

## NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN - 521 212

#### **DEPARTMENT OF CIVIL ENGINEERING COURSE STRUCTURE FOR THIRD YEAR B.TECH PROGRAMME**

| 1                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 6.          | <b>h</b> a <b>m</b> a a | <b>.</b>                             | Saham                                          | a of                                    |                                               |                                             |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|-------------------------|--------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------|
| SI No                 | ourse Code                                                                                                                                                                         | Title of the Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | In                                    | SC<br>struc | tion (                  | Deriode                              | Schen                                          | le oi<br>minatio                        | <b>n</b>                                      | No of                                       |
| SI. NC                | course coue                                                                                                                                                                        | The of the Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1113                                  | Struc<br>Pe | T Wee                   | (Ferious                             | (Maxim                                         | um Mar                                  | n<br>ke)                                      | Credits                                     |
|                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                     | T           | P                       | Total                                | CIA                                            | SEA                                     | Total                                         | orcuits                                     |
| 1                     | 18A3101401                                                                                                                                                                         | Soil Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                     | 1           | _                       | 2                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 2                     | 18A3101402                                                                                                                                                                         | Reinforced Concrete Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                     | 1           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 3                     | 18A3101403                                                                                                                                                                         | Water Resource Engineering-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                     | -           | -                       | 2                                    | 40                                             | 60                                      | 100                                           | 2                                           |
| 4                     | 1843101404                                                                                                                                                                         | Structural Analysis- II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1           | _                       | - 3                                  | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 10A3101404                                                                                                                                                                         | Professional Fleative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 1           |                         | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3101511                                                                                                                                                                         | Subsurface Investigation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                     | -           | -                       | 5                                    | 40                                             | 00                                      | 100                                           | 5                                           |
|                       | 10110101011                                                                                                                                                                        | Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |             |                         |                                      |                                                |                                         |                                               |                                             |
|                       | 18A3101512                                                                                                                                                                         | Advanced Concrete Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |             |                         |                                      |                                                |                                         |                                               |                                             |
|                       | 18A3101513                                                                                                                                                                         | Environmental Pollution and Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |             |                         |                                      |                                                |                                         |                                               |                                             |
|                       | 18A3101514                                                                                                                                                                         | Airport Planning and Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |             |                         |                                      |                                                |                                         |                                               |                                             |
|                       | 18A3101515                                                                                                                                                                         | Urban Hydrology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |             |                         |                                      |                                                |                                         |                                               |                                             |
| б                     |                                                                                                                                                                                    | Open Elective –II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                     | -           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
|                       | 18A3101601                                                                                                                                                                         | Building Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |             |                         |                                      |                                                |                                         |                                               |                                             |
|                       | 18A3101602                                                                                                                                                                         | Air pollution & control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |             |                         |                                      |                                                |                                         |                                               |                                             |
|                       | 18A3101603                                                                                                                                                                         | Management Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |             |                         |                                      |                                                |                                         |                                               |                                             |
| 7                     | 18A3101491                                                                                                                                                                         | Soil Mechanics Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                     | -           | 3                       | 3                                    | 40                                             | 60                                      | 100                                           | 1.5                                         |
| 8                     | 18A3101492                                                                                                                                                                         | Concrete Technology Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                     | -           | 3                       | 3                                    | 40                                             | 60                                      | 100                                           | 1.5                                         |
| 9                     | 18A3100801                                                                                                                                                                         | Constitution of India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                     | -           | -                       | 2                                    | 40                                             | 60                                      | 100                                           | 0                                           |
|                       |                                                                                                                                                                                    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                    | 3           | 4                       | 23                                   | 360                                            | 540                                     | 900                                           | 20                                          |
|                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>AR</u>                             | <u>II S</u> | EMI                     | ESTER                                |                                                |                                         |                                               |                                             |
|                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sc                                    | hem         | e of Iı                 | nstructi                             | on                                             | Schen                                   | ne of                                         |                                             |
| S1. No                | ourse Code                                                                                                                                                                         | Title of the Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Pe                                   | eriod       | s Per                   | Week)                                |                                                | Examin                                  | ation                                         | No. of                                      |
|                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |             |                         |                                      | (Ma                                            | aximum                                  | Marks)                                        | Credits                                     |
|                       |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                     | , 1         | P                       | Tota                                 | al CIA                                         | SEA                                     | Total                                         |                                             |
| 1                     | 18A3201401                                                                                                                                                                         | Foundation Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                     | -           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 2                     | 18A3201402                                                                                                                                                                         | Highway engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                     | -           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 3                     | 18A3201403                                                                                                                                                                         | Environmental Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                     | -           | -                       | 2                                    | 40                                             | 60                                      | 100                                           | 2                                           |
| 4                     | 1040001511                                                                                                                                                                         | Professional Elective -II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                     | -           | -                       | 3                                    | 40                                             | 60                                      |                                               |                                             |
| 1                     | 18A3201511<br>18A3201512                                                                                                                                                           | Ground Improvement Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |             |                         |                                      | -                                              | 00                                      | 100                                           | 3                                           |
|                       | 18A3201513                                                                                                                                                                         | water Resource Engineering-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |             |                         |                                      |                                                |                                         | 100                                           | 3                                           |
|                       | 4                                                                                                                                                                                  | Air Pollution Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |             |                         |                                      | _                                              |                                         | 100                                           | 3                                           |
|                       |                                                                                                                                                                                    | Air Pollution Engineering<br>Railway Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |             |                         |                                      |                                                |                                         | 100                                           | 3                                           |
|                       | 18A3201514                                                                                                                                                                         | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |             |                         |                                      |                                                |                                         | 100                                           | 3                                           |
| F                     | 18A3201514<br>18A3201515                                                                                                                                                           | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |             |                         | 2                                    | - 10                                           | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521                                                                                                                                             | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils                                                                                                                                                                                                                                                                                                                                                                                 | 3                                     | -           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522                                                                                                                               | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures                                                                                                                                                                                                                                                                                                                                      | 3                                     | -           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522                                                                                                                               | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures                                                                                                                                                                                                                                                                                                                                      | 3                                     | -           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523                                                                                                                 | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wat                                                                                                                                                                                                                                                                                                      | 3                                     | -           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523                                                                                                                 | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wat<br>Engineering                                                                                                                                                                                                                                                                                       | 3<br>:e:                              |             | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201523                                                                                                   | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wat<br>Engineering<br>Docks and Harbour Engineering                                                                                                                                                                                                                                                      |                                       | -           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201523<br>18A3201524<br>18A3201525                                                                       | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wat<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis                                                                                                                                                                                                                   | 3                                     | _           | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3                                           |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201523<br>18A3201524<br>18A3201525                                                                       | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wat<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis<br><b>Open Elective-III</b>                                                                                                                                                                                       | 3<br>.e                               |             | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3<br>3<br>3                                 |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201524<br>18A3201525<br>18A3201601                                                                       | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wat<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis<br><b>Open Elective-III</b><br>Building Construction                                                                                                                                                              | 3<br>:e<br>3                          | -<br>-      | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3<br>3<br>3                                 |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201524<br>18A3201525<br>18A3201601<br>18A3201601                                                         | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wate<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis<br><b>Open Elective-III</b><br>Building Construction<br>Green Building                                                                                                                                           | 3                                     |             | -                       | 3                                    | 40                                             | 60                                      | 100                                           | 3<br>3<br>3                                 |
| 5                     | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201524<br>18A3201525<br>18A3201601<br>18A3201602<br>18A3201402                                           | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wate<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis<br><b>Open Elective-III</b><br>Building Construction<br>Green Building<br>Highway engineering Lab                                                                                                                | 3                                     |             | -                       | 3                                    | 40                                             | 60<br>60<br>60                          | 100<br>100<br>100                             | 3<br>3<br>3<br>1.5                          |
| 5<br>6<br>7<br>8      | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201524<br>18A3201525<br>18A3201601<br>18A3201602<br>18A3201602<br>18A3201491<br>18A3201391               | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wate<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis<br><b>Open Elective-III</b><br>Building Construction<br>Green Building<br>Highway engineering Lab<br>Computer Aided Civil Engineering                                                                            | .e<br>                                |             | -                       | 3 3 3 3 3 3                          | 40<br>40<br>40<br>40<br>40                     | 60<br>60<br>60<br>60                    | 100<br>100<br>100<br>100<br>100               | 3<br>3<br>3<br>1.5<br>1.5                   |
| 5<br>6<br>7<br>8      | 18A3201514<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201523<br>18A3201524<br>18A3201525<br>18A3201601<br>18A3201602<br>18A3201602<br>18A3201491<br>18A3201801               | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wate<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis<br><b>Open Elective-III</b><br>Building Construction<br>Green Building<br>Highway engineering Lab<br>Computer Aided Civil Engineering<br>Drawing                                                                 | .e<br>.e                              |             | -                       | 3 3 3 3 3 3                          | 40<br>40<br>40<br>40<br>40                     | 60<br>60<br>60<br>60<br>60              | 100<br>100<br>100<br>100<br>100               | 3<br>3<br>3<br>1.5<br>1.5                   |
| 5<br>6<br>7<br>8<br>9 | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201524<br>18A3201525<br>18A3201601<br>18A3201602<br>18A3201602<br>18A3201491<br>18A3201391               | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wat<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis<br><b>Open Elective-III</b><br>Building Construction<br>Green Building<br>Highway engineering Lab<br>Computer Aided Civil Engineering<br>Drawing<br>Essence of Indian knowledge and<br>traditions                 | 3<br>.e<br>3<br><br>-<br>2            |             |                         | 3<br>3<br>3<br>3<br>3<br>2           | 40<br>40<br>40<br>40<br>40<br>40               | 60<br>60<br>60<br>60<br>60              | 100<br>100<br>100<br>100<br>100<br>100        | 3<br>3<br>3<br><u>1.5</u><br>1.5<br>0       |
| 5<br>6<br>7<br>8<br>9 | 18A3201514<br>18A3201515<br>18A3201521<br>18A3201522<br>18A3201523<br>18A3201524<br>18A3201525<br>18A3201601<br>18A3201602<br>18A3201602<br>18A3201491<br>18A3201391<br>18A3200801 | Air Pollution Engineering<br>Railway Engineering<br>Green buildings and sustainability<br><b>Professional Elective -III</b><br>Expansive Soils<br>Repair and Rehabilitation of Structures<br>Industrial Waste & Waste-Wat<br>Engineering<br>Docks and Harbour Engineering<br>Water Resources System Analysis<br><b>Open Elective-III</b><br>Building Construction<br>Green Building<br>Highway engineering Lab<br>Computer Aided Civil Engineering<br>Drawing<br>Essence of Indian knowledge and<br>traditions<br><b>Total</b> | 3<br>.e<br>3<br><br>-<br>-<br>2<br>19 | -           | -<br>-<br>3<br>3<br>-   | 3<br>3<br>3<br>3<br>3<br>2<br>2<br>5 | 40<br>40<br>40<br>40<br>40<br>40<br><b>360</b> | 60<br>60<br>60<br>60<br>60<br>60<br>540 | 100<br>100<br>100<br>100<br>100<br>100<br>100 | 3<br>3<br>3<br>1.5<br>1.5<br>0<br><b>20</b> |

