NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), VIJAYAWADA-PIN – 521212

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE STRUCTURE FOR THIRD YEAR B.TECH PROGRAMME

S No	Course Code	Title of the Course	Scher (Per	ne of Instru iods per W	uction (eek)	Total Contact	Schem (Ma	e of Exan ximum M	nination (arks)	No. of Credits
			Lectu	Tutoria	Practi	Hours	CIA	SEA	Total	
			re	1	cal					
1	18A3103601 18A3103602	 Open Elective - II 1. Introduction to Material Handling Equipment. 2. Introduction to Robotics 	3	0	0	3	40	60	100	3
2	18A3103401	Design of Machine Elements-II	3	0	0	3	40	60	100	3
3	18A3103402	Dynamics of Machinery	3	0	0	3	40	60	100	3
4	18A3103403	Manufacturing Technology	3	0	0	3	40	60	100	3
5	18A3103404	Applied Thermodynamics	3	0	0	3	40	60	100	3
6	18A3103511 18A3103512 18A3103513 18A3103514	 Professional Elective - I 1. Rapid Prototyping 2. Automation in Manufacturing 3. Hydraulic and Pneumatic Systems 4. Electric & Hybrid Vehicles 	3	0	0	3	40	60	100	3
7	18A3100801	Indian Constitution	3	0	0	3	40	60	100	
8	18A3103491	Machine Tools Lab	0	0	2	2	40	60	100	1
9	18A3103492	Theory of Machines Lab	0	0	2	2	40	60	100	1
10	18A3103791	Minor Project (Design and Fabrication)	0	0	2	2	40	60	100	1
		Total	21	0	8	29	400	600	1000	
	Total 21 0 8 29 400 000 1000 Total credits Total cred									21

III YEAR I – SEMESTER

NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), VIJAYAWADA-PIN – 521212

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE STRUCTURE FOR THIRD YEAR B.TECH PROGRAMME

Scheme of No. Total Scheme of Instruction Examination of Contac (Periods per Week) (Maximum Marks) Cred S No Name of the Course t Hours **Course Code** its Lectu Tutori Prac CIA SEA Total re al tical 18A3203401 Heat Transfer 40 60 100 3 3 0 3 1 0 2 18A3203402 **Operations Research** 3 0 0 3 40 60 100 3 3 18A3203403 3 Finite Element Methods 3 0 0 40 60 100 3 4 18A3203301 Instrumentation & Control Systems 0 3 0 3 40 60 100 3 5 **Open Elective – III** 18A3203601 1. Mechatronics 18A3203601 3 0 0 3 40 60 100 3 2. Hydraulic and Pneumatic Systems 6 18A3203511 **Professional Elective - II** 1. Computational Fluid Dynamics Robotics 2. Non Destructive Evaluation 3 0 0 3 40 60 100 3 3. 4. Introduction to Material Handling Equipment. 18A3200801 IPR and Patents 7 3 0 0 3 40 60 100 0 8 18A3203491 Heat Transfer Lab 0 0 2 2 40 60 100 1 9 18A3203491 Simulation Lab 0 0 2 2 40 100 60 1 Total 21 0 6 27 400 600 1000 **Total credits** 20

III YEAR II – SEMESTER

III B. Tech I Semester

Course Code: INTRODUCTION TO MATERIAL HANDLING EQUIPMENT (Open Elective – II)

Lectu	re – Tu	torial:	3 -	0 Hour	rs				Interna	al Mark	ks:	40		
Credi	eredits: 3 External Marks: 60 rerequisites: NIL													
Prere	quisites	: NIL												
Cours	se Obje	ctives:												
1.	The st	tudent w	ill kno	w the	basic F	Fundame	entals o	f Mate	rial Har	ndling l	Equipn	nent and		
	contro	l and safe	ety mea	asures in	ncorpor	ated on	materia	l handli	ng equip	pments.				
2.	The st	udent wil	ll ident	ify and	select tl	he diffei	ent han	dling eo	quipmen	ts in inc	lustry.			
3.	The st	udent wil	ll ident	ify vario	ous con	ponent	s of mat	erial ha	ndling s	ystems.				
4.	The s	tudent w	vill kno	ow the	workir	ng prino	ciples o	of Com	ponents	of ma	terial	handling		
	system	ns like Fle	exible l	noisting	, hooks	, elevato	ors.							
5.	The s	tudent w	vill kno	ow the	workir	ng prind	ciples o	of Com	ponents	of ma	terial	handling		
	system	ns like co	nvevor	s.		0 1	1		1			U		
6	To kn	ow the o	peratio	nal feat	ures of	various	s materi	al hand	lling svs	tem use	ed in ii	ndustries		
0.	how to	connect	loadin	o statio	ns to th	e differe	nt disch	arge of	unloadi	ing cond	ditions	laastites		
Cours		mag	Ioaum	g statio		e uniere			umoau					
Upon		ful comp	letion (of the co	urse th	ne stude	nt will b	e able i	to					
CO1	Under	stand the	hasic	Fundam	entals o	of Mater	ial Han	dling F	auinmer	nt				
001	CO1 Understand the basic Fundamentals of Material Handling Equipment.													
CO2 Identify, compare and select proper material handling equipment for specific applications.														
CO3	CO3 Identify the various components of material handling systems.													
CO4	Under	stand the	worki	ng princ	iples of	f Compo	onents o	f mater	ial hand	ling sys	tems li	ke		
04	Flexib	le hoistin	ng, hoo	ks, elev	ators.									
CO5	Under conve	stand the yors.	worki	ng princ	ciples of	f Compo	onents o	f mater	ial hand	ling sys	tems li	ke		
CO6	Identif	fy the sur	face tra	ansport	to conn	ect load	ing stati	ions to	the diffe	rent dis	charge	or		
Contr	ibution		se Aut	comes	toward	s achier	vement	of Pro	ram ()	utcome	c			
(1 - L)	ow. 2- I	Medium.	3 - Hi	igh)	lowaru	s acme	vennen t	01110			5			
×	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	2	1		1		1								
CO2	2	1		1		1								
CO3	2	1		1		1								
CO4	2	1		1		1								
CO5	2	1		1		1								
CO6	CO6 2 1 1 1 1													
UNIT I														
Materials Handling Equipment: Introduction to material handling Equipment, Detail														
Equipment's														
Equip	Factors effecting choice of material handling equipments: type of loads, hourly capacity													
directi	Factors effecting choice of material handling equipments: type of loads, hourly capacity, direction and length of travel method of stacking at initial intermediate and final points specific													
load c	ondition	is. Basic	kind o	f mater	ial hand	dling pr	oblems	Vario	is metho	ds to a	nalvze	material		
Handl	ing prob	olems, Ec	conomi	cs of ma	aterial h	nandling	system	s.	memo					

Components of material handling systems: Flexible hoisting appliances such as welded chains, roller chains, hemp ropes, and steel wire ropes, fastening methods of wire and chains, Appliances for suspending hooks-crane grab for unit and piece loads.

Lifting Methods: Lifting tackles, lifting and rigging Load handling attachments Various types of hooks-forged, eye bolts, eye hook, electric lifting magnet, vacuum lifter, grabbing attachment for loose materials, crane attachment for handling liquids/ molten metal's.

UNIT III

Hoisting machinery and equipments: Working of different type of hoists such as lever operated hoist, portable hand chain hoist, differential hoist, worm geared and spur geared hoist, electric and pneumatic hoists.

Working of different types of cranes and Industrial Lifts: rotary cranes, trackless cranes, mobile cranes, bridge cranes, cable cranes, floating cranes and cranes traveling on guide rails. Introduction to types of Industrial Lifts.

UNIT IV

Conveying machinery: Working of traction type conveyors such as belt conveyors, chain conveyors, Working of traction less type conveyors such as gravity type conveyors, vibrating and oscillating conveyors, screw conveyors, monorail conveyors, pneumatic and hydraulic conveyors, hoppers, gates and feeders.

Surface transport equipment–functions–working of trackless equipment such as hand operated trucks, powered trucks, tractors, AGV (Automatic Guided vehicle), industrial trailers Function, working of cross handling equipment such as winches, capstans, turntables, transfer tables.

TEXT BOOKS:

- 1. Material Handling Equipment N.Rundenko (Peace Publisher, Moscow)
- 2. Material Handling Equipment -M.P. Alexandrow (MIR Publishers, Moscow)
- 3. Material Handling Equipment -R.B. Chowdary & G.N.R.Tagore (Khanna Publishers, Delhi)
- 4. Plant layout & Material Handling-Apple J.M (John Wiley Publishers)

REFERENCE BOOKS:

1. Material Handling (Principles & Practice)-Allegri T.H (CBS Publisher, Delhi)

2. Material Handling -Immer J.R (McGraw Hill, Newyork

3. Material Handling Equipment-Parameswaran M.A (CDC in Mech. Engg., I.I.T. Chennai).

4.Conveyors and related equipments – Spivakovsy A.O. and Dyachkov V.K Volumes I and II (MIR publishers)

5.Boltzharol, A.,"Materials Handling Handbook", The Ronald press company 1958.

E-RESOURCES:

<u>https://www.youtube.com/watch?v=3tTvVUfwchI</u> <u>https://www.youtube.com/watch?v=guYD2zyUT60</u> <u>https://people.engr.ncsu.edu/kay/Material_Handling_Equipment.pdf</u> <u>https://www.scribd.com/doc/222647028/Material-Handling-Full-Notes</u>

Course Code: INTRODUCTION TO ROBOTICS (Open Elective – II)

Lecture – Tutorial:	3-0 Hours	Internal Marks:	40											
Credits:	3	External Marks:	60											
Prerequisites:														
Fundamentals of Enginee	Fundamentals of Engineering Mathematics, Engineering Mechanics													
Course Objectives:														
1. Student will know the fundamental concepts of industrial robotic technology.														
2. Student will be exposed to the various types of end effectors.														
3. Student will apply the basic mathematics to calculate kinematic forces in robot manipulator.														
4. Student will understand the robot controlling and programming methods.														
5. Student will be in a p	5. Student will be in a position to describe various actuators, sensors.													
6. Student will be aware	of the various industrial a	pplications of robots.												
Course Outcomes:														
Upon successful complet	ion of the course, the stude	ent will be able to:												
CO1 Identify various r	obot configurations.													
CO2 Understand the ba	asic components of robots.													
CO3 Evaluate D-H not	CO3Evaluate D-H notations for simple robot manipulator.													
CO4 Perform trajector	CO4 Perform trajectory planning for a manipulator by avoiding obstacles.													
CO5 Select appropriate	e actuators and sensors for	a robot.												
CO6 Illustrate the industrial applications of robots.														

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

(
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3			-		1		0		10	2	
CO2	2		3								1	
CO3		3	2		1							
CO4		2	3									1
CO5	2	-	-	-	3						1	
CO6	2				3						1	

UNIT I

Introduction: Automation and robotics, Robot anatomy, robot motions, Joint notation schemes, work volume, speed of motions, load carrying capacity, Speed of response & stability, Precision of movement- Spatial resolution, accuracy, repeatability, compliance. Classification of robots by coordinate system and control system.

Components of the Industrial Robotics: Function line diagram representation of robot components, number of degrees of freedom, Types of end effectors, Mechanical grippers, gripper mechanisms, other types of grippers, Considerations in gripper selection and design.

UNIT II

Motion Analysis: Transformation matrices- Translation, Rotation, Combined translation and rotation, Homogeneous transformation matrix - Problems.

Manipulator Kinematics: Description of Link and Joint parameters, Kinematic modelling of the manipulator, D-H Notation, Kinematic relationship between adjacent links, Forward and Inverse kinematics. Differential kinematics

UNIT III

Trajectory Planning: Terminology, Steps in trajectory planning, Slew motion, joint integrated motion, straight line motion, circular motion, Joint space technique, Cartesian space technique, cubic polynomial with and without via points.

Robot Programming and Languages: Lead through programming, robot program as a path in space, WAIT, SIGNAL, DELAY commands, Branching, capabilities and limitations. Textual robot languages, generations, Language structure, Elements and functions.

UNIT IV

Robotic Actuators and Sensors: Pneumatic, Hydraulic actuators, electric & stepper motors, Internal & external sensors, Position, Velocity sensors, Tactile, Proximity and Range sensors.

Robot Applications in Manufacturing: Material Transfer - Material handling, loading and unloading-Processing - spot and continuous arc welding & spray painting - Assembly and Inspection

TEXT BOOKS

- Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, NicholasG.Odrey, Industrial Robotics – Mc Graw Hill, 1986.
- **2.** R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.

REFERENCE BOOKS:

- Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.
- 2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley- Interscience, 1986.
- 3. Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.
- 4. Mohsen shahinpoor, A robot Engineering text book, Harper & Row Publishers, 1987.
- 5. John.J.Craig Addison, Introduction to Robotics: Mechanics and Control, Wesley, 1999.
- 6. K.S. FU, R.C. Gonzalez and C.S.G Lee, Robotics: Control, sensing, vision, and intelligence . Mc Graw Hill, 1987.
- 7. Richard D. Klafter, Thomas Robotic Engineering an integrated approach, PHI publications 1988.

