	eme ion (I Weei	of Periods k)	So Exa (Maxin	cheme amina mum I	of tion Marks)	
S1. No	Course Code		L	т	Р	Total	CIA	SEA	Total	No. of Credits
1	18A2100201	Complex Variables and Fourier Series	3	0	0	3	40	60	100	3
2	18A2103301	Material Science and Engineering	3	0	0	3	40	60	100	3
3	18A2103401	Basic Thermodynamics	3	0	0	3	40	60	100	3
4	18A2103402	Mechanics of Materials	3	0	0	3	40	60	100	3
5	18A2103403	Manufacturing Process	3	0	0	3	40	60	100	3
6	18A2102301	Essential of Electrical and Electronic Engineering	3	0	0	3	40	60	100	3
7	18A2103491	Material Testing and Metallurgy Lab	0	0	2	2	40	60	100	1
8	18A2103492	Manufacturing Process Lab	0	0	2	2	40	60	100	1
9	10100001	Essential of Electrical and Electronics Engineering					10	60	100	
	18A2102391	Lab Total	0 18	0	2 06	2 24	40 360	60 540	900	1 21

II YEAR I SEMESTER

II YEAR II SEMESTER

		Title of the Course	Sche (Pe	me o riods	f Inst ; Per	ruction Week)	So Exa (Maxia	cheme amina mum	e of ition Marks)	
S1. No	Course Code		L	т	Р	Total	CIA	SEA	Total	No. of Credits
1	18A2200201	Mathematics-IV	3	0	0	3	40	60	100	3
2	18A2203401	Design of Machine Members-I	3	0	0	3	40	60	100	3
	18A2203402	Fluid Mechanics and Hydraulic Machines	3	0	0	3	40	60	100	3
4	18A2203403	Kinematics of Machines	3	0	0	3	40	60	100	3
5	18A2203404	IC Engines and Gas Turbines	3	0	0	3	40	60	100	3
6	18A2203601 18A2203602	Open Elective –I i) Basics of Mechanical Engineering ii) Industrial Materials	3	0	0	3	40	60	100	3
7	18A2203301	Computer aided Machine Drawing (Internal)	2	0	3	5	40	60	100	1.5
8	18A2203491	Fluid Mechanics and Hydraulic Machines Lab	0	0	3	3	40	60	100	1
9	18A2203492	Thermal Engineering Lab	0	0	3	3	40	60	100	1
10	18A2200801	Professional Ethics and Human Values	3	0	0	3	40	60	100	0
		Total	23	0	9	33	400	600	10000	21.5

L - LECTURE T – TUTORIAL P - PRACTICAL CIA – Continuous Internal Assessment SEA – Semester End Assessment

18A2100201-ENGG.MATHEMAICS-III

Lectu	re – Tu	torial:	2-1	l Hours					Interna	al Mark	S:	40
Credi	ts:		3						Externa	al Mark	ks:	50
Prere	quisites	:										
Seque	nces and	d series	of numl	pers and	l of vect	ors, De	rivative	in one v	variable	, Severa	l variab	les,
Integr	ation in	one var	iable, Ir	tegratic	on with j	paramet	ers, Seq	uences	and seri	ies of fu	nctions	,
Unifo	rm vs. p	oint-wis	se conve	ergence,	Line in	tegrals						
Cours	e Objec	ctives:										
1)	To fan	niliarize	the tecl	nniques	in comp	plex var	iables.					
2)	To fan	niliarize	the tecl	nniques	in Four	ier serie	es.					
3)	To fan	niliarize	the tecl	niques	in parti	al differ	ential e	quation	8.			
4)	To equ	ip the s	tudents	to solve	e applica	ation pro	oblems	in their	discipli	nes.		
Cours	se Outco	omes:										
Upon	success	ful com	pletion	of the	course,	the stu	dent wi	ll be ab	le to:			
CO1	write a	an analy	tic func	tion if e	either rea	al part c	or imagi	nary pa	rt is kno	wn and	by usin	g
	Cauch	y-Riem	ann equ	ations c	or apply	Milne-	Thomps	on meth	nod(L3)			
CO2	evalua	te the in	ntegral o	of comp	lex func	ction ov	er the re	gion bo	unded b	by the cl	osed cu	rves
	by app	oly eithe	er Cauch	y-Gour	sat theo	rem or	Cauchy	's integi	al form	ula or C	auchy's	3
	Residu	ue theor	em(L5)				5	U			5	
CO3	write t	the infin	ite serie	es expan	sion of	comple	x functi	on by a	pply			
	Taylor	r's/Mac	laurin's	Lauren	t's serie	s(L3)			FF-J			
CO4	write a	a Fourie	r series	expansi	on of a	periodi	c function	on by us	ing Eul	er's form	nulae (l	_3)
CO5	solve	the Parti	ial diffe	rence ec	quations	s (L3)						
CO6	solve	one dim	ensiona	l wave a	and heat	t equation	ons by u	sing pa	rtial dif	ferential	equation	ons
	(L3)					1	5	01			1	
Contr	ibution	of Cou	rse Ou	tcomes	toward	s achie	vement	of Prog	ram O	utcome	s (1 – I	ow. 2-
Medi	ım. 3 –	High)			to n al a	s activ	• • • • • • • • • • • • • • • • • • • •	01 1 1 0	,			•, =
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	2	-	-	_	-	-	_	-	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-
CO3	3	3	2	2	-	-	-	-	-	_	-	_
CO4	3	3	2	2	-	-	-	-	-	-	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	-
CO6	3	3	2	2	-	-	-	-	-	-	-	-
			1		1	UNIT I	[1			
Com	lev Va	riahle _	Differe	ntiatio	n & Int	earstin	n					

Complex Variable – Differentiation & Integration

Complex function, Real and Imaginary parts of Complex function, Limit, Continuity and Derivative of complex function, Cauchy-Riemann equations, Analytic function, entire function, singular point, conjugate function, Harmonic functions, Milne-Thomson method.

Line integral of a complex function, Cauchy's theorem(only statement) ,Cauchy's Integral Formula.

UNIT II

Complex Variable- Series expansion, Residue Theorem & Evaluation of Real Integrals

Absolutely convergent and uniformly convergent of series of complex terms, Radius of convergence, Taylor's series, Maclaurin's series expansion, Laurent's series.

Zeros of an analytic function, Singularity, Isolated singularity, Removable singularity, Essential singularity, pole of order m, simple pole, Residues, Residue theorem, Calculation of residues, Residue at a pole of order m, Evaluation of real definite integrals: Integration around the unit circle, Integration around semi-circle.

UNIT III

Fourier Series

Introduction- Periodic functions – Fourier series of -periodic function - Dirichlet's conditions – Even and odd functions –Change of interval– Half-range sine and cosine series.

UNIT IV

Partial Differentials Equations & Applicatiions

Introduction, Formation of PDE, Solutiion of PDE, Linear equations of first order, Non-linear equations of first order.

Applications: Method of seperatiion of Variables, One dimensional Wave and Heat equations.

TEXT BOOKS:

1) B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43/e, 2010.

2) Erwin kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

REFERENCE BOOKS:

 J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7/e, Mc-Graw Hill, 2004.

2) N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, 2008.

18A2103301- Material Science and Engineering

Lectur	re – Tu	torial:	2-1	Hours					Interna	al Mark	s:	40
Credit	ts:		3						Extern	al Mark	ks:	60
Prerec	quisites	:										
Engine	eering P	hysics,	Enginee	ering Ch	emistry							
Cours	e Obje	ctives:										
1)	Acquii	e know	ledge of	basic s	tructure	and cry	ystal arr	angeme	nt of ma	aterials.		
2)	Under	stand the	e phase	and imp	oortance	e of the	phase di	iagram.				
3)	Acqui	re aware	eness of	the terr	ous and	non-fei	rous ma	aterials.				
4)	Gain th	he know	ledge o	f heat tr	eatment	t and va	rious m	ethods.	c			
5)	Know	how the	e powde	r metall	urgy pr	ocesses	and app	olication	is of cor	nposites	5.	
6)	Acqui	re know	ledge of	all the	materia	ls usefu	I to the	research	n and ul	timately	reache	s the
C	society	1										
Cours	se Outco	omes:		- 6 41		41	J 4	11	1. 4			
Upon CO1	Success	siul com	pletion	of the	course,	the stu	dent wi	II be ab	le to:			
	Estima	ate the p	oroperue	s of the	metals		bys base	ed on su	uctures	•		
CO2	Classi	fy, cons	truct an	d analyz	ze equil	ibrium d	liagram	S.				
CO3	Analy	ze and c	listingui	sh vario	ous ferro	ous, non	-ferrous	s metals	and all	oys.		
CO4	Identi	fy the in	fluence	of mec	hanical	working	g and he	at treati	nent pri	nciples	on mat	erials.
CO5	Classi and Po	fy, analy owder m	yze and netallurg	suggest gy.	the sui	table m	anufactı	uring m	ethod fo	or compo	osite m	aterials
CO6	Able t	o sugge	st the su	uitable n	naterial	for any	applica	tions de	mand b	v the so	ciety	
Contr	ibution		rse Out	tcomes	toward	s achiev	vement	of Proc	ram O	utcome	$\frac{1}{s(1-I)}$	ow 2-
Medin	10000 m. $3 -$	(or Cou High)		comes	to war u	5 acme	v ement	011108	, and O	utcome	5 (I I	, 2
1120410	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	-	-	-	-	-	-	2	-	-
CO2	-	3	3	-	-	-	3	-	-	-	-	-
CO3	-	3	3	2	-	-	-	-	-	-	-	-
CO4	-	3	3	3	-	2	-	-	-	-	-	-
CO5	-	-	-	3	-	2	2	-	-	-	-	-
CO6	-	3	3	3	-	-	-	-	-	-	-	-
						UNIT I	[
Struct	t ure of tallic be	Metals:	Crysta d solut	l Struct	ures: Ui ume R	nit cells othervs	, Metall rules	ic cryst Imperfe	al struct	tures, Boundary	onds in : Point	Solids

interstitial and volume defects.

Constitution of Alloys: Necessity of Alloying, substitutional and interstitial solid solutions-Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid reactions. Iron-Iron-carbide diagram and microstructural aspects of ferrite, cementite, austenite, ledeburite, and cast iron.

UNIT II

Steels:

Plain carbon steels, use and limitations of plain carbon steels. classification of steels and alloys steels. Micro structure, properties and applications of stainless steels and tool steels. **Cast irons:**

Micro structure, properties and applications of white cast iron, malleable cast iron, grey cast iron, nodular cast iron and alloy cast irons.

UNIT III

Heat Treatment of Steels: Annealing, tempering, normalizing and spheroidizing, isothermal transformation diagrams for $Fe-Fe_3C$ alloys and microstructure development. Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening.

Non-ferrous Metals and Alloys: Micro structure, properties and applications of copper and its alloys, aluminium and its alloys.

UNIT IV

Ceramics, Polymers and Composites: Structure, properties and applications of ceramics, polymers and composites.

Powder Metallurgy:Powder metallurgy process, preparation of powders, characteristics of metal powders, mixing, compacting, sintering, Applications of Powder Metallurgy.

TEXT BOOKS:

1) V.D.Kotgire, S.V.Kotgire, Material Science and Metallurgy, Everest Publishing House, 24thEdition,2008.

2)Sidney H. Avener, Introduction to Physical Metallurgy, Tata McGraw-Hill, 3rdEdition,2011.

3) William and callister, Materials Science and engineering, Wiley India private Ltd.,2011.

REFERENCE BOOKS:

1.U.C Jindal and Atish Mozumber, Material since and metallurgy, Pearson education-2012

2. Richard A.Flinn, Paul K.Trojan, Engineering Materials and Their Applications, Jaico Publishing House, 4thEdition,1999.

3.Raghavan.V, "Material Science and Metallurgy, FifthEdition, PHI Learning Pvt Limited, 2013.

E-RESOURCES:

1) Prof.R.N.Ghosh, IIT Kharagpur, Solidification Binary Alloys, Iron-Carbon Phase Diagram,[English]WebAvailable:

https://www.youtube.com/results?search_query=prof.r.n+ghosh+lecturers

2) Prof.S.K.Gupta, IIT Delhi, Phase Diagrams, Crystal imperfections

[English] Web Available: https://www.youtube.com/watch?v=x3n9ht-eRfg

18A2103401-BASIC THERMODYNAMICS

Lectu	re – Tu	torial:	2-1	l Hours					Interna	al Mark	s: 4	40
Credi	ts:		3						Externa	al Mark	ks:	50
Preree	quisites	: Engine	eering p	hysics a	ind engi	ineering	mather	natics				
Cours	e Obje	ctives:										
1)	To uno	derstand	the bas	ic conce	epts of e	energy c	conversi	ons and	fundam	nentals of	of	
	thermo	odynami	cs and 1	ts appli	cation.	f (1		•	1 :4	-1!-		
2)		uire the	Knowle	edge of 1	first law	of ther	modyna	imics an	id its an	alysis.		
3) 4)		rn the se	cond la	of pure	aubata	namics a	and sign			ору ргп	licipies.	
4) 5)		rn the co	oncepts	of react	ant nor	reacta	vapour nt gas m	power c	ycies.	nower	cycles	
5) 6)		derstand	the sign	nificanc	e of var	ious the	ermal cv	rcles	and gas	power	cycles.	
Cours	e Outc	omes:	the sign	inneane		ious tile	innar cy	C105.				
Upon	success	sful com	pletion	of the	course.	the stu	dent wi	ll be ab	le to:			
CO1	The st	udent sł	nould be	able to	unders	tand the	basic c	oncepts	of them	nodyna	mics.	
CO2	The st	udent sł	nould be	e able to	unders	tand the	first la	w of the	rmodvn	amics a	nd its	
001	applic	ations										
CO3	The st	udent sk	ould be	able to	unders	tand the	second	law of	thermo	lynamic		f
005	Movu	volla rolo	tions or	d the m	adunan	nio func	tions or	d aonaa	incrition	tropy	<i>s</i> , use 0	1
004	TTI A								pt of en	$\frac{100}{1}$	1	1.4
CO4	The st	udent sr	ioula be	e able to	unders	tand the	ormat	ion of si	eam an	a calcul	ate the	quanty
~ ~ ~	of stea	am.										
CO5	The s	tudent s	should	be able	to und	lerstand	the wo	orking o	of vapo	ur pow	er cyce	ls and
	calcul	ate their	perform	nance.								
CO6	The st	udent sł	nould be	e able to	unders	tand the	Conce	pt of star	ndard c	ycles an	d shoul	d be
	able to	o calcula	ate the e	fficienc	y and p	erforma	nce para	ameters				
Contr	ibution	of Cou	rse Out	tcomes	toward	s achie	vement	of Prog	gram O	utcome	s (1 – L	ow, 2-
Mediu	ım, 3 –	High)	1	1								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
~ ~ .	1	2	3	4	5	6	7	8	9	10	11	12
COI	2	1	-	-	-	1	1	-	-	-	-	1
CO2	1	1	1	1	-	1	-	-	-	-	-	1
CO3	2	1	1	1	-	1	-	-	-	-	-	1
CO4	2	1	1	1	-	1	1	-	-	-	-	1
CO5	1	1	1	1	_	1	1	-	-	_	-	1
CO6	2	2	2	1	_	1	1	_	_	_	-	1
	_	-	-	-		UNIT	 [
T (D •	0	4 0				11		1 1		•

Introduction: Basic Concepts : System, boundary, Surrounding, control volume, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Cycle – Reversibility – Quasi – static Process, Irreversible Process, Causes of Irreversibility – Energy in State and in Transition, Work and Heat, Point and Path function.