#### III VEAD I GEMEGTED

#### **18A3101401-SOIL MECHANICS**

| Lectu<br>Tutor                              | ıre –<br>rial:                                                                |                                                                             | 2-                                                     | 1 Hou                                           | ırs                                                |                                                    |                                               | I                                             | nterna                                             | al Marl                                            | ks:                                      | 40                           |  |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------|------------------------------|--|--|--|
| Credi                                       | ts:                                                                           |                                                                             | 3                                                      |                                                 |                                                    |                                                    |                                               | Е                                             | xterna                                             | al Mar                                             | ks:                                      | 60                           |  |  |  |
| Prere                                       | quisit                                                                        | es:                                                                         |                                                        |                                                 |                                                    |                                                    |                                               |                                               |                                                    |                                                    |                                          |                              |  |  |  |
| Cours                                       | se Obj                                                                        | ective                                                                      | es:                                                    |                                                 |                                                    |                                                    |                                               |                                               |                                                    |                                                    |                                          |                              |  |  |  |
| 1. T<br>c<br>2. T<br>c<br>3. T<br>n<br>4. T | o enal<br>lassify<br>o enal<br>onsoli<br>o enal<br>nethod<br>o impa<br>eepage | ole the<br>it.<br>ole the<br>dation<br>ole the<br>ls.<br>art the<br>e disch | e stude<br>of soi<br>stude<br>stude<br>conce<br>narge. | ent to<br>ents to<br>ls and<br>ent to<br>ept of | find ou<br>o differ<br>l to de<br>detern<br>seepaş | ut the<br>centiate<br>termin<br>nine po<br>ge of w | index<br>e betw<br>ie the<br>ermea<br>vater t | prope<br>cen co<br>conso<br>bility o<br>hroug | rties o<br>ompac<br>lidatio<br>of soils<br>h soils | f the s<br>tion ar<br>n settle<br>s using<br>and d | oil ar<br>nd<br>emen<br>; vario<br>etern | nd<br>.t.<br>ous<br>nine the |  |  |  |
| seepage discharge.                          |                                                                               |                                                                             |                                                        |                                                 |                                                    |                                                    |                                               |                                               |                                                    |                                                    |                                          |                              |  |  |  |
| Course Outcomes:                            |                                                                               |                                                                             |                                                        |                                                 |                                                    |                                                    |                                               |                                               |                                                    |                                                    |                                          |                              |  |  |  |
|                                             | <b>Upon successful completion of the course, the student will be able to:</b> |                                                                             |                                                        |                                                 |                                                    |                                                    |                                               |                                               |                                                    |                                                    |                                          |                              |  |  |  |
| CO1                                         | 01 Identify various soils based on their characteristics.                     |                                                                             |                                                        |                                                 |                                                    |                                                    |                                               |                                               |                                                    |                                                    |                                          |                              |  |  |  |
| $CO_2$                                      | Char                                                                          |                                                                             |                                                        | ciass.                                          | ny son                                             | s base                                             |                                               |                                               |                                                    | 18.                                                |                                          |                              |  |  |  |
| 003                                         | Evan                                                                          | iate pe                                                                     |                                                        |                                                 | and se                                             | epage                                              | 01 SOI                                        | .s.                                           | 1 11                                               |                                                    |                                          |                              |  |  |  |
| CO4                                         | Deter                                                                         | mine                                                                        | the pe                                                 | rmeat                                           | oility o                                           | t soils                                            | and s                                         | tratifie                                      | ed soil                                            | S                                                  |                                          |                              |  |  |  |
| CO5                                         | Deter                                                                         | mine                                                                        | plastic                                                | city ch                                         | aracte                                             | eristics                                           | s of va                                       | rious s                                       | soils                                              |                                                    |                                          |                              |  |  |  |
| CO6                                         | Desig                                                                         | gn con                                                                      | solida                                                 | tion p                                          | rocess                                             | by pr                                              | edictir                                       | ng sett                                       | lemen                                              | t of soi                                           | ls.                                      |                              |  |  |  |
| Cont                                        | ributi                                                                        | on of (                                                                     | Cours                                                  | e Out                                           | comes                                              | s towa                                             | rds ac                                        | chieve                                        | ment                                               | of Pro                                             | gran                                     | n                            |  |  |  |
| Outc                                        | omes                                                                          | (1 - L)                                                                     | ow, 2-                                                 | Medi                                            | um, 3                                              | – Hig                                              | h)                                            |                                               |                                                    |                                                    |                                          |                              |  |  |  |
|                                             | PO                                                                            | PO                                                                          | PO                                                     | PO                                              | PO                                                 | PO                                                 | PO                                            | PO                                            | PO                                                 | PO                                                 | PO                                       | PO                           |  |  |  |
| 001                                         | 1                                                                             | 2                                                                           | 3                                                      | 4                                               | 5                                                  | 6                                                  | 7                                             | 8                                             | 9                                                  | 10                                                 | 11                                       | 12                           |  |  |  |
| CO1                                         | 2                                                                             | 1                                                                           | -                                                      | 2                                               | -                                                  | -                                                  | -                                             | -                                             | -                                                  | -                                                  | -                                        | -                            |  |  |  |
| CO2                                         | 2                                                                             | -                                                                           | -                                                      | -                                               | -                                                  | -                                                  | -                                             | 1                                             | -                                                  | -                                                  | -                                        | -                            |  |  |  |
| CO3                                         | 2                                                                             | 1                                                                           | -                                                      | -                                               | -                                                  | 1                                                  | -                                             | -                                             | -                                                  | -                                                  | -                                        | -                            |  |  |  |
| CO4                                         | 2                                                                             | 2                                                                           | -                                                      | -                                               | -                                                  | 1                                                  | -                                             | -                                             | -                                                  | -                                                  | -                                        | -                            |  |  |  |
| CO5                                         | 2                                                                             | 2                                                                           | -                                                      | -                                               | -                                                  | 1                                                  | -                                             | -                                             | -                                                  | -                                                  | -                                        | -                            |  |  |  |
| CO6                                         | 2                                                                             | 2                                                                           | 2                                                      | -                                               | -                                                  | 1                                                  | -                                             | 1                                             | -                                                  | -                                                  | -                                        | -                            |  |  |  |
|                                             |                                                                               |                                                                             |                                                        |                                                 |                                                    | UNI                                                | r I                                           |                                               |                                                    |                                                    |                                          |                              |  |  |  |

## Types and Characteristics of soils

Types of soils - formation and deposition - moisture content, unit weights, degree of saturation, voids ratio, porosity, specific gravity, mass specific gravity. Relationship between various soil parameters. Determination of Moisture content, Specific gravity and Unit weight using various methods.

## LO: 1. Understand the characteristics of soils

## 2. Assess relationships between different parameters

## 1. Determine soil properties

## **Plasticity Characteristics of Soil**

Consistency limits-liquid limit, plastic limit, shrinkage limit, plasticity, liquidity and consistency indices, flow & toughness indices. Determination of liquid limit, plastic limit and shrinkage limit. Soil classification based on particle size, texture, unified and Indian standard method.

LO: 1. Determination of Liquid, Shrinkage and Plasticity Limits 2. Characterize and classify soils based on different limits.

## **Permeability of Soil**

Darcy's law- coefficient of permeability: determination by constant-head and falling-head methods. Permeability of stratified soils - factors affecting - Seepage Analysis- stream and potential functions - flow nets, graphical method to plot flow nets.

LO: 1. Determine the permeability of soils and stratified soils.

2. Understand about the factors effecting permeability

## 3. Estimate and plot flow net

## UNIT III

**Effective Stress Principle** - Introduction, effective stress principle, nature of effective stress, effect of water table. Capillary action, seepage pressure, quick sand condition. Compaction of Soil- theory of compaction- optimum moisture content- maximum dry density. Stresses in soils due to point load, line load, strip load, uniformly loaded circular, rectangular loaded area. Influence factors, Isobars, Boussinesq's equation, Newmark's Influence Chart.

LO: 1. Compute stresses in soils under various loading conditions.

2. Understand compaction of soils

## 3. Calculate stresses in Soils under different loading conditions

#### UNIT IV

**Consolidation of Soil** - comparison between compaction and consolidation, initial, primary & secondary consolidation - Terzaghi's theory of consolidation, final settlement of soil deposits, computation of consolidation settlement and secondary consolidation.

## LO: 1. Understand the consolidations and settlement of soils.

## 2. Differentiate compaction and consolidation

## 3. Assessment of final settlements of soil

## 4. Differentiate primary and secondary consolidation

## TEXT BOOKS:

- 1. K. R. Arora, Soil Mechanics and Foundation Engg., Standard Publishers and Distributors, Delhi.
- 2. C. Venkataramiah, Geotechnical Engineering, New age International Pvt . Ltd, (2002).

## **REFERENCE BOOKS:**

- 1. B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, Soil Mechanics and Foundation, Laxmi publications Pvt. Ltd., New Delhi
- 2. Gopal Ranjan & A. S. R. Rao, Basic and Applied Soil Mechanics, New age International Pvt . Ltd, New Delhi.

- <u>http://www.btechmaterials.com/download/geotechnical-engineering-gte-material-notes/</u>
- <u>http://www.nptelvideos.in/2012/11/soil-mechanics.html</u>

|       |         | 18A          | 31014   | 102-R   | EINFC   | RCEI    | O CON   | CRET       | E STR   | RUCTU   | RES    |          |
|-------|---------|--------------|---------|---------|---------|---------|---------|------------|---------|---------|--------|----------|
| Lectu | 1re – 7 | <b>utori</b> | al:     | 2-1Ho   | ours    |         |         | I          | nterna  | al Mar  | ks:    | 40       |
| Credi | its:    |              |         | 3       |         |         |         | E          | xterna  | al Mar  | ks:    | 60       |
| Prere | quisit  | es: St       | rengt   | h of M  | Iateria | als, St | ructu   | ral An     | alysis  | 6       |        |          |
| Cour  | se Obj  | ective       | es:     |         |         |         |         |            |         |         |        |          |
| 1)    | To tea  | ach co       | ncepts  | s of wo | orking  | stress  | s and l | imit st    | tate m  | ethods  | 8.     |          |
| 2)    | To im   | ipart d      | lesign  | proce   | dure o  | f RC e  | lemen   | ts in fl   | lexure  | , sheai | r and  | torsion. |
| 3)    | To tea  | ach de       | esign p | roced   | ure for | r short | t and l | ong R      | C colu  | mns.    |        |          |
| 4)    | To ex   | plain o      | design  | proce   | dure d  | of RC f | footing | <u>g</u> s |         |         |        |          |
| 5)    | To de   | monst        | trate d | esign   | of RC   | slab    |         |            |         |         |        |          |
| Cour  | se Ou   | tcome        | es:     |         |         |         |         |            |         |         |        |          |
| Upon  | succ    | essful       | comp    | letior  | ı of th | e cou   | rse, tl | ne stu     | dent    | will be | able   | to:      |
| CO1   | Work    | c on di      | fferent | t types | s of de | sign p  | hiloso  | phies      |         |         |        |          |
| CO2   | Carry   | yout a       | nalysi  | s and   | design  | of fle  | xural 1 | memb       | ers an  | d deta  | iling  |          |
| CO3   | Desig   | gn of d      | ifferer | nt type | s of sl | abs si  | abjecte | ed to s    | hear, i | bond a  | and to | orsion   |
| CO4   | Desig   | gn of d      | og leg  | ged st  | air cas | se      |         |            |         |         |        |          |
| CO5   | Desig   | gn diffe     | erent t | ypes o  | of colu | mns     |         |            |         |         |        |          |
| CO6   | Desig   | gn diffe     | erent t | ypes o  | of foot | ings    |         |            |         |         |        |          |
| Cont  | ributi  | on of        | Cours   | e Out   | comes   | s towa  | rds ad  | chieve     | ment    | of Pro  | ogran  | 1        |
| Outc  | omes    | (1 - L)      | ow, 2-  | Medi    | um, 3   | – Hig   | ;h)     |            |         |         | •      |          |
|       | PO      | PO           | PO      | PO      | PO      | PO      | PO      | PO         | PO      | PO      | PO     | PO       |
|       | 1       | 2            | 3       | 4       | 5       | 6       | 7       | 8          | 9       | 10      | 11     | 12       |
| CO1   | 3       | 2            | 3       | -       | -       | 2       | -       | 2          | -       | -       | -      | -        |
| CO2   | 3       | 3            | 3       | -       | -       | 2       | -       | 2          | -       | -       | -      | -        |
| CO3   | 3       | 3            | 3       | -       | -       | 2       | -       | 2          | -       | -       | -      | -        |
| CO4   | 3       | 3            | 3       | -       | -       | 2       | -       | 2          | -       | -       | -      | -        |
| CO5   | 3       | 3            | 3       | -       | -       | 2       | -       | 2          | -       | -       | -      | -        |
| C06   | 3       | 3            | 3       | -       | -       | 2       | -       | 2          | -       | -       | -      | -        |
|       |         |              |         |         |         | UNIT    | `I      |            |         |         |        |          |
| Basic | conc    | epts o       | of RCC  | c and   | Desig   | gn of I | Beams   | i          |         |         |        |          |
| Conc  | ents o  | f Reint      | forced  | concr   | ete De  | sign –  | Work    | ing Sti    | ress M  | ethod   | - Lim  | it State |

Concepts of Reinforced concrete Design – Working Stress Method - Limit State method – Material Stress- Strain Curves – Safety factors – Characteristic values. Stress Block parameters – IS – 456 – 2000. Beams: Limit state analysis and design of singly reinforced, doubly reinforced, T and L beam sections

LO: 1. Familiarize with working stress and limit stress method of design.

2. Understand stress block parameters in methods of analysis

3. Design of beams of varying cross sections adopting IS Code

UNIT II

## Shear and torsion:

Limit state analysis and design of section for shear and torsion – concept of bond, anchorage and development length, I.S. code provisions. Design examples in simply supported and continuous beams, detailing;

LO: 1. Understand behaviour of beams under shear and torsion

2. Visualize importance of bond and anchorage

## **3. Design and Detail RC beams under due to shear and torsion adopting IS Code.**

## UNIT III

Design of one way slab, Two-way slabs and continuous slab using I.S. Coefficients Limit state design for serviceability for deflection, cracking and codal provision. Design of doglegged staircase.

# LO: 1. Classify understand performance of slabs based on dimensions2. Design reinforced concrete slabs & Stair cases as per IS codal provisions.

#### UNIT IV

Short and Long columns – under axial loads, uniaxial bending and biaxial bending – I S Code provisions.

## LO: 1. Understand behaviour of columns with different slenderness characteristics

2. Contrast behaviour of columns axial and under Uniaxial, Biaxial eccentricities

## 3. Design and detail RC columns under different loads adopting IS Code. Footings:

Different types of footings – Design of isolated, square, rectangular, circular footings and combined footings.