E-RESOURCES:

https://nptel.ac.in/courses/112/101/112101099/ https://nptel.ac.in/courses/112/101/112101098/ https://www.coursera.org/specializations/robotics

Course Code: DESIGN OF MACHINE ELEMENTS – II

Lectur	re – Tu	torial:	2-1	l Hours					Interna	al Mark	s:	40
Credit	ts:		3						Externa	al Mark	ks:	60
Prerec	quisites	:										
Mecha	anics of	Materia	uls, Des	ign of N	I achine	Elemen	nts-I					
Cours	e Objec	ctives:										
1. 7	The stuc	lent shal	ll gain a	pprecia	tion and	l unders	tanding	of the o	lesign a	nd selec	ction of	f bearings and
C	chain dr	ives.										
2. 8	Selection	n of pro	per gear	rs based	on thei	r static,	dynami	c and w	ear load	and ch	eck be	am strength.
3. I	Learn ar	nd under	rstandin	ig the d	esign pi	cocedure	e of diff	erent ty	pes of o	clutches	and b	rakes and design
1	lywhee	l. ,	6 4	1.00		1. 1		1		• 1	1	1 0 1 1
4. 1	Jesign p	procedui	re for th	le differ	ent mac	enine ele	ements s	such as	connect	ing rod,	, crank	shaft, piston and
Cours		elc.										
Upon		ful com	aletion	of the co	ourse th	e stude	nt will k	a able t	· O ·			
	Estim	te the h	earing 1	ife and	selectio	n of sui	ni wili i table be	aring	.0.			
	Louina		· ·		1.	II OI SUI		amg.				
CO2	Analy	ze and d	esign o	f chain	drive.							
CO3	CO3 Analyze the forces, calculate the static and dynamic loads on gears.											
CO4	CO4 Analyze and design of different types of clutches and brakes.											
CO5	CO5 Analyze and design of flywheel.											
CO6	Analy	ze and d	esign o	f IC Eng	gine cor	nponent	ts.					
Contr (1 – L	ibution ow 2- N	of Cou Medium	rse Ou	tcomes	toward	s achiev	vement	of Prog	gram O	utcome	S	
	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	1		1			2	2	2
CO2	3	3	3	2	1		1			2	2	2
CO3	3	3	3	2	1		1			2	2	2
CO4	3	3	3	2	1		1			2	2	2
CO5	3	3	3	2	1		1			2	2	2
CO6	3	3	3	2	1		1			2	2	2
UNIT I Description Soliding contact bearings: Classification and types of bearings, bearing materials, applications												
Bearings: Sliding contact bearings: Classification and types of bearings- bearing materials - applications – bearing characteristic number and bearing modulus – Sommerfeld number – Coefficient of friction and												
- bearing characteristic number and bearing modulus - Sommerfeld number - Coefficient of method and heat dissipation of hearings - journal hearing design - properties of lubrication												
Rollin	Rolling contact bearings : Types of ball and roller bearings – advantages and disadvantages over sliding											
contac	t bearin	ngs – st	atic and	d dynan	nic eau	ivalent	load for	r roller	bearing	gs, bear	ing life	e – Reliability –
Selecti	ion of b	all beari	ngs.	- J	1				2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	,
Chain	Drive	Gaomati	ric relat	ionching	nolva	onal aff	act Dag	ion of a	hain dr	NA NA		

Chain Drive: Geometric relationships, polygonal effect, Design of chain drive.

UNIT II

Gears: Spur gears- Beam strength- Lewis equation – static, dynamic and wear tooth load– load– design analysis of spur gears – estimation of centre distance, module and face width, check for dynamic and wear considerations.

Helical gears: Virtual number of teeth, Force analysis, Beam strength – design analysis of helical gears. Bevel gears: Force analysis, Beam strength, Wear strength, Effective load, Design of bevel gears.

UNIT III

Clutches, Brakes, Fly Wheel – **Clutches:** Torque transmitting capacity, Multi-disk clutches, cone clutch, friction materials.

Brakes: Energy equations, Block and Band brakes, Internal expanding brake.

Flywheel: Torque analysis, Design of solid disk and rimmed flywheel.

UNIT IV

Design of IC Engine Components: **Connecting Rod**: Thrust in connecting rod – stress due to whipping action on connecting rod ends – Design of crank shaft: strength and proportions of over hung and center cranks – crank pins.

Design of Piston: forces acting on piston – construction design and proportions of piston, **Design of cylinder**: cylinder liners and heads.

Note: Design data book is Permitted for examination

TEXT BOOKS

- 1. Design of Machine Elements/V.B. Bhandari/ McGraw Hill Publishers
- 2. Machine Design/ Shigley, J.E/McGraw Hill.

REFERENCE BOOKS:

- 1. Design of Machine Elements/V.B. Bhandari/ McGraw Hill Publishers
- 2. Machine design / NC Pandya & CS Shah/Charotar Publishing House Pvt. Limited
- 3. Machine design / Schaum Series/McGraw Hill Professional
- 4. Machine Design/ Shigley, J.E/McGraw Hill.
- 5. Design data handbook/ PSG
- 6. Design data handbook/Jalaludeen.
- 7. Design of machine elements-Spotts/Pearson Publications
- 8. Machine Design –Norton/ Pearson publishers

E-RESOURCES:

1. https://nptel.ac.in/courses/112105124/

2. <u>https://www.youtube.com/watch?v=mzWMdZZaHwI&list=PL3D4EECEFAA99D9BE</u>

Course Code: DYNAMICS OF MACHINERY

Lectur	re – Tu	torial:	2-1	l Hours					Internal	Marks:	40		
Credit	ts:		3]	Externa	l Marks:	60		
Prerec	quisites	:											
Funda	mentals	of Engi	ineering	g Mathe	matics,	Engine	ering M	Iechani	cs, Kinei	natics of M	achiner	у	
Cours	e Obje	ctives:											
1.	To unc	lerstand	the for	ce-moti	on rela	tionship	in com	ponent	s subject	ed to extern	nal force	s and	
_	analys	is of sta	ndard n	nechani	sms.				_				
2.	To und mecha	lerstand nism.	the uno	desirabl	e effect	s of unl	balances	s resulti	ng from	prescribed	motions	in	
3.	To unc	lerstand	the pri	nciples	in mecl	hanisms	used for	or speed	l control	and stabilit	y contro	ol.	
4.	To unc	lerstand	the eff	ect of D	ynamic	es of un	desirabl	e vibra	tions.				
Cours	se Outco	omes:											
Upon	success	ful com	pletion	of the c	ourse, t	he stud	ent will	be able	to:				
CO1	Analy	ze dyna	mic for	ce analy	ysis of s	lider cr	ank me	chanisn	1.				
CO2	CO2 Analyze and design a flywheel.												
CO3	CO3 Compute balancing forces in systems with reciprocating and rotary masses.												
CO4	Analy	ze the fo	orces in	govern	ors.								
CO5	Analy	ze stabi	lization	of auto	mobile	s, airpla	nes and	ships.					
CO6	Estima	ate the e	effects c	of natura	al and f	orced u	ndesirat	ole vibra	ations.				
Contr (1 – L	ibution ow, 2- I	of Cou Mediun	ırse Ou 1, 3 – H	tcomes ligh)	toward	ds achie	evemen	t of Pro	ogram C	outcomes			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2	1			1						1	
CO2	3	2	1									1	
CO3	CO3 3 2 1 1												
CO4 3 2 1 1													
CO5	CO5 3 2 1 1												
CO6	3	2	1									1	
	UNIT I												

Force Analysis

Static and Dynamic Force Analysis:

Static force analysis of mechanisms - D' Alembert's principle - Inertia force and inertia torque.

Dynamic Force Analysis - Dynamic Analysis of reciprocating engines – Gas Forces - Equivalent masses - Bearing loads - Crank shaft Torque.

Flywheels - Turning moment diagrams - Flywheels of engines and punch press.

UNIT II

Balancing

Balancing of rotating masses - Static and dynamic balancing - Balancing of rotating masses single and multiple – single and different planes

Balancing of reciprocating masses: Balancing a single cylinder Engine - Primary and secondary unbalanced forces - Balancing Multi cylinder, inline and V-engines - Partial balancing in engines,

Locomotive balancing, hammer blow, swaying couple, variation of tractive effort.

UNIT III

Mechanism For Control

Governors: Types - Centrifugal governors - Gravity controlled and spring controlled centrifugal governors - Sensitiveness, isochronism and hunting Characteristics - Effect of friction - Controlling Force.

Gyroscope: Gyroscopic couple - Gyroscopic stabilization - Gyroscopic effects in Automobiles (twowheeler and four-wheeler), Airplanes and Ships

UNIT IV

Vibrations

Single degree free vibrations,

Basic features of vibratory systems – Degrees of freedom – single degree of freedom – Free vibration – Equations of motion – Natural frequency – Types of Damping – Damped vibration– Torsional vibration of shaft – Critical speeds of shafts – Torsional vibration – Two and three rotor torsional systems. Forced vibrations

Response of one-degree freedom systems to periodic forcing – Harmonic disturbances –Disturbance caused by unbalance – Support motion –transmissibility – Vibration isolation vibration measurement.

TEXT BOOKS

- 1. Theory of Machines / S.S Rattan/ Mc. Graw Hill
- 2. Mechanism and machine theory /Ashok G. Ambedkar/PHI Publications.
- 3. Sadhu Singh 'Theory of Machines' Pearson Education 2011 3rd Edition
- 4. S. S. Rao 'Mechanical Vibrations' Pearson Education Inc. 2011 5th Edition

REFERENCE BOOKS:

- 1. Mechanism and Machine Theory / JS Rao and RV Dukkipati / New Age
- 2. Theory of Machines / Shigley / MGH
- 3. Theory of Machines / Thomas Bevan / CBS Publishers
- 4. Theory of machines / Khurmi/S.Chand.
- 5. V. P. Singh, 'Mechanical Vibrations' Dhanpat Rai & Company Pvt. Ltd. 2014 3rd Edition

6. W. T. Thomson and Marie Dillon Dahleh - 'Theory of Vibration with Applications' - Pearson Education - 2007 - 5th Edition

E-RESOURCES:

https://www.youtube.com/playlist?list=PL46AAEDA6ABAFCA78 https://nptel.ac.in/courses/112/104/112104114/

Course Code: MANUFACTURING TECHNOLOGY

Lectu	re – Tu	torial:	2-1	l Hours					Interna	ıl Mark	s:	40		
Credi	ts:		3						Extern	al Mark	s:	60		
Prere	quisites	5:												
Manu	facturin	g Proce	SS											
Cours	se Obje	ctives:												
1.	. To un	derstand	l the cor	ncept an	d basic	mechan	ics of n	netal cut	ting.					
2.	. Study	working	g of star	ndard m	achine t	ools suc	h as lat	he, shap	ing and	allied n	nachin	es		
3.	. To un broach	derstan	d mill	ing, dri	illing a	nd allie	d mach	nines, g	rinding	and all	lied m	achines and		
4.	. To un	derstand	l the bas	sic conc	epts of 1	non-trad	litional	machini	ng proc	esses				
5.	. To in	troduce	studer	its to t	he scie	entific p	principle	es unde	erlying	materia	l beha	vior during		
	manufacturing processes so as to enable them to undertake calculations of forces, tool stresses and material removal rates.													
_	and material removal rates. 6. To introduce the fundamentals of digital manufacturing.													
6. C	6. To introduce the fundamentals of digital manufacturing.													
Linon	urse Outcomes:													
CO1	on successful completion of the course, the students will be able to:													
COI	functio	complet	applicat	tions of	se, me s differen	t metal	cutting	tools	understa	and and	compa	re the		
CO2	Upon	complet	ion of t	his cour	se the s	students	can abl	e to ann	lv the d	ifferent	metal 1	emoving		
02	,finish	ing and	super fi	nishing	and for	compor	nent pro	duction	iy the d		metari	emoving		
CO3	Learn	the basi	c conce	pts of N	TM.									
CO4	Learn	surface	finishin	g techni	iques									
CO5	Apply	cutting	mechar	nics to n	netal ma	chining	based of	on cuttin	g force	and pov	ver cor	sumption		
CO6	Get a l	oasic kn	owledg	e on the	importa	ance of o	digital r	nanufac	turing.					
	1													
Contr	ributior	n of Cou	irse Ou	tcomes	toward	ls achie	vement	of Prog	gram O	utcome	S			
(1 - L)	– Low, 2- Medium, 3 – High)													
	PO PO<													
	<u>1 2 3 4 5 6 7 8 9 10 11 12</u>													
COI	3	2												
CO2	3		1		2									
CO3	3		2											
CO4	3		2											

Mechanics of Metal Cutting : Tool nomenclature ,Orthogonal and oblique cutting - Mechanism of metal removal,Mechanism of chip formation – Types of chips, need and types of chip breakers Analysis of cutting forces in orthogonal cutting– Work done, power required (simple problems) ,Friction forces in metal cutting – development of cutting tool materials

UNIT I

Thermal aspects of machining -Tool wear and wear mechanisms ,Factors affecting tool life

3

2

2

Introduction : Manufacturing technology

CO5

CO6

3 3

UNIT II

Lathe, Milling and Drilling Machine:

Lathe, types of lathes-special purpose lathes-kinematics arrangement of lathe, -work holding devices-types of milling machines-types of milling machines-chematic diagrams,-operations, milling cutters-mounting of cutters-Drilling machines-types-reaming and boring operations

UNIT III

Boring, Shaper, Slotter, Planer, Broaching:

Schematic diagram of boring machine, shaper, planer, slotting and broaching machine-operations tools. Grinding and allied finishing process. Forces, power consumption in machinery Forces and power consumption in turning, drilling, milling and grinding, forces in up and down milling, chip thickness calculation.

UNIT IV

Introduction to Digital Manufacturing: Concepts and of digital manufacturing Definition of digital manufacturing – Features and development of digital manufacturing.

Theory system of digital manufacturing science: Operation Mode and Architecture of Digital Manufacturing System

TEXT BOOKS

- 1. Manufacturing processes for engineering material-KalpakJain.
- 2. Materials & processes in Manufacturing-DE Garmo Black Khoser.
- 3. Manufacturing process, P C Pandey
- 4. Zude Zhou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of Digital Manufacturing Science, Springer-Verlag London Limited, 2012

REFERENCE BOOKS:

- 1. Metal cutting principles, Oxford, Clarendon PressShaw M.C.,
- 2. Metal Cutting Theory and Practice, Bhattacharya A.
- 3. R.K. Jain, Production Technology /Khanna Publishers, 17thEdition, 2012.
- 4. Lindberg, Process and materials of manufacturing, PE.
- 5. Sarma P C, Production Technology, S Chand & Company Ltd, 3rdEdition, 2012.
- 6. Handbook of Metal forming ", Kurt Lunge ,McGraw Hill, Pub Co.