Zeroth Law of Thermodynamics: Concept of Temperature – Principles of Thermometry – Reference Points – Const. Volume gas Thermometer Scales of Temperature. Ideal gas scale-Deviations from perfect gas model-Vander waals equation of state- Compressibility charts-Variable specific heats-Gas Tables.

First law of Thermodynamics: Joule's Experiments, Corollaries and PMM-I First law applied to a Process – applied to a flow system – Steady Flow Energy Equation and its applications.

Throttling and free expansion processes, first law for non flow systems.

UNIT II

Second Law of Thermodynamics: Limitations of the First Law – Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance,Kelvin-Planck and Clausius Statements and their Equivalence / Corollaries, PMM of Second kind, Carnot's principle, Carnot cycle and its specialties, Thermodynamic scale of Temperature.

Entropy: Principle of Entropy Increase – Energy Equation, Availability and Irreversibility, Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations, Elementary Treatment of the Third Law of Thermodynamics.

UNIT III

Properties of Pure Substances: P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase, Dryness Fraction . Mollier charts – Various Thermodynamic processes and energy Transfer – Steam Calorimetry. Clausius – clapeyron Equation- Property Tables.

Vapour Power Cycles: Carnot Vapour Cycle, Working of simple Rankine Cycle. Description and representation on P–V and T-S diagram, Thermal Efficiency.

UNIT IV

Mixtures of perfect Gases : Mole Fraction, Mass friction Gravimetric and volumetric Analysis – Dalton's Law of partial pressure, Avogadro's Laws of additive volumes – Mole fraction , Volume fraction and partial pressure, Equivalent Gas const. And Molecular Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases and Vapour

Gas Power Cycles: Introduction, Analysis of Power Cycles- Carnot, Otto, Diesel, Dual, Brayton Cycle, Ericcson Cycle, Lenoir Cycle and Atkinson cycle.

TEXT BOOKS:

1. Engineering Thermodynamics, PK Nag 4th Edn, TMH.

2. Thermodynamics – An Engineering Approach with student resources DVD - Y.A.Cengel & M.A.Boles, 7th Edn - McGrawHill

3. Fundamentals of Thermodynamics by Claus Borgnakke Richard E. Sonntag, seventh edition, John Wiley & Sons, Inc.

REFERENCE BOOKS:

- 1. Engineering Thermodynamics Jones & Dugan PHI
- 2. Thermodynamics J.P.Holman , McGrawHill
- 3. Basic Engineering Thermodynamics A. Venkatesh Universities press.
- 4. An Introduction to Thermodynamics Y.V.C.Rao Universities press.
- 5. Thermodynamics W.Z.Black & J.G.Hartley, 3rd Edn Pearson Publ.
- 6. Engineering Thermodynamics D.P.Misra, Cengage Publ.
- 7. Engineering Thermodynamics P.Chattopadhyay Oxford Higher Edn Publ.

18A2103402- Mechanics of Materials

Lectu	re – Tut	torial:	2-	1 Hours					Interna	al Mark	ks:	40
Credi	ts:		3						Extern	al Marl	ks:	60
Preree	quisites	:			. ~ .							
Introd	uction to	Mecha	anical E	ngineer	ing Scie	ences						
Engine	eering N	lechani	cs									
Carro	o Obios	4										
1	Gain a	funda	montal	underst	anding	of the	concent	e of e	trace on	d strain	by an	alveina
1)	differe	nt solid	s and st	ructures	anung	or the	concept	.5 01 5	uess an	u suam	by an	arysnig
2)	Analyz	ze and b	eams, t	o detern	nine axi	al force	es, torque	e, shear	forces,	and ben	ding m	oments
3)	Analyz distribi	the bout the bound the tension of	eams of	f differe	nt shap	es for fi	inding o	ut the s	shear str	ess and	bendin	g stress
4)	Develo	p the g	governi	ng diffe	rential	equatio	n for th	e elast	ic curve	e, and a	apply d	ifferent
	technic	jues for	finding	gout the	deflect	tion at re	equired j	points				
5)	Analyz	e deteri	minate	and inde	etermina	ate axial	l membe	rs, tors	ional me	embers		
6)	Calcul	ate the b	ouckling	g load fo	or colun	nns with	n differe	nt end	conditio	ns.		
Cours	se Outco	omes:										
Upon	success	ful com	pletion	of the	course,	, the stu	ident wi	ll be al	ble to:		• .	
COI	Detern	nine and	d illustr	ate prine	cipal str	esses, p	orincipal	strains	, maxim	um shea	aring sti	ress,
	and sn	nple str	esses a	cting on	structu	ral men	ibers.					
CO2	Analyz	ze bend	ing stre	sses and	l shear s	stresses	in struct	ural m	embers s	subjecte	d to fle	xural
	loadin	gs and d	draw the	e distrib	ution di	iagrams						
CO3	Estima	ate the s	tresses	and stra	ins in c	ircular t	orsion n	nember	'S			
CO4	Determ	nine the	deflect	ions and	d slopes	s produc	ed in be	ams ur	der load	ling con	ditions.	
					-	-				-		
CO5	Analyz	ze slend	ler, long	g colum	ns subje	ected to	axial loa	ıds				
CO6	Assess	s hoop a	nd long	gitudinal	stresse	s in thir	n and thi	ck cyli	nders.			
		1	C									
Contr	ibution	of Cou	rse Ou	tcomes	toward	ls achie	vement	of Pro	gram O	utcome	s (1 – I	
Mediu	ım, 3 –	High)										
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	1	-	-	1	-	-	-	-	1
CO2	3	3	2	1	-	-	1	-	-	-	-	1
CO3	3	3	2	1	-	-	1	-	-	-	-	1
CO4	3	3	2	1	-	-	1	-	-	-	-	1
CO5	3	3	2	1	-	-	1	-	-	-	-	1
CO6	3	3	2	1	-	-	1	-	-	-	-	1
						UNIT	I					

SIMPLE STRESSES: Concept of stress and strain, Hooke's law - Tension, Compression, and Shear, stress-strain diagram for mild steel – Factor of safety, Poisson's ratio, elastic constants and their relationship - Deformation of simple and compound bars. Thermal stresses – simple and Composite bars.

PRINCIPAL STRESSES: Principal planes, principal stress, maximum shearing stress on an inclined plane under Uniaxial, biaxial state of stress - Mohr's circle for plane stresses.

UNIT II

SHEAR FORCE AND BENDING MOMENT: Types of beams and loads – concept of shear force and bending moment, relation between SF, BM and rate of loading at a section of a beam, shear force and bending moment diagrams for cantilevers, simply supported and over hanging beams subjected to point loads, UDL, UVL and combination of these loads.

BENDING STRESSES: Theory of pure bending, bending equation derivation- determination of bending stress in beams across sections like rectangular, circular, I, T, angle and channel sections. Shear stress derivation, shear stress distribution across beams of various sections (rectangular, circular, I, T, angle and channel sections).

UNIT III

TORSION: Theory of pure torsion, transmission of power in solid and hollow circular shafts, shafts in series and parallel, combined bending and torsion.

DEFLECTION OF BEAMS: Differential equations of the deflection curve, Slope and deflection of cantilever, simply supported beams by double integration method - Macaulay's method - Moment area method. Application to simple cases including overhanging beams, Statically Indeterminate Beams and their solution methods.

UNIT IV

COLUMNS AND STRUTS: Buckling, Stability, Member subjected to different support conditions, Euler's theory, Rankine's theory.

CYLINDERS AND SHELLS: Longitudinal and circumferential stress and strains, Thin cylinder, thin spherical shells under internal pressure, changes in diameter and volume of cylinders –Riveted boiler shells, Thick cylinders - Lame's equation thick cylinders subjected to inside and outside pressures, compound cylinders.

TEXT BOOKS:

1) Solid Mechanics, by Popov

2) Strength of materials /GH Ryder/ Mc Millan publishers India Ltd.

3) Strength of Materials by S. Ramamrutham, R. Narayanan

REFERENCE BOOKS:

- 1. Strength of materials by R.K. Bansal
- 2. Strength of Materials by S.S. Rattan, Tata McGraw Hill Education Pvt., Ltd.,
- 3. Strength of materials by R.K. Rajput, S. Chand & Co, New Delhi
- 4. Strength of Materials -By Jindal, Umesh Publications.
- 5. Strength of Materials by S.Timoshenko
- 6. Strength of Materials by Andrew Pytel and Ferdinond L. Singer Longman.

E-RESOURCES:

 $1\ .\ http://www.nptelvideos.in/2012/12/strength-of-materials.html$

18A2103403- MANUFACTURING PROCESS

Lectur	e – Tut	torial:	2-1	l Hours					Interna	al Mark	S:	40
Credit	5:		3						Extern	al Mark	s:	60
Prereq	uisites	:										
Engine	ering l	Drawin	g									
Engine	ering	Worksh	op Tec	hnolog	у							
Course	e Objec	ctives:										
	1) Ac	quire kr	nowledg	e to une	derstand	l about t	he prim	ary mai	nufactur	ing proc	cesses.	
	2) Un	derstand	d the pra	actical k	cnowled	ge on c	asting, j	oining.				
	3) Ac	quire av	varenes	s on cur	rent ma	nufactu	ring ind	ustry	1			
	(1) Under (1)	erstand	the prac	tical kn	owledge	e on bu	IK IOrm	ing, sne	et metal	l Iormin	g	
-	5) 1011	iroduce	e proces	sing me		i piastic	s and u		ful to fl		ig proce	esses.
) Acqu ultim	ure kno ately re	wieuge	be soci	ie manu stv	nacturin	ig proce	sses use		ie reseal		
Course		atery re	aches t	ne socie	ety							
Unon		ful com	nletion	of the	course	the stu	dent wi	ll he ah	le to:			
CO1	Under	stand th	e Techr		of the ca	sting nr						
CO^2	Diffor	antiata x		casting	method	s and th	occesses	ications				
CO_2	Differ	entiate v	anous	iainina	methous	s and th		iona	•			
C03	Differ				$\frac{\text{process}}{1}$							
CO4	Under	stand va	irious b	ulk met	al formi	ng and	sheet m	etal pro	cesses			
CO5	Under	stand V	arious F	lastic o	peration	18.						
99.6	F 1			•				• •	•		-	•
CO6	Evalua	ate the n	nanufac	turing p	processe	s being	utilized	in the p	present 1	ndustria	I scena	r10.
Contri	bution	of Cou	rse Out	tcomes	toward	s achie	vement	of Prog	gram O	utcome	s(1 - L)	ow, 2-
Mediu	m, 3 –	High)	DO	DO	DO	DO	DO	DO	DO	DO	DO	DO
	PO 1		PO 2	PO	PO	PO	PO 7	PO o	PO	PO 10	PO 11	PO 12
CO1	1	<u> </u>	3	4	5	0	/	ð	9	10	11	12
COI	3	1	1	2	1	-	-	-	-	-	1	-
CO2	2	1	-	1	1	-	-	-	-	-	1	-
CO3	3	2	2	-		-		-	-	-	-	2
CO4	3	1	2	-		-	1	-	-	-	-	2
CO5	2	2	1	-	1	-	-	-	-	-	-	2
CO6	3	-	2	-	1	-	-	-	-	-	-	2
						UNIT I	[

Introduction: Importance and selection of manufacturing processes.

Casting Processes: Introduction to casting process, process steps; pattern: types, materials and allowance; Moulding materials, equipment, Preparation, control and testing of moulding sands. Cores: Types of cores, core prints, principles and design of gating system; Solidification of casting: Concept, solidification of pure metal and alloy, short & long freezing range alloys.

Special casting processes: Shell casting, investment casting, die casting, centrifugal casting, casting defects and remedies.Methods of melting and types of furnaces-Cupola Furnace: Description, operation and zones, Electric Arc furnace.

UNIT II

Metal Joining Processes: Classification of welding processes, types of welded joints and their Characteristics, Gas welding, Different types of flames and uses, Oxy – Acetylene Gas cutting. Basic principles of Arc welding, weld bead geometry, Manual metal arc welding, submerged arc

welding, and Inert Gas welding- TIG & MIG welding.

Solid state welding processes- Friction welding, Friction stir welding, Forge welding, Explosive welding; Thermit welding, Plasma welding, Laser welding, electron beam welding, Soldering & Brazing. Heat affected zones in welding; pre & post heating, Weldability of metals, welding defects – causes and remedies.

UNIT III

Metal Forming and Plastic Processing

Metal Forming: Introduction, nature of plastic deformation, hot and cold working of metals, mechanics of metal forming; Rolling: Principle, types of rolling mill and products, roll passes, forces in rolling and power requirements; Extrusion: Basic extrusion process and its characteristics, hot extrusion and cold extrusion, wire drawing, tube drawing.

Forging: Principles of forging, tools and dies. Types: Smith forging, drop forging, forging hammers, rotary forging and forging defects. Sheet metal forming: Mechanics of sheet metal working, blanking, piercing, bending, stamping.

Plastics: Types, properties and their applications, processing of plastics, injection molding, and blow molding.

UNIT IV

Unconventional Machining Processes: Electrical discharge machining (EDM), principle and processes parameters, electro-chemical machining (ECM) Laser beam machining (LBM), plasma arc machining (PAM) and electron beam machining Principles and process parameters of Abrasive jet machining (AJM), water jet machining, ultrasonic machining.