## LO: 1. Classify footings based on shape and utility

## 2. Examine the field conditions and suggest appropriate footings

## 3. Design reinforced concrete footings.

## TEXT BOOKS:

- 1. B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, Limit State Design, Laxmi, publications Pvt. Ltd., New Delhi
- 2. P. C. Varghese, Limit state designed of reinforced concrete, Prentice Hall of India, New Delhi

## **REFERENCE BOOKS:**

- 1. N. Krishna Raju, Structural Design and Drawing, Universities Press Pvt Ltd, Hyderabad. 3<sup>rd</sup> Edition 2009.
- 2. N. C. Sinha and S. K Roy, Fundamentals of reinforced concrete, S. Chand publishers

- <u>https://www.alljntuworld.in/download/reinforced-concrete-structures-design-drawing-materials-notes/</u>
- http://www.nptelvideos.in/2012/11/design-of-reinforced-concrete-structures.html

#### **18A3101403-WATER RESOURCE ENGINEERING-1**

|                                                                                                                                                                   |                                                                                            | 10       | A310    | 1403-    | WAIC    | K KĽ    | SOUR         |                                         | IGINE.  | EKING   | L-T   |           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------|---------|----------|---------|---------|--------------|-----------------------------------------|---------|---------|-------|-----------|--|--|--|
| Lectu                                                                                                                                                             | lre –<br>rial·                                                                             |          | 2-      | 1 Hou    | rs      |         |              | I                                       | nterna  | al Mari | ks:   | 40        |  |  |  |
| Credi                                                                                                                                                             | ts:                                                                                        |          | 3       |          |         |         |              | Е                                       | xterna  | al Mar  | ks:   | 60        |  |  |  |
| Prere                                                                                                                                                             | auisit                                                                                     | es: Hy   | /draul  | ics      |         |         |              |                                         |         |         |       |           |  |  |  |
| Cours                                                                                                                                                             | se Obj                                                                                     | ective   | es:     |          |         |         |              |                                         |         |         |       |           |  |  |  |
| > Int                                                                                                                                                             | troduc                                                                                     | e hydr   | ologic  | cycle    | and it  | s relev | vance        | to Civ                                  | il engi | neering | g     |           |  |  |  |
| > Ma                                                                                                                                                              | ake tl                                                                                     | he sti   | udents  | s und    | lerstar | nd pł   | nysical      | l prod                                  | cesses  | in h    | iydro | logy and, |  |  |  |
| CO                                                                                                                                                                | mpone                                                                                      | ents of  | the h   | ydrolo   | gic cy  | cle     |              |                                         |         |         |       |           |  |  |  |
| ≻ Ap                                                                                                                                                              | precia                                                                                     | te con   | cepts   | and tl   | neory   | of phy  | sical p      | roces                                   | ses an  | d inter | actio | ns        |  |  |  |
| ≻ Le                                                                                                                                                              | -<br>arn m                                                                                 | easure   | ement   | and e    | stimat  | ion of  | the co       | mpon                                    | ents h  | vdrolo  | gic c | vcle.     |  |  |  |
| <ul> <li>Provide an overview and understanding of Unit Hydrograph theory and its</li> </ul>                                                                       |                                                                                            |          |         |          |         |         |              |                                         |         |         |       |           |  |  |  |
| Provide an overview and understanding of Unit Hydrograph theory and its analysis                                                                                  |                                                                                            |          |         |          |         |         |              |                                         |         |         |       |           |  |  |  |
| <ul><li>analysis</li><li>Understand flood frequency analysis, design flood, flood routing</li></ul>                                                               |                                                                                            |          |         |          |         |         |              |                                         |         |         |       |           |  |  |  |
| <ul> <li>Understand flood frequency analysis, design flood, flood routing</li> <li>Appreciate the concepts of groundwater movement and well hydraulics</li> </ul> |                                                                                            |          |         |          |         |         |              |                                         |         |         |       |           |  |  |  |
| Cour                                                                                                                                                              | se Out                                                                                     | tcome    | s:      | <b>P</b> | 8       |         |              |                                         |         |         |       |           |  |  |  |
| Upon                                                                                                                                                              | Course Outcomes:<br>Upon successful completion of the course, the student will be able to: |          |         |          |         |         |              |                                         |         |         |       |           |  |  |  |
| CO1                                                                                                                                                               | Deve                                                                                       | lop des  | sign st | orms     | and ca  | arry oi | ut freq      | uency                                   | analy   | sis     |       |           |  |  |  |
| CO2                                                                                                                                                               | Deter                                                                                      | mine     | storag  | e capa   | acity a | nd life | e of res     | ervoir                                  | 'S.     |         |       |           |  |  |  |
| CO3                                                                                                                                                               | Deve                                                                                       | lop un   | it hvd  | rogran   | h and   | svntł   | netic h      | vdrog                                   | raph    |         |       |           |  |  |  |
| CO4                                                                                                                                                               | Estin                                                                                      | nate flo | ood m   | agnitu   | de an   | d carr  | v out f      | lood r                                  | outing  |         |       |           |  |  |  |
| CO5                                                                                                                                                               | Deter                                                                                      | mine     | aquife  | r nara   | meter   | s and   | vield o      | of well                                 | s.      |         |       |           |  |  |  |
| C06                                                                                                                                                               | Mode                                                                                       | hvdr     | ologic  | nroce    | 2262    | o ana   | Jiela (      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         |         |       |           |  |  |  |
| Cont                                                                                                                                                              | ributi                                                                                     | on of    |         |          |         | towa    | rde or       | hiove                                   | mont    | of Dro  |       | •         |  |  |  |
| Outc                                                                                                                                                              | omes                                                                                       | (1 - L)  | 100013  | Medi     | 11m.3   | – Hig   | nus av<br>h) |                                         | ment    | UI FIC  | gran  | 1         |  |  |  |
| 0 4 00                                                                                                                                                            | PO                                                                                         | PO       | PO      | PO       | PO      | PO      | PO           | PO                                      | PO      | ΡΟ      | PO    | PO        |  |  |  |
|                                                                                                                                                                   | 1                                                                                          | 2        | 3       | 4        | 5       | 6       | 7            | 8                                       | 9       | 10      | 11    | 12        |  |  |  |
| CO1                                                                                                                                                               | 2                                                                                          | 2        | 3       | -        | -       | 1       | -            | 1                                       | -       | -       | -     | -         |  |  |  |
| CO2                                                                                                                                                               | 2                                                                                          | 2        | _       | _        | _       | _       | _            | _                                       | _       | _       | _     |           |  |  |  |
| CO3                                                                                                                                                               | 3                                                                                          | 2        | 2       | _        | _       | 1       | _            | 1                                       | _       | _       | _     | -         |  |  |  |
| CO4                                                                                                                                                               | 2                                                                                          | 2        | -       | -        | -       | _       | _            | _                                       | _       | -       | _     | _         |  |  |  |
| CO5                                                                                                                                                               | 2                                                                                          | 2        | -       | -        | -       | -       | -            | -                                       | -       | _       | -     | _         |  |  |  |
| C06                                                                                                                                                               | 2                                                                                          | 1        | -       | -        | -       | -       | -            | -                                       | -       | -       | _     | -         |  |  |  |
|                                                                                                                                                                   |                                                                                            |          |         |          |         | TINT    | тт           | I                                       | 1       |         |       |           |  |  |  |

Engineering hydrology and Precipitation

Engineering hydrology and its applications, Hydrologic cycle, hydrological datasources of data. **Precipitation**: Types and forms, measurement, rain gauge network, presentation of rainfall data, average rainfall, continuity and consistency of rainfall data, frequency of rainfall, Intensity-Duration-Frequency (IDF) curves, Depth-Area-Duration (DAD) curves, Probable Maximum Precipitation (PMP), design storm

LO 1. Understand basics of engineering hydrology and its applications.

- 2. Demonstrate measurement techniques of precipitation.
- 3. Learn curves related to frequency of rainfall.

## Abstractions from Precipitation:

Initial abstractions. Evaporation: factors affecting, measurement, reduction Evapo transpiration: factors affecting, measurement, control - Infiltration: factors affecting, Infiltration capacity curve, measurement, infiltration indices.

## LO 1. Attain knowledge on factors influencing evaporation.

## 2. Analyze factors influencing infiltration.

### UNIT III

## Runoff and Hydrograph analysis:

Catchment characteristics, Factors affecting runoff, components, computationempirical formulae, tables and curves, stream gauging, rating curve, flow mass curve and flow duration curve. Components of hydrograph, separation of base flow, effective rainfall hyetograph and direct runoff hydrograph, unit hydrograph, assumptions, derivation of unit hydrograph, unit hydrographs of different durations, principle of superposition and S-hydrograph methods, limitations and applications of unit hydrograph, synthetic unit hydrograph.

#### UNIT IV

**Floods:** Causes and effects, frequency analysis- Gumbel's and Log-Pearson type III distribution methods, Standard Project Flood (SPF) and Probable Maximum Flood (MPF), flood control methods and management. **Flood Routing:** Hydrologic routing, channel and reservoir routing-Muskingum and Puls methods of routing.

## LO 1. Develop knowledge on floods and its effects.

2. Understand flood routing techniques.

## **TEXT BOOKS:**

- Engineering Hydrology, Jayarami Reddy, P., Laxmi Publications Pvt. Ltd., (2013), New Delhi
- 2. Irrigation and Water Power Engineering, B. C. Punmia, Pande B. B. Lal, Ashok

Kumar Jain and Arun Kumar Jain, Lakshmi Publications (P) Ltd.

## **REFERENCE BOOKS:**

- 1. Engineering Hydrology Subramanya, K, Tata McGraw-Hill Education Pvt Ltd (2013), New Delhi.
- Irrigation Engineering and Hydraulic Structure, Santosh Kumar Garg, Khanna Publishers

- <u>http://www.nptelvideos.in/2012/11/water-resources-systemsmodeling.html</u>
- <u>http://www.nptelvideos.in/2012/11/advanced-hydrology.html</u>
- <u>http://freevideolectures.com/Course/100/Water-Resources-Engineering</u>
- <u>http://www.btechmaterials.com/download/water-resources-engineering-materials-notes/</u>
- <u>http://www.btechmaterials.com/download/water-resources-engineering-ii-materials-notes/</u>

#### 18A3101401 -STRUCTURAL ANALYSIS-II

| Lectu | 178 -   |         | 2        | 1 Hou   | re       | SIRO          |                    |        | ADI O  | . <u>.</u> |        | 40    |
|-------|---------|---------|----------|---------|----------|---------------|--------------------|--------|--------|------------|--------|-------|
| Tuto  | rial:   |         | 4        | 1 1100  | 15       |               |                    | I      | nterna | al Mar     | ks:    | 10    |
| Credi | its:    |         | 3        |         |          |               |                    | E      | xtern  | al Mar     | ks:    | 60    |
| Prere | quisit  | es: St  | rengt    | h of N  | Iateria  | als, St       | ructu              | ral An | alysis | 5-I        |        |       |
| Cours | se Obj  | ective  | es:      |         |          |               |                    |        |        |            |        |       |
| ≻ Fa  | miliar  | ize Stı | adents   | s with  | Differe  | ent typ       | bes of S           | Struct | ures   |            |        |       |
| ≻ Eq  | luip st | udent   | with o   | concep  | ots of A | Arches        | \$                 |        |        |            |        |       |
| ≻ Ur  | ndersta | and Co  | oncept   | s of la | teral I  | Load a        | nalysi             | s      |        |            |        |       |
| ≻ Fa  | miliar  | ize Ca  | bles a   | nd Su   | spensi   | ion Br        | idges              |        |        |            |        |       |
| ≻ Ur  | ndersta | and A   | nalysi   | s metl  | hods I   | Mome          | nt Dis             | tribut | ion, K | anis N     | lethoo | l and |
| Ma    | atrix M | lethod  | s        |         |          |               |                    |        |        |            |        |       |
| Cour  | se Ou   | tcome   | s:       |         |          |               |                    |        |        |            |        |       |
| Upon  | succ    | essful  | comp     | letior  | ı of th  | e cou         | rse, tl            | 1e stu | dent   | will be    | able   | to:   |
| CO1   | Analy   | yze thr | ee Hir   | nged A  | rches    | and ty        | wo Hir             | iged A | rches  |            |        |       |
| CO2   | Analy   | yze str | ucture   | es usir | ng Slo   | pe dei        | flection           | n metł | nod    |            |        |       |
| CO3   | Analy   | yze str | ucture   | es usir | ng Moi   | ment I        | Distrib            | ution  | metho  | od         |        |       |
| CO4   | Carry   | yout la | iteral l | Load a  | nalysi   | is of st      | ructu              | ces    |        |            |        |       |
| CO5   | Analy   | yze str | ucture   | es usir | ng Flez  | xibility      | <sup>,</sup> Matri | x met  | hod    |            |        |       |
| CO6   | Analy   | yze str | ucture   | es usir | ng Stif  | fnes <b>s</b> | Matrix             | meth   | od     |            |        |       |
| Cont  | ributi  | on of   | Cours    | e Out   | comes    | s towa        | rds ac             | hieve  | ement  | of Pro     | ogram  |       |
| Outc  | omes    | (1 - L) | ow, 2-   | Medi    | um, 3    | – Hig         | (h)                |        |        |            |        |       |
|       | PO      | PO      | PO       | PO      | PO       | PO            | PO                 | PO     | PO     | PO         | PO     | PO    |
|       | 1       | 2       | 3        | 4       | 5        | 6             | 7                  | 8      | 9      | 10         | 11     | 12    |
| CO1   | 3       | 3       | -        | -       | -        | 2             | -                  | 1      | -      | -          | -      | -     |
| CO2   | 3       | 3       | -        | -       | -        | 2             | -                  | 1      | -      | -          | -      | -     |
| CO3   | 3       | 3       | -        | -       | -        | 2             | -                  | 1      | -      | -          | -      | -     |
| CO4   | 3       | 3       | -        | -       | -        | 2             | -                  | 1      | -      | -          | -      | -     |
| CO5   | 3       | 3       | -        | -       | -        | 2             | -                  | 1      | -      | -          | -      | -     |
| CO6   | 3       | 3       | -        | -       | -        | 2             | -                  | 1      | -      | -          | -      | -     |
|       |         |         |          |         | 1        | UNIT          | [                  |        |        |            |        |       |

**Three Hinged Arches**: Elastic theory of arches – Eddy's theorem – Determination of horizontal thrust, bending moment, normal thrust and radial shear – effect of temperature. Hinges with supports at different levels. **Two Hinged Arches**: Determination of horizontal thrust, bending moment, normal thrust and radial shear – Rib shortening and temperature stresses, Tied arches – Fixed arches – (No analytical question).

#### UNIT II

**Slope-Deflection**: Analysis of single bay, single storey, portal frame including side sway.

## LO. 1. Analyze 2D frames using slope-deflection method.

**Moment Distribution Method**: Introduction to moment distribution method- application to continuous beams with and without settlement of supports. Analysis of single storey portal frames – including Sway.

LO.1. Develop moment distribution expressions

## 2. Analyze structures with and without support sinking

3. Analyze single storey portal frames

#### UNIT III

**Lateral Load Analysis** Using Approximate Methods: Application to building frames. (i) Portal Method (ii) Cantilever Method.