E-RESOURCES:

https://www.youtube.com/watch?v=TkaCddeEZEY https://nptel.ac.in/courses/112/107/112107077/

Course Code: APPLIED THERMODYNAMICS (Steam tables and Mollier chart are permitted)

Lectur	e – Tut	orial:	2-1	Hours					Interna	al Mark	s:	40
Credit	s:		3						Extern	al Mark	ks:	60
Prerec	uisites:											
Basic 7	Thermod	lynamics	8									
Course	e Objec	tives:										
1.	To mak	the St	udent l	earn the	basic l	knowled	ge of co	ompone	nts bein	g used i	n steam	power
plant c	ycle.											
2.	To fam	iliarize	the stud	ent with	n the va	arious va	apour cy	cle ana	alysis alo	ong with	h their f	unction
and ne	cessity.			-		2			2			
3.	To lear	n about	analyze	the ene	rgy tran	sfers an	d transfo	ormatic	ons of va	pour po	wer plai	it cycle
compo	nents in	cluding	individu	al perfo	ormance	evaluat	10n.	· 1	1 /	1 1		1
4.	To ma	ke the S	students	s learn	to cons	struct ve	elocity t	riangle	s and to	o calcula	ate pow	ver and
5	To mak	eann turi	udonta l	oorn oh	out diff	orant tu	on of or	mprog	ore and	to colou	lata nor	vor and
J. efficier	10 mar	ciprocat	ing con	Dressor	out unit	erent ty		mpres	sors and	to calcu	late pov	ver and
6	To mal	ke the S	tudents	learn r	nechani	ical deta	ils and	to cale	ulate po	wer and	l efficie	ency of
rotary	compres	sors.	lucints	icuiii i	neenam	ieur dett	ins und	to cur	unute po	wer und		July of
Cours	e Outco	mes:										
Upon s	successf	ul comp	letion of	f the cou	urse, the	e student	will be	able to	:			
CO1	Descri	be the co	ompone	nts and	functior	ning of a	Rankin	e cycle				
CO2	Analyz	the ne	ed of va	rious bo	oiler dra	aught sy	stems fo	r a vap	or power	cycle.		
CO3	Apply	thermod	lynamic	analysi	s to stud	dy the be	ehavior o	of stear	n nozzle	s.		
CO4	Evalua	te the pe	erforma	nce of in	npulse,	reaction	turbine	s.				
CO5	To Un	derstand	differen	nt types	of cond	lensers a	and its pe	erform	ance ana	lysis.		
CO6	Evalua	te the pe	erforma	nce of re	eciproca	ating, ro	tary and	dynam	ic comp	ressors.		
	1	1			-	<u> </u>			1			
Contri	ibution	of Cour	se Outo	comes to	owards	achieve	ement of	f Progi	am Out	comes		
(1 - L)	ow, 2- N	ledium,	3 – Hiş	gh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1									
CO2	3	2	1									
CO3	3	2	2									
CO4	3	3	2									
CO5	3	2	1									
CO6	3	3	2									
						UNIT I	[

Basic Layout of Steam Power Plant: Introduction, Rankine Cycle, Actual Vapour Power Cycle, Methods to improve efficiency of Rankine cycle, Reheating and Regeneration, Fuels used in power plant.

Steam Generators: Introduction, Boiler systems-Function and Classification, Fire Tube boilers-Cornish, Lancashire, Cochran, Water Tube boilers-Babcock and Wilcox, High pressure boilersLoeffler, lamont and Benson boilers, Boiler Mountings and Accessories. Performance of boilers. UNIT II

Steam Nozzles: Introduction, Types of nozzle, Flow through nozzles- thermodynamic analysis, velocity of nozzle at exit, condition for maximum discharge, critical pressure ratio, Ideal and actual expansion in nozzle, velocity coefficient.

Steam Condensers: Introduction, Elements of a condenser plant, Types of Condensers- Jet condensers, Surface Condensers –working principle-vacuum efficiency and condenser efficiency. Draught: Functions, Types -Height of chimney for given draught and discharge, Condition for maximum discharge, Efficiency of chimney, artificial draught- induced and forced.

UNIT III

Steam Turbines - Introduction, Classifications of steam turbines.

Impulse Turbines: Impulse turbine- Mechanical details, Working principle, Velocity triangles – effect of friction – power developed, axial thrust, blade or diagram efficiency -condition for maximum efficiency. De-Laval Turbine - its features. Methods used to reduce rotor speed.

Reaction Turbines: Introduction, Parson's reaction turbine, performance analysis, degree of reaction, velocity triangles, condition for maximum efficiency.

UNIT IV

Compressors- Introduction, Classification.

Reciprocating Compressors: Principle of operation, Work required, Isothermal efficiency, volumetric efficiency and Effect of clearance volume, Free Air Delivery, Multistage Compression. Condition for Minimum work.

Rotary Compressors: Roots blower and Vane's sealed compressor-principle of working and applications.

Centrifugal Compressors: Construction, Principle of operation –Energy transfer-velocity diagram Axial Flow Compressors: Construction, Principle of operation – velocity triangles and energy transfer per stage, degree of reaction.

TEXT BOOKS

1. Thermodynamics and Heat Engines/ R.Yadav, Volume -II/ Central Publishing House

2. Mahesh.M. Rathore, Thermal Engineering, TMH, 1st Edition, 2012.

3. R.K.Rajput, Thermal Engineering, Laxmi publications, 5th Edition, 2005.

REFERENCE BOOKS:

1. Thermal Engineering-P.L.Bellaney/ Khanna publishers.

- 2. T.D Eastop and A. McConkey, Applied Thermodynamics, Pearson 5th Edition 2013.
- 3. R. Yadav, Thermodynamics and Heat Engines, Vol-II, Central Book Depot, 5th Edtn, 1999.
- 4. R.S.Khurmi, Thermal Engineering, S.Chand& Company, 1st Edition, 2012.
- 5. P.K Nag, Power Plant Engineering, TMH, 3rd Edition 2012.

E-RESOURCES:

1.<u>https://nptel.ac.in/courses/112/103/112103277/</u>

2.<u>https://lecturenotes.in/subject/152/power-plant-engineering-ppe</u>

III B. Tech I Semester

CO6

3

3

2

(Professional Elective – I) Lecture – Tutorial: 3-0 Hours **Internal Marks:** 40 3 **Credits: External Marks:** 60 **Prerequisites:** Computer Aided Design, Engineering Materials **Course Objectives:** 1. Student will know the concept of Rapid Prototyping, classifications, models, specifications of various Rapid Prototype Techniques. 2. Student can understand the fundamentals of various Additive Manufacturing Technologies for application to various industrial needs. 3. Students will able to understand the method of manufacturing of liquid based, powder based and solid based techniques. 4. Student will be aware of the manufacturing procedure of a prototype using FDM technique. 5. Student will know the different tools, soft-wares required and the applications of Rapid Prototyping. 6. Student will be in a position to convert part file into STL format. **Course Outcomes:** Upon successful completion of the course, the student will be able to: CO1 Understand the fundamentals of Additive Manufacturing Technologies for engineering and industrial applications. CO2 Understand the methodology to manufacture the products using SLA and SGC technologies and study their applications, advantages and case studies. Understand the methodology to manufacture the products using LOM and FDM technologies CO3 and study their applications, advantages and case studies CO4 Understand the methodology to manufacture the products using SLS and 3D Printing technologies and study their applications, advantages and case studies. Evaluate performance of the different types of rapid tools using in RP technologies. CO5 CO6 Evaluate the different types of STL formats, and other Translators. **Contribution of Course Outcomes towards achievement of Program Outcomes** (1 - Low, 2 - Medium, 3 - High)PO PO 2 3 4 5 6 7 8 9 10 11 12 1 2 CO1 3 2 1 CO₂ 3 2 3 3 2 **CO3** CO4 3 3 2 CO5 3 3 2 2

Course Code: RAPID PROTOTYPING

UNIT I

2

Introduction: Prototyping fundamentals, historical development, fundamentals of rapid prototyping, advantages and limitations of rapid prototyping, differences between traditional processes and additive manufacturing production, classification of RP process. RP Applications in engineering. **Liquid-Based Rapid Prototyping Systems:** Stereo lithography Apparatus (SLA): models and specifications, process, working principle, photopolymers, photo polymerization, layering

technology, laser and laser scanning, applications, advantages and disadvantages, case studies. Solid Ground Curing (SGC): models and specifications, process, working principle, applications, advantages and disadvantages, case studies.

UNIT II

Solid-Based Rapid Prototyping Systems: Laminated object manufacturing (LOM) – models and specifications, process, working principle, applications, advantages and disadvantages, case studies.

Fused Deposition Modeling (FDM) – models and specifications, process, working principle, applications, advantages and disadvantages, case studies. Direct metal deposition (DMD): working principle, Process, applications, advantages and disadvantages, Case study

UNIT III

Powder Based Rapid Prototyping Systems: Selective laser sintering (SLS): models and specifications, process, working principle, applications, advantages and disadvantages, case studies.

Three Dimensional Printing (3DP): models and specifications, process, working principle, applications, advantages and disadvantages, case studies. Materials of RP Technology: Photo sensitive Resin, Wax etc.

UNIT IV

Rapid Tooling: Introduction to rapid tooling (RT), conventional tooling Vs RT, Need for RT. rapid tooling classification: indirect rapid tooling methods: spray metal deposition, RTV epoxy tools, Ceramic tools, investment casting, spin casting, die casting, sand casting, 3D Kel tool process. Direct rapid tooling: direct AIM, LOM Tools, DTM Rapid Tool Process, EOS Direct Tool Process and Direct Metal Tooling using 3DP.

Rapid Prototyping Data Formats: STL Format, STL File Problems, consequence of building valid and invalid tessellated models, STL file Repairs: Generic Solution, other Translators, Newly Proposed Formats, Features of various RP software's.

TEXT BOOKS

- 1. Rapid prototyping: Principles and Applications Chua C.K., Leong K.F. and LIM C.S, World Scientific publications.
- 2. Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.
- 3. Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 4. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011

REFERENCE BOOKS:

- 1. Rapid Manufacturing D.T. Pham and S.S. Dimov, Springer.
- 2. Wholers Report 2000 Terry Wohlers, Wohlers Associates.
- 3. Rapid Prototyping & Manufacturing Paul F.Jacobs, ASME Press.
- 4. Chua C.K., Leong K.F. and LIM C.S Rapid prototyping: Principles an Applications, World Scientific publications, 3rdEd., 2010
- 5. D.T. Pham and S.S. Dimov, "Rapid Manufacturing", Springer, 2001
- 6. Terry Wohlers, "Wholers Report 2000", Wohlers Associates, 2000
- 7. Paul F. Jacobs, "Rapid Prototyping and Manufacturing"-, ASME Press, 1996
- 8. Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2nd Ed, 2014.

E-RESOURCES:

1.https://www.coursera.org/learn/3d-printing-revolution/home/welcome

- 2. <u>http://asmedl.aip.org/Manufacturing/</u>
- 3.file:///F:/RP/Direct%20Metal%20Deposition.pdf

III B. Tech I Semester

Course Code: AUTOMATION IN MANUFACTURING (Professional Elective – I)

					(**		iui Live		-)			
Lectur	re – Tu	torial:	3-	0 Hours					Interna	al Mark	s:	40
Credit	ts:		3						Externa	al Mark	s:	60
Prerec	quisites	:										
Cours	e Obje	ctives:										
1.	To stu	dy the t	ypes an	d strate	gies and	d variou	is comp	onents	in Auto	mated S	ystems	
2.	To und	derstand	the aut	tomated	l flow li	nes, lin	e balanc	cing, m	aterial s	torage a	nd retri	ieval and
	inspec	tion.										
Cours	- Outo	omosi										
Unon		onnes.	nlatio	of the	course	the st	udont v	vill bo d	bla ta:			
CO1	Lindor	stand a	ipieuoi	on prin	course aiplag	trotogic	utent w	viii be a	automot	ion		
CO^2	Under	stand m	ethods	and equ	linment	's used	for insr	ection	in an au	itomated	indust	PT 7
CO_2	Under	stand tr	onsfor l	ines au	itomate	d flow 1	ines and	d analyr	iii aii au	for lines	with a	1y. nd without
003	Understand transfer lines, automated flow lines and analyze transfer lines with and without buffer storage.											
CO4	Solve	the asse	embly li	ne bala	ncing p	roblem	s in the	various	flow li	ne syster	ns.	
CO5	Under autom	stand th	e differ	ent auto system	omated 1s.	materia	ıl handli	ng, sto	rage and	l retrieva	al syste	ems and
CO6	Expla	in adapt	ive con	trol prii	nciples	and imp	olement	the san	ne onlin	e inspec	tion an	d control.
Contr (1 – L	ibution ow, 2- 1	of Cou Mediun	ırse Ou 1, 3 – H	tcomes ligh)	towar	ds achi	evemen	t of Pr	ogram (Outcom	es	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2									
CO2	3	2	3									
CO3		3	2									
CO4	3	3	2									
CO5	3	3	2									
CO6	3	3	2									

UNIT I

Introduction: Principles and Strategies of Automation, automation in machine tools, mechanical feeding and tool changing and machine tool control, levels of automations-Five levels of automation and control in manufacturing.

Automated Inspection: Fundamentals, types of inspection methods and equipment, Coordinate Measuring Machines, Machine Vision.

UNIT II

Automated Flow Lines: Methods of part transport, transfer mechanism, buffer storage, control function, design and fabrication considerations.

Analysis of automated flow lines – General terminology and analysis of transfer lines without and with buffer storage, partial automation, implementation of automated flow lines.

Assembly System And Line Balancing: Assembly process and systems, assembly line, line balancing methods, ways of improving line balance, flexible assembly lines.

Automated Material Handling And Storage Systems:

Types of equipment, functions, analysis and design of material handling systems, conveyor systems, automated guided vehicle systems.

Automated storage and retrieval systems; work in process storage, interfacing handling and storage with manufacturing.

Automatic Identification Methods-Overview of Automatic Identification Methods, Bar Code Technology, Radio Frequency Identification, Other AIDC Technologies.

UNIT IV

Adaptive Control Systems: Introduction, adaptive control with optimization, adaptive control with constraints, application of adaptive control in machining operations.

Consideration of various parameters such as cutting force, temperatures, vibration and acoustic emission in the adaptive controls systems.

TEXT BOOKS

1. Automation, Production Systems and Computer Integrated Manufacturing: M.P. Groover./ PE/PHI.

REFERENCE BOOKS:

- 1. Computer Control Of Manufacturing Systems By Yoram Coren.
- 2. Cad / Cam/ Cim By Radhakrishnan.
- 3. Automation By W. Buekinsham.