TEXT BOOKS:

[1] Manufacturing Technology by PN RaoVol.1, Edition-3, 2009, TMH

[2] Principles of Metal Casting by Heine, Loper, Rosenthal.33rd Reprint,2008,TMH

[3] A course in Work shop technology Vol-I by B.S.Raghuwamshi, 2011, Dhanpatrai& sons.

[4] Mechanical Metallurgy by George. E. Dieter, SI Metric Edition 2000, McGraw Hills.

REFERENCE BOOKS:

[1] Welding and welding Technology by Richard L.Little, 1973, McGraw Hill

[2] Workshop Technology Vol.1 by S.K.HazraChowdary. Khanna publishers

[3] S. Kalpakjain, S.R.Schmid, Manufacturing Engineering and Technology, Pearson Edu.,4thEdition, 2001.

[4] R.K. Jain, Production Technology/Khanna Publishers, 17thEdition, 2012.

[5] Lindberg, Process and materials of manufacturing, PE.

[6] Sarma P C, Production Technology, S Chand & Company Ltd, 3rdEdition, 2012.

E-RESOURCES:

- [1] http://nptel.iitm.ac.in
- [2] http://www.egr.msu.edu
- [3] http://www.engr.sjsu.edu
- [4] http://mechatronic.me.hfu.edu.tw
- [5] http://web.iitd.ac.in

18A2102301- Essential Electrical and electronics Engineering

Lectu	re – Tu	torial:	2-1	l Hours					Interna	ıl Mark	S: 4	40
Credi	ts:		3						Externa	al Mark	ks: (50
Preree	quisites	:										
Algebr	ra , simj	ole integ	gral equa	ations &	z simple	differe	ntial equ	uations	(Mathe	matics)		
Cours	e Obje	ctives:										
1)	To lea	rn the ba	asic prir	nciples o	of electr	rical law	's and a	inalysis	of netw	orks.	. ~	
2)	To uno	lerstand	the prin	nciple of	f operat	ion and	constru	ction de	etails of	DC and	AC	
2)	Machi	nes	41		6		4		4.:1f	(
(1)	To und	dy the o	ne prin	ncipie of	i operat	10n and	constru	ction de	etails of	transfor	mer.	
4)	To stu Tranci	uy lie 0	peration	IOIPIN	Junction	li uloue,	nan wa	ive, Iuli	wave ie	currens	and	
	1141151	51015.										
Cours	e Outc	omes:										
Upon	success	ful com	pletion	of the	course,	the stu	dent wi	ll be ab	le to:			
CO1	Analy	ze the v	arious e	lectrica	l netwo	rks.						
CO2	Able t	o under	stand th	e princi	ple of o	peration	of DC	machin	es			
CO3	Under	stand th	e princi	ple of o	peration	n of AC	machin	es				
CO4	Under	stand th	e princi	ple of o	peration	n of tran	sformer	•				
CO5	Analy	ze the o	peration	n of half	wave, f	full wav	e rectifi	ers and	Transis	tor conf	iguratio	ons
CO6	Able t	o analyz	ze the op	peration	of OP-	AMPS					0	
Contr	ibution	of Con		taamaa	toward	a achia	mont	of Droc	mam O	utaomo	a (1 T	ow 2
Medi	10000 m $3-$	(01 COU High)		comes	lowaru	s acme	ement	UTTUE			5 (I – L	0w, 2-
meun	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	1									
CO^2	3	2										
02	5	4										
CO3	2	2										
CO4	3	2										
CO5	3	2										
CO6	3	2	2	1								
						UNIT I	-					

FUNDAMENTALS OF ELECTRICAL CIRCUITS : Basic definitions, Types of network elements, Ohm's Law, Kirchhoff's Laws, inductive networks, capacitive networks, series, parallel circuits and star-delta and delta-star transformations.

UNIT II

OVERVIEW OF GENERATORS AND MOTORS: DC Machines: Principle of operation of DC generator – emf equation -types – DC motor types –torque equation – applications – Swinburne's Test, speed control methods.

AC Machines: Principle of operation of alternators – regulation by synchronous impedance method – principle of operation of 3-Phase induction motor – slip-torque characteristics - efficiency – applications

UNIT III

OVER VIEW OF TRANSFORMERS: Principle of operation of single phase transformers – emf equation – losses –efficiency and regulation .OC and SC test.

UNIT IV

FUNDAMENTALS OF DIODES AND TRANSISTERS: PN junction diodes, diode applications (Half wave and bridge rectifiers). PNP and NPN junction transistor, transistor as an amplifier, configurations (CE,CB,CC).Relations between α , β and γ .

TEXT BOOKS:

- 1) Principles of Electrical Engineering by V.K Mehta, S.Chand Publications.
- 2) Elec., Technology by Edward Hughes
- 3) Electronics Devices and Circuits , S.Salivahanan ,N.SureshKumar,A.Vallava Raj, TMH publications , 4th edition

REFERENCE BOOKS:

- 1) Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications.
- 2) Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition.
- 3) Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd edition.
- 4) Industrial Electronics by G.K. Mittal, PHI.

E-RESOURCES:

- 1. http://nptel.ac.in/courses.php
- 2. http://jntuk-coeerd.in/

	cal		2H	Iours					Interna	al Mark	s:	40
Credit	ts:		1						Extern	al Mark	s:	60
Prereo	quisites	:										
Engine	eering P	hysics,	Engine	ering Cl	nemistry	, Engin	eering 1	nechani	cs			
Cours	e Obje	ctives:										
1)	This co	ourse pr	ovides	to acqui	re know	vledge o	f destru	ctive te	st			
2)	To und	lerstand	the me	chanica	l proper	ties of t	he mate	erials.				
3)	Gian k	nowled	ge in te	sting the	e tensile	e, hardne	ess, imp	act for a	a materi	al		
4)	Basic	knowled	lge of n	naterials	s, prepai	ration of	specim	nen				
5)	To und	lerstand	the eva	luation	of micr	ostructu	ire	11				
6)	To und	lerstand	the cor	icept of	heat tre	eatment	practica	ully				
Cours	e Outc	omes:										
Upon	success	ful con	pletion	of the	course,	the stu	dent w	ill be al	ole to:			
CO1	Prepar	re the sp	pecimen	s as per	standar	ds.						
CO2	Obser	ve micr	ostructu	re of di	fferent 1	material	s.					
CO3	Analy	se the p	ropertie	s of ma	terials b	ased on	micros	tructure				
CO4	Perfor	m hardı	ness test	and he	at treatr	nent of	steels.					
CO5	Perfor	m the U	JTM tes	t of a m	aterial.							
CO6	Perfor	m vario	us test t	o know	the me	chanical	proper	ties of a	materia	al.		
Contr	ibution	of Cou	irse Ou	tcomes	toward	ls achie	vement	of Pro	gram O	utcome	s (1 – I	Low, 2-
Mediu	ım, 3 –	High)										
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
001	1	1 2	-	2	-	-	-	-	-	2	-	-
CO1	1	3										
CO1 CO2	1	3 2	-	2	-	-	-	_	-	-	-	_
CO1 CO2 CO3	1 1 -	3 2 3	-	2 2	-	-	-	-	-	-	-	-
CO1 CO2 CO3 CO4	1 1 - -	3 2 3 3		2 2 2		- - -						- - -
CO1 CO2 CO3 CO4 CO5	1 - - -	3 2 3 3 3	- - -	2 2 2 -	- - - -	- - - 1		- - - -	- - -	- - -	- - -	- - - -
CO1 CO2 CO3 CO4 CO5 CO6	1 - - - -	3 2 3 3 3 2	- - - -	2 2 2 - 3	- - - -	- - 1 -	- - - 1	- - - -	- - - -	- - - -	- - - -	- - - -
CO1 CO2 CO3 CO4 CO5 CO6	1 - - -	3 2 3 3 3 2	- - -	2 2 2 - 3	- - - - List of	- - - 1 - f Exper	- - - 1 iments	- - -	- - -	- - - -	- - - -	- - -
CO1 CO2 CO3 CO4 CO5 CO6	1 - - -	3 2 3 3 3 2		2 2 2 - 3	- - - - List o	- - 1 - f Exper	- - - 1 iments	- - -	- - -	- - -	- - - -	
CO1 CO2 CO3 CO4 CO5 CO6	1 - - - Study	3 2 3 3 2 the stre	- - - - - ss-strair	2 2 2 - 3	- - - - List o	- - 1 - f Exper	- - - 1 iments	- - - -	- - - -	- - - -		
CO1 CO2 CO3 CO4 CO5 CO6	1 - - - Study	3 2 3 3 2 the stre	- - - - ss-strair	2 2 - 3	- - - - List of n of mil	- - 1 f Exper	- - - 1 iments	- - - - ucting t	- - - - est on U	- - - - JTM.	- - - -	- - - - Simply
CO1 CO2 CO3 CO4 CO5 CO6	1 - - - Study Deterr	3 2 3 3 2 the stre nination	- - - - ss-strair n of Yo	2 2 - 3	- - - - List of n of mil	- - 1 - f Exper	- - 1 iments	- - - - ucting t	- - - - est on U	- - - - JTM. ction te	- - - -	- - - - Simply
CO1 CO2 CO3 CO4 CO5 CO6 1) 2)	1 - - - Study Deterr suppor	3 2 3 3 2 the stre nination rted bea	- - - - ss-strair n of Yo m.	2 2 - 3 n relatio	- - - List of modulus	- - 1 f Exper	- - 1 iments by cond	- - - - ucting t	- - - est on U	- - - - JTM. ction te	- - - - st on	- - - - Simply
CO1 CO2 CO3 CO4 CO5 CO6 1) 2) 3)	1 - - - Study Deterr suppor	3 2 3 3 2 the stre nination rted bea	- - - - ss-strain n of Yo m. n of Yo	2 2 - 3 n relatio	- - - - List of modulus	- - 1 - f Exper	- - 1 iments oy cond ven mate	- - - - ucting t terial b	- - - - est on U	- - - - JTM. ction te	- - - - st on	- - - - Simply
CO1 CO2 CO3 CO4 CO5 CO6 1) 2) 3)	1 - - - Study Deterr suppor	3 2 3 3 2 the stre nination rted bea	- - - - ss-strair n of Yo m. n of Yo	2 2 - 3 n relatio pung's n	- - - - List of modulus	- - 1 f Exper	- - - 1 iments oy cond ven mate	- - - - ucting t terial b	- - - est on U by defle	- - - - JTM. ction te	- - - st on	- - - - Simply
CO1 CO2 CO3 CO4 CO5 CO6 1) 2) 3) 4)	1 - - - Study Deterr suppor Deterr beam. Deterr	3 2 3 3 2 the stre ninatior rted bea ninatior	- - - - ss-strain n of Yo m. n of Yo	2 2 - 3 n relatio pung's n dulus of	- - - - List o n of mil modulus	- - 1 - f Exper d steel l s of give	- - - 1 iments oy cond ven mate	- - - - ucting t terial b rial by	- - - - est on U by defle deflecti	- - - - - UTM. ction te on test Torsion	- - - - st on on Car Test.	- - - - Simply
CO1 CO2 CO3 CO4 CO5 CO6 1) 2) 3) 4) 5)	1 - - - Study Deterr suppor Deterr beam. Deterr beam.	3 2 3 3 2 the stre ninatior rted bea ninatior ninatior	- - - - - ss-strair n of Yo m. n of Yo n of Moo	2 2 3 relatio pung's n dulus of dness N	- - - - List of modulus	- - 1 - f Exper d steel l s of give of give	- - - 1 iments oy cond ven mate ular rod n specin	- - - - ucting t terial b rial by by con-	- - - - est on U by defle deflecti ducting Brinell'	- - - - - JTM. ction te on test Torsion s Hardne	- - - - - on Car Test.	- - - - Simply ntilever
CO1 CO2 CO3 CO4 CO5 CO6 1) 2) 3) 4) 5) 6)	1 - - - Study Deterr suppor Deterr beam. Deterr Deterr Find fl	3 2 3 3 2 the stre nination rted bea nination nination nination	- - - - - ss-strain n of Yo m. n of Yo n of Moo n of Har ct stren	2 2 3 r relatio pung's n dulus of dness N gth of a	- - - - List of modulus	- - 1 - f Exper f Exper d steel l s of give of give v of circu for give material	- - - 1 iments oy cond ven mate ular rod n specir by cond	- - - - ucting t terial b rial by by con- nen by	- - - - est on U by defle deflecti ducting Brinell'	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - Simply ntilever
CO1 CO2 CO3 CO4 CO5 CO6 1) 2) 3) 4) 5) 6) 7)	1 - - - Study Deterr suppor Deterr beam. Deterr beam. Deterr Find th Find th	3 2 3 3 2 the stre ninatior rted bea ninatior ninatior ninatior he impa	- - - - - ss-strain n of Yo n of Yo n of Moo n of Har ct streng	2 2 3 relatio pung's n dulus of dness N gth of a gth of a	- - - - List of n of mil modulus nodulus rigidity lumber given n given n	- - 1 - f Exper d steel l s of give of give v of circu for give naterial naterial	- - - 1 iments oy cond ven mate ular rod n specir by cond	- - - - ucting t terial b trial by by con- nen by lucting	- - - - est on U by defle deflecting ducting Brinell' Izod Imy	- - - - - - - - - - - - - - - - - - -	- - - - st on on Car Test. ess Tes t. Test.	- - - - Simply ntilever

- 9) Preparation and study of the microstructure of Iron and steels.
- 10) Preparation and study of microstructure of Cast Irons.
- 11) Preparation and study of the microstructure of Copper and its alloys
- 12) Preparation and study of microstructure of Aluminum and its alloy.
- 13) Fabrication of FRP composite by hand lay-up method.
- 14) Hardness of various treated and untreated steels.

Note: Minimum of 12 Experiment need to be performed Any 6 experiments from each section A and B.