#### UNIT IV

#### Matrix Methods:

**Flexibility method**: Introduction, application to continuous beams (maximum of two unknowns) including support settlements. Analysis of single bay, single storey portal frame including sway.

**Stiffness method**: Introduction, application to continuous beams (maximum of two unknowns) including support settlements. Analysis of single bay, single storey portal frame including sway.

#### **TEXT BOOKS:**

1. Structural Analysis, T. S. Thandavamoorthy, Oxford university press, India.

2. Structural Analysis, R.C. Hibbeler, Pearson Education, India

3. Theory of Structures – II, B. C. Punmia, Jain & Jain, Laxmi Publications, India.

#### **REFERENCE BOOKS:**

1. Intermediate Structural Analysis, C. K. Wang, Tata McGraw Hill, India

2. Theory of structures, Ramamuratam, Dhanpatrai Publications.

3. Analysis of structures, Vazrani & Ratwani – Khanna Publications.

- <u>http://www.btechmaterials.com/download/structural-analysis-materials-notes/</u>
- <u>http://www.nptelvideos.in/2012/11/structural-analysis-i.html</u>

#### **PROFESSIONAL ELECTIVE-1 18A3101511-SUBSURFACE INVESTIGATION AND INSTRUMENTATION**

| Lectu    | ire –  |               | 3-      | 0 Hou   | rs      |         |          | I       | nterna  | al Mar  | ks:   | 40  |
|----------|--------|---------------|---------|---------|---------|---------|----------|---------|---------|---------|-------|-----|
| Credi    | te.    |               | 3       |         |         |         |          | E       | vtern   | al Mar  | ·ke•  | 60  |
| Prere    | nnieit | es. Sc        | il Me   | chani   | 26      |         |          |         | Attin   | ai mai  | NJ.   | 00  |
| Cours    | se Ohi | ective        | s:      | ciiaiii | 60      |         |          |         |         |         |       |     |
| 1) To    | discu  | ss the        | impoi   | rtance  | of site | e inves | stigatio | on.     |         |         |       |     |
| 2) To    | narra  | te vari       | ious e  | xplora  | tion te | echnia  | ues      | ,       |         |         |       |     |
| 3) To    | descr  | ibe so        | il sam  | pling t | echni   | ques.   |          |         |         |         |       |     |
| 4) To    | train  | with i        | n situ  | sub so  | oil exp | loratio | on met   | hods    |         |         |       |     |
| 5) To    | demo   | nstrat        | e insti | rumen   | tation  | for su  | ıb soil  | explo   | ration  | •       |       |     |
| Cours    | se Out | t <b>come</b> | s: Soi  | 1 Mec   | hanic   | S       |          |         |         |         |       |     |
| Upon     | succe  | essful        | comp    | letion  | ı of th | e cou   | rse, tl  | ne stu  | dent    | will be | able  | to: |
| CO1      | Plan   | and ex        | kecute  | sub s   | oil inv | restiga | tion p   | rogran  | nme.    |         |       |     |
| CO2      | Differ | rent ex       | plorat  | tion te | chniqu  | ues     |          |         |         |         |       |     |
| CO3      | Hand   | lle bot       | h labo  | ratory  | and i   | n-situ  | testin   | g tech  | nique   | s.      |       |     |
| CO4      | Carry  | v out c       | ollecti | on, ha  | ndling  | g and   | preser   | vation  | of sa   | mples.  |       |     |
| CO5      | In sit | u expl        | oratio  | n meti  | hods    |         |          |         |         |         |       |     |
| CO6      | Hand   | lle inst      | trume   | nts du  | ring s  | ub soi  | l explo  | oratior | n proce | ess.    |       |     |
| Cont     | ributi | on of         | Cours   | e Out   | comes   | s towa  | rds ac   | chieve  | ment    | of Pro  | ogran | 1   |
| Outc     | omes   | (1 - L)       | ow, 2-  | Medi    | um, 3   | – Hig   | (h)      |         |         |         |       |     |
|          | PO     | PO            | PO      | PO      | PO      | PO      | PO       | PO      | PO      | PO      | PO    | PO  |
|          | 1      | 2             | 3       | 4       | 5       | 6       | 7        | 8       | 9       | 10      | 11    | 12  |
| CO1      | 2      | -             | -       | 2       | -       | 2       | -        | 1       | -       | -       | -     | -   |
| CO2      | 2      | -             | -       | -       | -       | 2       | -        | -       | -       | -       | -     | -   |
| CO3      | 2      | -             | -       | -       | -       | 2       | -        | 2       | -       | -       | -     | -   |
| CO4      | 2      | -             | 2       | 2       | -       | 2       | -        | 1       | -       | -       | -     | -   |
| CO5      | 2      | -             | -       | -       | -       | 2       | -        | 2       | -       | -       | -     | -   |
| CO6      | 2      | -             | -       | -       | -       | 1       | -        | 1       | -       | -       | -     | -   |
|          |        |               |         |         |         | UNIT    | `I       |         |         |         |       |     |
| <b>D</b> | -1-m-4 | tion of       | nd      | mhrra   | 1001 -  | athad   | 1        |         |         |         |       |     |

#### Exploration and geophysical methods:

Exploration program planning -methods of exploration- preliminary and detailed design- spacing and depth of bores, data presentation. Geophysical exploration and interpretation, seismic and electrical methods, cross bore hole, single bore hole - up hole -down hole methods.

LO: 1. Understand exploration process

2. Learn different methods of methods.

#### UNIT II

#### **Exploration Techniques**

Methods of boring and drilling, non-displacement and displacement methods, drilling in difficult subsoil conditions, limitations of various drilling techniques, stabilization of boreholes, bore logs.

LO: 1. Learn various exploration techniques.

2. Determine appropriate methods of exploration based on limitations

#### **UNIT III**

## Soil Sampling

Sampling Techniques – quality of samples – factors influencing sample quality - disturbed and undisturbed soil sampling advanced sampling techniques, offshore sampling, shallow penetration samplers, preservation and handling of samples.

LO: 1. Understand concepts of sampling

2. Study different types of sampling techniques.

## UNIT IV

## Field Testing In Soil Exploration

Field tests, penetration tests, Field vane shear, Insitu shear and bore hole shear test, pressure meter test, dilatometer test - plate load test-monotonic and cyclic; field permeability tests – block vibration test. Procedure, limitations, correction and data interpretation.

LO: 1. Develop insitu soil exploration methods.

2. Interpret data of soil exploration and documentation

## Instrumentation

Instrumentation in soil engineering, strain gauges, resistance and inductance type, load cells, earth pressure cells, settlement and heave gauges, pore pressure measurements - slope indicators, sensing units, case studies. LO: 1. Choose appropriate instrumentation in sub soil exploration process

## TEXT BOOKS:

- 1. Alam Singh and Chowdhary G. R., "Soil Engineering in Theory and Practice, Volume-2, Geotechnical testing and instrumentation, CBS Publishers and Distributors, New Delhi, 2006.
- 2. Dunnicliff J., and Green, G. E., "Geotechnical Instrumentation for Monitoring Field Performance", John Wiley, 1993.

## **REFERENCE BOOKS:**

- 1. Bowles J. E., "Foundation Analysis and Design", 5th Edition, The McGraw-Hill companies, Inc., New York, 1995.
- 2. Hanna T. H., "Field Instrumentation in Geotechnical Engineering", Trans Tech., 1985.

- <u>http://www.nptelvideos.in/2012/11/foundation-engineering.html</u>
- <u>http://www.btechmaterials.com/download/foundation-engineering-fe-material-notes/</u>

#### PROFESSIONAL ELECTIVE-1 18A3101512-ADVANCED CONCRETE TECHNOLOGY

| Lectu                         | ıre –                                                     |                                            | 3-                                                        | 0 Hou                                          | rs                                                           |                                                                |                                                       | I                                                 | nterna                                           | al Mark                                      | s:                             | 40    |
|-------------------------------|-----------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------|-------|
| Tuto                          | rial:                                                     |                                            | 2                                                         |                                                |                                                              |                                                                |                                                       | T                                                 |                                                  | ol Mori-                                     |                                | 60    |
| Dromo                         | ITS:                                                      | D.                                         | ں<br>مناطنہ                                               | mot                                            | oriola                                                       | and C                                                          | onatr                                                 | Ľ                                                 | xterna                                           | аі магк                                      | S: (                           | 00    |
| Cour                          | se Ohi                                                    | es: Di<br>ective                           | 701.01<br>111.01.115                                      | s mai                                          | eriais                                                       |                                                                | onstr                                                 | uction                                            | 1                                                |                                              |                                |       |
| To lea                        | rn the                                                    | concer                                     | ots of C                                                  | oncret                                         | e prod                                                       | uction                                                         | and its                                               | s beha                                            | viour ii                                         | n various                                    | 5                              |       |
| enviro                        | onment                                                    | s.                                         |                                                           | 0110101                                        | le prou                                                      | action                                                         | and m                                                 | o sena                                            | ioui ii                                          | ii vanou.                                    | 5                              |       |
| To lea                        | rn the                                                    | test pr                                    | ocedui                                                    | res for                                        | the det                                                      | termina                                                        | ation o                                               | f prope                                           | erties o                                         | f concret                                    | te.                            |       |
| To un                         | derstar                                                   | nd dur                                     | ability                                                   | proper                                         | ties of                                                      | concre                                                         | te in v                                               | arious                                            | enviro                                           | nments                                       |                                |       |
| Cour                          | se Out                                                    | come                                       | s:                                                        |                                                |                                                              |                                                                |                                                       |                                                   |                                                  |                                              |                                |       |
| Upon                          | succe                                                     | essful                                     | comp                                                      | letior                                         | ı of th                                                      | e cou                                                          | rse, tl                                               | ne stu                                            | dent                                             | will be a                                    | able                           | to:   |
| COI                           | Under                                                     | rstand                                     | the ba                                                    | sic cor                                        | ncepts                                                       | of cond                                                        | crete.                                                |                                                   |                                                  |                                              |                                |       |
| CO2                           | Realis                                                    | e the i                                    | mporta                                                    | ance of                                        | fqualit                                                      | y of co                                                        | ncrete.                                               |                                                   |                                                  |                                              |                                |       |
| CO3                           | Famil                                                     | iarise (                                   | the bas                                                   | sic ingr                                       | redient                                                      | s of co                                                        | ncrete                                                | and th                                            | eir role                                         | e in the p                                   | orodu                          | ction |
|                               | of con                                                    | crete a                                    | and its                                                   | behav                                          | iour in                                                      | the fie                                                        | eld.                                                  |                                                   |                                                  |                                              |                                |       |
| CO4                           | Fresh                                                     | concr                                      | ete pro                                                   | perties                                        | s and t                                                      | he har                                                         | dened                                                 | concre                                            | te prop                                          | perties.                                     |                                |       |
| CO5                           | Famil<br>applic                                           | iarise 1<br>ations                         | the bas                                                   | sic con                                        | cepts c                                                      | of speci                                                       | al cono                                               | crete a                                           | nd thei                                          | ir produo                                    | ction                          | and   |
| C06                           | Under                                                     | rstand                                     | the be                                                    | haviou                                         | r of co                                                      | ncrete                                                         | in vari                                               | ous en                                            | vironn                                           | nents.                                       |                                |       |
| Cont                          | ributi                                                    | on of                                      | Cours                                                     | e Out                                          | comes                                                        | s towa                                                         | rds ac                                                | chieve                                            | ment                                             | of Prog                                      | gram                           |       |
| Outc                          | omes                                                      | (1 - L)                                    | ow, 2-                                                    | Medi                                           | um, 3                                                        | – Hig                                                          | <b>h)</b>                                             |                                                   |                                                  |                                              |                                |       |
|                               | PO                                                        | PO                                         | PO                                                        | PO                                             | PO                                                           | PO                                                             | PO                                                    | PO                                                | PO                                               | PO                                           | PO                             | PO    |
|                               | 1                                                         | 2                                          | 3                                                         | 4                                              | 5                                                            | 6                                                              | 7                                                     | 8                                                 | 9                                                | 10                                           | 11                             | 12    |
| CO1                           | 2                                                         | -                                          | -                                                         | -                                              | -                                                            | -                                                              | -                                                     | 1                                                 | -                                                | -                                            | -                              | -     |
| CO2                           | 2                                                         | -                                          | -                                                         | -                                              | -                                                            | 1                                                              | -                                                     |                                                   | -                                                | -                                            | -                              | -     |
| CO3                           | 2                                                         | -                                          | -                                                         | 2                                              | -                                                            | 2                                                              | -                                                     | 1                                                 | -                                                | -                                            | -                              | -     |
| CO4                           | 2                                                         | -                                          | -                                                         | -                                              | -                                                            | -                                                              | -                                                     | 1                                                 | -                                                | -                                            | -                              | -     |
| CO5                           | 2                                                         | -                                          | -                                                         | -                                              | -                                                            | -                                                              | -                                                     | 1                                                 | -                                                | -                                            | -                              | -     |
| CO6                           | 2                                                         | -                                          | -                                                         | -                                              | -                                                            | -                                                              | -                                                     | 1                                                 | -                                                | -                                            | -                              | -     |
|                               |                                                           |                                            |                                                           |                                                | 1                                                            | UNIT                                                           | [                                                     |                                                   |                                                  |                                              |                                |       |
| Conc                          | rete N                                                    | Iaking                                     | g Mate                                                    | erials                                         | : Cem                                                        | ent – I                                                        | Bogus                                                 | Comp                                              | ounds                                            | s – Hydra                                    | ation                          | L     |
| Proce                         | <b>–</b>                                                  | ines o                                     | f Cem                                                     | ent – A                                        | Aggreg                                                       | gates –                                                        | Grada                                                 | ation (                                           | Charts                                           | – Comł                                       | bined                          |       |
| Aggre                         | ess - T                                                   | pcs o                                      |                                                           |                                                |                                                              |                                                                |                                                       |                                                   |                                                  |                                              |                                |       |
| 00                            | ess – T<br>egate –                                        | Alaka                                      | di Silic                                                  | a Rea                                          | ction -                                                      | -Admi                                                          | xtures                                                | – Che                                             | emical                                           | and Mi                                       | neral                          | L     |
| Admi                          | ess – T<br>egate –<br>xtures                              | Alaka<br>. Bure                            | li Silic<br>au of                                         | a Rea<br>Indiar                                | ction -<br>1 Stan                                            | –Admi<br>dards                                                 | xtures<br>(BIS) l                                     | – Che<br>Provisi                                  | emical<br>ions.                                  | and Mi                                       | neral                          | L     |
| Admi                          | ess – Ty<br>egate –<br>xtures                             | Alaka<br>. Bure                            | li Silic<br>au of                                         | a Rea<br>Indiar                                | ction -<br>1 Stan<br><b>T</b>                                | -Admi<br>dards<br>J <b>NIT I</b>                               | xtures<br>(BIS) 1<br><b>I</b>                         | – Che<br>Provisi                                  | emical<br>ions.                                  | and Mi                                       | neral                          | L     |
| Admi<br>Fresl                 | ess – Ty<br>egate –<br>xtures<br>h And                    | Alaka<br>. Bure<br><b>Harde</b>            | di Silic<br>eau of<br>ened C                              | a Rea<br>Indiar<br><b>Concre</b>               | ction -<br>1 Stan<br><b>U</b><br>ete: Fr                     | -Admi<br>dards<br>J <b>NIT I</b><br>resh C                     | xtures<br>(BIS) I<br><b>I</b><br>oncret               | e – Che<br>Provisi<br>ce – wo                     | emical<br>ions.<br>orkabil                       | and Mi                                       | neral<br>s on                  | L     |
| Admi<br>Fresl<br>Conc         | ess – Ty<br>egate –<br>xtures<br><b>h And</b><br>rete – a | Alaka<br>. Bure<br><b>Harde</b><br>Setting | li Silic<br>eau of<br>e <b>ned C</b><br>g Time            | ca Rea<br>Indiar<br><b>Concre</b><br>es of F   | ction -<br>n Stan<br><b>T</b><br>ete: Fr<br>resh C           | -Admi<br>dards<br>J <b>NIT I</b><br>resh C<br>Concre           | xtures<br>(BIS) I<br>I<br>oncret<br>te – Se           | e – Che<br>Provisi<br>e – wo<br>egrega            | emical<br>ions.<br>orkabil<br>tion a             | and Mi<br>lity tests<br>nd bleed             | neral<br>s on<br>ling.         | L     |
| Admi<br>Fresl<br>Conc<br>Hard | ess – Igegate –<br>xtures<br>h And<br>rete – S            | Alaka<br>. Bure<br><b>Harde</b><br>Setting | li Silic<br>eau of<br>e <b>ned C</b><br>g Time<br>te : Ab | ca Rea<br>Indiar<br>Concre<br>es of F<br>orams | ction -<br>n Stan<br><b>U</b><br>ete: Fr<br>resh C<br>Law, 0 | -Admi<br>dards<br>J <b>NIT I</b><br>resh C<br>Concre<br>Gel sp | xtures<br>(BIS) I<br>I<br>oncret<br>te – Se<br>ace ra | e – Che<br>Provisi<br>e – wo<br>egrega<br>tios, N | emical<br>ions.<br>orkabil<br>tion ar<br>faturif | and Mi<br>lity tests<br>nd bleed<br>ty conce | neral<br>s on<br>ling.<br>pt – | L     |