E-RESOURCES:

https://nptel.ac.in/courses/112/103/112103293/

https://nptel.ac.in/courses/112/104/112104288/

Course Code: HYDRAULIC AND PNEUMATIC SYSTEMS (Professional Elective – I)

Lectur	re – Tut	orial:	3-() Hours					Interna	al Mark	s:	40
Credit	s:		3						Externa	al Mark	s:	60
Prerec	quisites:											
Fluid N	Mechani	cs and H	Iydrau	lic Macl	hinery							
Cours	e Objec	tives:					~	-				
1.	Familia	arize on	Fluid H	ower E	ngineer	ing and	Power	Transm	ussion S	ystem.		
2.	Introdu	ice the st	tudents	, the ba	sic conc	epts of	hydrau	lic and	pneuma	tic syste	ems.	
3.	Expose	the stud	lents w	vith vari	ous hyd	raulic a	ind pnet	imatic a	actuator	s.		
4.	Familia	arize on	fluid p	ower sy	stems a	nd its a	pplicati	ons to r	eal time	•		
5.	Know	the pro	blem,	which o	occur in	n fluid	power	system	s and t	ake nec	essary	troubleshooting/
	mainte	nance ac	tivities	5.								
6.	Get pra	cticed in	n desig	ning hy	draulic	and pne	eumatic	system	s.			
7.	Unders	tand the	design	n proced	lure ava	ilable fo	or Hydr	aulic an	nd Pneur	natic ci	rcuits.	
Cours	e Outco	mes:										
Upon	success	ful com	pletion	of the	course,	the stu	dent w	ill be al	ble to:			
901				0.01 • 1		•					M • 1	
COI	Explai	n the con	ncepts	of fluid	power,	its type	s, advai	ntages,	applicat	ions of a	fluid p	ower systems and
CO^{2}	Evplai	n the h	anical,	orking	al, nyar principl	aune an	he hydr	matic sy	ystems.	nd actu	ators	types of numps-
02	actuate	ors expl	ain the	design	conside	rations	of pum	ns. actu	ators an	d select	the va	lyes for hydraulic
	circuit	5. 5.		acoign	constac	lucions	or puili	ps, acta	utors un		uite vu	i es for ny araane
CO3	develo	p the h	ydrauli	c circu	its for	practica	al appli	cations,	create	circuits	for v	arious machines,
	select t	he size	of the a	accumul	ators an	d expla	in the v	vorking	princip	les of sa	fety ci	rcuits
CO4	explair	n the fu	ndame	ntal con	ncepts o	of pneur	natic sy	ystems,	list the	propert	ies of	air for pneumatic
	system	, demon	strate of	on F-R-	L unit							
CO5	identif	y variou	is cont	rol eler	nents in	n pneur	natic sy	ystem,	develop	electro	pneur	natic and electro
	nyarau	lic circl	lits for othods	robotic	applica	ations, o	design a	a pneur	natic cli	cuit usi	ing cla	ssic, cascade and
CO6	select	nneuma	tic co	mnonen	ts for	installa	tion an	d main	tenance	of por	wer ng	cks explain the
000	archite	ctures o	f PLC	and M	icropro	cessors.	develo	n logic	al circu	its in P	LC for	r automation and
	determ	ine the f	aults in	n fluid p	ower sy	ystems		P 1081			20 10	
Contr	ibution	of Com	se Ou	tcomes	toward	s achie	vement	of Pro	gram ()	ntcome	ŝ	
(1 - L)	ow, 2- N	Aedium	, 3 – H	igh)					8			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	2	1	2							
CO2	3	2	1	1	2							
CO3	1	3	2	2	1							
CO4	3	3	2	2	1							
CO5	3	3	2	1	2							
CO6	3	3	3	2	1							
	ıI			1		UN	I TIN				1	
Fluid	Power 1	Principl	es And	l Hvdra	ulic Pu	mps:						

Introduction to fluid power - Types, advantages and application of fluid power systems. Properties of hydraulic fluids terminologies used in fluid power

Basic of Hydraulic and Pneumatic Systems. Comparison of Mechanical, Electrical, Hydraulic & Pneumatic systems for force and motion analysis in automation.

UNIT II

Oil Hydraulic Pumps, Actuators: Introduction-hydraulic actuators-hydraulic cylinders- Types of hydraulic pumps- construction and working principle - design considerations, selection, specifications and characteristics of pumps. Types of actuators-construction and working principle - design considerations, selection, specifications and characteristics of actuators.

Control and Regulation Elements: Direction control valves, Pressure control valves, Flow control valves, Non-return valves, Reservoirs, Accumulators, Heating & cooling devices, Hoses. Selection of valves for hydraulic circuits.

UNIT III

Design of Hydraulic Circuits: Speed control circuits - Regenerative circuits- Accumulators and Intensifiers: Types of accumulators - Accumulators circuits, sizing of accumulators, intensifier -Applications of Intensifier-Intensifier circuit. - Reservoir design - Selection of components. Hydraulic circuits - Reciprocating - Quick return - Sequencing synchronizing - Safety circuits - Industrial circuits -Press - Milling Machine - Planner - Fork Lift.

UNIT IV

Pneumatic Systems: Pneumatic fundamentals - Properties of air - Compressors - Filter, Regulator, and Lubricator Unit - Air control valves, Quick exhaust valves, and pneumatic actuators. Control Elements -Logic Circuits - Position - Pressure Sensing - Switching - Electro Pneumatic - Electro Hydraulic Circuits -Robotic Circuits.

Design of Pneumatic Circuits: Classic-Cascade-Step counter - Combination -Methods - PLC-Microprocessors -Uses - Selection criteria for Pneumatic components - Installation and Maintenance of Hydraulic and Pneumatic power packs - Fault finding - Principles of Low Cost Automation.

TEXT BOOKS

- 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education 2000.
- 2. Majumdar S.R, "Oil Hydraulics", Tata McGraw Hill, 2000.
- 3. Majumdar S.R, "Pneumatic Systems – Principles and Maintenance", Tata McGraw Hill, 2001.
- Introduction to Hydraulics and Pneumatics by S. Ilango and V. Soundararajan, PHI, New Delhi. 4. **REFERENCE BOOKS:**

- 1. Andrew Parr, Hydraulic & Pneumatics, 2/e, Jaico Publishing House Elsevier, 1999.
- 2. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987
- 3. Harry L. Stevart D.B, "Practical Guide to Fluid Power", Taraoeala Sons and Port Ltd. Broadey, 1976
- 4. Oil Hydraulic Systems, S.R. Majumdar, McGrawHill Companies.
- 5. Pneumatic Systems: Principles and Maintenance, Majumdar, Mc Graw Hill.
- 6. Applied hydraulics and pneumatics-T. Sunder Selwyn & R. Jayendiran, Anuradha Publications.

E-RESOURCES:

https://www.youtube.com/watch?v=8xd7cWvMrvE

Course Code: ELECTRIC AND HYBRID VEHICLES (Professional Elective – II)

Lectur	e – Tutorial:	3-0	Internal Marks:	40								
Credit	s:	3	External Marks:	60								
Prereq	uisites:											
Electric	cal and Electronics	Engineering										
Course	e Objectives: The	student will										
1. Lear	n about the import	ance of electric and Hybrid vehicles.										
2.Unde	2. Understand working of different configurations of electric vehicles and hybrid vehicles											
3. Unde	3. Understand the properties of batteries and its types.											
4. Unde	4. Understand the drive systems used in electric and Hybrid vehicles.											
5. Reca	5. Recall and understand the fundamentals of power electronics.											
6. Lear	5. Learn the concepts of electronics used in hybrid vehicles											
Course	e Outcomes:											
Upon s	successful comple	tion of the course, the student will	be able to:									
CO1	Acquire basic know	owledge of electric and hybrid vehic	les.									
CO2	Describe the conf	igurations and working principles of	f electric and hybrid veh	iicles.								
CO3	Identify the vario	us energy resources used for hybrid	vehicles.									
CO4	CO4 Choose the suitable drive systems for electric vehicles.											
CO5	CO5 Describe the fundamentals of power electronics.											
CO6	Apply the concep	t of power electronics for hybrid vel	nicles.									
Contril	oution of Course O	utcomes towards achievement of Pro	ogram Outcomes									
$(1 - L_0)$	Contribution of Course Outcomes towards achievement of Program Outcomes $1 - I \text{ ow } 2$ - Medium $3 - \text{High}$											

	1 Low, 2 Moduli, 5 High)												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	1									1			
CO2	1	2											
CO3	1	2										1	
CO4	1	2										1	
CO5	1	2											
CO6	1	2										1	

UNIT I

Introduction to hybrid vehicles- History of electric vehicle, history of hybrid electric vehicle, history of fuel cell vehicle, advantages and limitations, air pollution and global warming, Electric vehicle drive train: EV transmission configurations, transmission components, ideal gearbox, types of hybrid electric vehicles.

UNIT II

Energy sources for hybrid vehicles

Battery: principle and types, Li-ion battery, ultra-capacitor, fuel cells: operating principles of PAFC, PEM, MCFC, SOFC, DMFC, PCFC, ZAFC, Alkaline and Regenerative cells.

UNIT III

Electric machines for hybrid vehicles

Permanent magnet synchronous motor, switched reluctance motor, induction motor, permanent magnet brushless DC motor, regenerative braking system.

UNIT IV

Power electronics for hybrid vehicles: Introduction to digital and Analog Inputs, Basic switches: diode, power transistor, power MOSFET, inverters, charging of hybrid electric vehicle.

TEXT BOOKS

- 1. Iqbal Husain, ELECTRIC and HYBRID VEHICLES, Design Fundamentals, CRCPress, 2003.
- 2. MehrdadEhsani, YiminGao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals", CRC Press, 2010.
- 3. Ali Emadi, Advanced Electric Drive Vehicles, CRC Press, 2015.

REFERENCE BOOKS:

- 1. SandeepDhameja, "Electric Vehicle Battery System
- 2. Rand D.A.J, Woods, R & Dell RM Batteries for Electric vehicles

E-resources:

https://swayam.gov.in/courses/-electric-vehicles

III B. Tech I Semester

Course Code: THEORY OF MACHINES LAB

Lect	ture – T	Tutoria	l- Prac	tical:	0-0-2				Ir	nternal M	Iarks:	40
Cre	dits:				1				E	xternal N	larks:	60
Prer	requisit	es:										
Func	Fundamentals of Engineering Mechanics.											
Cou	Course Objectives:											
	 To understand and impart hands-on practical exposure on different types of assemblies and linkages used in machine parts. To understand the principles of gyroscope and governors. To determine the balancing of masses of rotating machine elements. To determine the moment of inertia of various mechanical systems. To familiarize higher pairs like cams and gears To understand the vibrational behavior of systems. 											
Cours	ursa Autoamas.											
Unon	1 St Outomes.											
$\frac{CO1}{CO1}$		nalvze t	he forc	es and r	notion	of com	nlex svs	tems of 1	linkages	gears at	nd came	
		naryze t				no and			inikages	, gears a		•
	10 a	ppry the			gyrosco		governo					
CO3	To a	pply the	e princij	ples of l	balancir	ng of m	asses to	various	links, m	nechanisn	ns and e	ngines.
CO4	To d	emonst	rate the	dynam	ics of fl	ywheel	and the	ir motio	n.			
CO5	To a linka	nalyze t ges, ge	the moti ars and	ion and cams.	the dyn	amical	forces a	acting on	mecha	nical syst	ems cor	nposed of
CO6	To p	erform	balanci	ng, vibr	ation ar	nd critic	cal speed	ds with r	espect t	o Machir	e dynar	nics.
Contr	ibution	of Cou	urse Ou	itcomes	s towar	ds achi	evemen	nt of Pro	gram (Outcomes	5	
(1– Lo	ow, 2- N	Aediun	n, 3 – H	ligh)								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	2	-	2	-	-	-	-	-	-	-	-
CO2	3	2	-	2	-	-	-	-	-	-	-	-
CO3	3	2	-	2	-	-	-	-	-	-	-	-
CO4	3	2	-	2	-	-	-	-	-	-	-	-
CO5	3	2	-	2	-	-	-	-	-	-	-	-
CO6	3	2	_	2		-	-	-	_	-	-	_

List of Experiments:

- 1. To determine whirling speed of shaft theoretically and experimentally
- 2. To determine the position of sleeve against controlling force and speed of a Hartnell governor

- 3. To analyze the motion of a motorized gyroscope when the couple is applied along its spin axis
- 4. To determine the frequency of undamped free vibration of an equivalent spring mass system

- 5. To determine the frequency of damped force vibration of a spring mass system
- 6. To analyze the static and dynamic balancing using rigid blocks
- 7. To find the moment of inertia of a flywheel
- 8. To plot follower displacement vs cam rotation for various Cam Follower systems
- 9. To find coefficient of friction between belt and pulley
- 10. Simulation and study of four bar mechanisms.
- 11. Simulation and study of slider crank mechanisms.
- 12. To study various types of gears- Spur, Helical, Worm and Bevel Gears.

(Any TEN of the above experiments are to be covered)

EQUIPMENT REQUIRED:

Whirling of Shaft Apparatus, Universal Governor Apparatus, Motorized Gyroscope, Universal

Vibration Apparatus, Static & Dynamic Balancing Apparatus, Inertia of a Flywheel Apparatus,

Cam Analysis Apparatus, and Apparatus for Determination of Co-efficient of Friction Between

Belt & Pulley.