EQUIPMENT REQUIRED

- 1) Simple supported beam
- 2) Cantilever beam
- 3) Universal testing machine
- 4) Impact test
- 5) Hardness test
- 6) Compression machine
- 7) Spring test
- 8) Hot mounting press
- 9) Stand polishing machine
- 10) Disc polishing machine
- 11) microscopes

REFERENCE BOOKS:

1.U.C Jindal and Atish Mozumber, Material since and metallurgy, Pearson education-2012

18A2103492-MANUFACTURING PROCESS LAB

practi	ical		2H	lours					Interna	al Marks	S: 4	40
Credi	ts:		1						Externa	al Marks	s:	50
Prere	quisites	:										
Basic	fundam	entals of	f primar	y manu	facturin	g proce	sses.					
Cours	se Objeo	ctives:										
	1. To	impart	the prac	tical ex	posure	on prim	ary man	ufacturi	ing proc	esses lik	e casti	ng.
	2. To	impart	hands-o	n practi	cal exp	osure or	n manuf	acturing	g proces	ses like v	welding	g.
	3. To	impart	hands-o	n practi	cal exp	osure or	n manuf	acturing	g proces	ses like r	netal	
	for	ming pr	ocesses									
a	4. To	impart	hands-o	n practi	cal exp	osure or	n manuf	acturing	g proces	ses and e	equipm	ent.
Cours	se Outco	omes:	1 4 •	6.41		41 4	1 4 •		1 4			
Upon CO1	success	have to	pletion	of the	course,	the stu	dent wi	II be ab	le to:		~~ . ~~	
	Know	now to	design a		ting the	pattern		nd prepa	iration 1			•
CO2	Know	to desig	gn the di	ifferent	types of	t weld jo	oints an	d operat	ing the	weld ma	chines	
CO3	Know	the diff	erence t	between	gas cut	tting gas	s weldin	g opera	tions an	d equipn	nent.	
CO4	Find o	out the p	erforma	nce cha	racteris	tics of t	he diffe	rent met	al form	ing proce	esses.	
CO5	Know	the diff	erent ty	pes of p	lastic p	rocessin	g types	•				
CO6	Able t	o deterr	nine the	ripple f	factor of	f half wa	ave & fi	ull wave	e rectifie	ers.		
Contr Media	ribution	of Cou High)	rse Out	tcomes	toward	s achiev	vement	of Prog	gram O	utcomes	(1 – L	ow, 2-
Witcuit	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	1	3	-	-	-	-	-	-	-	-
CO2	2	2	1	3	-	-	-	-	-	-	-	-
CO3	2	2	1	3	-	-	_	-	-	-	-	-
CO4	2	2	1	3	-	-	-	-	-	-	-	-
CO5	2	2	1	3	_	_	-	-	_	-	-	_
CO6	2	2	1	3	_	-	_	_	_	-	-	-
					List of	f Exper	iments					

List of Experiments:

- 1 . Pattern Design and making for one casting drawing.
- 2. Sand properties testing for strength and permeability
- 3. Mould preparation, Melting and Casting
- 4. Gas welding
- 5. Gas cutting

- 6. Manual metal arc welding Lap & Butt Joints
- 7. TIG/MIG Welding
- 8. Resistance Spot Welding
- 9. Brazing and soldering
- 10. Blanking & Piercing operations and study of simple, compound and progressive dies.
- 11. Deep drawing and extrusion operations.
- 12. Bending and other operations
- 13. Basic powder compaction and sintering
- 14. Injection Moulding
- 15. Blow Moulding

Note: Minimum of 12 Experiments need to be performed

18A2102391- ESSENTIAL ELECTRICAL&ELECTRONICS ENGINEERING LAB

practio	cal		2H	lours					Interna	ıl Mark	s:	40			
Credit	s:		1						Externa	al Mark	s:	60			
Prerec	uisites	:													
Basics	of elec	trical &	electron	nics con	cepts										
Course	e Objec	ctives:													
1)	To pre	determi	ne the e	fficienc	y of dc	shunt m	nachine	using Sv	winburn	e's test.					
2)	To pre	determi	ne the e	fficienc	y and re	egulatio	n of 1-p	hase tra	nsforme	er with (D.C and	1 S.C			
2)	tests	•		1	, . ,.	(DC	1 (2 1	• • •					
3) 4)	To obt	ain peri	ormanc	e charac	ltornate	s of DC	snunt n	1000	3-pnase	induction mothod	on moto 1	or.			
4) 5)	To cor	trol spe	ed of do	s shunt i	motor u	sing sne	ed cont	rol metl	pedance	metho	1.				
6)	To fine	d out the	e charac	teristics	s of PN	iunctior	diode d	& transi	stor & d	letermin	e the ri	pple			
0)	factor	of half v	vave f	ull wave	e rectifie	ers.		~				PPro			
Cours	e Outc	omes:													
Upon	success	ful com	pletion	of the	course,	the stu	dent wi	ll be ab	le to:						
CO1	Able t	o find o	ut the e	fficienc	y of dc s	shunt m	achine v	without	actual l	bading o	of the				
	machi	ne.													
CO2	Able t	o estima	ate the e	fficienc	y and re	egulatio	n for dif	fferent l	oad con	ditions	and pov	ver			
	factors	Able to estimate the efficiency and regulation for different load conditions and power factors of single phase transformer with OC and SC test.													
CO3	Able t	o analyz	ze the pe	erforma	nce cha	racterist	tics and	to deter	mine ef	ficiency	of DC	shunt			
	motor	&3-pha	se indu	ction m	otor.										
CO4	Able t	o pre-de	etermine	the reg	ulation	of an al	ternator	bv svn	chronou	s imped	lance				
	metho	d. Able	to conti	ol the s	need of	dc shur	nt motor	using s	peed co	ntrol me	ethods.				
CO5	Able t	o find o	ut the c	haracter	ristics of	F PN iur	etion di	ode & t	ransisto	r					
CO6	Able t	o detern	nine the	rinnle	factor of	f half w	ave & fi		rectifie	rs					
Contr	ibution			teomes	toward	s achiev	voment	of Proc	ram O	utcome	s (1 _ T	OW 2-			
Mediu	m.3 -	High)		comes	towaru	s acme	venient	UTIUE			5 (I – I	2010, 2-			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO			
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1	3	-	-	-	-	-	-	-	-			
CO2	2	2	1	3	_	_	_	_	_	_	_				
002	-	-	-	5											
CO3	2	2	1	3	-	-	-	-	-	-	-	-			
ac i															
CO4	2	2	1	3	-	-	-	-	-	-	-	-			
CO5	2	2	1	3	_	_	_	_	_	_	_				
200	4	-	T	5											
CO6	2	2	1	3	-	-	-	-	-	-	-	-			
					List of	f Exper	iments								

Section A: Electrical Engineering.

1. Swinburne's test on D.C. Shunt machine (Predetermination of efficiency of a given D.C Shunt machine working as motor and generator).

2. OC and SC tests on single phase transformer (Predetermination of efficiency and regulation at given power factors).

3. Brake test on 3-phase Induction motor (Determination of performance characteristics)

4. Regulation of alternator by Synchronous impedance method.

5. Speed control of D.C. Shunt motor by a) Armature Voltage control b) Field flux control method

6. Brake test on D.C. Shunt Motor.

Section B: Electronics Engineering.

1. PN junction diode characteristics a) Forward bias b) Reverse bias (Cut in voltage and resistance calculations)

2. Transistor CE characteristics (Input and output)

3. Half wave rectifier with and without filters.

4. Full wave rectifier with and without filters.

5. CE amplifiers.

6. OP- Amp applications (inverting, non inverting, integrator and differentiator) OP- Amp applications (inverting, non inverting, integrator and differentiator)

Note: Minimum of 10 Experiments need to be performed Any 5 experiments from each section A and B.

18A2200201

EM-IV - PROBABILITY AND STATISTICS

Lectu	re – Tu	torial:	L-	T Hour	S				Intern	al Marl	ks:	40
Credi	ts:		3						Extern	al Mar	ks:	60
Preree	quisites	:										
Cours	e Obje	ctives:										
1.To fa	amiliari	ze the t	echniqu	ies in co	entral te	endency	, curve	fitting,	correla	tion and	l regres	sion.
2. To f	familiar	ize the	techniq	ues in p	probabil	lity and	randon	n variat	oles.			
3. To f	familiar	ize the	techniq	ues in p	probabil	lity dist	ributior	ı.				
4. To f	familiar	ize the	techniq	ues in l	arge an	d small	sample	e tests.				
5.To e	quip the	e studer	nts to so	olve pro	blems i	n their	discipli	nes.				
Cours	se Outc	omes:										
Upon	success	sful cor	npletio	n of the	e cours	e, the s	tudent	will be	able to	:		
CO1	Find t	he mea	sures of	f centra	l tender	ncy and	relation	n betwe	en them	n. (L1)		
CO2	Evalu	ate the	correlat	tion coe	fficient	, rank c	coefficie	ent and	regressi	on. (L5)	
CO3	Under	stand p	orobabil	ities of	events	and exp	pectation	ns of ra	ndom v	ariables	for	
	eleme	ntary p	roblems	s. (L2)								
CO4	Solve	problei	ms relat	ed to bi	inomial	and pa	ssion di	istributi	on. (L3)		
CO5	Comp	are situ	ations i	n whicl	h it is aj	ppropri	ate to co	onsider	the rele	vance c	of the N	ormal
	distrit	oution.	(L4)									
~ ~ ~ ~	~											
CO6	Const	ruct hy	pothesis	s and ca	rryout	approp	riate tes	ts to ch	ecks its	accepta	bility. ((L3)
Contr	ibution	of Co	urse Oi	itcome	s towar	ds ach	ieveme	nt of P	rogram	Outco	mes	
(1 – I	.ow, 2-	Mediu	m, 3 – 1	High)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
~~ .	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	2								
CO2	3	3	2	2								
CO3	3	3	2	2								
CO4	3	3	2	2							-	
CO5	3	3	2	2							-	
CO6	3	3	2	2								
						UNIT	I					
Descr	intive s	tatistic	s and n	nethod	s for da	nta scie	nce					

(Pre-requisite: Data science, Statistics Introduction, Population vs Sample, Collection of data, primary and secondary data, Type of variable: dependent and independent Categorical and Continuous variables, Data visualization. --- No Question selects from the above part)

Measures of Central tendency: Arithmetic Mean – Median – Mode - Geometric Mean-Harmonic Mean and Relations between them- Merits and Demerits.

Measures of Dispersion: Range – Quartile Deviation – Variance, Standard Deviation – Skewness - Kurtosis.

Curve Fitting and Principles of Least Squares.

Correlation - correlation coefficient - rank correlation - Regression coefficients - Regression lines.

UNIT II

Probability

Probability, probability axioms, addition law and multiplicative law of probability, conditional probability, Baye's theorem, random variables (discrete and continuous), probability density functions, properties, mathematical expectation.

UNIT III

Distributions

Probability distribution - Binomial, Poisson approximation to the binomial distribution and normal distribution-their properties.

UNIT IV

Estimation and Testing of hypothesis: Large sample tests Small sample tests

Estimation-parameters, statistics, sampling distribution, point estimation, Formulation of null hypothesis, alternative hypothesis, the critical and acceptance regions, level of significance, two types of errors and power of the test.

Large Sample Tests: Test for single proportion, difference of proportions, test for single mean and difference of means. Confidence interval for parameters in one sample and two sample problems

Small Sample Tests: Student t-distribution (test for single mean, two means and paired t-test), testing of equality of variances (F-test), $\chi 2$ - test for goodness of fit, $\chi 2$ - test for independence of attributes.

TEXT BOOKS:

- 1. Miller and Freund, Probability and Statistics for Engineers, 7/e, Pearson, 2008.
- 2. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.

REFERENCE BOOKS:

1. S. Ross, A First Course in Probability, Pearson Education India, 2002.

W. Feller, an Introduction to Probability Theory and its Applications, 1/e, Wiley, 1968.

E-RESOURCES:

1.nptel

18A2203401- DESIGN OF MACHINE MEMBERS – I

Lectu	re – Tu	torial:	2-1	l Hours	5				Interna	al Mark	s:	40
Credi	ts:		3						Extern	al Mark	s:	60
Prere	quisites	:										
ENG	INEER	ING M	ECHAN	NICS, N	ЛЕСНА	ANICS	OF MA	TERIA	LS			
Cours	se Obje	ctives:										
1.	The s mecha activit	tudent inical e y with r	shall g ngineer nanufac	ain ap ing, the turing a	preciation steps stivity	on and involve	unders d in de	tanding esigning	g of the g and the	e design he relat	n funct ion of	tion in design
2.	Select mecha	ion of p inical pr	oroper n operties	naterials	s to diff	erent m	achine	element	s based	on the	r physic	cal and
3.	Learn	and unc	lerstand	ing of th	he diffe	rent typ	es of fai	lure mo	des and	criteria		
4.	Procee	lure for	the dif	ferent n	nachine	elemen	ts such	as fast	eners, sl	nafts, co	ouplings	s, keys,
	axially	/ loaded	joints e	etc.								
Cours	se Outc	omes:										
Upon	success	sful con	npletior	n of the	course,	, the stu	dent wi	ill be al	ole to:			
CO1	Estima	te safet	y factor	s of ma	chine m	embers	subjecte	ed to sta	tic and	dynamic	c loads.	
CO2	Apply	multi d	limensio	onal stat	tic failu	re criter	ria in th	e analy	sis and	design	of mecl	nanical
	compo	nents.										
CO3	Identif stresse	y the l s to ens	oads, tł ure safe	ne mach design.	nine me	embers	subjecte	ed and	calculat	e static	and dy	ynamic
CO4	Design	n fastene	ers subje	ected to	variety	of loads	5.					
CO5	Select	of stand	lard ma	chine el	ements	such as	keys, sh	afts, co	uplings			
CO6	Analyz	ze and d	esign m	echanic	al sprin	igs			1 0			
Contr	ribution	of Cou	ırse Ou	tcomes	toward	ls achie	vement	of Pro	gram O	utcome	S	
(1 – L	.ow, 2-	Mediur	n, 3 – H	ligh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	2	2			2	2		3
CO2	3	3	3	2	2	2			2	2		3
CO3	3	3	3	2	2	2			2	2		3
CO4	3	3	3	2	2	2			2	2		3
CO5	3	3	3	2	2	2			2	2		3
CO6	3	3	3	2	2	2			2	2		3

UNIT I

INTRODUCTION: General considerations in the design of Engineering Materials and their properties – selection –Manufacturing consideration in design, tolerances and fits –BIS codes of steels.

STRESSES IN MACHINE MEMBERS: Simple stresses – combined stresses – torsional and bending stresses – impact stresses – stress strain relation – various theories of failure – factor of safety – design for strength and rigidity – preferred numbers. The concept of stiffness in tension, bending, torsion and combined situations.

UNIT II

STRENGTH OF MACHINE ELEMENTS: Stress concentration – theoretical stress concentration factor – fatigue stress concentration factor notch sensitivity – design for fluctuating stresses – endurance limit – estimation of endurance strength – Goodman's line – Soderberg's line – modified Goodman's line.