Stress strain Behaviour – Creep and Shrinkage – Durability Tests on Concrete – Non Destructive Testing of Concrete. BIS Provisions.

#### UNIT III

**High Strength Concrete** – Microstructure – Manufacturing and Properties – Design of HSC Using Erintroy Shaklok method – Ultra High Strength Concrete. High Performance Concrete – Requirements and Properties of High Performance Concrete – Design Considerations. BIS Provisions.

#### UNIT IV

Special Concretes: Self Compacting concrete, Polymer Concrete, Fibre

Reinforced Concrete – Reactive Powder Concrete – Requirements and Guidelines – Advantages and Applications. Concrete Mix Design: Quality Control – Quality Assurance – Quality Audit - Mix Design Method – BIS Method – IS.10262 – 2019 Concrete Mix proportion guidelines. DOE

Method-Light Weight Concrete, Self Compacting Concrete.

Form work – materials – structural requests – form work systems – connections – specifications – design of form work – shores – removal for forms - shores – reshoring – failure of form work.

## **TEXT BOOKS:**

- 1. Properties of Concrete by A. M. Neville, ELBS publications Oct 1996.
- 2. Concrete Technology by M.S. Shetty, S.Chand & Co 2009.

## **REFERENCE BOOKS:**

1. Concrete: Micro Structure, Properties and Materials by P. K. Mehta and P. J. Monteiro,. Mc. Graw-Hill Publishing Company Ltd. New Delhi

2. Design of Concrete Mixes by N. Krishna Raju, CBS Publications, 2000.

- <u>https://onlinecourses.nptel.ac.in/noc16\_ce10/preview</u>
- <u>http://nptel.ac.in/courses/105104030/http://freevideolectures.com/Course/3357/Concrete-Technology</u>
- <u>http://textofvideo.nptel.iitm.ac.in/105102012/lec1.pdf</u>

#### PROFESSIONAL ELECTIVE-1 18A3101513-ENVIRONMENTAL POLLUTION AND CONTROL

|               | -                                                                                                                                                                                                      | 011010   |          |         |          |                     |            |        |         |            |        |       |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|----------|---------------------|------------|--------|---------|------------|--------|-------|--|--|--|
| Lectu<br>Tuto | ıre –<br>rial:                                                                                                                                                                                         |          | 3-       | 0 Hou   | rs       |                     |            | I      | nterna  | l Mark     | s:     | 40    |  |  |  |
| Credi         | ts:                                                                                                                                                                                                    |          | 3        |         |          |                     |            | E      | xterna  | al Marl    | s:     | 60    |  |  |  |
| Prere         | quisit                                                                                                                                                                                                 | es: Er   | nviron   | ment    | al Stu   | dies                |            |        |         |            |        |       |  |  |  |
| Cours         | se Obj                                                                                                                                                                                                 | ective   | es:      |         |          |                     |            |        |         |            |        |       |  |  |  |
| 1) Im         | ipart l                                                                                                                                                                                                | knowl    | edge o   | on asp  | ects o   | of air <sub>i</sub> | pollut     | ion &  | contr   | ol and     | noise  | e     |  |  |  |
| ро            | llutio                                                                                                                                                                                                 | n        |          |         |          |                     |            |        |         |            |        |       |  |  |  |
| 2) Im         | part o                                                                                                                                                                                                 | conce    | pts of   | treat   | ment     | of was              | ste wa     | ter fr | om ind  | dustria    | l sou  | rce.  |  |  |  |
| 3) Di         | -<br>fferen                                                                                                                                                                                            | tiate    | the so   | olid an | d haz    | ardou               | s was      | te bas | ed on   |            |        |       |  |  |  |
| ch            | aracte                                                                                                                                                                                                 | erizati  | ion      |         |          |                     |            |        |         |            |        |       |  |  |  |
| 4) In         | trodu                                                                                                                                                                                                  | re san   | itatio   | n met   | hode     | essen               | tial fo    | r nrof | ection  | n of co    | mmu    | nitv  |  |  |  |
| +) III<br>bo  | 01+h                                                                                                                                                                                                   | ce san   | Itatio   | m met   | nous     | C33C11              | ciai io    |        |         |            | mmu    | micy  |  |  |  |
|               | 5) Provide basic knowledge on sustainable development.                                                                                                                                                 |          |          |         |          |                     |            |        |         |            |        |       |  |  |  |
| 5) PI         | provide dasic knowledge on sustainable development.<br>urse Outcomes:                                                                                                                                  |          |          |         |          |                     |            |        |         |            |        |       |  |  |  |
| Cour          | se Ou                                                                                                                                                                                                  | tcome    | s:       | 1       | ~£41     |                     |            |        | 10      |            | ahla   | •     |  |  |  |
|               | Identi                                                                                                                                                                                                 | fr the   | comp     | letion  | ontrol   | e cou               | rse, ti    | ie stu | aent    | viii be    | able   | ιο:   |  |  |  |
|               | <ol> <li>Identify the air pollutant control devices</li> <li>Understand the fundamentals of solid waste management, practices</li> </ol>                                                               |          |          |         |          |                     |            |        |         |            |        |       |  |  |  |
| 02            | <ol> <li>Identify the air pollutant control devices</li> <li>Understand the fundamentals of solid waste management, practices</li> </ol>                                                               |          |          |         |          |                     |            |        |         |            |        |       |  |  |  |
|               | Identify the air pollutant control devices<br>Understand the fundamentals of solid waste management, practices<br>adopted in his town/village and its importance in keeping the health<br>of the city. |          |          |         |          |                     |            |        |         |            |        |       |  |  |  |
|               | of the                                                                                                                                                                                                 | e city.  |          |         |          |                     |            |        |         |            |        |       |  |  |  |
| CO3           | Ident                                                                                                                                                                                                  | ify the  | e air po | ollutar | nt cont  | trol de             | vices a    | and ha | ave kn  | owledge    | e on t | he    |  |  |  |
|               | NAAQ                                                                                                                                                                                                   | ) stan   | dards    | and a   | ir emis  | ssion s             | standa     | rds.   |         |            |        |       |  |  |  |
| CO4           | Differ                                                                                                                                                                                                 | rentiat  | e the    | treatm  | lent te  | chniq               | ues us     | ed for | sewag   | ge and :   | indus  | trial |  |  |  |
|               | waste                                                                                                                                                                                                  | ewater   | treat    | nent.   |          |                     |            |        |         |            |        |       |  |  |  |
| CO5           | Inver                                                                                                                                                                                                  | nting tl | he me    | thods   | of env   | ironm               | ental s    | sanita | tion ar | nd the     |        |       |  |  |  |
|               | mana                                                                                                                                                                                                   | agemei   | nt of c  | ommu    | nity fa  | acilitie            | s with     | out sr | oread o | of epide   | mics   |       |  |  |  |
| CO6           | Appre                                                                                                                                                                                                  | eciate t | he imp   | ortanc  | e of su  | staina              | ble dev    | elopm  | ent wh  | ile plan   | ning a |       |  |  |  |
|               | projec                                                                                                                                                                                                 | ct or ex | ecutin   | g an ac | ctivity. |                     |            | 1-     |         | - <b>I</b> | 8      |       |  |  |  |
| Cont          | ributi                                                                                                                                                                                                 | on of (  | Cours    | e Outo  | comes    | s towa              | rds ac     | hieve  | ement   | of Pro     | gram   |       |  |  |  |
| Outc          | omes                                                                                                                                                                                                   | (1 - L)  | ow, 2-   | Medi    | um, 3    | – Hig               | <b>(h)</b> |        | 1       |            |        |       |  |  |  |
|               | PO                                                                                                                                                                                                     | PO       | PO       | PO      | PO       | PO                  | PO         | PO     | PO      | PO         | PO     | РО    |  |  |  |
|               | 1                                                                                                                                                                                                      | 2        | 3        | 4       | 5        | 6                   | 7          | 8      | 9       | 10         | 11     | 12    |  |  |  |
| CO1           | 2                                                                                                                                                                                                      | -        | -        | -       | -        | -                   | 2          | 1      | -       | -          | -      | -     |  |  |  |
| CO2           | 2                                                                                                                                                                                                      | -        | -        | -       | -        | -                   | 2          | 1      | -       | -          | -      | -     |  |  |  |
| CO3           | 2                                                                                                                                                                                                      | -        | -        | -       | -        | -                   | 2          | 1      | -       | -          | -      | -     |  |  |  |
| CO4           | 2                                                                                                                                                                                                      | -        | -        | -       | -        | -                   | 2          | 1      | -       | -          | -      | -     |  |  |  |
| CO5           | 2                                                                                                                                                                                                      | -        | -        | -       | 2        | -                   | 2          | 1      | -       | -          | -      | -     |  |  |  |
| CO6           | 2                                                                                                                                                                                                      | 2        | -        | -       | -        | -                   | 2          | 1      | -       | -          | -      | -     |  |  |  |
|               |                                                                                                                                                                                                        |          |          |         |          | UNIT                |            |        |         |            |        |       |  |  |  |

## **Air Pollution:**

Air pollution Control Methods–Particulate control devices – Methods of Controlling Gaseous Emissions – Air quality standards. Noise Pollution: Noise standards, Measurement and control methods – Reducing residential and industrial noise – ISO14000.

LO: 1. Understand control mechanism of air pollutants

2. Design noise reduction techniques

#### UNIT II

## Industrial waste water Management:

Strategies for pollution control – Volume and Strength reduction – Neutralization – Equalization – Proportioning – Common Effluent Treatment Plants – Recirculation of industrial wastes – Effluent standards. LO: 1. Understand the importance of treatment process of industrial effluents.

2. Design treatment plants

## UNIT III

**Solid Waste Management:** solid waste characteristics – basics of on-site handling and collection – separation and processing – Incineration-Composting-Solid waste disposal methods – fundamentals of Land filling. Hazardous Waste: Characterization – Nuclear waste – Biomedical wastes – Electronic wastes – Chemical wastes – Treatment and management of hazardous waste-Disposal and Control methods.