REFERENCE BOOKS:

1. Rattan, "Theory of machine", Tata McGraw-Hill Publishing Co. Ltd, New Delhi

2. P. Ballaney, "Theory of machine", Khanna Publication, New Delhi

3. Thomas Beven, "Theory of machine", C B S Publisher

4. Shigley and Vicker, "Theory of machine", McGraw-Hill Publishing Co. Ltd, New Delhi

5. J. S. Rao & R. V. Dukkipati, Mechanism & Machine Theory, New Age Publication.

6. Theory of Machines by Dr. Sadhu Singh Pearson Education.

7. Theory or Mechanisms and Machines by Amitabh Ghosh and A. Kumar Mallik.

E-RESOURCE:

http://www.nptelvideos.in/2012/12/kinematics-of-machines.html

Course Code: MACHINE TOOLS LAB

Lectu	re – Tu	torial-	Practic	al:	0-0-2	2			Inter	rnal Mark	s:	40
Credi	ts:				1				Exter	rnal Mark	s:	60
Prore	anisites	2•										
Metal	cutting	and Ma	chine T	مماه								
Cours				0013								
1. To understand the usage of different lab equipment												
1. 10 2. Kno	ow the v	vorking	princip	les of di	fferent	instrum	ents.					
3. Fan	niliarize	differe	nt mach	ine tool	s used in	n produ	ction flo	or.				
4. Imp 5.To 1	earn the	us on ex e handlir	ng of dri	lling, sl	aping,	milling,	slotting					
6. To	operate	grindin	ig and to	ool and	cutter g	rinding	machine	es.				
Cours	se Outc	omes:										
Upon	Succes	sful Co	mpletio	n of the	Cours	e, The S	Student	will be	able to	:		
CO1	Apply	The Pro	ocedures	To Me	asure L	ength, V	Width, D	epth, B	ore Dia	meters, Int	erna	l And
	Extern	al Taper	rs, Tool	Angles	And S	urface R	Roughne	ss By U	Ising Di	fferent Ins	trum	nents
CO2	Measu	re Effec	tive Dia	umeter (Of Threa	ad Profi	le Using	Differe	ent Meth	nods		
CO3	Condu	uct Diffe	erent Ma	achine A	lignme	ent Tests	8					
CO4	Demor	nstrate k	Knowled	lge Of I	Differen	t Machi	ne Tools	s Used]	In Mach	ine Shop		
CO5	Perfor	rm Step,	Taper	Furning	, Knurli	ng And	Threadi	ng.				
CO6	Produ	ce Stepp	ped Surf	face Usi	ng Shap	per And	Keyway	y Using	Milling	Machine.		
Contr	ribution	of Cou	irse Ou	tcomes	toward	s achiev	vement	of Prog	gram Ou	utcomes		
(1– L	ow, 2- N	Aedium	1, 3 – Hi	gh)								
	РО	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO
CO1	<u>1</u> 3	$\frac{2}{2}$	3 2	4	<u>5</u> 2	6	7	8	9 1	10 1	11	12
CO2	3		2		2				1	1		
CO3	3		2		2				1	1		
CO4	3		2		2				1	2		
CO5	3		2		2				1	2		
CO5	2		2		2				1	2		
000	3		Z		Z				1			

List of Experiments:

- 1. Introduction of General Purpose Machines
- 2. Step Turning and Taper Turning on Lathe
- 3. Thread Cutting and Knurling on Lathe Machine
- 4. Drilling and Tapping
- 5. Shaping and Planning
- 6. Slotting
- 7. Milling
- 8. Cylindrical Surface Grinding
- 9. Grinding of Tool Angle
- 10. Surface Grinding
- 11. Wood Turning Lathe
- 12. CNC Xl Turn
- 13. CNC XI Mill

(Any TEN of the above experiments are to be covered)

EQUIPMENT REQUIRED:

Lathe machine, drilling machines, shaping, slotting, turning machines, CNC machines

REFERENCE BOOKS:

1. Manufacturing processes for engineering material-KalpakJain.

2. Materials & amp; processes in Manufacturing-DE Garmo Black Khoser.

3. Manufacturing process, P C Pandey

4 Manufacturing Technology, Vol. 2 Metal Cutting and Machine Tools May 2013

5. Machining and Machine Tools Paperback A.B. Chattopadhyay (Author)

E-RESOURCES:

http://www.machineryresources.com

III B. Tech II Semester

Course code-HEAT TRANFER

Lectur	e – Tutorial:	2-1 Hours	Internal Marks:	40
Credit	s:	3	External Marks:	60
Prereq	uisites:			
Therm	odynamics			
Course	e Objectives:			
1. Stud	ent will be aware o	of various modes of heat transfer.		
2. Stud	ent will be exposed	d to different types of fins.		
3. Stud	ent will be aware o	of the concepts related to boundary lay	er theory and dimension	al analysis.
4. Stud	ent will know abou	at free and force convection.		
5. Stud	ent will be in a pos	sition to classify heat exchangers.		
6. Stud	ent will be exposed	d to the law of radiation.		
Cours	e Outcomes:			
Upon s	successful completi	ion of the course, the student will be al	ole to:	
CO1	Explain the basic	heat transfer principles.		
CO2	Analyze study and	d unsteady state heat transfer concepts.		
CO3	Evaluate the rate of	of heat transfer from a finned surface.		
CO4	Explain convectiv	e heat transfer in natural and forced co	onvection for both intern	al and external
	flow.			
CO5	Apply the concept	ts of heat transfer in Boiling and Cond	ensation.	
CO6	Evaluate the radia	tion heat exchange between the surfac	es and know the signific	ance of
	radiation shields.			

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

· ·	/		/	0 /								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2			2						2	
CO2	3	3	2	3	1							
CO3	3	2	3		2							
CO4	2	3		2							1	
CO5	3	3	3		2							
CO6	3	2	3		2						1	

UNIT I

Introduction: Modes and mechanisms of heat transfer – basic laws of heat transfer –General discussion about applications of heat transfer.

Conduction Heat Transfer: Fourier law of heat conduction – General heat conduction equation in cartesian, cylindrical and Spherical coordinates. Steady and Un-steady state heat transfer- initial and boundary conditions, Empirical relations.

One Dimensional Steady State Conduction Heat Transfer: Homogeneous slabs, hollow cylinders and spheres – electrical analogy – critical radius of insulation- Variable thermal conductivity – systems with heat sources or heat generation.

UNIT II

Extended surface (fins) heat Transfer: Analysis of long fin and short fin with insulated tip- fin efficiency and effectiveness – Application to error measurement of temperature.

One Dimensional Transient Conduction Heat Transfer: Systems with negligible internal resistance – lumped heat analysis – significance of biot and fourier numbers - chart solutions of transient conduction systems.

Convective Heat Transfer: Classification of convective heat transfer – significance of nondimensional numbers – dimensional analysis – Buckingham pi theorem applied to force and free convection.

UNIT III

Forced Convection:

External Flows: Concepts about hydrodynamic and thermal boundary layer and use of empirical correlations for convective heat transfer -flat plates and cylinders.

Internal Flows: Concepts about hydrodynamic and thermal entry lengths – division of internal flow based on this –use of empirical relations for horizontal pipe flow and annulus flow.

Free Convection: Development of hydrodynamic and thermal boundary layer along a vertical plate – use of empirical relations for vertical plates and pipes.

Heat Transfer With Phase Change:

Boiling: Pool boiling, regimes – Critical heat flux.

Condensation: Film wise and drop wise condensation – laminar film wise condensation on a vertical plate

UNIT IV

Heat Exchangers:

Introduction – Classification of heat exchangers – overall heat transfer coefficient and fouling factor – concepts LMTD and NTU methods – problems.

Radiation Heat Transfer: Introduction – Nature of thermal radiation – absorption, reflection and transmission – concepts of black body – laws of black body radiation – radiation from non black surfaces – emissivity – kirchoff law – radiation heat exchange between two black isothermal surfaces - shape factor – heat exchange between non black infinite parallel plate – radiation shields.

Data Hand Book:

1. C.P. Kothandaraman and Subramanian Heat and Mass Transfer Data Book, New Age International Publications, 7th Edition, Reprint 2012

NOTE: Heat and Mass Transfer Data Hand Book by C.P. Kothandaraman and Subramanian- New Age Publications is to be allowed in Examination.

TEXT BOOKS

- 1. R.C.Sachdeva Fundamentals of Engineering Heat and Mass Transfer —New Age Science Publishers, 3rd Edition, 2009.
- 2. Heat and Mass Transfer /D.S.Kumar / S.K.Kataria& Sons.

REFERENCE BOOKS:

- 1. Yunus. A. Cengel, Heat & Mass Transfer-A Practical Approach Tata McGraw Hill, 4th Edition, 2012.
- 2. M.NecatiOzisik, Heat Transfer- A basic Approach,4th Edition, McGraw-Hill book company, 1985.
- 3. J.P.Holman, Heat transfer Tata McGraw-Hill, 9th Edition, 2010.
- 4. P.K.Nag, Heat and Mass Transfer- TMH 2nd Edition, 2007.

E-RESOURCES:

https://nptel.ac.in/courses/112/101/112101097/

https://www.coursera.org/lecture/thermodynamics-intro/02-04-heat-transfer-gyDfJ

III B. Tech II Semester

Course code-OPERATIONS RESEARCH

Lectur	re – Tu	torial:	2-	1 Hours	5				Intern	al Mark	ks:	40
Credit	ts:		3						Extern	al Marl	ks:	60
Prerec	quisites	:										
Cours	e Obje	ctives:										
1. To	impart	the ba	sic con	ncepts	of mod	leling r	nodels,	and st	tatemen	ts of th	ne oper	ations research.
formul	formulate and solve LPP											
2.To se	2. To solve Transportation and Assignment, sequencing problems to minimize the cost											
3. Apply queuing theory to solve the problems of Traffic congestion and counters in banks in etc and												
Game theory to solve different games.												
4. To acquire the knowledge on Inventory methods and solution of LPP through Dynamic												
progra	mming											
~	~											
Cours	se Outc	omes:	• .•	0.1								
Upon	success	sful con	npletio	n of the	e cours	e, the st	tudent	will be	able to	:		
COI	Form	ilate and	d solve	the pro	blems i	ising L	PP usin	g differ	ent met	hods		
CO2	Find t	he appr	opriate	times to	o replac	e items	s individ	dually a	nd as a	group		
<u>CO3</u>	Form	ilate an	d solve	Transp	portatio	n, Assış ·	gnment	, seque	ncing j	problem	S	
CO4	Form	ilate and	d solve	the pro	blems f	having s	saddle a	ind with	nout sac	idle poir	nts	
CO5	Solve	the que	uing pr	oblems	using c	lifferen	t metho	ods	1.	D	•	·
006	Solve	differei	nt prob	lems rei	ated to	invento	bry man	ntenanc	e, appiy	/ Dynan	nc prog	gramming
Canta	inetio			-		مام ممام	•			0		L arra 0
Modin	ibution	l OI COL High)	irse Oi	itcome	s towar	us acm	levenie	III OI PI	rogram	Outcol	nes (1	– Low, 2-
wicuit	PO	PO	PO	PO	ΡΟ	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	2								
CO2	3	3	2	2								
CO3	3	3	2	2								
CO4	3	3	2	2							-	
CO5	3	3	2	2							-	
CO6 3 3 2 2												
						Ul	NIT I					
Develo	opment	– Defir	nition-c	haracte	ristics –	- phases	s-applic	ations of	of Opera	ations R	esearch	1.
Linea	r Progr	mamm	ning –fo	ormulat	ion-Gra	phical	Method	l, Simpl	ex Met	hod –Ar	tificial	Variable
Techn	ique- T	wo Pha	se Metl	10d –Bi	g-M me	ethod –	Duality	y Princi	ple			

Replacement Problems – Introduction – Replacement of Items that Deteriorate with time – When money value is not counted and counted – Replacement of items that fails completely, group replacement.

UNIT II

Transportation Problem – formulation – North west corner rule – Least cost method –Vogel's approximation –Modi method –unbalanced transportation problem – Degeneracy **Assignment Problem** – formulation –Hungarian method - Travelling Salesman Problem **Sequencing Problem** – Introduction-n-jobs,2-machines,n-jobs, 3-machines

UNIT III

Theory of Games -- Introduction -- Minimax and Maximin Criteria- Optimal Stratagies -- Solution of

Games with Saddle Point- solution of Games without saddle points-Algebraic Method – Graphical Method(mx2,2xn methods), dominance principle.

Waiting lines- Introduction – single channel- poisson arrivals – exponential service times – - with infinite population and finite population models – Multi channel – poisson arrivals – exponential service times with infinite population single channel poisson arrivals

UNIT IV

Inventory – Introduction- single item- deterministic models – Demand may be Discrete or continuous variable instantaneous production – instantaneous demand and continuous demand and set up cost – shortages are not allowed- purchase of inventory with one price break and multiple price breaks. **Dynamic Programming** – Introduction – Bellman's principle of optimality – applications – linear programming problem

TEXT BOOKS:

- 1. OpeartionsResearch , S.D.SHARMA 15th Edition, Kedarnadh Ramnadh publications
- 2. Opeartions Research, TAHA H.A 9th edition Prentice Hall of India New Delhi

REFERENCE BOOKS:

- 1. Opeartions Research by PannerSelvam .R , 2nd edition, Prentice Hall of India New Delhi
- 2. Opeartions Research by P.K.Guptha and HIRA 3rd edition S.chand Company Limited

E-RESOURCES:

- 1. http://www2.informs.org/Resources/
- 2. http://www.mit.edu/~orc/
- 3. http://www.ieor.columbia.edu/
- 4. http://www.universalteacherpublications.com/univ/ebooks/or/Ch1/origin.htm
- 5. http://www.wolfram.com/solutions/OperationsResearch/

III B. Tech II Semester

Course code-INSTRUMENTATION AND CONTROL SYSTEMS

Lecture	– Tutor	ial:	3]	Hours					Intern	al Mark	S: 4	40
Credits:			3						Extern	al Mark	s:	60
Prerequ	isites:											
Course	Objectiv	ves:										
1. 7	The stud	ent wil	l unders	stand th	e Basic	Princi	ples of	Instrum	entation	, Contro	ol Syste	m and
n	neasuring	g instrur	nents lik	e displa	cement a	and stres	s strain o	levices.				
2. 7	The stude	ent will u	ınderstar	nd the va	arious ter	mperatu	re, press	ure and h	numidity	measuri	ng devic	es.
3. 1	The stude	ent will u	ınderstar	nd the va	arious sp	eed, acc	eleration	and vib	ration m	easuring	devices	•
4. 7	The stude	ent will u	ınderstar	nd the va	rious fo	rces, tor	que, pov	ver meas	uring de	vices.		
5. 7	The stude	ent will u	inderstar	nd the va	rious lic	quid leve	el and flo	ow measu	uring dev	vice.		
б. Т	The stude	ent will u	inderstar	nd the va	rious ele	ements o	of contro	l system	s.			
Course	Outcom	es:										
Upon su	iccessful	comple	etion of t	he cour	se, the s	student	will be a	ble to:				
CO1	Define	basic co	oncepts o	of differe	ent meas	uring ins	strument	s.				
CO2	Choose	e approp	riate dev	ices for	measuri	ng of de	ferent pl	nysical p	arameter	s.		
CO3	Classif	Classify different measuring instruments.										
CO4	Compa	re vario	us measi	iring dev	vices.							
CO5	Analy	ze vario	us liquid	level an	d flow r	neasurin	g device	es.				
CO6	Develo	op vario	us eleme	nts of co	ontrol sy	stems						
Contrib (1 – Lov	ution of v, 2- Me	Course dium, 3	Outcon – High)	nes towa	ards ach	lievemei	nt of Pro	ogram C	outcome	S		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3									1		
CO2	3	2	2	3						1		
CO3	3			1						1		
CO4	3	3	3	2						1		
CO5	3	3	2							1		
CO6	3	2	2	1						1		

UNIT I

Basic Principles of Instrumentation and Control System

Definition - Basic principles of measurement - measurement systems, generalized configuration and functional descriptions of measuring instruments - examples. Dynamic performance characteristics sources of error, classification and elimination of error.