Bolted joints – Design of bolts with pre-stresses – design of joints under eccentric loading – locking devices .

UNIT III

RIVETED AND WELDED JOINTS – design of joints with initial stresses – eccentric loading. **KEYS, COTTERS AND KNUCKLE JOINTS:** Design of keys-stresses in keys-cotter jointsspigot and socket - knuckle joints.

UNIT IV

SHAFTS: Design of solid and hollow shafts for strength and rigidity – design of shafts for combined bending and axial loads – shaft sizes. Shaft Coupling: Rigid couplings – muff, split muff and flange couplings, flexible couplings – flange coupling (modified).

MECHANICAL SPRINGS: Stresses and deflections of helical springs – extension - compression springs – energy storage capacity – helical torsion springs – co-axial springs, leaf springs.

TEXT BOOKS:

- 1. Machine Design/V.Bandari/ TMH Publishers
- 2. Machine design / NC Pandya & CS Shah/Charotar Publishing House Pvt. Limited
- 3. Design data book of Engineers

REFERENCE BOOKS:

- 1. Design of Machine Elements / V.M. Faires/McMillan
- 2. Machine design / Schaum Series/McGrawHill Professional
- 3. Machine Design/ Shigley, J.E/McGraw Hill.
- 4. Design data handbook/ K.Mahadevan & K. Balaveera Reddy/ CBS publishers.
- 5. Design of machine elements-Spotts/Pearson Publications
- 6. Machine Design –Norton/ Pearson publishers

E-RESOURCES:

- 1. https://nptel.ac.in/courses/112105124/
- 2. https://www.youtube.com/watch?v=mzWMdZZaHwI&list=PL3D4EECEFAA99D9BE

18A2203402-FLUID MECHANICS& HYDRAULIC MACHINES

Lectu	re – Tu	torial:	2-1	Hours					Interna	l Mark	S: 4	40
Credi	ts:		3						Externa	al Mark	ks:	60
Prere	quisites	:										
Funda	mentals	of Engi	ineering	Mecha	nics							
Cours	se Objeo	ctives:										
1. St	udent w	ill knov	w the c	oncept	of fluid	and it	s propert	ies, m	anomet	ry, hydi	rostatic	forces
ac	ting on o	different	t surface	es and a	lso prob	olem sol	ving tech	niques	S.	~		
2. St	udent w	ill be ex	posed to	the ba	sic laws	s of flui	ds, flow p	oattern	s, visco	us flow	through	n Pipes
an	d their c	orrespo	nding p	roblems	•	1 / 1	. 1		.1		1 1.	• 1
3. Sti	udent w	'ill be a	iware of	t the co	oncepts	related	to boun	dary I	ayer the	eory and	a dimei	nsional
	alysis.	ill know	the hyd	Irodyna	mia for	oog activ	a on yon	as and	thair no	rformo		luction
4. Su 5 St	udent w	ill he in	a positi	nouyna	aluate t	he perfe	ig oli vali	cs allu sharac	teristics	of hydr	aulic tu	rhines
5. St	udent w	ill be aw	a positi vare of f	he impo	aruate t	function	n and per	forma	nce of h	vdro ma	aune tu	
Cours	se Outc	mes:	vuie oi t	ne mpe	intunce,	runetion	i una per	lonna		yaro inc	iennier y	•
Upon	success	ful com	pletion	of the	course.	the stu	dent will	be ab	le to:			
CO1	Define	e fluid p	ropertie	s and ex	kplain p	rocedur	e of dime	nsiona	al analys	sis		
CO2	Explai	in proce	dure of	measure	ement o	f fluid p	oressure a	nd ma	nometry	/		
CO3	Apply	laws of	conserv	vation o	f mass,	momen	tum and	energy	to fluic	l flow		
CO4	Analy	ze flow	through	differe	nt pipes							
CO5	Analy	ze the i	mpact o	f jet on	the van	es						
CO6	Evalua	ate perfo	ormance	of hyd	raulic m	achines						
Contr	ribution	of Cou	rse Out	tcomes	toward	s achiev	vement o	f Prog	gram O	utcome	5	
(1 - L)	.ow, 2-1	Mediun	1, 3 – H	igh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2									
CO2	3	2	1									
CO3		3	2									
CO4	3	3	2									
CO5	3	3	2									
CO6	3	3	2									
						UNIT I	[
Fluid	statics:				<u>.</u>				•			
Physic	cal prop	erties of	fluids-	specific	gravity	y, viscos	sity, surfa	ce ten	sion- va	por pres	ssure an	d their
influe	nce on t	tiuid mo	otion- a	tmosphe	eric gau	ge and	vacuum	pressu	re –mea	asureme	ent of p	ressure

Piezometer, U-tube and differential manometers. Total pressure, center of pressure,

Hydro Static Forces on surfaces and submerged bodies: hydrostatic forces on vertical, inclined and curved surfaces, Buoyancy, center of buoyancy, Meta center Stability of floating bodies and applications.

UNIT II

Fluid Kinematics:

Classification of flows, Stream line, path line and streak lines and stream tube, differential equation of continuity, Acceleration.

Fluid dynamics: Surface and body forces –Eule's and Bernoulli's equations for flow along a stream line, momentum equation and its application on force on pipe bend, Viscous flow through pipe, Dimensional analysis, Boundary layer, displacement thickness, momentum thickness, energy thickness Navier-stokes equation

UNIT III

Flow through Pipes:

Reynold's experiment- Darcy Weisbach equation- Minor losses in pipes- pipes in series and pipes in parallel- total energy line-hydraulic gradient line. Measurement of flow: pilot tube, venturimeter and orifice meter.

Basics of turbo machinery: Hydrodynamic force of jets on stationary and moving flat, inclined, and curved vanes, jet striking centrally and at tip, velocity diagrams, work done and efficiency flow over radial vanes

UNIT IV

Hydraulic Turbines:

Classification of turbines, impulse and reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-working proportions, work done, efficiencies, hydraulic design – draft tube theory-functions and efficiency. Geometric similarity, Unit and specific quantities, characteristic curves, selection of turbine, cavitation, surge tank, water hammer.

Hydraulic Pumps: Classification of pumps, Centrifugal pumps-work done, efficiency, specific speed, characteristic curves, Reciprocating pumps, -work done Slip and indicator diagram

TEXT BOOKS

- 1. Hydraulics, fluid mechanics and Hydraulic machinery MODI and SETH. standard book house.
- 2. Frank M.White, "Fluid Mechanics", McGraw-Hill, 7th Edition, New Delhi, 2011.

REFERENCE BOOKS:

- 1. Fluid Mechanics and Hydraulic Machines by Rajput. S. Chand Publishers
- 2. Fluid mechanics and hydraulic machines by R. K. Bansal, Laxmi Publications Ltd.,
- 3. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, Kotaria & Sons.
- 4. Hydraulic Machines by Banga & Sharma, Khanna Publishers.
- 5. Fluid Mechanics and Hydraulic Machines by Domkundwar & Domkundwar, Dhanpatrai & Co.

E-RESOURCES:

1. https://nptel.ac.in

18A2203403- KINEMATICS OF MACHINERY

Lectu	re – Tu	torial:	2-1	l Hours					Interna	al Marks:	2	40
Credi	dits: 3 External Marks: 60											
Prere	quisites	:										
Engin	eering N	Iechani	cs, Engi	neering	Drawin	ng						
Cours	se Objeo	ctives:										
1. Th	e object	tive of the	his unit	is to ma	ke stud	lent und	erstand	the purp	bose of l	kinematics	, Kin	ematic
joi	nt and	mechani	ism and	to stud	y the r	elative	motion	of parts	in a m	achine wit	thout	taking
int	o consi	deration	the for	ces invo	olved. A	And vari	ous mee	chanism	s for st	raight line	moti	on and
the The	eir appli	cations.	41.1.			- 4 1	4	- 4 - 1 - 1 - 1	L		1	
2. In	le objec	tive of	this ui	11t 1s to) make	studen	it under	stand the	ne velo	city and a		eration
co.	ncepts a	To und	arstand	the opr	ing gra	pincal if	lor oron	and prin	nicipies a	to applicate	dy of	E plopo
Da m	tion of	the body		the app	incation	I OI SHC	ier cram	x meena		ic. and stu	uy or	plane
3 Th	e objec	tive of	y this un	it is to	make	student	unders	tand the	e theori	es involve	ed in	came
J. III Fu	rther th	e studer	nts are	exposed	to the	applica	ations of	f came	and the	ir working	o nrin	cinles
Ar	nd unde	rstand v	arious	power 1	ransmi	ssion m	echanis	ms and	metho	dologies a	nd w	orking
pri	inciples.	Studen	ts are e	xposed	to mer	its and	demerit	s of eac	h drive	. To help t	the st	udents
de	velop ef	fective	writing	skills th	rough p	baragrap	h writin	g.		1		
4. Th	e objec	tive of t	this unit	t is to n	nake sti	udent u	nderstan	d gears	, power	transmiss	ion tl	nrough
dif	ferent t	ypes of g	gears in	cluding	gear pr	ofiles a	nd its ef	ficiency	· -			-
Cours	se Outco	omes:										
Upon	success	ful com	pletion	of the	course,	the stu	dent wi	ll be ab	le to:			
COL	Unde	rstand K	Kinemat	ic joint	and me	echanisr	n and st	udy the	relativ	e motion c	of par	ts in a
001	machi	ne with	out takii	ng into c	conside	ration th	ne forces	involv	ed.			
CO2	Unde	rstand v	arious r	nechani	sms for	straigh	t line mo	otion an	d their a	application	IS.	
CO3	Draw	the velo	ocity an	d accele	ration of	of four t	par chair	and sli	der crai	nk chain gr	raphic	cally.
CO4	Apply	workin	g princi	ples of o	cams ar	nd also d	lesign th	ie profil	e of car	ns.		
CO5	Decid	le the n	to of te	eth on	a gear	and a	lso sele	ct the g	gear tee	eth depend	ling o	on the
	applic	cation in	the uni	t of Gea	urs.							
CO6	Unde	rstand v	various	power t	ransmi	ssion m	echanis	ms and	method	dologies a	nd w	orking
~~~	princi	ples. St	udents a	ire expo	sed to r	nerits a	nd deme	rits of e	each driv	ve.		
Contr	ribution	of Cou	rse Out	tcomes	toward	ls achie	vement	of Prog	gram O	utcomes		
$(\mathbf{I} - \mathbf{L})$	0W, 2-1		1, 3 - H	ign)	DO	DO	DO	DO	DO	DO	DO	DO
	1	<b>FU</b> 2	3		5	<b>FU</b> 6	7	rU 8		10 I	го 11	12
CO1	1	1	3		3	U	1	0	,	10	11	14
COI	1	L										
CO2	2	3	1	1								
CO3	1	2	3	3	3							
CO4	1	2	3	3	3							
CO5	1	3	3	3	3							
CO6	l	1	2	3	3		-					
MEC		MC . T	1				l tian '	1 -: -: -: -: -: -: -: -: -: -: -: -: -:			<u>rı</u>	1:1-
	nanis of line	IVIS: E	iements	or Lin	KS – C	assifica	u = 1	xigia Li	ink, fle	xible and i	riuid	link –
1 ypes	of kine	mane pa	airs – si	iding, ti	uming, i	roning,	screw a	na spne	ncal pa	irs – lower	and	mgner
pairs	- close		ppen pa	ns - co	JISUAL		101 - 0		ery, par	tiany or s	succes	ssiully

pairs – closed and open pairs – constrained motion – completely, partially or successfully constrained and incompletely constrained . Grublers criterion , Grashoff's law , Degrees of freedom, Kutzbach criterion for planar mechanisms, Mechanism and machines – classification of machines – kinematic chain – inversion of mechanism – inversion of mechanism – inversions of quadric cycle, chain – single and double slider crank chains.

LOWER PAIR MECHANISM: Exact and approximate copiers and generated types -

Peaucellier, Hart and Scott Russel – Grasshopper – Watt T. Chebicheff and Robert Mechanisms and straight line motion, Pantograph.

### UNIT II

**KINEMATICS:** Velocity– Motion of a link in machine – Determination of Velocity diagrams – Instantaneous centre of rotation, centroids and axodes – relative motion between two bodies – Three centres in line theorem – Graphical determination of instantaneous centre, diagrams for simple mechanisms ,Graphical method – Application of relative velocity method four bar chain. Acceleration – Determination acceleration diagrams – Graphical method –acceleration analysis of for a given mechanism, Coriolis acceleration, determination of Coriolis component of acceleration.

#### UNIT III

**CAMS** Definitions of cam and followers – their uses – Types of followers and cams – Terminology –Types of follower motion: Uniform velocity, Simple harmonic motion and uniform acceleration and retardation. Maximum velocity and maximum acceleration during outward and return strokes in the above 3 cases. Analysis of motion of followers: Roller follower – circular cam with straight flank.

**Power Transmissions** : Introduction, Belt and rope drives, selection of belt drive- types of belt drives, V-belts, materials used for belt and rope drives, velocity ratio of belt drives, slip of belt, creep of belt, tensions for flat belt drive, angle of contact, centrifugal tension, maximum tension of belt, Chains- length, angular speed ratio, classification of chains.

#### UNIT IV

**GEARS** Higher pairs, friction wheels and toothed gears-types – law of gearing, condition for constant velocity ratio for transmission of motion, Form of teeth: cycloidal and involute profiles. Velocity of sliding – phenomena of interferences – Methods of interference. Condition for minimum number of teeth to avoid interference, expressions for arc of contact and path of contact – Introduction to Helical, Bevel and worm gearing.

**GEARS TRAINS** Introduction to gear Trains, Train value, Types – Simple and reverted wheel train – Epicyclic gear Train. Methods of finding train value or velocity ratio – Epicyclic gear trains. Selection of gear box-Differential gear for an automobile.

# **TEXT BOOKS:**

1. Theory of Mechanisms and machines – A.Ghosh & A.K.Malik – East West Press Pvt. Ltd.

2. Theory of Machines – S. S Rattan- TMH

3. Theory of machines and Mechanisms - J.J Uicker, G.R.Pennock & J.E.Shigley - Oxford

#### **REFERENCE BOOKS:**

- 1. Theory of Machines Sadhu Singh, Pearsons Edn
- 2. Theory of machines and Machinery /Vickers /Oxford .
- 3. Theory of Machines by Thomas Bevan/ CBS
- 4. Kinematics of Machinery through Hyper Works J.S. Rao Springer Publ

#### **E-RESOURCES:**

- 1. http://www.roboanalyzer.com/mechanalyzer.html
- 2. https://nptel.ac.in/courses/112104121/
- 3. https://ocw.mit.edu/courses/mechanical-engineering/2-003j-dynamics-and-control-i-fall-

2007/index.htm

4. <u>https://engineering.dartmouth.edu/academics/courses/engg240</u>

# **18A2203404- IC ENGINES AND GAS TURBINES**

Lecture	e – Tuto	rial:	3-1	Hours					Interna	al Mark	s: 4	40
Credits	:		3						Extern	al Mark	s:	50
Prerequ	isites: '	Thermo	lynamic	s.								
Course	Objecti	ives:										
1. '	Го provi	ide an in	sight of	fundam	entals a	nd salier	nt featur	es of int	ernal co	mbustio	n engine	es.
2. To i	mpart th	e basic	combust	tion phe	nomeno	n in botl	n SI and	CI engi	nes.			
3. To e	enable th	e studer	its the co	oncepts	of actua	l cycles	and thei	r analys	sis			
4. To i	mbibe tl	he know	ledge of	testing	and peri	formanc	e charac	teristics	of IC er	ngines.		
5. To	enable t	he stude	nts learr	basics	and wor	king of	Gas turb	oines.				
6. To 1	mpart th	le know	ledge of	Rockets	s and jet	propuls	ion syste	ems.				
Course	Outoon	2001										
Unon si	Outcom	il compl	etion of	' the cou	irse the	e studen	t will be	ahle ta	•			
CO1	Unders	stand the	workin	$\sigma$ of var	ious inte	ernal cor	nhustion	i engine	compoi	ients and	d their w	orking
001	Princir	oles.	, workin	5 01 701	ious inte		110 45 1101	i engine	compor	ionto un		onning
CO2	Analyz	the co	mbustio	n pheno	menon	of SI en	gines an	d CI en	gines.			
CO3	Compr	ehend th	ne air sta	indard, f	fuel air a	and actua	al cycles	j.				
CO4	Compi	te the tv	vo strok	e and fo	ur strok	e engine	perforn	nance cl	naracteri	stics.		
CO5	Descri	be the co	omponer	nts, func	tioning	and perf	ormance	e of gas	turbines	5.		
CO6	Apply	the prin	ciples of	gas tur	bines an	d jet pro	pulsion	systems	5.			
Contrib	oution o	f Cours	e Outco	mes tov	wards a	chievem	ent of F	Progran	n Outco	mes		
(1 - Lor)	w, 2- M	edium, .	3 – Higł	1) — — —								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
001	1	2	3	4	5	0	7	8	9	10	11	12
COI	2	I					I					
CO2	3	1				1	1					
CO3	3	2	1				1					
CO4	2	2	2	1								
CO5	1	2	1									
CO6	2					1	1					

UNIT I

**INTRODUCTION**: Heat engine, Classification of IC Engines, Basic Engine Components and Nomenclature, Working principles of 4-Stroke and 2-Stroke Spark Ignition and Compression Ignition Engines, Valve and Port timing diagrams, Applications of I.C. Engines.

**ENGINE SYSTEMS**: Introduction, Layout of Fuel supply system for SI Engine-Simple Carburetor, Fuel supply system for CI Engine-Solid Injection-Individual pump type, Common rail type only. Super charging and turbo charging of IC engines. Cooling systems, Air cooling, Water cooling, Comparison, Radiators and cooling fans, Lubricating systems, Mist lubrication, Wet sump lubrication, and Dry sump lubrication system, Ignition systems, Battery, Magneto and Electronic ignition system. Principle of wankle engine.

#### UNIT II

COMBUSTION IN SI ENGINES: Introduction, Homogeneous and Heterogeneous mixture, stages

of combustion in SI engines, flame front propagation, factors influencing the flame speed, Normal combustion, Abnormal combustion, phenomenon of knock in SI engines, effect of engine variables on knock, combustion chambers for SI engines- Fuel requirement and fuel rating, anti knock additives.

**COMBUSTION IN CI ENGINES:** Introduction, stages of combustion in CI engines, factors affecting the delay period, phenomenon of knock in CI engines, comparison of knock in SI and CI engines, Combustion Chambers for CI engines, Nozzles, Fuel requirement and fuel rating.

**UNIT III** 

**ACTUAL CYCLES AND THEIR ANALYSIS**: Introduction, composition of cylinder gases, dissociation, comparison of air-standard and fuel-air cycles. comparison of air-standard and actual cycles, time loss factor, heat loss factor, exhaust blow down, loss due to rubbing friction, actual and fuel-air cycles of engines.

**ENGINE TESTING AND PERFORMANCE**: Introduction, Parameters of performancemeasurement of cylinder pressure, Measurement of Fuel consumption, Air intake, Brake power, Determination of Frictional power and Indicated power, Performance tests, Heat Balance sheet. Engines exhaust emissions- CO, NOx, SOx, HC, and Soot.

#### UNIT IV

**GAS TURBINES**: Introduction, Classification of Gas Turbines, Simple Gas Turbine Plant-Ideal Cycle, Closed Cycle -Open Cycle - Efficiency, Work Ratio and Optimum Pressure Ratio For Simple Gas Turbine Cycle and Basic Problems. Actual Cycle, Analysis Of Simple Cycles & Cycles With Inter Cooling, Reheating and Regeneration.

**JET PROPULSION SYSTEMS**: Introduction- Working of Turbojet, Turbo Fan, Turboprop, Ramjet, applications.

#### **REFERENCE BOOKS: TEXT BOOKS:**

1. V.Ganesan, Internal Combustion Engines – Tata McGraw-Hill, 3rd Edition 2008.

2. P.W.Gill ,J.H.Smith&Ziurys ,Fundamentals of I.C.Engines - IBH & Oxford publications, 4th Edition 1959.

3. Mahesh M. Rathode, Thermal Engineering, Tata McGraw-Hill, 5th Edition 2010.

4. R.K.Rajput, Thermal Engineering, Laxmi publications, 5th Edition, 2005.

# **REFERENCES:**

- 1. John B.Heywwod, Internal Combustion Engine Fundamentals , Tata McGraw-Hill, 2012.
- 2. M.L.Mathur&R.P.Sharma, A Course in I.C. Engines ,DhanpatRai New Delhi, 7th Edition 2000.
- 3. Pulkrabek, Engineering Fundamentals of I.C.Engines PHI 2nd Edition 2004.
- 4. T.D Eastop and A. McConkey, Applied Thermodynamics, Pearson 5th Edition 2013.
- 5. R. Yadav , Thermodynamics and Heat Engines, Vol-II, Central Book Depot, 5th Edtn, 1999.
- 6. R.S.Khurmi, Thermal Engineering, S.Chand & Company, 1st Edition, 2012.
- 7. Thermal Engineering / PL Ballaney, Khanna Publishers.

# **E-RESOURCES:**

- 1. <u>https://www.youtube.com/watch?v=fTAUq6G9apg</u>
- 2. <u>https://edisontechcenter.org/resources.html</u>
- 3. <u>https://nriblogspot.org/resources.html</u>

- 4. http://www.vssut.ac.in/lecture_notes/lecture1429900545.pdf
- 5. Ignition system, http://www.ignou.ac.in/upload/unit%204.pdf
- 6. Cooling system, http://www.iitg.ernet.in/scifac/qip/public_html/cd_cell/chapters/uk_saha_internal_combustion_engine/qip-ice-25-cooling%20systems.pdf
- 7. http://hillagric.ac.in/edu/coa/agengg/lecture/243/Lecture%207%20Cooling%20and%20lubr ication.pdf 4.lubrication system,
- 8. http://www.iitg.ernet.in/scifac/qip/public_html/cd_cell/chapters/uk_saha_ internal_combustion_engine/qip-ice-23-lubrication%20systems.pdf
- 9. http://144.162.92.233/faculty/mwhitten/presentations/1306/lubricationsystem.pdf
- 10. http://scienceandtechnicalprojects.blogspot.in/2007/12/lubrication-system-of-ic-engine.html

# **18A2203601- BASICS OF MECHANICAL ENGINEERING**

Liceta	re – Tu	torial:	2-	1 Hour	ſS			I	nternal	Marks:		<b>40</b>					
Credi	ts:		3					E	xternal	Marks:	8	60					
Prere	quisites	5:															
NON	Ē																
Cours	se Obje	ctives:															
1.	Under	stand th	ne funda	mental	princip	les of th	ermody	namics	•								
2.	Learn	about t	he engir	neering	materia	ls. their	types. r	properti	es and a	pplicatio	ons.						
3.	Under	stand t	he conc	epts of	engine	ering m	echanics	s like a	nalvsis	of copla	nar coi	ncurrent					
	system	ns and f	riction.	- I	0	0			J								
4	Under	stand th	ie nowe	r transn	nission	using be	elts, rope	es and g	ear trai	ns							
5	Learn	the sim	nle stre	sses and	d strains	tvnes	their sig	nifican	ice in de	sion							
6	Study	the bas	ic manu	facturir	ng nroce	, cypes, esses 1156	enten sig ed in me	nufacti	iring of	products	2						
7	Learn	about	industri	al safet	tv its r	equiren	nent go	als tra	ining r	rocedure	s. es follo	owed in					
/.	indust	ries	maasui	ur bure	<i>cy</i> , <i>no i</i>	equiien	ient, 50	uis, iiu	<b>5</b> , P	loccaui		owed m					
8	Solve	the pro	blems (	of thern	nodvnai	mics m	echanic	s helts	ropes	and gear	· trains	simple					
0.	stresse	e and e	trains	JI them	nouynai	incs, m	centanic	5, 00105	, topes a	and gear	uans	, simple					
Cours		omos.	uams.														
Unon		omes.	nnlatio	n of the	0011800	the st	idont w	ill ha a	hla tar								
CO1	Ecces	siui coi	inpletion	n or the	course	, uie su	their tr		Die to:	and anni	instian	2					
			viui uie	Enginee	ering ma	ateriais,	their ty	pes, pro	operties	and appr	lication	S.					
CO2	Analy	ze copi	anar co	ncurren	t system	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	rction	1		•							
CO3	Desig	n Powe	r transn	nission s	systems	using b	elts, rop	bes and	gear tra	ins.							
CO4	Solve	Simple	e problei	ms in st	resses a	ind strai	ns		<b>C</b>	• •							