LO: 1. Classification of solid waste and separation and procession solid waste

2. Identification of Hazardous wastes

3. Plan and execute solid waste and hazardous waste management.

#### UNIT IV

**Environmental Sanitation:** Environmental Sanitation Methods for Hostels and Hotels, Hospitals, Swimming pools and public bathing places, social gatherings (melas and fares), Schools and Institutions, Rural Sanitation-low cost waste disposal methods.

LO: 1. Understand importance of hygienic environment

2. Suggest appropriate rural sanitation methods to keep surrounding clean.

## **TEXT BOOKS:**

- 1. Peavy, H. S., Rowe, D.R, Tchobanoglous, Environmental Engineering, G.Mc-Graw Hill International Editions, New York 1985.
- 2. J. G. Henry and G.W. Heinke, Environmental Science and Engineering, Pearson Education.

## **REFERENCE BOOKS:**

- 1. G. L. Karia and R.A. Christian, Waste water treatment- concepts and design approach, Prentice Hall of India
- 2. Ruth F. Weiner and Robin Matthews Environmental Engineering, 4th Edition Elesevier, 2003

#### **E-RESOURCES:**

http://www.nptelvideos.in/2012/11/environmental-air-pollution.html

#### PROFESSIONAL ELECTIVE-1 18A3101514-AIRPORT PLANNING AND DESIGN

| Lectu                                                                                                         | ıre –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e -3-0 HoursInternal Marks:40al:3External Marks:60s:3External Marks:60uisites:Objectives:60Objectives:oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of air transport and aircraft characteristics.oduction to the growth of aircraft characteristics.oduction to the growth of aircraft characteristics.oduction to the growth of the planning and design of airport.wired Development of the theoretical basis of subject and to design. |           |         |        |        |         |          |          |         |       |      |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------|--------|---------|----------|----------|---------|-------|------|--|--|--|
| Tuto                                                                                                          | ecture -<br>utorial:3-0 HoursInternal Marks:40redits:3External Marks:60reequisites:<br>ourse Objectives:Introduction to the growth of air transport and aircraft characteristics.60Introduction to the growth of air transport and aircraft characteristics.Competence in building the background in Airport engineering and<br>understanding its features with a technical sense.50Synthesis in incorporating the planning and design of airport.Required Development of the theoretical basis of subject and to design<br>the various airport components.10Better Comprehension of various probable alternatives to design airport<br>components1010Ourse Outcomes:101010Obtain a basic Knowledge of the fundamental issues in Airport<br>engineering.10O2Demonstrate the clear understanding of the airport components1003Learn principles in airport components capacity and delays1004Learn the airport components capacity and delays10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |        |        |         |          |          |         |       |      |  |  |  |
| Credi                                                                                                         | ts:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3         |         |        |        |         | E        | xterna   | al Marl | ks:   | 50   |  |  |  |
| Prere                                                                                                         | quisit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |         |        |        |         |          |          |         |       |      |  |  |  |
| Cours                                                                                                         | se Obj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>S:</b> | · 1     | c ·    | 4      |         | 1 .      | <u> </u> | 1 4     | • ,•  |      |  |  |  |
| I) Int                                                                                                        | troduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the g     | rowth   | of air | trans  | port ai | nd aire  | craft cl | haracte |       | s.   |  |  |  |
| 2) Co                                                                                                         | mpete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nce in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | build     | ing th  | e back | grour  | id in A | arport   | engın    | eering  | and   |      |  |  |  |
| un                                                                                                            | Idersta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | inding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | its fea   | atures  | with a | a tech | nical s | ense.    |          |         |       |      |  |  |  |
| 3) Sy                                                                                                         | nthesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s in in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | corpo     | rating  | the pl | annin  | g and   | desig    | n of air | rport.  |       |      |  |  |  |
| 4) Re                                                                                                         | quired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l Devel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | opme      | nt of t | he the | oretic | al basi | is of st | ubject   | and to  | desig | gn   |  |  |  |
| the various airport components.<br>5) Better Comprehension of various probable alternatives to design airport |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |        |        |         |          |          |         |       |      |  |  |  |
| <ul><li>5) Better Comprehension of various probable alternatives to design airport components.</li></ul>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |        |        |         |          |          |         |       |      |  |  |  |
| <b>5)</b> Better Comprehension of various probable alternatives to design airport components                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |        |        |         |          |          |         |       |      |  |  |  |
| components Course Outcomes:                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |        |        |         |          |          |         |       |      |  |  |  |
| Course Outcomes:<br>Upon successful completion of the course, the student will be able to:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |        |        |         |          |          |         |       |      |  |  |  |
| CO1                                                                                                           | Upon successful completion of the course, the student will be able to:CO1Obtain a basic Knowledge of the fundamental issues in Airport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |        |        |         |          |          |         |       |      |  |  |  |
|                                                                                                               | CO1 Obtain a basic Knowledge of the fundamental issues in Airport engineering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |        |        |         |          |          |         |       |      |  |  |  |
| CO2                                                                                                           | Demo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onstra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | te the    | e clea  | r unde | erstan | ding o  | of the   | airpo    | rt com  | pone  | nts. |  |  |  |
| CO3                                                                                                           | Learn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 princ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iples     | in aiı  | port o | compo  | onents  | s geon   | netric   |         |       |      |  |  |  |
| CO4                                                                                                           | Learn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n the a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | irpor     | t com   | poner  | its ca | pacity  | and      | delays   | 5       |       |      |  |  |  |
| CO5                                                                                                           | Learn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 critic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cal fa    | ctors   | consid | lerati | on in   | airpoi   | rt des   | ign     |       |      |  |  |  |
| CO6                                                                                                           | Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gn and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | be al     | ole to  | apply  | these  | e princ | ciples   | in fie   | 1d      |       |      |  |  |  |
| Cont                                                                                                          | ributi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cours     | e Outo  | comes  | s towa | rds ac  | hieve    | ment     | of Pro  | gram  |      |  |  |  |
| Outc                                                                                                          | omes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1 – Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w, 2-     | Medi    | um, 3  | – Hig  | h)      |          |          |         | •     |      |  |  |  |
|                                                                                                               | РО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PO        | РО      | PO     | PO     | PO      | PO       | PO       | PO      | PO    | РО   |  |  |  |
|                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3         | 4       | 5      | 6      | 7       | 8        | 9        | 10      | 11    | 12   |  |  |  |
| CO1                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | -       | -      | -      | -       | -        | -        | -       | -     | -    |  |  |  |
| CO2                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | -       | -      | -      | -       | -        | -        | -       | -     | -    |  |  |  |
| CO3                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | -       | -      | -      | -       | -        | -        | -       | -     | -    |  |  |  |
| CO4                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | -       | -      | -      | -       | -        | -        | -       | -     | -    |  |  |  |
| CO5                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | -       | -      | -      | -       | -        | -        | -       | -     | -    |  |  |  |
| CO6                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3         | -       | -      | 2      | -       | 2        | -        | -       | -     | -    |  |  |  |
|                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         | τ      | JNIT I |         |          |          |         |       |      |  |  |  |
| ~                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | C      |        | 1 4 4   | <b>•</b> |          |         |       |      |  |  |  |

#### Growth and Characteristics of Airport and Aircraft:

Growth of air transport, airport organization and associations,

Classifications of airports airfield components, airport traffic zones and approach areas. Aircraft Components, size turning radius, speed, airport characteristics.

LO: 1. Understanding planning aspects of airports

2. Understand aircraft components and deciding dimensions

#### UNIT II

## **Airport Engineering:**

Airport site selection – factors affecting site selection and surveys- runway orientation – wind rose diagram – basic runway length – correction for runway length – terminal area – layout and functions – concepts of terminal building – simple building, linear concept, pier concept and satellite concept – typical layouts

LO: 1. Explain factors affecting site selection of airport

2. Identify features of terminal building layout

## civiUNIT III

## Capacity and Delay, Airport planning, surveys and Design:

Factors affecting capacity, Determination of runway capacity related to delay, gate capacity, and Taxiway capacity Airport Site Selection, Runway length and width, sight distances, longitudinal and transverse grades, runway intersections, taxiways, clearances, aprons, numbering, holding apron, noise control, Problems.

LO: 1. Classification of taxiway and features

2. Design of airport component for handling operations on land

## UNIT IV

## Planning and Design of the Terminal area:

Design of drainage systems, construction methods, layout of surface drainage and subsurface drainage system, Problems. Runways and taxiways markings, day and night landing aids, airport lighting, ILS and other associated aids.

LO: 1. Develop knowledge on grading and planning of airport layout.

2. Understand Airport landing systems

## Geometric design of runways

Aircraft characteristics – influence of characteristics on airport planning and design – geometric design elements of runway – runway lighting. LO: 1. Design of runways

## TEXT BOOKS:

- 1. Khanna, Arora and Jain, Airport Planning and Design, Nem Chand and Bros., Roorkee
- 2. Rangwala, Airport Engineering Charotar Publisher

## **REFERENCE BOOKS:**

- 1. R. Srinivasa Kumar, Transportation Engineering: Railways, Airports, Docks and Harbors, Universities Press Pvt Ltd, Hyderabad. 2014.
- 2. Virender Kumar and Satish Chandra, Airport Planning and Design, Galgotia Publication press.

- <u>https://www.allintuworld.in/download/transportation-engineering-ii-materials-notes/</u>
- <u>http://www.nptelvideos.in/2012/11/transportation-engineering-ii.html</u>
- <u>http://www.nptelvideos.in/2012/11/urban-transportation-planning.html</u>
- <u>http://www.nptelvideos.in/2012/11/transportation-engineering-ii.html</u>

### PROFESSIONAL ELECTIVE-1 18A3101515-URBAN HYDROLOGY

| Lectu<br>Tutor                                                                                                                                                | ıre –<br>rial:                                                              |             | 3-      | 0 Hou  | rs      |         |            | I       | nterna  | l Marl  | ks:    | 40    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|---------|--------|---------|---------|------------|---------|---------|---------|--------|-------|--|--|--|
| Credi                                                                                                                                                         | ts:                                                                         |             | 3       |        |         |         |            | Е       | xterna  | al Mar  | ks:    | 60    |  |  |  |
| Prere                                                                                                                                                         | quisit                                                                      | es:         |         |        |         |         |            |         |         |         |        |       |  |  |  |
| Cours                                                                                                                                                         | se Obj                                                                      | ective      | s:      |        |         |         |            |         |         |         |        |       |  |  |  |
| 1) To                                                                                                                                                         | impaı                                                                       | rt impa     | act of  | urban  | izatior | n on ca | atchm      | ent hy  | drolog  | y.      |        |       |  |  |  |
| 2) Na                                                                                                                                                         | rrate                                                                       | the im      | portar  | nce of | rainfa  | ll runo | off data   | a for u | rban l  | nydrolo | ogy.   |       |  |  |  |
| 3) Te                                                                                                                                                         | ach te                                                                      | echniq      | ues f   | or pea | ak flo  | w est   | imatio     | n for   | storm   | wate    | r dra  | inage |  |  |  |
| sy                                                                                                                                                            | stem d                                                                      | lesign.     |         |        |         |         |            |         |         |         |        |       |  |  |  |
| <ul> <li>4) Explain the design concepts of components in urban drainage systems.</li> <li>5) Train for preparation of master urban drainage system</li> </ul> |                                                                             |             |         |        |         |         |            |         |         |         |        |       |  |  |  |
| <ul><li>5) Train for preparation of master urban drainage system.</li></ul>                                                                                   |                                                                             |             |         |        |         |         |            |         |         |         |        |       |  |  |  |
| Course Outcomes:                                                                                                                                              |                                                                             |             |         |        |         |         |            |         |         |         |        |       |  |  |  |
| Course Outcomes:<br>Upon successful completion of the course, the student will be able to:                                                                    |                                                                             |             |         |        |         |         |            |         |         |         |        |       |  |  |  |
| Upon successful completion of the course, the student will be able to:CO1Impact of urbanization on catchment hydrology                                        |                                                                             |             |         |        |         |         |            |         |         |         |        |       |  |  |  |
| CO2                                                                                                                                                           | CO2 Develop intensity duration frequency curves for urban drainage          |             |         |        |         |         |            |         |         |         |        |       |  |  |  |
|                                                                                                                                                               | CO2 Develop intensity duration frequency curves for urban drainage systems. |             |         |        |         |         |            |         |         |         |        |       |  |  |  |
| CO3                                                                                                                                                           | Peak                                                                        | flow e      | stimat  | tions  |         |         |            |         |         |         |        |       |  |  |  |
| CO4                                                                                                                                                           | Devel                                                                       | op de       | sign s  | storms | s to si | ize the | e vario    | ous co  | ompon   | ents o  | of dra | inage |  |  |  |
|                                                                                                                                                               | syste                                                                       | ms.         |         |        |         |         |            |         |         |         |        |       |  |  |  |
| CO5                                                                                                                                                           | Apply                                                                       | best :      | mana    | gemen  | t prac  | tices t | o man      | lage u  | rban fl | ooding  | g.     |       |  |  |  |
| CO6                                                                                                                                                           | Devel                                                                       | op ma       | lster d | rainag | ge plar | n for a | n urba     | anized  | area.   |         |        |       |  |  |  |
| Cont                                                                                                                                                          | ributi                                                                      | on of (     | Cours   | e Out  | comes   | s towa  | rds ac     | chieve  | ment    | of Pro  | gram   |       |  |  |  |
| Outc                                                                                                                                                          | omes                                                                        | (1 - Local) | ow, 2-  | Medi   | um, 3   | – Hig   | <b>h</b> ) |         |         |         |        |       |  |  |  |
|                                                                                                                                                               | PO                                                                          | PO          | PO      | PO     | PO      | PO      | PO         | PO      | PO      | PO      | PO     | PO    |  |  |  |
|                                                                                                                                                               | 1                                                                           | 2           | 3       | 4      | 5       | 6       | 7          | 8       | 9       | 10      | 11     | 12    |  |  |  |
| CO1                                                                                                                                                           | 2                                                                           | -           | -       | -      | -       | -       | -          | -       | -       | -       | -      | -     |  |  |  |
| CO2                                                                                                                                                           | 2                                                                           | 2           | 3       | -      | -       | 2       | -          | 1       | -       | -       | -      | -     |  |  |  |
| CO3                                                                                                                                                           | 2                                                                           | _           | -       | -      | -       | -       | -          | -       | -       | -       | -      | -     |  |  |  |
| CO4                                                                                                                                                           | 2                                                                           | 2           | 3       | -      | -       | 2       | -          | 1       | -       | -       | -      | -     |  |  |  |
| CO5                                                                                                                                                           | 2                                                                           | _           | -       | -      | -       | -       | -          | -       | -       | -       | -      | -     |  |  |  |
| CO6                                                                                                                                                           | 2                                                                           | 2           | 3       | -      | -       | 2       | _          | 1       | -       | -       | -      | -     |  |  |  |
|                                                                                                                                                               |                                                                             |             |         |        | 1       | UNIT    | [          |         |         |         |        |       |  |  |  |

## **Urbanization and Precipitation Analysis**

Urbanization and its effect on water cycle – urban hydrologic cycle – Effect of urbanization on hydrology. **Precipitation Analysis**: Importance of short duration of rainfall and runoff data, methods of estimation of time of concentration and design of urban drainage systems, Intensity-Duration – Frequency (IDF) curves, design storms for urban drainage systems.