Measurement of Displacement: Theory and construction of various transducers to measure displacement piezo electric, inductive, capacitance, resistance, ionization and photo electric transducers, calibration procedures.

Stress Strain Measurements : Various types of stress and strain measurements - electrical strain gauge gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains – usage for measuring torque, strain gauge rosettes

UNIT II

Measurement of Temperature: Classification - ranges - various principles of measurement - expansion,

electrical resistance – thermister – thermocouple – pyrometers – temperature indicators.

Measurement of Humidity: Moisture content of gases, sling psychrometer, absorption psychrometer, dew point meter

Measurement of Pressure: Units – classification – different principles used. manometers, piston, bourdon pressure gauges, bellows – diaphragm gauges. Low pressure measurement – thermal conductivity gauges – ionization pressure gauges, Mcleod pressure gauge.

UNIT III

Measurement of Speed :Mechanical tachometers – electrical tachometers – stroboscope, noncontact type of tachometer

Measurement of Acceleration and Vibration: Different simple instruments – principles of seismic instruments – Vibrometer and accelerometer using this principle.

Measurement of Force, Torque and Power: Elastic force meters, load cells, torsion meters, dynamometers

UNIT IV

Measurement of Level: Direct method – indirect methods – capacitative, ultrasonic, magnetic, cryogenic fuel level indicators – bubler level indicators.

Flow Measurement: Rotameter, magnetic, ultrasonic, turbine flow meter, hot – wire anemometer, laser Doppler anemometer (LDA).

Elements of Control Systems :Introduction, importance – classification – open and closed systems, basic elements of feedback system, classification of feedback control system, error detector, servomechanisms– examples with block diagrams–temperature, speed & position control systems

Text Books:

1. Measurement Systems: Applications & design / D.S Kumar/

2. Mechanical Measurements / Beckwith, Marangoni, Linehard, Pearson

References:

- 1. Measurement systems: Application and design/Doeblin Earnest. O. Adaptation/ TMH
- 2. Experimental Methods for Engineers / J.P.Holman/McGraw Hill
- 3. Mechanical and Industrial Measurements / R.K. Jain/ Khanna Publishers.
- 4. Instrumentation, measurement & analysis / B.C.Nakra&K.K.Choudhary/TMH

E-RESOURCES:

Video in web: http://nptel.ac.in/courses/112104114/

Video in web: https://youtu.be/OlZXxPVpmBs

Notes in web: http://www.vssut.ac.in/lecture_notes/lecture1429901026.pdf

III B. Tech II Semester

Course code-FINITE ELEMENT ANALYSIS

Lecture - Tutorial:	2-1 Hours	Internal Marks:	40							
Credits:	3	External Marks:	60							
Prerequisites:										
Fundamentals of Engineer	ing Mechanics									
Course Objectives:										
1. Introduce concepts	of theory of elasticity.									
2. To enable the stud	ents understand the mathematical	and physical principle	s underlying the							
Finite Element Met	hod (FEM) as applied to solid mech	nanics and thermal analy	ysis.							
3. To understand the l	pasics of finite element formulation									
4. To introduce do	nain discretization,polynomial in	terpolation, applicatio	n of boundary							
conditions, assembly o	f global arrays, and solution of the	esulting algebraic syste	ems.							
Course Outcomes:										
Upon successful completion	on of the course, the student will be	able to:								
CO1 Apply the knowled	ge of Mathematics and Engineering	g to solve problems in st	tructural							
engineering by app	roximate and numerical methods.									
CO2 Identify the applica	ation and characteristics of FEA ele	ments such as bars, trus	ses, beams,							
plane and isoparam	netric elements.									
CO3 To use the technique	ues, skills, and modern engineering	tools necessary for eng	gineering							
practice.										
CO4 Able to apply Suita	ble boundary conditions to a globa	l structural equation, an	d reduce it to a							
solvable form.	solvable form.									
CO5 Design a new com	ponent or improve the existing com	ponents using FEA								
CO6 Solve real life prob	lems using finite element analysis.									
Contribution of Course ()	° D								

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	2	1	2	-	-	-	-	-	-	-	-
CO2	-	3	1	2	-	-	-	-	-	-	-	-
CO3	-	2	-	-	3	-	-	-	-	-	-	-
CO4	-	2	3	-	-	-	-	-	-	-	-	-
CO5	-	2	-	-	-	-	-	-	-	-	-	-
CO6	_	2	-	3	_	-	-	-	-	-	-	-

UNIT I

Theory of Elasticity & Functional Approximating Methods:

Introduction to Theory of Elasticity: Definition of stress and strain – plane stress – plane strain – stress strain relations in three dimensional elasticity.

Introduction to Variational Calculus: Variational formulation in finite elements – Ritz method – Weighted residual methods – Galerkin – sub domain – method of least squares and collocation method - numerical problems

One Dimensional Problems: Discretization of domain, element shapes, discretization procedures, assembly of stiffness matrix, band width, node numbering, mesh generation, interpolation functions, local and global coordinates, convergence requirements, treatment of boundary conditions. Steady

state heat transfer analysis : one dimensional analysis

UNIT II

Analysis of Trusses:Finite element modelling, coordinates and shape functions, assembly of global stiffness matrix and load vector, finite element equations, treatment of boundary conditions, stress, strain and support reaction calculations.

Analysis of Beams: Element stiffness matrix for Hermite beam element, derivation of load vector for concentrated and UDL, simple problems on beams.

UNIT III

Two Dimensional Problems: Finite element modelling of two dimensional stress analysis with constant strain triangles and treatment of boundary conditions,

Higher order and isoparametric elements: Two dimensional four noded isoparametric elements and numerical integration.

Axisymmetric Problems: Formulation of axisymmetric problems.

UNIT IV

Dynamic Analysis: Formulation of finite element model, element consistent and lumped mass matrices, evaluation of eigen values and eigen vectors, free vibration analysis.Steady state heat transfer analysis: one dimensional analysis of a fin.

Introduction to FE software.

TEXT BOOKS:

- 1. An introduction to Finite Element Method / JN Reddy / McGraw Hill
- 2. The Finite Element Methods in Engineering / SS Rao / Pergamon.

REFERENCE BOOKS:

- 1. Tirupathi R. Chandrupatla and Ashok D. Belugundu (2011) Introdution to Finite Elements in Engineering, Prentice Hall.
- 2. Seshu P., Text Book of Finite Element Analysis, Prentice Hall, New Delhi, 2007.
- 3. Zienkiewicz O.C., Taylor R.L., Zhu J.Z. (2011), The Finite Element Method: Its basis and fundamentals, Butterworth Heinmann.

E-RESOURCES:

https://nptel.ac.in/courses/112/104/112104193/

Course code-

MECHATRONICS (Open Elective – III)

Lectur	re – Tutorial:	2-1 Hours	Internal Marks:	40						
Credit	s:	3	External Marks:	60						
Prerec	quisites:									
Fundar	mentals of Engineer	ring Mathematics, Electronic	Devices and Circuits, Digital Ele	ctronics						
Cours	Course Objectives:									
1.	Student will be ab	le to Introduced to integrative	nature of Mechatronics.							
2. Stu	ident will be expose	ed to the various types of sens	ors and transducers.							
3. Stu	Ident will understar	d the fundamentals of solid st	ate electronic devices.							
4. Stu	ident will design va	rious Hydraulic and Pneumati	c circuits.							
5. Stu	dent will apply bas	ics of digital electronics for v	arious applications of logic gates	•						
6. Stu	ident will relate dif	ferent logic gates and their rol	e in Programmable logic control	lers.						
Cours	e Outcomes:									
Upon s	successful completi	on of the course, the student v	vill be able to:							
CO1	Describe mechatro	onics system and their elemen	ts and levels							
CO2	Differentiate varie	ous sensors and transducers								
CO3	Understand solid	state electronic devices, analog	g signal conditioning							
CO4	CO4 Demonstrate hydraulic and pneumatic actuating systems									
CO5	CO5 Understand Digital electronics and Logic gates									
CO6	Explain micro con	ntrollers and applications of Pl	LC							

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

(-,	-9/								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3											
CO2	3											
CO3	3											
CO4	2		2		2							
CO5	3											
CO6	2				2							

UNIT I

Introduction: Definition of Mechatronics, Elements & Levels of Mechatronics system, mechatronics design process, System, Measurement System, Control system, Types of control system, Advantages and disadvantages of mechatronics systems

Sensors and Transducers : Static and Dynamic characteristics of Transducers, displacement, position, proximity, velocity, motion, force, acceleration, torque, fluid pressure, liquid flow, liquid level, temperature and lightsensors.

UNIT II

Solid state Electronic Devices: PN junction diode, BJT, FET, DIAC, TRIAC and LEDs. Analog signal conditioning - operational amplifiers, noise reduction, types of filters. **Process Controllers:** Controller principle, Two-position, Proportional, Integral, Derivative, PI, PD &PID controllers

UNIT III

Hydraulic and Pneumatic Actuating Systems: Fluid systems, Hydraulic systems, and pneumatic systems, Comparison of hydraulic and pneumatic systems, components, control valves, Characteristics and their limitations, Design of Hydraulic and Pneumatic circuits

Digital Electronics and Systems: Digital logic control, Numbering system, Boolean algebra, Logic gates, Karnaugh maps, Applications of logic gates.

UNIT IV

Microcontrollers and Programmable Logic Controllers: Architecture of Microprocessor, Microcontroller, Basic structure of a PLC, PLCs versus Computers, PLC Programming using ladder diagrams, logics, latching, sequencing, timers, relays and counters,

Dynamic models and analogies: Mechanical, Electrical, fluid and thermal systems, Pneumatic and Hydraulic systems.

TEXT BOOKS

- 1. MECHATRONICS Integrated Mechanical Electronics Systems/KP Ramachandran, GK Vijaya Raghavan & MS Balasundaram/WILEY India Edition
- 2. Mechatronics Electronics Control Systems in Mechanical and Electrical Engineering, WBolton, 3/e Pearson Education Press, 2005.

REFERENCE BOOKS:

- 1. Devadas Shetty and Richard A Kolk, Mechatronic System Design, 2/e, Cengage learning, 2010.
- 2. Clarence W. de Silva, Mechatronics an Integrated Approach, CRC Press, 2004.
- 3. Mechatronics, Robert H Bishop, CRC Press, 2005.
- 4. James J Allen, Micro Electro Mechanical Systems Design, CRC Press Taylor & Francis group, 2005.
- 5. Ganesh S Hedge, Mechatronics, Jones & Bartlett Learning, 2010.
- 6. Mechatronics Principles and Application / Godfrey C. Onwubolu/Elsevier, Indian print
- 7. Mechatronics N. Shanmugam / Anuradha Agencies Publishers.
- 8. Mechatronics /Smaili A, Mrad F/ Oxford Higher Education, Oxford University Press

E-RESOURCES:

- 1. <u>https://mechatronics.colostate.edu/</u>
- 2. https://nptel.ac.in/courses/112/103/112103174/
- 3. <u>https://www.youtube.com/watch?v=6THmFjnmvVY&list=PLbjTnj-t5GklbeqS8OMMJBrTl3DdeNn3t https://www.youtube.com/watch?v=br-ezdmEq7A&list=PLHjz_UC2bJ17NfqG8wJ_lyvGZ4NMbdQ9</u>

Course Code: HYDRAULIC AND PNEUMATIC SYSTEMS (Open Elective – III)

Lectur	re – Tu	torial:	3-	0 Hours					Interna	al Marks	5: 4	40
Credit	ts:		3						Externa	al Marks	s:	60
Prerec	quisites	5:										
Fluid I	Mechan	ics and	Hydrau	ilic Ma	chinery							
Cours	e Obje	ctives:				•	1.5	-		9		
1.	Familia	arıze on	Fluid I	Power E	inginee	ring and	d Power	r Transi	nission	System.		
2.	Introdu	ice the s	students	s, the ba	sic con	cepts of	f hydrau	ulic and	pneum	atic syste	ems.	
5. 4	Expose	e the stu	fluid p	vith var	ous ny	araunc	and pre	ions to	actuato	ors.		
-4. 5	Know	the pro	hlem y	which o	ccur in	fluid r	ower s	vstems	and tak	ie. Ie necess	arv tr	oubleshooting/
m	aintena	nce acti	vities.		cour m	i iiuiu r		jstems	und tur		, ar y er	
6.	Get pra	acticed i	n desig	ning hy	draulic	and pn	eumatio	c systen	ns.			
7.	Unders	stand the	e desigi	n proced	lure ava	ailable	for Hyd	raulic a	nd Pneu	umatic ci	rcuits.	
Cours	e Outc	omes:										
Upon	success	ful com	pletion	of the c	course,	the stuc	lent wil	l be abl	e to:			
CO1	Explat and co	in the compare	oncepts mechar	of fluid	l power ectrical	r, its typ , hydrau	bes, adv ilic and	antages pneum	, applic atic sys	ations of tems.	fluid	power systems
CO2	Expla	in the b	asic wo	orking p	orincipl	es of th	ne hydra	aulic pu	imps an	nd actuate	ors, ty	pes of pumps-
	actuat	ors, exp	olain th	ne desig	n cons	ideratio	ons of j	pumps,	actuato	ors and s	select	the valves for
000	hydrau	ulic circ	uits.					•		• • •		
CO3	develo	op the h	ydrauli	c circui	ts for p	bractica	l applic	ations,	create c	circuits for	or var	ious machines,
CO4	evolai	n the	fundar	nental	concen	ts of r		workin	ems li	st the n	aropert	ies of air for
04	pneun	natic sv	stem. de	emonstr	ate on	F-R-Li	init	tie syst	cills, il	ist the p	nopen	ies of all for
CO5	identi	fy vario	us cont	rol elen	nents ir	n pneum	natic sys	stem, d	evelop	electro p	neuma	tic and electro
	hydra	ulic circ	cuits fo	r roboti	c appli	cations	, design	n a pnei	umatic	circuit us	sing c	lassic, cascade
	and st	ep coun	ter met	hods								
CO6	select	pneum	atic co	mponen	ts for i	installat	ion and	1 maint	enance	of powe	er pack	ks, explain the
	archite	ectures	of PLC	and Mi	cropro	cessors,	develo	p logica	al circui	its in PLC	tor a	utomation and
a .	uetern		Taults		power	systems)			A <i>i</i>		
Contr (1 – L	ibution ow, 2-	of Cou Mediun	irse Ot n, 3 – H	itcomes High)	s towar	ds achi	evemei	nt of Pr	ogram	Outcom	les	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	2	1	2							
CO2	3	2	1	1	2							
CO3	1	3	2	2	1							
CO4	3	3	2	2	1							
CO5	3	3	2	1	2							
CO6	3	3	3	2	1							
	I					UN	IT I					1
Fluid	Power	Princip	oles An	d Hydr	aulic P	umps:						

Introduction to fluid power - Types, advantages and application of fluid power systems. Properties of hydraulic fluids terminologies used in fluid power

Basic of Hydraulic And Pneumatic Systems. Comparison of Mechanical, Electrical, Hydraulic &

Pneumatic systems for force and motion analysis in automation.