CO5	Famil	iarize v	vith Bas	ic manu	ufacturii	ng proce	esses use	ed in ma	anufactu	Iring of p	product	ts.					
CO6	Appre	eciate th	ne Indus	strial sa	fety, its	require	ment, g	oals, tra	aining, p	procedur	res follo	owed in					
<u>a</u>	indus	tries.		<u> </u>			industries.										
Contr	Contribution of Course Outcomes towards achievement of Program Outcomes																
(1 – Low, 2- Medium, 3 – High)											m Ou	itcomes					
(1 – L	.ow, 2-	n of Mediui	Course m, 3 – H	Outc High)	omes	toward	s achi	evemen	nt of	Program	m Ou	itcomes					
(1 – L	ow, 2- PO	n of Mediur PO	Course m, 3 – H PO	Outc Iigh) PO	PO	toward PO	s achi PO	evemer PO	nt of PO	Program PO	m Ou PO	PO					
(1 – L	PO 1	n of Mediun PO 2	Course m, 3 – F PO 3	Outc Iigh) PO 4	PO 5	toward PO 6	s achi PO 7	evemer PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12					
( <b>1</b> – <b>L</b> CO1	<b>PO</b> 1 3	n of Mediun PO 2 1	Course m, 3 – E PO 3 1	Outc Iigh) PO 4	PO 5	toward PO 6	s achi PO 7	evemer PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2	<b>PO</b> 1 3 3	n of Mediun PO 2 1 2	Course m, 3 – H PO 3 1 1	Outc Iigh) PO 4	PO 5	toward PO 6	s achi PO 7	evemer PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3	PO      1        3      3        3      3	n of Medium PO 2 1 2 2 2	Course m, 3 – F PO 3 1 1 1	Outc Iigh) PO 4	PO 5	PO 6	s achi PO 7	PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4	PO      1        3      3        3      3        3      3	n of Mediun PO 2 1 2 2 2 2 2	Course m, 3 – F PO 3 1 1 1 1 1	Outc Iigh) PO 4	PO 5	PO 6	s achi PO 7	PO 8	PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5	PO      1        3      3        3      3        3      3        3      3	n of Medium 2 1 2 2 2 2 2 2 2	Course m, 3 – F PO 3 1 1 1 1 1 1	Outc Iigh) PO 4	PO 5	PO 6	s achi PO 7	PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6	ow, 2-        PO        1        3        3        3        3        3        3        3        3        3        3        3        3	n of Mediun PO 2 1 2 2 2 2 2 2 2 2 2	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1	Outc Iigh) PO 4	PO 5	PO 6	s achi PO 7	PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6	PO    1    3    3    3    3    3    3    3    3    3    3	n of Medium PO 2 1 2 2 2 2 2 2 2 2 2	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1	Outc Iigh) PO 4	PO 5	toward PO 6	s achi PO 7	PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6	PO    1    3    3    3    3    3    3    3	n of Medium PO 2 1 2 2 2 2 2 2 2 2	Course m, 3 – H PO 3 1 1 1 1 1 1 1	Outc Iigh) PO 4	PO 5	toward PO 6 Unit-1	s achi PO 7	evemer PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6	PO    1    3    3    3    3    3    3    3    3    3    3	n of Mediun PO 2 1 2 2 2 2 2 2 2 2 2	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1	Outc Iigh) PO 4	PO 5	toward PO 6 Unit-J	s achi PO 7	evemer PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introd Engin	PO    1    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    4uction	n of Medium PO 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1 1 5, class	Outc Iigh) PO 4	PO 5 srials: n - Prop	PO 6 6 Unit-1	s achi PO 7	evemer PO 8	nt of PO 9	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introe Engin ferrou	PO      1        3      3        3      3        3      3        3      3        3      3        s; Non      Non	n of Medium PO 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Course m, 3 – H PO 3 1 1 1 1 1 1 1 1 1 1 1 1 5, class Glasses	Outc Iigh) PO 4 ag mate ification s- Cera	PO 5 srials: n - Prop mics; F	toward PO 6 Unit-J Polymer	s achi PO 7	evemer PO 8 ications & HD	nt of PO 9 s of Me PV; Bio	Program PO 10	m Ou PO 11	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introd Engin ferrou materi	A constraints of the second se	n of Mediun PO 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1 1 s, class Glasse	Outc Iigh) PO 4 ag mate ification s- Cera	rials: n - Prop. mics; F	toward PO 6 Unit-1	s achi PO 7	evemer PO 8 ications & HD	nt of PO 9	Program PO 10	m Ou PO 11 rous ar ils- Co	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introd Engin ferrou materi <b>Basic</b>	PO1333333333ductioneering rs; Nonials.Manuf	n of Medium PO 2 1 2 2 2 2 2 2 2 to Eng materia metals: Facturin	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1 1 1 5, class Glasses	Outc Iigh) PO 4 ag mate ification s- Cera esses: C	PO 5 rials: n - Prop mics; F Casting:	Vnit-J	s achi PO 7 I und appl s: PVC	evemer PO 8 ications & HD Steps i	nt of PO 9	Program PO 10 tals: Fer omateria	m Ou PO 11 rous ar ils- Co	PO 12 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introe Engin ferrou materi <b>Basic</b> Advan	PO13333333334uctioneering rs; Nonials.Manualntage o	nofMediunPO2122222222211222211122211221111111111111111111111111111111111111111111111111111111111111111111111111111 <td< td=""><td>Course m, 3 – H PO 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5, class Glasses mg Proc ng and</td><td>Outc Iigh) PO 4 ag mate ification s- Cera esses: ( its ap</td><td>PO 5 srials: n - Prop mics; F Casting: plicatio</td><td>toward PO 6 Unit-J poerties a Polymer classif ns. We</td><td>s achi PO 7 7 I und appl s: PVC ication, Iding: 0</td><td>evemer PO 8 ications &amp; HD Steps i</td><td>nt of PO 9</td><td>Program PO 10 tals: Fer omateria</td><td>m Ou PO 11 rous ar dls- Co ing a c ing pro</td><td>PO 12 3 3 a b d Non- mposite casting - ocesses,</td></td<>	Course m, 3 – H PO 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5, class Glasses mg Proc ng and	Outc Iigh) PO 4 ag mate ification s- Cera esses: ( its ap	PO 5 srials: n - Prop mics; F Casting: plicatio	toward PO 6 Unit-J poerties a Polymer classif ns. We	s achi PO 7 7 I und appl s: PVC ication, Iding: 0	evemer PO 8 ications & HD Steps i	nt of PO 9	Program PO 10 tals: Fer omateria	m Ou PO 11 rous ar dls- Co ing a c ing pro	PO 12 3 3 a b d Non- mposite casting - ocesses,					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introd Engin ferrou materi <b>Basic</b> Advar Funda	A constraints of the second se	nofMediumPO21222222222222223attributionfcastingfcastingfcasting	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Outc Iigh) PO 4 a a a a a a a a a a a a a	PO 5 sills: n - Prop mics; F Casting: plicatio	toward PO 6 Unit-I porties a Polymera Classif ns. We processed	s achi PO 7 7 I und appl s: PVC ïcation, lding: ( es, Solde	evemer PO 8 ications & HD Steps i Classifiering an	nt of PO 9	Program PO 10 tals: Fer omateria l in mak of welding.	m Ou PO 11 rous ar dls- Co ing a c ing pro	PO 12 3					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introd Engin ferrou materi <b>Basic</b> Advar Funda Mecha	PO 1 3 3 3 3 3 3 4 duction eering to s; Non ials. Manuf ntage our umental anical v	nofMediumPO21222222222a to Engmateriametals:facturinof castintreatmenttreatmentvorking	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Outc Iigh) PO 4 a a a a a a a a a a a a a	PO 5 s arials: n - Prop mics; F Casting: plicatio /elding j and col	toward PO 6 Unit-J perties a Polymer: Classif ns. We processed d worki	s achi PO 7 7 I und appl s: PVC Fication, Iding: ( es, Solde ing, Fun	evemen PO 8 ications & HD Steps i Classifiering an idament	nt of PO 9	Program PO 10 tals: Fer omateria l in mak of welding. ment of o	m Ou PO 11 rous ar dis- Co ing a c ing pro	PO123 $\sim$ </td					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introd Engin ferrou materi <b>Basic</b> Advar Funda Mecha worki	PO 1 3 3 3 3 3 4 4 4 4 4 4 5 5 5 1 3 3 3 3 3 4 4 4 4 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	nofMediumPO2122222222211222211112222111111111111111111111111111111111111111111111111111111111111111111111111111111 <td< td=""><td>Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>Outc Iigh) PO 4 ag mate ification s- Cera esses: ( its ap urious w als-Hot Forging</td><td>PO 5 srials: n - Prop mics; F Casting: plicatio velding p and col g and E</td><td>toward PO 6</td><td>s achi PO 7 7 I und appl s: PVC ïcation, Iding: ( es, Solde ing, Fun</td><td>evemen PO 8 ications &amp; HD Steps i Classific ering an idament</td><td>nt of PO 9</td><td>Program PO 10 tals: Fer omateria l in mak of welding. ment of o</td><td>m Ou PO 11 rous ar ils- Co ing a c ing pro differen</td><td>PO123$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$$a$<!--</td--></td></td<>	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Outc Iigh) PO 4 ag mate ification s- Cera esses: ( its ap urious w als-Hot Forging	PO 5 srials: n - Prop mics; F Casting: plicatio velding p and col g and E	toward PO 6	s achi PO 7 7 I und appl s: PVC ïcation, Iding: ( es, Solde ing, Fun	evemen PO 8 ications & HD Steps i Classific ering an idament	nt of PO 9	Program PO 10 tals: Fer omateria l in mak of welding. ment of o	m Ou PO 11 rous ar ils- Co ing a c ing pro differen	PO123 $a$ </td					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introd Engin ferrou materi <b>Basic</b> Advat Funda Mecha worki	PO 1 3 3 3 3 3 4 duction eering to s; Non ials. Manufatage of mental anical v ng proc	nofMediunPO212222222222222222234101112121314141515161717171717171717171717171717171717171717171717171717171717171717171717171717171717171717171717171717171717171717171717171717171717171717<	Course m, $3 - H$ PO 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Outc Iigh) PO 4 a a a a a a a a a a a a a	PO 5 s rials: n - Prop mics; F Casting: plicatio velding j and col g and Ex	toward PO 6 Unit-1	s achi PO 7 7 I und appl s: PVC ication, lding: ( es, Solde ing, Fun	evemen PO 8 ications & HD Steps i Classific ering an dament	nt of PO 9	Program PO 10 tals: Fer- tomateria l in mak of welding. ment of o	m Ou PO 11 rous ar different	PO    12      3 $\overline{}$ a $\overline{}$ a $\overline{}$ a $\overline{}$ a $\overline{}$ a $\overline{}$ b $\overline{}$ c					
(1 – L CO1 CO2 CO3 CO4 CO5 CO6 Introd Engin ferrou materi <b>Basic</b> Advar Funda Mecha worki	PO 1 3 3 3 3 3 3 4 duction eering to s; Non ials. Manuf ntage of umental anical v ng proc	nofMediumPO2122222222a to Engmateriametals:facturinof castintreatmenttreatmentvorkingesses- F	Course m, 3 – F PO 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Outc Iigh) PO 4 a a a a a a a a a a a a a	PO 5 s arials: n - Prop mics; F Casting: plicatio /elding j and col g and Ex	toward PO 6 Unit-J perties a Polymer: Classif ns. We processed d worki	s achi PO 7 I I I S: PVC Fication, Iding: ( es, Solde ing, Fun	evemen PO 8 ications & HD Steps i Classifiering an idament	nt of PO 9	Program PO 10 tals: Fer omateria l in mak of welding. ment of o	m Ou PO 11 rous ar different	PO $12$ 3    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -      -    -     <					

System of forces: Types of Force systems - Coplanar Concurrent Forces - Resultant - Moment

of a Force -Resultant of a Force System -Conditions of Equilibrium - Equilibrium analysis of Coplanar Force Systems -Free body diagrams.

## Unit-III

**Fundamentals of Thermodynamics**: System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics - Concept of quality of Temperature. First law of Thermodynamics, First law applied to Non flow systems-simple problems,

**IC Engines:** Classification and working principle of IC Engines.

Heat Transfer: Introduction to conduction, convection and radiation. Heat exchangers-Condensor, evaporators.

#### Unit-IV

**Power transmission through belts, ropes and gear trains**: Introduction to belt and rope drives, types of belt drives, velocity ratio of belt drives, slip of belt drives, tensions for flat belt drive, angle of contact, centrifugal tension, maximum tension of belt, condition for transmission of maximum power.Gear trains: Introduction, types - simple, compound, reverted, and Epicyclic gear trains.

**Industrial Safety**: Safety and Health Goals, New Employee Orientation, Safety & Training, Employee Responsibilities, Accident Investigation/Reporting, Personal Protective Equipment, Safety Rules, Safety Committee, Emergency Action Plan, Safety Discipline.

#### **TEXTBOOKS:**

- 1. Thermal Engineering, R.K.Rajput, Laxmi publications.
- 2. A text book of Material science and metallurgy O.P. Khanna/ Dhanpat rai publications.
- 3. Engineering Mechanics Statics and Dynamics A. K. Tayal, Umesh Publications.
- 4. Theory of Machines S.S. Rattan- TMH.
- 5. Mechanics of solids R. K. Bansal/ Laxmi Publications
- 6. Elements of Manufacturing Processes PARASHAR, B.S. NAGENDRA, MITTAL, R. K.
- 7. Industrial Safety Management L M DESHMUKH- TMH.

#### **REFERENCE BOOKS:**

- 1. Thermodynamics An Engineering Approach Yunus Cengel & Boles /TMH
- 2. Engineering Thermodynamics K. Ramakrishna / Anuradha Publishers.
- 3. Engineering Mechanics Dr. D.S. Kumar/ S.K Kataria and sons publishers
- 4. Engineering Mechanics, SS Bhavikatti & KG Rajasekharappa, New Age International
- 5. Materials Science and Metallurgy C. Daniel Yesudian, D. G. Harris Samuel.
- 6. The Science and Engineering of Materials Donald R. Askeland, Pradeep P. Fulay, Wendelin J. Wright
- 7. Theory of Machines by Thomas Bevan
- 8. Mechanics of solids by Punmia
- 9. Mechanics of solids by R.K. Bansal

10. Production Technology, K.L.Narayana, S.V.Ramana & P. Vamsi Krishna, first edition, I.K. Books

11.Engineering Thermodynamics / PK Nag /TMH

International, 2006.

12. Production Technology Vol I, O.P. Khanna & M. Lal, Dhanpat Rai Publicati

#### **E-RESOURCES:**

1. https://nptel.ac.in

# 18A2203601-INDUSTRIAL MATERIALS (OPEN ELECTIVE)

Lectu	re – Tut	torial:	2-2	1 Hours	5				Interna	al Mark	s:	40
Credi	ts:		3						Externa	al Mark	ks:	60
Preree	quisites	:										
ENGI	NEERI	NG MI	ECHAN	NICS, M	<b>IECHA</b>	NICS (	OF MA	TERIA	LS			
Cours	e Objec	tives:										
1.	Unders	stand the	e conce	pt of inc	lustrial	material	s, their	classifi	cation, s	tructure	, prope	rties
	and ap	plication	ns.									
2.	Learn	the conc	cepts of	compos	site mat	erials.						
3.	Study a	and und	erstand	smart n	naterials	s and na	no mate	erials.				
4.	Study a	and und	erstand	the imp	ortance	of indu	strial m	aterials	using ca	ase stud	ies.	
Cours	se Outco	omes:										
Upon	success	ful com	pletion	of the	course,	the stu	dent wi	ll be al	ole to:			
CO1	Famili	arize w	ith the	concept	s of ind	lustrial i	naterial	ls, their	classifi	cation,	properti	es and
	applica	ations.										
CO2	Appre	ciate the	e types,	structur	e and cl	haracter	istics of	compo	osite mat	erials.		
CO3	Elabor	ate the	applicat	tions of	compos	site mate	rials.					
CO4	Under	stand th	e shape	memor	y conce	pt and i	ts use in	n indust	ry.			
CO5	Elabor	ate nan	o mater	ials and	importa	ance of a	nano ma	aterials	over bul	lk mater	ials	
CO6	Exami	ne the	case st	tudies a	and exp	olore the	e signif	ïcance	of sele	ction of	f mater	ials in
	applica	ations 1	ike aero	ospace,	boiler	tubes, ti	urbine l	olades,	automo	biles, eo	co susta	ainable
	materi	als.										
Contr	ibution	of Cou	rse Ou	tcomes	toward	s achiev	vement	of Pro	gram O	utcome	<b>S</b>	
(1 - L)	ow, 2- N	Aedium	n, 3 – H	igh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
COI	3	2	1									
CO2	3	2	1									
CO3	3	2	1									