#### LO: 1. Define Urbanization and its effects

#### 2. Understand basic concepts of hydrological cycle.

#### UNIT II

#### Methods of Urban Drainage:

Time of concentration, peak flow estimation approaches, rational method, NRCS curve number approach, runoff quantity and quality, wastewater and storm water reuse , major and minor systems. Drainage systems: Open channel, underground drains, appurtenances, pumping, and source control.

LO: 1. Acquire skills for rainfall data acquisition

2. Design of drainage system.

#### UNIT III

#### Analysis and Management:

Storm water drainage structures, design of storm water network- Best Management Practices-detention and retention facilities, swales, constructed wetlands, models available for storm water management.

### LO: 1. Design drainage network scheme.

#### UNIT IV

## Drainage plans:

Issues – typical urban drainage master plan, interrelation between water resources investigation and urban planning processes, planning objectives, comprehensive planning, and use of models in planning.

## LO: 1. Prepare proper plan for storm water drainage system TEXT BOOKS:

- 1. Akan A.O and R.L. Houghtalen, Urban Hydrology, Hydraulics and Stormwater Quality: Engineering Applications and Computer Modelling (2006), Wiley International.
- 2. Hall M. J., Urban Hydrology (1984), Elsevier Applied Science Publisher.

## **REFERENCE BOOKS:**

- 1. Geiger W. F., J Marsalek, W. J. Rawls and F. C. Zuidema, Manual on Drainage in Urbanised area' (1987 2 volumes), UNESCO,
- 2. Wanielista M. P. and Eaglin, Hydrology Quantity and Quality Analysis (1997), Wiley and Sons.

## **Open Elective-2 (Offered by Department of civil engineering)**

#### **18A3101601-BUILDING MATERIALS**

| Lectu | Lecture - Tutorial:       2-0 Hours       Internal Marks:       40         Credits:       2       External Marks:       60         Prerequisites: Engineering chemistry, engineering geology and physics       60         Course Objectives: |           |            |           |                       |                  |             |           |           |           |        |     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|-----------------------|------------------|-------------|-----------|-----------|-----------|--------|-----|
| Credi | ts:                                                                                                                                                                                                                                          |           | 2          |           |                       |                  |             | E         | xterna    | al Marl   | ks:    | 60  |
| Prere | quisit                                                                                                                                                                                                                                       | es: En    | ginee      | ring cl   | hemist                | t <b>ry</b> , er | ıginee      | ring g    | eology    | v and p   | hysic  | s   |
| Cours | se Obj                                                                                                                                                                                                                                       | ective    | s:         |           |                       | -                |             |           |           |           |        |     |
| ≻ To  | learn t                                                                                                                                                                                                                                      | he avail  | lability,  | types,    | uses an               | d vario          | us tests    | for bu    | ilding m  | naterials | 5.     |     |
| ≻ To  | know a                                                                                                                                                                                                                                       | about ad  | ctivities  | in buil   | ding co               | nstruct          | tion.       |           | U         |           |        |     |
| Cour  | se Out                                                                                                                                                                                                                                       | come      | s:         |           |                       |                  |             |           |           |           |        |     |
| Upon  | succe                                                                                                                                                                                                                                        | essful    | compl      | etion     | of the                | cours            | se, the     | stud      | ent wi    | ll be     |        |     |
| able  | to:                                                                                                                                                                                                                                          |           |            |           |                       |                  |             |           |           |           |        |     |
| CO1   | Unders                                                                                                                                                                                                                                       | tand the  | process    | of makin  | g quality             | stones v         | vith its ap | oplicatio | ns.       |           |        |     |
| CO2   | Unders                                                                                                                                                                                                                                       | tand the  | process    | of makin  | g quality             | bricks w         | vith its ap | plicatio  | ns.       |           |        |     |
| CO3   | Assess                                                                                                                                                                                                                                       | quality o | f lime in  | a detaile | d manne               | r on the         | usage in    | the pres  | ent-day c | onstructi | on.    |     |
| CO4   | Assess                                                                                                                                                                                                                                       | quality o | f timber   | in a deta | iled man              | ner on tł        | ie usage i  | in the pr | esent-day | y constru | ction. |     |
| CO5   | Assess                                                                                                                                                                                                                                       | quality o | f steel in | a detaile | d manne               | r on the         | usage in    | the pres  | ent-day c | onstructi | ion.   |     |
| CO6   | Acquire                                                                                                                                                                                                                                      | e the kno | wledge a   | bout pai  | nts, varn             | ishes, dis       | stempers    |           |           |           |        |     |
| Cont  | ributio                                                                                                                                                                                                                                      | on of (   | Course     | Outc      | omes                  | towar            | ds ach      | ieven     | nent of   | f Progr   | am     |     |
| Outc  | omes                                                                                                                                                                                                                                         | (1 – Lo   | ow, 2-     | Mediu     | ı <mark>m, 3</mark> - | - High           | .)          |           |           |           |        |     |
|       | PO                                                                                                                                                                                                                                           | PO        | PO         | PO        | PO                    | PO               | PO          | PO        | PO        | PO        | PO     | PO  |
|       | 1                                                                                                                                                                                                                                            | 2         | 3          | 4         | 5                     | 6                | 7           | 8         | 9         | 10        | 11     | 12  |
| CO1   | 3                                                                                                                                                                                                                                            | _         | _          | _         | -                     | 2                | -           | 1         | -         | _         | -      | -   |
| CO2   | 3                                                                                                                                                                                                                                            | -         | -          | -         | -                     | 1                | -           | 1         | -         | -         | -      | -   |
| CO3   | 2                                                                                                                                                                                                                                            | 2         | -          | -         | -                     | 1                | -           | 1         | -         | -         | -      | -   |
| CO4   | 3                                                                                                                                                                                                                                            | -         | -          | -         | -                     | 1                | -           | 2         | -         | _         | -      | -   |
| CO5   | 2                                                                                                                                                                                                                                            | 2         | _          | _         | _                     | _                | _           | 1         | _         | -         | _      | _   |
| CO6   | 3                                                                                                                                                                                                                                            | 1         | _          | _         | _                     | 1                | _           | 2         | _         | -         | _      | _   |
|       |                                                                                                                                                                                                                                              |           |            |           | 1                     | UNIT             | [           |           |           |           |        |     |
| OTONI |                                                                                                                                                                                                                                              | ··· c     | 1          | 1 .1 1.   |                       | <u></u>          |             | -         | 1 C 1     | 1         |        | 1 C |

**STONES** Qualities of a good building stone; Stone quarrying; Tools for blasting; Materials for blasting; Process of blasting; Precautions in blasting; Dressing of stones; Common building stones of India.

**BRICKS** General; Composition of good brick earth; Harmful ingredients in brick earth; Classification of brick earth; Manufacture of bricks; Comparison between clamp burning and kiln burning; Qualities of good bricks; Tests for bricks; Classification of bricks; Substitutes for bricks

#### UNIT II

**LIME** General, Some definitions, sources of lime, constituents of lime stones, classification of limes, comparison between fat lime and hydraulic lime , manufacture of fat lime

**TIMBER** Definition; Classification of trees; Structure of a tree; Felling of trees; Defects in timber; Qualities of good timber; Decay of timber; Preservation of timber; Fire resistance of timber; Seasoning of timber; Market forms of timber; Industrial timber; Advantages of timber construction; Use of timber; Indian timber trees.

#### UNIT III

**STEEL** General; Manufacture of steel; Uses of steel; Factors affecting physical properties; Defects in steel; Market forms of steel; Properties of mild steel; Properties of hard steel; Corrosion of ferrous metals.

#### UNIT IV

**PAINTS, VARNISHES AND DISTEMPERS** General; Painting; Varnishing; Distempering; Wall paper; White washing; Colour washing.

## **TEXT BOOKS:**

- 1. Engineering Materials, (36th edition) by Rangwala, S.C., Anand Charotar Publishing House, 2009.
- 2. Building construction, (10th edition) by Punmia, B. C., Laxmi Publications, Bangalore, 2009.

### **REFERENCE BOOKS:**

1. Building construction and construction materials by Birdie, G.S. and Ahuja, T.D., Dhanpath Rai Publishing company, New Delhi, 1986.

- <u>http://nptel.ac.in/courses.php</u>
- <u>http://jntuk-coeerd.in/</u>

## **Open Elective-2 (Offered by Department of civil engineering)**

#### **18A3101602-AIR POLLUTION & ITS CONTROL**

| Lecture – Tutorial:                     | 2-0 Hou       | rs                |           |           | Ι       | nterna   | l Mark   | <b>ks:</b> 4 | 10        |
|-----------------------------------------|---------------|-------------------|-----------|-----------|---------|----------|----------|--------------|-----------|
| Credits:                                | 2             |                   |           |           | E       | xterna   | al Marl  | ks: (        | 50        |
| Prerequisites: Enviro                   | onmental st   | udies             |           |           |         |          |          |              |           |
| <b>Course Objectives:</b>               |               |                   |           |           |         |          |          |              |           |
| To identify the pollu                   | tants and tl  | neir sou          | irces an  | d then    | the tra | nsport i | nechani  | isms of      | the       |
| pollutants followed                     | by the affec  | ted pop           | oulation  | and re    | spectiv | e contro | ols.     |              |           |
| > To learn the techniq                  | ues and ins   | trumen            | tation o  | of ambi   | ent air | monito   | ring,    |              |           |
| <ul> <li>Establishment of am</li> </ul> | bient air m   | onitorii          | ng stati  | ons, sta  | cks mo  | nitoring | z.       |              |           |
| ➢ To know the method                    | ls of analys  | is air an         | nd air po | ollutant  | S.      |          | _        |              |           |
| <b>Course Outcomes:</b>                 |               |                   | -         |           |         |          |          |              |           |
| Upon successful co                      | mpletion      | of the            | cours     | se, the   | stude   | ent wil  | ll be at | ole to:      |           |
| CO1 Understand of co                    | ontemporar    | y pollu           | tion iss  | ues.      |         |          |          |              |           |
| CO2 Analyze specific                    | examples o    | fvariou           | ıs sourc  | ces of ai | r pollu | tion.    |          |              |           |
| CO3 Understand the                      | properties (  | of atmo           | sphere    |           |         |          |          |              |           |
| CO4 Comprehend the                      | e causes of l | key type          | es of air | polluti   | on.     |          |          |              |           |
| CO5 Comprehend the                      | effects of k  | ey type           | es of air | polluti   | on      |          |          |              |           |
| CO6 Classify of differ                  | ent pollutio  | n contr           | ol strat  | egies     | -       |          |          |              |           |
| Contribution of Cou                     | arse Outc     | omes              | toware    | ds ach    | ieven   | ient of  | f Progr  | am           |           |
| Outcomes (1 – Low,                      | 2- Mediu      | $\mathbf{m}, 3$ - | - High    | )         |         |          | 70       |              |           |
| PO PO P                                 | PO PO         | PO                | PO        | PO        | PO      | PO       | PO<br>10 | PO           | <b>PO</b> |
|                                         | 3 4           | 5                 | 6         | 1         | 8       | 9        | 10       | 11           | 12        |
| COI 3 I                                 |               | -                 | -         | -         | 2       | -        | -        | -            | -         |
| CO2 2 2                                 |               | -                 | 1         | -         | -       | -        | -        | -            | -         |
| CO3 3 2                                 |               | -                 | -         | -         | 1       | -        | -        | -            | -         |
| CO4 3 2                                 |               | _                 | -         | _         | 1       | -        | _        | -            | _         |
| CO5 2 -                                 |               | -                 | -         | -         | -       | -        | -        | -            | -         |
| CO6 2 1                                 |               | -                 | 2         | _         | 1       | -        | -        | -            | -         |
|                                         |               | 1                 | UNIT I    |           |         |          | •        |              |           |

**AIR POLLUTION** Air pollution - definitions-scope, significance - air pollutants - measurements of pollution classification –natural and artificial-primary and secondary, point and non-point.

**EFFECT OF AIR POLLUTION** Effect of air pollutants on man-material and vegetationglobal effects of air pollution green house effect, heat lands, acid rains and ozone.