UNIT II

Oil Hydraulic Pumps, Actuators: Introduction-hydraulic actuators-hydraulic cylinders- Types of hydraulic pumps - construction and working principle - design considerations, selection, specifications and characteristics of pumps. Types of actuators-construction and working principle - design considerations, selection, specifications and characteristics of actuators.

Control and Regulation Elements: Direction control valves, Pressure control valves, Flow control valves, Non-return valves, Reservoirs, Accumulators, Heating & cooling devices, Hoses. Selection of valves for hydraulic circuits.

UNIT III

Design of Hydraulic Circuits: Speed control circuits - Regenerative circuits- Accumulators and Intensifiers: Types of accumulators – Accumulators circuits, sizing of accumulators, intensifier – Applications of Intensifier–Intensifier circuit. - Reservoir design - Selection of components. Hydraulic circuits - Reciprocating - Quick return - Sequencing synchronizing - Safety circuits - Industrial circuits - Press - Milling Machine - Planner - Fork Lift.

UNIT IV

Pneumatic Systems: Pneumatic fundamentals - Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves, Quick exhaust valves, and pneumatic actuators. Control Elements - Logic Circuits -Position - Pressure Sensing - Switching – Electro Pneumatic - Electro Hydraulic Circuits - Robotic Circuits.

Design of Pneumatic Circuits: Classic-Cascade-Step counter - Combination -Methods - PLC-Microprocessors -Uses - Selection criteria for Pneumatic components - Installation and Maintenance of Hydraulic and Pneumatic power packs - Fault finding - Principles of Low Cost Automation.

TEXT BOOKS

- 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education 2000.
- 2. Majumdar S.R, "Oil Hydraulics", Tata McGraw Hill, 2000.
- 3. Majumdar S.R, "Pneumatic Systems Principles and Maintenance", Tata McGraw Hill, 2001.
- **4.** Introduction to Hydraulics and Pneumatics by S. Ilango and V. Soundararajan, PHI, New Delhi.

REFERENCE BOOKS:

- 1. Andrew Parr, Hydraulic & Pneumatics, 2/e, Jaico Publishing House Elsevier, 1999.
- 2. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987
- 3. Harry L. Stevart D.B, "Practical Guide to Fluid Power", Taraoeala Sons and Port Ltd. Broadey, 1976
- 4. Oil Hydraulic Systems, S.R. Majumdar, McGrawHill Companies.
- 5. Pneumatic Systems: Principles and Maintenance, Majumdar, Mc Graw Hill.
- 6. Applied hydraulics and pneumatics-T. Sunder Selwyn & R. Jayendiran, Anuradha Publications.

E-RESOURCES:

https://www.youtube.com/watch?v=8xd7cWvMrvE

III B. Tech II Semester

Course code-COMPUTATIONAL FLUID DYNAMICS (Professional Elective – II)

Lecture – Tutorial:	2-1 Hours	Internal Marks:	40
Credits:	3	External Marks:	60
Prerequisites: Basic The	rmodynamics, Fluid Mechanics and H	ydraulic machines, Heat	Transfer.
Course Objectives:			

1. Student will know the concept and importance of computational fluid dynamics.

2. Student will know the governing equations of fluid flow and also problem solving techniques.

3. Student will be aware of partial differential equations and problems on partial differential equations.

4. Student will be aware of Discretization and their corresponding problems.

5. Student will be exposed to the concepts related to Analysis of stability.

6. Student will be in a position to evaluate simple CFD techniques and boundary conditions for pressure correction method.

Course Outcomes:

Upon successful completion of the course, the student will be able to:

CO1 Formulate the basic fluid dynamics problem mathematically.

CO2 Understand the philosophy of CFD and derive governing equations of fluid flow.

CO3 Analyze the mathematical behavior of partial differential equations.

CO4 Understand the principles of Discretization.

CO5 Formulate solution techniques for parabolic and hyperbolic equations.

CO6 Apply some of the popular CFD techniques in the solution of fluid flow problem.

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

(
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	
CO1	3		1		2								
CO2	3		1		2						2		
CO3	2		1		3						2		
CO4	2		1		3						2		
CO5	2		1		3						2		
CO6	2		1		3						2		
						TINIT	пт						

UNIT I

Introduction: Computational Fluid Dynamics Importance, Applications of Computational Fluid Dynamics.

Governing Equations of Fluid Dynamics: Introduction, Models of flow, governing equations of fluid flow – Navier Stokes and Euler's equations: Continuity, Momentum and Energy equations in differential form, Physical boundary conditions.

UNIT II

Mathematical Behavior of Partial Differential Equations: Classification of partial differential equations, Discretization techniques- FDM, FEM, FVM, Finite Difference equations- Taylor series, order of accuracy, forward, backward and central differences for first order and second order differential equations.

UNIT III

Basics Aspects of Discretization: Introduction, Difference equations, Explicit and Implicit approaches, Thomas Algorithm (TDMA). Analysis of stability, VN stability criteria for parabolic (1-D unsteady heat equation) and Hyperbolic (1st order wave equation) equations, Courant number.

UNIT IV

Simple CFD Techniques: Lax-Wendroff technique, MacCormack's technique and Iterative and Relaxation techniques. Pressure correction technique, staggered grid, SIMPLE algorithm, Boundary conditions for pressure correction method.

TEXT BOOKS

1.Computational Fluid Dynamics - Basics with Applications - John. D. Anderson, JR. McGraw Hill Education (India) Edition 2012.

2. Computational Fluid Dynamics - T. J. Chung, Cambridge University Press, 2nd Edition, 2014.

REFERENCE BOOKS:

- 1. Introduction to computational fluid mechanics Niyogi, Chakravarty, Laha, Pearson pub. 1st Edition, 2009.
- 2. Numerical heat transfer and fluid flow S.V. Patankar, Hemisphere Pub., 1st Edition.
- 3. Computational Fluid flow and Heat transfer K. Muralidhar and T. Sundararajan-, Narosa Pub. 2nd Edition, 2003.
- 4. Sengupta. T. K, Fundamentals of Computational Fluid Dynamics, University Press, 2004.

E-RESOURCES:

https://www.youtube.com/playlist?list=PL8EAF844326CBB2E3

Course code-

ROBOTICS

(Professional Elective – II)

Lecture – Tutorial:	2-1 Hours	Internal Marks:	40									
Credits:	3	External Marks:	60									
Prerequisites:												
Fundamentals of Engineer	ering Mathematics, Engineering Mecha	nics										
Course Objectives:												
1. Student will know	1. Student will know the fundamental concepts of industrial robotic technology.											
2. Student will be exposed to the various types of end effectors.												
3. Student will apply the	3. Student will apply the basic mathematics to calculate kinematic forces in robot manipulator.											
4. Student will understa	4. Student will understand the robot controlling and programming methods.											
5. Student will be in a p	5. Student will be in a position to describe various actuators, sensors.											
6. Student will be aware	e of the various industrial applications of	of robots.										
Course Outcomes:												
Upon successful complet	ion of the course, the student will be a	ole to:										
CO1 Overview of Rob	otics and identify various robot config	arations.										
CO2 Identify various r	obot components and select different e	nd effectors for specific	application									
CO3 Carryout Homog	eneous transformations, kinematic anal	ysis for various kinemat	ic chains.									
CO4 Perform differen	tial transformations and calculate dy	namic analysis for sim	ple kinematic									
chains.												
CO5 Perform trajector	y planning for a manipulator by avoidi	ng obstacles										
CO6 Select appropria applications in m	Select appropriate actuators and sensors for a robot and to understand various robot applications in manufacturing.											

Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)

· ·													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3					1					2		
CO2	2		3								1		
CO3		3	2		1								
CO4		3	2		1								
CO5		2	3		-							1	
CO6	2				3						1		
						TINIT'	гт						

UNIT I

Introduction: Robot Definition, Automation and robotics, CAD/CAM and Robotics, An overview of Robotics, Present and Future applications, Classification of robots by coordinate system and control system.

Components of the Industrial Robotics: Function line diagram representation of robot components, number of degrees of freedom, joint notation scheme, Types of end effectors, Mechanical grippers, gripper mechanisms, other types of grippers, Considerations in gripper selection and design.

UNIT II

Motion Analysis & Kinematics Transformation matrices- Translation, Rotation, Combined translation and rotation, Homogeneous transformation matrix - Problems. Description of Link and Joint parameters, Kinematic modelling of the manipulator, D-H Notation, Kinematic relationship between adjacent links, Forward and Inverse kinematics.

Robot Dynamics: Differential kinematics, manipulator Jacobian, Lagrange-Euler and Newton Euler formulations.

UNIT III

Trajectory Planning: Terminology, Steps in trajectory planning, Slew motion, joint integrated motion, straight line motion, circular motion, Joint space technique, Cartesian space technique, cubic polynomial with and without via points.

Robot Programming and Languages: Lead through programming, robot program as a path in space, WAIT, SIGNAL, DELAY commands, Branching, capabilities and limitations. Textual robot languages, generations, Language structure, Elements and functions.

UNIT IV

Robotic Actuators and Sensors: Pneumatic, Hydraulic actuators, electric & stepper motors, Position sensor- potentiometers, resolvers, encoders, Velocity sensors, Tactile, Proximity and Range sensors.

Robot Applications in Manufacturing: Material Transfer - Material handling, loading and unloading- Processing - spot and continuous arc welding & spray painting - Assembly and Inspection

TEXT BOOKS

- Mikell P. Groover and Mitchell Weiss, Roger N. Nagel, NicholasG.Odrey, Industrial Robotics — Mc Graw Hill, 1986.
- **2.** R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.

REFERENCE BOOKS:

1. Saeed B. Niku, Introduction to Robotics – Analysis, System, Applications, 2nd Edition, John Wiley & Sons, 2010.

2. H. Asada and J.J.E. Slotine, Robot Analysis and Control, 1st Edition Wiley-Interscience, 1986.

3. Robert J. Schillin, Fundamentals of Robotics: Analysis and control, Prentice-Hall Of India Pvt. Limited, 1996.

- 4. Mohsen shahinpoor, A robot Engineering text book, Harper & Row Publishers, 1987.
- 5. John.J.Craig Addison, Introduction to Robotics: Mechanics and Control, Wesley, 1999.

6. K.S. FU, R.C. Gonzalez and C.S.G Lee, Robotics: Control, sensing, vision, and intelligence . Mc Graw Hill, 1987.

7. Richard D. Klafter, Thomas Robotic Engineering an integrated approach, PHI publications 1988.

E-RESOURCES:

https://www.youtube.com/playlist?list=PLED9EB384E656C007

Course code-NON DESTRUCTIVE EVALUATION (Professional Elective – II)

Lectur	re – Tu	torial:	2-	1 Hours	5				Interna	al Marks		40
Credit	ts:		3]	Externa	al Marks	5:	60
Prerec	quisites	:										
Materi	Material science, Manufacturing technology,											
Cours	e Obje	ctives:										
1. Student will know about different techniques in NDT and usage of visual inspections, liquid												
penetra	penetration tests.											
2. Student will know about usage of magnetic particle testing and liquid penetrant tests.												
3. Student will know the concept of acoustic emission and eddy current testing.												
4. Student will know about infrared and thermal testing.												
5. Student will know radiography testing												
6. Stuc	lent wil	l know	the con	ncepts o	of appli	cation of	of ndt i	n variou	us fields	6		
Course Outcomes:												
Upon	pon successful completion of the course, the student will be able to:											
CO1	Explain about ndt and explain different tests like visual inspection and liquid penetration.											
CO2	2 Define magnetic particle test ad liquid penetrant test .											
CO3	Explain the process of acoustic emission and eddy current testing.											
CO4	Analyze the process for infrared and thermal testing.											
CO5	Evalu	ate the	process	s of radi	iograph	y testir	ıg.					
CO6	Expla	in the a	pplicat	ions of	ndt in v	various	fields.					
Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1									
CO2	3	2	1									
CO3	3	2	1									1
CO4	3	1	2									
CO5	3	1	2							1		
CO6	3	2	1									1

Introduction:

UNIT I

Introduction to NDT, Comparison between destructive and NDT, Importance of NDT, Scope of NDT, difficulties of NDT, future progress in NDT, economics aspects of NDT.

Visual Inspection Technique:

Visual Inspection - tools, applications and limitations – Fundamentals of visual testing: vision, lighting, material attributes, environmental factors. Visual perception, direct and indirect methods mirrors, magnifiers, boroscopes, fibroscopes, closed circuit television, light sources. Special lighting, a systems, computer enhanced system.

Liquid Penetrant Testing:

Physical Principles, Procedure for penetrant testing, Penetrant testing methods, sensitivity, Applications and limitations.