CO4	3	2	1									
CO5	3	2	1					1	1			
CO6	3	2	1					1	1			
						UNIT-I						
Select	ion of r	nateria	ls: Serv	vice real	uiremen	t. Struct	ure-Pro	perty c	orrelatio	ons and	reappra	isal of
the ro	ole of c	rvstal	structur	e and	structur	al defe	cts on	proper	ties. Cl	assificat	tion -N	fetallic
materi	als. no	n-metal	lic ma	terials	propert	ies and	l typic	al allo	vs with	n refere	ence to	their
applic	ations.				I II I		J I					
					١	UNIT-I	[					
Comp	osite m	aterials	s: Geon	netric a	nd Phys	sical def	initions	, natura	al and n	nan-mad	le com	osites.
applic	ations, t	ypes ar	nd class	ification	n of co	mposite	s. Fiber	s- glas	s, silica,	carbon	, ceram	ic and
aramic	l fibers;	Matrice	es- poly	mer, gr	aphite,	ceramic	and me	etal mat	trices; cl	naracter	istics of	fibers
and m	atrices.	Particu	late co	mposite	s, Ther	moplast	ics, The	ermoset	s, Meta	l matrix	and c	eramic
matrix	compo	sites.		•		-			-			

# UNIT-III

**Smart materials**: Shape Memory Alloys, Varistors and Intelligent materials for bio-medical applications from industry. Development, important properties and applications of these materials.

**NANO MATERIALS:** Introduction-properties at nano scales-advantages & disadvantagesapplications in comparison with bulk materials (nano – structure, wires, tubes, composites). state of art nano advanced- topic delivered by student.

# UNIT IV

**Case study**: Case study of the failure of components due to wrong selection of materials. Study and analysis of appropriate material for some specific application like aerospace, boiler tubes, turbine blades, automobiles, eco sustainable materials.

#### **TEXT BOOKS:**

- 1. Engineering Material Technology, 5th edition, by James A. Jacobs & Thomas F. Kilduff. Prentice Hall. Copyright 2005.
- 2. Nano material /A.K. Bandyopadyay/New age Publishers
- 3. Material science and Technology: A comprehensive treatment/Robert W.Cahn,/VCH
- 4. Engineering Mechanics of Composite Materials / Isaac and M Daniel/Oxford University Press
- 5. Gibson R.F. Principles of Composite Material Mechanics, second edition, McGraw Hill, 1994

## **REFERENCE BOOKS:**

- 1. Mechanics of Composite Materials / R. M. Jones/ Mc Graw Hill Company, New York, 1975.
- Analysis of Laminated Composite Structures / L. R. Calcote/Van Nostrand Rainfold,NY 1969
- 3. Analysis and performance of fibre Composites /B. D. Agarwal and L. J. Broutman /Wiley-Interscience,New York, 1980
- **4.** Mechanics of Composite Materials Second Edition (Mechanical Engineering) /Autar K.Kaw / CRC Press.

#### **E-RESOURCES:**

1. <u>https://nptel.ac.in</u>

# **18A2203301- COMPUTER AIDED MACHINE DRAWING PRACTICE**

PRAC	TICAL		3 I	Iours					Interna	ıl Mark	s: 4	40
Credit	ts:		1.5	5					Externa	al Mark	ks: (	50
Prerec	quisites											
Engin	eering l	Drawin	g									
Cours	e Objec	tives:										
5.	To acq	uire the	knowle	edge of a	drafting	softwa	e.					
6.	To pro	vide hai	nds on e	experien	ce to de	velop 2	D mode	els of ma	achine c	compone	ents.	
Cours	e Outco	mes:										
Upon	success	ful com	pletion	of the	course,	the stu	dent wi	ll be ab	le to:			
CO1	Demo	nstrate t	he conv	entiona	l represe	entation	s of ma	terials a	nd macl	hine cor	nponent	ts.
CO2	Model riveted, welded and key joints using CAD system.											
CO3	Create solid models and sectional views of machine components.											
CO4	Genera	ate solid	l models	s of mac	hine pa	rts and	assembl	e them.				
CO5	Transl	ate 3D a	assembl	ies into	2D drav	vings.						
CO6	Create	manufa	acturing	drawin	g with d	limensio	onal and	l geome	tric tole	rances.		
Contr	ibution	of Cou	rse Out	tcomes	toward	s achiev	vement	of Prog	ram O	utcome	5	
(1 - L)	ow, 2- N	Aedium	n, 3 – H	igh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3											2
CO2	3		2		1							2
CO3	3		2		1							2
CO4	3		2		2							2
CO5	3		2		2							2
CO6	3		2		2							2

# The following contents are to be done by any 2D software package

# Conventional representation of materials and components:

**Detachable joints:** Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint, bolted joint with washer and locknut, stud joint, screw joint.

**Riveted joints:** Drawing of rivet, lap joint, butt joint with single strap, single riveted, double riveted double strap joints.

Welded joints: Lap joint and T joint with fillet, butt joint with conventions.

**Keys:** Taper key, sunk taper key, round key, saddle key, feather key, woodruff key. Shaft coupling, bushed pin-type flange coupling, universal coupling, Oldham's coupling.

The following contents to be done by any 3D software package

Sectional views

Creating solid models of complex machine parts and create sectional views.

Assembly drawings: (Any four of the following using solid model software)

Lathe tool post, tool head of shaping machine, tail stock, machine vice, gate valve, carburetor, piston, connecting rod, eccentric, screw jack, plumber block, axle bearing, and pipe vice, clamping device, Geneva cam, and universal coupling.

# Manufacturing drawing:

Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly drawings and prepare manufacturing drawing with dimensional and geometric tolerances.

# **TEXT BOOKS:**

1. K.L.Narayana, P.Kannaiah, A text book on Engineering Drawing, SciTech Publications, 2014

# **REFERENCE BOOKS:**

- 1. Cecil Jensen, Jay Helsel and Donald D.Voisinet, Computer Aided Engineering Drawing, Tata Mcgraw-Hill, NY, 2000.
- 2. James Barclay, Brain Criffiths, Engineering Drawing for Manufacture, Kogan page Science, 2003.
- 3. N.D.Bhatt, Machine Drawing, Charotar, 501e,2014.
- 4. K.L.Narayana, Production Drawing, NewAge International publishers, 31e,2014

# **E-RESOURCES:**

1. https://nptel.ac.in

# 18A2203491- -FLUID MECHANICS & HYDRAULIC MACHINES LAB

Practice	3	<b>Internal Marks:</b>	40
Credits:	1.5	<b>External Marks:</b>	60

**Prerequisites:** 

Fundamentals of fluid mechanics,

#### **Course Objectives:**

- 1. Determination of coefficient of discharge using venture meter.
- 2. To impart hands-on practical exposure on , orifice meter and mouth piece.
- 3. To impart hands-on practical exposure on measure the losses in pipes.
- 4. To impart hands-on practical exposure on jet on vanes
- 5. To impart hands-on practical exposure on Bernoulli's theorem
- To impart hands-on practical exposure on the performance of hydraulic machines viz. Turbines and Pumps.

# **COURSE OUTCOMES:**

# Upon successful completion of the course, the student will be able to:

- CO1 Find coefficient of discharge for venture meter
- CO2 Demonstrate the concepts of discharge through orifice meter and mouth piece.
- CO3 Explain the concepts of loses in the pipe flow
- CO4 Explain the concepts of jet on vanes
- CO5 Demonstrate the concept of Bernoulli's theorem.

CO6 Analyze the performance of deferent turbines of and pumps.

# **Contribution of Course Outcomes towards achievement of Program Outcomes**

# (1-Low, 2-Medium, 3-High)

	PO 1	PO 2	PO 2	PO	PO 5	PO	PO 7	PO	PO	<b>PO</b>	<b>PO</b>	PO 12
<b>a a</b> 4	1	4	3	4	3	U	1	0	9	10	11	14
COI	3	2								1		
CO2	3	2								1		
CO3	3	3								1		
CO4	3	3								2		
CO5	3	3								2		
CO6	3	2								2		

## List of Experiments:

- 1. Determination of coefficient of impact of jets on Vanes.
- 2. Performance Test on Pelton Wheel.
- 3. Performance Test on Francis Turbine.
- 4. Performance Test on Kaplan Turbine.
- 5. Performance Test on Single Stage Centrifugal Pump.
- 6. Performance Test on Multi Stage Centrifugal Pump.
- 7. Performance Test on Reciprocating Pump.
- 8. Determination of coefficient of discharge for Venturimeter.
- 9. Determination of coefficient of discharge for Orifice meter.
- 10. Determination of friction factor for a given pipe line.
- 11. Determination of loss of head due to sudden contraction in a pipeline.
- 12. Calibration of Turbine flow meter.
- 13. To verify the Bernoulli's Theorem.
- 14. Determination of coefficient of discharge for mouthpiece.
- 15. To find critical Reynolds number for a pipe flow.
- 16. To determine coefficient of discharge of Rectangular /Triangular Notch.
- 17. To determine coefficient of discharge for a small orifice by constant head method. (Any TEN of the above experiments are to be covered)

## **REFERENCE BOOKS:**

1 P. N Modi, S.M Seth, Fluid mechanics and hydraulic machines,14th edition standard book house,2002.

2. R.K Bansal, A text book of Fluid mechanics and hydraulic machines, reprint, Lakshmi publications limited, 2019.

3. Fluid mechanics and hydraulic machines lab manual by Department of Mechanical Engineering. NRIIT, Pothavarappadu.

# **E-RESOURCES:**

- 1. https://www.autoform.com/
- 2. <u>https://www.omniamfg.com/fluid</u> mechanics.

# **18A2203492- THERMAL ENGINEERING LAB**

Practice:	3	<b>Internal Marks:</b>	40
Credits:	1.5	<b>External Marks:</b>	60

**Prerequisites:** ICGT, Thermal Engineering

#### **Course Objectives:**

- 1. To learn the construction and working principle of I.C. Engines practically.
- 2. To understand the working principle and performance of air compressor practically.
- 3. To learn the heat balance test of an I.C. Engine.
- 4. To acquire the priorities given to the efficient use of energy and the minimization of Environmental pollution.
- 5. To understand the usage of data acquisition systems.
- 6. To learn the concepts of boiler terms.

# **COURSE OUTCOMES:**

After the completion of the course, students should be able to

CO1	Find the efficiency and performance of an I.C. engine system for a given set of conditions.
CO2	Calculate the various energy losses and heat balance of Internal Combustion Engines.
<b>CO3</b>	Evaluate the performance parameters of refrigeration system and Solar flat plate.
<b>CO4</b>	Analyze the Volumetric efficiency of air compressor.

**CO5** Develop skills in data acquisition systems.

CO6 Study the various parameters of boilers

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2-Medium, 3 – High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	1						2		1
<b>CO2</b>	3	2	1	1						2		1
<b>CO3</b>	3	2	1	1						2		1
<b>CO4</b>	3	2	1	1						2		1
CO5	3	2	1	1						2		1
CO6	3	1								2		1

#### List of Experiments: (Any 10 experiments):

1. I.C. Engines Valve & Port Timing Diagrams

2. Performance Test on single cylinder 4 –Stroke Diesel Engine by using Mechanical Dynamometer.

3. Evaluation of performance parameters of three cylinder 4-stroke petrol engine by using Hydraulic Dynamometer.

- 4. Determination of performance characteristics of 2-Stroke Petrol Engine.
- 5. Heat Balance of 4 stroke single cylinder diesel engine.
- 6. Evaluation of engine friction power by conducting Morse test on Multi cylinder 4-Stroke Petrol Engine.
- 7. Determination of FP by retardation and motoring test on IC engine.

- 8. Economical speed test of an IC engine.
- 9. Performance Test on Variable Compression Ratio single cylinder 4-Stroke petrol Engine.
- 10. Performance Test on Reciprocating Air Compressor.
- 11. Dis-assembly / assembly of different parts of 2 wheelers and 4 wheelers.
- 12. Study of boilers.
- 13. Determination of COP of Vapour Compression Refrigeration Unit.
- 14. Estimate the Dryness fraction of steam.
- 15. Performance evaluation of Solar flat plate collector.

# **EQUIPMENT REQUIRED:**

- 1. Internal Combustion Engines of Diesel and Petrol
- 2. Compressor, Refrigerator, throttling and separating calorimeter, Solar flat plate collector.
- 3. Boilers Models and parts of I.C. Engines.

# **REFERENCE BOOKS:**

- 1. Thermal engineering lab manuals, NRI Institute of Technology, Pothavarappadu
- 2. V.Ganesan, Internal Combustion Engines Tata McGraw-Hill, 4th Edition 2012.

# **E-RESOURCES:**

- 1. https://www.youtube.com/watch?v=fTAUq6G9apg
- 2. http://www.vssut.ac.in/lecture_notes/lecture1429900545.pdf
- 3. https://nriblogspot.org/resources.html

# 18a2200801- PROFESSIONAL ETHICS AND HUMAN VALUES

Lectu	ıre – T	<b>`utori</b> a	<b>1:</b> 2-	0 Hou	rs			I	nterna	al Mar	ks:	40
Credits:			0	0					External Marks: 60			
Prerequisites: Basic understanding about Engineering profession.												
Course Objectives:												
1. To create awareness on engineering ethics and human values.												
2. To understand social responsibility of an engineer.												
3. To instill moral and social values and loyalty.												
Course Outcomes:												
Upon successful completion of the course, the student will be able to:												
CO1	Grooms themselves as ethical, responsible and societal beings.											
CO2	Discuss ethics in society and apply the ethical issues related to engineering.											
CO3	Exhibit the understanding of ethical theories in professional environment.											
CO4	Recognize their roe as social experimenters (engineers) and comprehend codes of ethics.											
CO5	Identify the risks likely to come across in the professional world, analyzing them and find solutions.											
CO6	Realize the responsibilities and rights of engineers in the society.											
<b>Contribution of Course Outcomes towards achievement of Program</b>												
Outcomes (1 – Low, 2- Medium, 3 – High)												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	-	-	-	-	1	1	2	-	-	-	1
CO2	-	-	-	-	-	1	1	2	-	-	-	1
CO3	-	-	-	-	-	1	1	2	-	-	-	1
CO4	-	-	_	-	-	1	1	2	-	-	-	1
CO5	-	-	-	-	-	1	1	2	-	-	-	1
CO6	-	-	-	-	-	1	1	2	-	-	-	1
						TINIT'T 1	r					

UNIT I

Human Values: Objectives, Morals, Values, Ethics, Integrity, Work ethics, Service learning, Virtues, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Challenges in the work place.

#### UNIT II

Engineering ethics Senses of 'Engineering Ethics' — Variety of moral issues — Types of inquiry — Moral dilemmas — Moral Autonomy — Kohlberg's theory — Gilligan's theory — Consensus and Controversy — Models of professional roles — Theories about right action — Self-interest — Customs and Religion — Uses of Ethical Theories

#### UNIT III

Engineering as Social Experimentation: Engineering as experimentation, Engineers as responsible experimenters, Codes of ethics, Industrial standards, A balanced outlook on law, Case study: The challenger.

#### UNIT IV

Safety, Responsibilities and Rights: Safety and risk, types of risks, Assessment of safety and risk, Safe exit, Risk-benefit analysis, safety lessons from 'the challenger', Case study: Power plants, Collegiality and loyalty, Collective bargaining, Confidentiality, Conflict of interests, Occupational crime, whistle blowing, Intellectual property rights, professional rights.

#### **TEXT BOOKS:**

- A Text book on Professional Ethics and Human Values by R.S Naagarazan- New Age International Publishers.
- "Engineering Ethics includes Human Values" by M. Govindarajan, S. Natarajan and V. S. Senthil Kumar- PHI Learning Pvt. Ltd-2009

# **REFERENCE BOOKS:**

"Professional Ethics and Human Values" by A. Alavudeen, R. Kalil Rahman and M. Jayakumaran-Laxmi Publications.

#### **E-RESOURCES:**

- <u>www.onlineethics.org</u>
- <u>www.nspe.org</u>
- <u>www.globalethics.org</u>
- <u>www.ethics.org</u>