UNIT II

Magnetic Particle Testing: Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism Applications and Limitations of the Magnetic Particle Test

Ultrasonic Testing: Basic properties of sound beam, Ultrasonic transducers, Inspection methods, Techniques for normal beam inspection, Techniques for angle beam inspection, Applications of ultrasonic testing, Advantages and limitations

UNIT III

Acoustic Emission:

Principle of AET, Technique, instrumentation, sensitivity, applications, Acoustic emission technique for leak detection

Eddy Current Testing:

Principle of Eddy Current, Eddy Current Test System, Applications of Eddy Current Testing Effectiveness of Eddy Current Testing

Infrared And Thermal Testing:

Introduction and fundamentals to infrared and thermal testing–Heat transfer Active and passive techniques –Lock in and pulse thermography Contact and non-contact thermal inspection methods–Heat sensitive paints. Inspection methods Infrared radiation and infrared detectors thermo mechanical behaviour of materials, Computed Tomography

UNIT IV

Radiography Testing:

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography.

Industrial Applications of NDE:

Span of NDE Activities Railways, Nuclear, Non-nuclear and Chemical Industries, Aircraft and Aerospace Industries, Automotive Industries, Offshore Gas and Petroleum Projects, Coal Mining Industry, NDE of pressure vessels, castings, welded constructions

TEXT BOOKS

- 1. Practical Non-Destructive testing- Baldev Raj, T.Jaya Kumar et.al.
- 2. Non destructive test and evaluation of Materials/J Prasad, GCK Nair/TMH Publishers
- 3. Non destructive testing/Warren, J Mc Gonnagle / Godan and Breach Science publishers
- 4. Nondestructive evaluation of materials by infrared thermography / X. P. V. Maldague,

Springer-Verlag, 1st edition, (1993)

REFERENCE BOOKS:

- 1. Hull B. and V.John, Non-Destructive Testing, Macmillan, 1988.
- 2. Ultrasonic inspection training for NDT/ E. A. Gingel/Prometheus Press,
- 3. ASTM Standards, Vol 3.01, Metals and alloys
- 4. Non-destructive, Hand Book R. Hamcha

E-RESOURCES:

https://www.youtube.com/watch?v=oqMXbxk4RHI

Course Code: INTRODUCTION TO MATERIAL HANDLING EQUIPMENT (Professional Elective – II)

Lectur	re – Tu	utorial:	2 -	1 Hour	ſS				Interna	al Mark	s:	40
Credit	s:		3						Externa	al Mark	ks:	60
Prerec	quisite	s: NIL										
Cours	e Obje	ectives:										
	1. T	he studer	nt will	know t	he basio	c Funda	amentals	s of Ma	aterial I	Handling	g Equij	oment and
	co	ontrol and	l safety	measur	es incor	porated	on mate	erial hai	ndling e	quipme	nts.	
	2. T	he studen	t will ic	lentify a	and sele	ct the di	fferent	handlin	g equip	ments in	indust	ry.
	3. T	he studen	t will ic	lentify v	various o	compon	ents of	material	l handli	ng syste	ms.	
	4. T	The student will know the working principles of Components of material handling										
	systems like Flexible hoisting, hooks, elevators.											
	5. The student will know the working principles of Components of material handling											
	sy	stems lik	te conve	eyors.								
	6. T	o know t	he operation	ational	features	of vari	ous mat	erial ha	ndling	system i	used in	industries
	h	ow to con	nect loa	ding st	ations to	the dif	ferent d	ischarg	e or unl	oading c	condition	ons
Cours	e Out	comes:										
Upon	succes	sful com	pletion of	of the co	ourse, th	e stude	nt will b	e able t	o:			
CO1	Unde	erstand th	e basic	Fundam	entals o	of Mater	rial Han	dling Eo	quipmer	nt.		
CO2	Ident	ify, comp	are and	select	proper n	naterial	handlin	g equip	ment fo	r specifi	c appli	cations.
CO3	Ident	ify the va	rious co	ompone	nts of n	naterial	handling	g systen	ns.			
CO4	Unde Flexi	erstand the ble hoisti	e worki ng, hoo	ng prino ks, elev	ciples of ators.	f Compo	onents o	f mater	ial hand	ling sys	tems li	ke
CO5	Unde conv	erstand the eyors.	e worki	ng prino	ciples of	f Compo	onents o	f mater	ial hand	ling sys	tems li	ke
CO6	Ident unloa	ify the sunding stat	rface tra ions.	ansport	to conn	ect load	ling stat	ions to t	the diffe	erent dis	charge	or
Contr	ibutio	n of Cou	rse Out	comes	toward	s achiev	vement	of Prog	gram O	utcome	S	
(1 - L)	ow, 2-	Medium	1, 3 - H	igh)								
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
CO1	1	2	3	4	5	0	7	8	9	10	11	12
	2	1		1		1						
CO_2	2	1		1		1						
CO_4	2	1		1		1						
C04	2	1		1		1						
CO5	2	1		1		1						
200	-	1		1		1						

UNIT I

Materials Handling Equipment: Introduction to material handling Equipment, Detail classification of MHE, Application and their selection. Criteria for selection of Material Handling Equipment's,

Factors effecting choice of material handling equipments: type of loads, hourly capacity, direction and length of travel, method of stacking at initial intermediate and final points-specific load conditions, Basic kind of material handling problems, Various methods to analyze material Handling problems, Economics of material handling systems.

UNIT II

Components of material handling systems: Flexible hoisting appliances such as welded chains, roller chains, hemp ropes, and steel wire ropes, fastening methods of wire and chains, Appliances for suspending hooks-crane grab for unit and piece loads.

Lifting Methods: Lifting tackles, lifting and rigging Load handling attachments Various types of hooks-forged, eye bolts, eye hook, electric lifting magnet, vacuum lifter, grabbing attachment for loose materials, crane attachment for handling liquids/ molten metal's.

UNIT III

Hoisting machinery and equipments: Working of different type of hoists such as lever operated hoist, portable hand chain hoist, differential hoist, worm geared and spur geared hoist, electric and pneumatic hoists.

Working of different types of cranes and Industrial Lifts: rotary cranes, trackless cranes, mobile cranes, bridge cranes, cable cranes, floating cranes and cranes traveling on guide rails. Introduction to types of Industrial Lifts.

UNIT IV

Conveying machinery: Working of traction type conveyors such as belt conveyors, chain conveyors, Working of traction less type conveyors such as gravity type conveyors, vibrating and oscillating conveyors, screw conveyors, monorail conveyors, pneumatic and hydraulic conveyors, hoppers, gates and feeders.

Surface transport equipment–functions–working of trackless equipment such as hand operated trucks, powered trucks, tractors, AGV (Automatic Guided vehicle), industrial trailers Function, working of cross handling equipment such as winches, capstans, turntables, transfer tables.

TEXT BOOKS:

- 1. Material Handling Equipment N.Rundenko (Peace Publisher, Moscow)
- 2. Material Handling Equipment -M.P. Alexandrow (MIR Publishers, Moscow)
- 3. Material Handling Equipment -R.B. Chowdary & G.N.R.Tagore (Khanna Publishers, Delhi)
- 4. Plant layout & Material Handling-Apple J.M (John Wiley Publishers)

REFERENCE BOOKS:

- 1. Material Handling (Principles & Practice)-Allegri T.H (CBS Publisher, Delhi)
- 2. Material Handling -Immer J.R (McGraw Hill, Newyork
- 3. Material Handling Equipment-Parameswaran M.A (CDC in Mech. Engg., I.I.T. Chennai).
- 4. Conveyors and related equipments Spivakovsy A.O. and Dyachkov V.K Volumes I and II (MIR publishers)
- 5. Boltzharol, A.,"Materials Handling Handbook", The Ronald press company 1958.

E-RESOURCES:

https://www.youtube.com/watch?v=3tTvVUfwchI https://www.youtube.com/watch?v=guYD2zyUT60 https://people.engr.ncsu.edu/kay/Material_Handling_Equipment.pdf https://www.scribd.com/doc/222647028/Material-Handling-Full-Notes

Course code-HEAT TRANSFER LAB

Lecture – Tutorial- Practical:	0-0-2	Internal Marks:	40
Credits:	1	External Marks:	60

Prerequisites:
Basic Thermodynamics and Advanced Thermodynamics
Course Objectives:
1. To impart practical exposure on conduction through various geometries
2. To impart practical exposure on Heat Transfer through fins
3. To impart practical exposure on Types of Convection
4. To impart practical exposure on Heat Exchangers
5. To impart practical exposure on concepts of Radiation

6. To impart practical exposure on Types of Condensation

Cours	Course Outcomes:								
Upon successful completion of the course, the student will be able to:									
CO1	Find Heat Transfer rate in different geometries								
CO2	Explain performance parameters of a Pin Fin								
CO3	Demonstrate the concepts of Natural and Forced Convection								
CO4	Determine effectiveness in parallel flow and counter flow heat exchanger								
CO5	Determine emissivity of the given surface								
CO6	Demonstrate the concepts of Drop-wise and Film-wise Condensation								

Contribution of Course Outcomes towards achievement of Program Outcomes

(1-Low, 2-Medium, 3-High)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	2	2	-	-	3	-	3	2	2
CO2	3	3	3	1	2	-	-	3	-	3	2	2
CO3	3	3	2	1	1	-	-	3	-	3	2	2
CO4	3	2	3	2	2	-	-	3	-	3	2	2
CO5	3	2	2	1	-	2	3	3	-	3	2	2
CO6	3	2	2	1	-	-	-	3	-	3	2	2

List of Experiments:

- 1. Determination of overall heat transfer co-efficient of a composite slab
- 2. Determination of heat transfer rate through a lagged pipe.
- 3. Determination of heat transfer rate through a concentric sphere
- 4. Determination of thermal conductivity of a metal rod.
- 5. Determination of efficiency of a pin-fin
- 6. Determination of heat transfer coefficient in Natural convection
- 7. Determination of heat transfer coefficient in Forced convection
- 8. Determination of effectiveness of parallel and counter flow heat exchangers.
- 9. Determination of emissivity of a given surface.
- 10. Determination of Stefan Boltzman constant.
- 11.Determination of heat transfer rate in drop and film wise condensation.
- 12. Determination of Unsteady state of Heat Transfer
- 13.Determination of Thermal conductivity of liquids
- 14.Determination of critical heat flux.

(Any TEN of the above experiments are to be covered)

REFERENCE BOOKS:

1. Heat Transfer lab manual by Department of Mechanical Engineering. NRIIT, Pothavarappadu.

2. Heat and Mass Transfer /D.S.Kumar / S.K.Kataria& Sons.

3. Yunus. A. Cengel, Heat & amp; Mass Transfer-A Practical Approach – Tata McGraw Hill, 4^{th} Edition, 2012.

4. Data Hand Book:C.P. Kothandaraman and Subramanian Heat and Mass Transfer Data Book, New Age InternationalPublications, 7th Edition, Reprint 2012

Course Code-SIMULATION LAB

Lectu	re – Tut	torial- I	Practica	ı l: (0-0-2				Internal Marks:				
Credi	ts:			1	1				External Marks:				
Cours	se Outco	omes:											
Upon	success	ful com	pletion	of the	course,	the stu	dent wi	ll be ab	le to:				
CO1	Design	n and as	semble	of the c	ompone	nts usin	g geom	etric mo	deling	software)		
CO2	Constr	ruct sket	tches in	Pro-E &	& CATL	A softw	are.						
CO3	The st solvin	udent w g real ti	'ill be at me prob	ole to ap olems ar	preciate d day to	e the util o day pr	lity of th oblems.	ne tools	like AN	SYS or	FLUEN	IT in	
CO4	Apply the finite element analysis for components design.												
CO5	Develop NC code for different part profiles and perform machining on CNC Machines.												
CO6	Manip	ulate th	e robot	by writi	ng prog	rams an	d execu	ting the	m.				
Contr	ribution	of Cou	rse Out	comes	towards	s achiev	ement	of Prog	ram Oı	itcomes	(1 - Lo	w, 2-	
Mediu	1m, 3 - 10	High)	DO	DO	DO	DO	DO	DO	DO	DO	DO	DO	
	1	2	3	4	5	6	7	8	9 9	10	11	12	
CO1	1		1	-		•	-	0	2	10	3		
CO2	1		1						2		3		
CO3	1		1						2		3		
CO4	1		1						2		3		
CO5	1		1						2		3		
CO6	-		1						2		3		
		1		1	List of	f Exper	iments	1		1			
1.	Constr	uction o	f 2D ske	tches.									
2.	Assem	bly Mo	deling (At least	three ex	kamples)						
3.	Analys	sis of tru	isses			-							
4.	Analys	sis of Be	eams										
5.	Plane s	stress, p	lane stra	ain anal	ysis								
6.	Analys	sis of Az	xi-symn	netric so	olids								
7.	Analys	sis of 3I	O solids										
8.	Estima	tion of	natural	frequen	cies and	mode s	hapes for	or simpl	e proble	ems			
9.	Steady	state he	eat trans	fer Ana	alysis								
10	. Machi packag	ning of	simple	compo	nents or	n NC la	the by	transfer	ring NO	C Code	/from a	CAM	
11	расказ Масы	su ning of	Simple	comp	nente o	n NC M	Mill by	trancfo	ring M	C Code	/from a	Сам	
11	Packag	ge	Smple	comp	ments 0	/// INC-1	viin Uy	1111510	ing in		anom a	UAN	

12. Robot programming, simulation and execution.

Note: Minimum of 10 Experiment need to be performed

REFERENCE BOOKS:

- 1. CAD/CAM computer aided design and manufacturing, M.Groover, E. Zimmers, Pearson education, 13th impression.
- 2. CAD/CAM theory and Practice, Ibrahim Zied, Tata McGraw-Hill publishers
- 3. CATIA V5R17 for engineers & designers By Prof. Sham Tickoo, published by Dreamtech Press, 2009; ISBN:10-81-7722-815-3, 13-978-81-7722-815-1
- 4. Pro/Engineer Wildfire 5.0 by Roger Toogood, Jack Zecher, SDC Publications, 28-Feb-2010.

Web Resources:

- 1. <u>https://catiatutor.com/</u>
- 2. www.v5train.com
- 3. <u>http://www.proetutorials.com/</u>
- 4. <u>http://learningexchange.ptc.com/tutorials/by_sub_product/ptc-creo-elements-pro-pro-engineer/sub_product_id:1</u>
- 5. http://www.eng-tips.com/viewthread.cfm?qid=48209