#### UNIT II

**METEROLOGY AND PLUME DISPERSION** Properties of atmosphere-heat, pressure, wind forces, moisture and relative humidity influence of meteorological phenomenon on air quality- wind rose diagram.

#### UNIT III

**METHODS OF CONTROLLING** Control of particulates-control at sources-controlling equipments-settling chamber centrifugal separators-fabric filters –dry and wet scrubbers-electrostatic precipitators.

#### UNIT IV

**INPLANT CONTROL MEASURES** Process Change-Dry and Wet Methods of Removal and Recycling-Dust Collection Devices-Internal Separators-Catalyst Reduction **AIR POLLUTION CONTROL BY DILUTION** General-Meteorological Factors-Atmospheric Temperature Lapse Rate-Speed and Direction of Wind- Wind Velocity Profile-Diffusion Theories-Objects of Stack

## **TEXT BOOKS:**

1 Air Pollution and Control by Rao, M.N and Rao, H.N., Tata McGraw Hill, New Delhi, 2007.

2. Environmental Engineering and Management, (2nd Edition) by Suresh, S.K.Kartarai & Sons, 2005.

## **REFERENCE BOOKS:**

1. An Introduction to Air pollution by Trivedy, R.K., B.S.Publications, 2005.

2. Air pollution by Wark and Warner, Addison-Wesley Publications, 1998.

#### **E-RESOURCES:**

NPTEL

## **Open Elective-2**

#### 18A3101602-MANAGEMENT SCIENCE

| Lecture - Tutorial:                                                    | 2-1 Hours                | 5        |          |          |        | Interna     | l Mark      | s: 4        | 40       |  |  |
|------------------------------------------------------------------------|--------------------------|----------|----------|----------|--------|-------------|-------------|-------------|----------|--|--|
| Credits:                                                               | 3                        |          |          |          |        | Externa     | al Mark     | <b>S:</b> ( | 50       |  |  |
| Prerequisites:                                                         | •                        |          |          |          |        |             |             |             |          |  |  |
| Lourse Objectives:                                                     | Jadaa aff                |          |          |          |        |             |             |             |          |  |  |
| 1. To develop know                                                     | vieage of fi             | undam    | ental n  | lanagei  | ment   | concepts    | s, skills a | and to      | 01S, to  |  |  |
| aid in problem s                                                       | olving and               | decisio  | on maki  | ng.      |        |             | _           |             | _        |  |  |
| 2. To develop ar                                                       | nd unders                | tandin   | g abo    | ut the   | org    | ganizatio   | nal str     | ucture      | and      |  |  |
| relationship bet                                                       | ween autho               | ority an | nd resp  | onsibili | ty in  | various s   | tructur     | es.         |          |  |  |
| 3. To discuss the e                                                    | evolution o              | f princ  | iples tl | hat ma   | ke it  | possible    | to desi     | gn faci     | ilities, |  |  |
| processes, and                                                         | control sy               | stems    | with     | a degr   | ee of  | f predict   | ability     | as to       | their    |  |  |
| performance.                                                           | -                        |          |          | -        |        | -           | -           |             |          |  |  |
| 4. To develop co                                                       | mprehensi                | ve sk    | ills in  | plann    | ing.   | selecting   | . moti      | vating.     | and      |  |  |
| developing the h                                                       | uman reso                | urces f  | for orga | nisatio  | nal e  | ffectiven   | ess         | ,           |          |  |  |
| E To understand t                                                      | bo broad o               | cono o   | f marle  | oting of |        | al othica   | l and of    | thar di     | vorco    |  |  |
| 5. TO understand t                                                     | lie bioau s              | cope o   | n mark   | eting, s | ociet  | al, etilica | li allu o   | uller ul    | verse    |  |  |
| aspects of marke                                                       | eting.                   |          |          |          |        |             |             |             |          |  |  |
| Course Outcomes:                                                       |                          |          |          |          |        |             |             |             |          |  |  |
| Upon successful completion of the course, the student will be able to: |                          |          |          |          |        |             |             |             |          |  |  |
| CO1 Design of organizational structure both industries and academia.   |                          |          |          |          |        |             |             |             |          |  |  |
| CO2 Analyse various                                                    | functions                | of man   | lageme   | nt that  | inclu  | de opera    | tions m     | anage       | ment,    |  |  |
| success of organ                                                       | gement, ma<br>uisations. | arketir  | ig mar   | lageme   | nt, F  | ik mana     | gement      | neipi       | ui in    |  |  |
| CO2 Understand the                                                     | innenartan               | an of    | alannin  | a for    | tha l  | an a tarm   | throw       | -h atra     | ataria   |  |  |
| management.                                                            | Importan                 | ce or    | plannin  | ig for   | the l  | ong-term    | i throug    | gn stra     | ategic   |  |  |
| COA Understand quali                                                   | tu control ct            | andard   | a 9. aan | tompor   |        |             | t nracti    | hog hojr    |          |  |  |
| followed both in i                                                     | ndustries ar             | nd acad  | emia     | tempora  | ary ma | anagemen    | it practic  | es ben      | ıg       |  |  |
| CO5 Compare concep                                                     | otual mode               | ls of st | rategic  | manag    | emen   | t and to    | underst     | and its     | 5        |  |  |
| applicability in u                                                     | understand               | ing the  | e constr | aints a  | nd op  | oportunit   | ies in th   | ie secto    | ors.     |  |  |
| CO6 Understand the                                                     | contempo                 | rary is  | ssues in | n the fi | ield c | of manag    | ement       | science     | e and    |  |  |
| their applicabili                                                      | ty in the rea            | al worl  | d at ev  | ery leve | el     |             |             |             |          |  |  |
| Contribution of Cours                                                  | e Outcome                | es tow   | ards ac  | hiever   | nent   | of Progr    | am Out      | tcome       | s (1     |  |  |
| – Low, 2- Medium, 3 –                                                  | High)                    |          |          |          |        | 8-          |             |             | - (-     |  |  |
| PO PO P                                                                | 0 P0                     | PO       | PO       | PO       | PO     | PO          | PO          | PO          | PO       |  |  |
| 1 2 3                                                                  | 3 4                      | 5        | 6        | 7        | 8      | 9           | 10          | 11          | 12       |  |  |
| CO1 2                                                                  | -                        | -        | -        | -        | -      | 2           | -           | 3           | -        |  |  |
| CO2 2                                                                  | -                        | -        | -        | -        | -      | 1           | -           | 3           | -        |  |  |
| CO3 2                                                                  | -                        | -        | -        | -        | -      | 2           | -           | 3           | -        |  |  |
| CO4 2                                                                  | -                        | -        | -        | -        | -      | 1           | -           | 3           | -        |  |  |
| CO5 2                                                                  | -                        | -        | -        | -        | -      | 2           | -           | 3           | -        |  |  |
| CO6 2                                                                  | -                        | -        | -        | -        | -      | 2           | -           | 3           | V        |  |  |
|                                                                        | I                        |          | UNIT I   |          |        | I           |             |             |          |  |  |

**Introduction to Management:** Concepts of Management and organization- nature, importance and Functions of Management, Taylor's Scientific Management Theory and thinkers. Fayol's. Basic motivational theories- Maslow's hierarchy needs MC.Douglas Gregory theory.

**Designing Organisational Structures:** Basic concepts related to Organisation -Types

of organisation structures (Line, Functional & line& staff) - their merits, demerits and suitability. Formal and Informal Organizations.

#### UNIT II

**Operations Management:** Principles and Functions -Types of Plant Layout-Methods of production (Job, batch and Mass Production), Work Study -Basic procedure involved in Method Study and Work Measurement- Statistical Quality Control: chart, R chart, *c* chart, *p* chart, Mean Chart, (simple Problems).

**Materials Management:** Objectives, Need, procedure and Types of Inventory control. EOQ(simple Problems), Materials Requirement Planning (MRP), Just-In-Time (JIT), Total Quality Management (TQM), six sigma and Capability Maturity Model (CMM) Levels.

#### UNIT III

**Marketing Management:** Functions of Marketing and Marketing Strategies based on Product Life Cycle, Channels of distribution.

**Human Resources Management (HRM):** Concepts of HRM & HRD. Basic functions of Human Resource Management. Performance Appraisal, Job Evaluation and Merit Rating. Performance Management.

#### UNIT IV

**Strategic Management:** Vision, Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, SWOT Analysis, Steps in Strategy Formulation and Implementation. Value Chain Analysis, Enterprise Resource Planning (ERP), and Business Process outsourcing (BPO), Business Process Re-engineering (BPR),Bench Marking, and Balanced Score Card.

#### **TEXT BOOKS:**

- 3. Management Science, Aryasri, TMH, 2004.
- 4. Management Science, Rajesh C. Jampala, P. Adi Lakshmi, Duvuri Publications, Machilipatnam, 2010.

#### **REFERENCE BOOKS:**

- 3. Kotler Philip & Kevin Lane Keller, Marketing Mangement . 12th Edition, PHI, 2005.
- 4. Koontz & Weihrich, Essentials of Management, 6th Edition, TMH, 2005.
- 5. Stoner, Freeman, Gilbert, Management, 6th Ed, Pearson Education, New Delhi, 2004.
- 6. Production and Operations Management, Kanishka Bedi, Oxford University Press, 2004.
- 7. Personnel Management, Memoria & S.V. Gauker Himalaya, 25th Edition, 2005.
- 8. Lawrence R Jauch, R.Gupta & William F.Glueck: Business Policy and Strategic Management, Frank Bros. 2005.

| Pract    | tical                           |          | 3       | Hours         |          |          |          | Ι            | nterna  | al Mark   | s:     | 40       |  |
|----------|---------------------------------|----------|---------|---------------|----------|----------|----------|--------------|---------|-----------|--------|----------|--|
| Credi    | edits: 1.5 External Marks: 60   |          |         |               |          |          |          |              |         |           |        |          |  |
| Prere    | equisit                         | es:      |         |               |          |          |          |              |         |           |        |          |  |
| Cours    | se Obj                          | ective   | es: Soi | 1 Mec         | hanic    | s        |          |              |         |           |        |          |  |
| $\succ$  | To im                           | part k   | nowle   | dge of        | deteri   | minati   | ion of : | index        | proper  | rties ree | quire  | d for    |  |
|          | classi                          | ficatio  | on of s | oils.         |          |          |          |              |         |           |        |          |  |
| $\succ$  | To tea                          | ach ho   | w to d  | leterm        | ine co   | mpact    | tion ch  | aract        | eristic | s and     |        |          |  |
|          | consc                           | olidatio | on beh  | aviou         | r from   | releva   | ant lab  | o tests      | ; to de | termine   | е      |          |  |
|          | perm                            | eabilit  | y of sc | oils.         |          |          |          |              |         |           | 1.00   |          |  |
|          | To tea                          | ach ho   | w to d  | leterm        | ine sh   | ear pa   | aramet   | ters of      | soil th | nrough    | diffe  | rent     |  |
| 0        | labor                           | atory t  | tests.  |               |          |          |          |              |         |           |        |          |  |
| Cour     | se Out                          | tcome    | s:      | 1 - 4 9       | - 6 4 1- |          |          | <b>.</b>     | 1 4 .   |           | -1-1-  | <b>.</b> |  |
|          |                                 | essiul   | comp    | letion        | ιοιτη    |          | rse, ti  | ne stu       |         | will de   | able   | το:      |  |
| 001      | Deter                           | ·mine    | index   | prope         | rties of | I SOII 8 | and cla  | assily       | tnem.   |           |        |          |  |
| CO2      | Deter                           | mine     | perme   | ability       | v of soi | ls       | -        |              |         |           |        |          |  |
| CO3      | Deter                           | mine     | Comp    | action        | , Cons   | olidat   | ion an   | ld she       | ar stre | ength     |        |          |  |
|          | chara                           | acteris  | tics    |               |          |          |          |              |         |           |        |          |  |
| Cont     | ributi                          | on of (  | Cours   | e Out         | comes    | s towa   | rds ac   | chieve       | ement   | of Pro    | gram   | L        |  |
| Outc     | omes                            | (1 - L)  | ow, 2-  | Medi          | um, 3    | – Hig    | (h)      | I            |         |           |        |          |  |
|          | PO                              | PO       | PO      | PO            | PO       | PO       | PO       | PO           | PO      | PO        | PO     | PO       |  |
|          | 1                               | 2        | 3       | 4             | 5        | 6        | 7        | 8            | 9       | 10        | 11     | 12       |  |
| CO1      | 3                               | 3        | -       | 3             | -        | 2        | -        | 2            | -       | -         | -      | -        |  |
| CO2      | 3                               | 3        | -       | 3             | -        | 2        | -        | 2            | -       | -         | -      | -        |  |
| CO3      | 3                               | 3        | -       | 3             | -        | 2        | -        | 2            | -       | -         | -      | -        |  |
|          |                                 |          |         | L             | ist of i | Exper    | iment    | ts           |         |           |        |          |  |
| 1.       | Spec                            | ific gr  | avity   |               |          |          |          |              |         |           |        |          |  |
| 2.       | Atter                           | berg's   | s Limi  | ts.           |          |          |          |              |         |           |        |          |  |
| 3.       | Field                           | densi    | ity-Co  | re cut        | tter ar  | nd Sa    | nd rep   | lacen        | nent n  | nethod    | S      |          |  |
| 4.       | Grair                           | ı size   | analy   | sis by        | sievii   | ng       |          |              |         |           |        |          |  |
| 5.       | Hvdr                            | omete    | er Ana  | lvsis         | Test     | •        |          |              |         |           |        |          |  |
| 6.       | Perm                            | eabili   | tv of   | soil - (      | Const    | ant ai   | nd Var   | iable        | head t  | tests     |        |          |  |
| 7.       | Com                             | nactio   | n test  |               |          |          |          |              |         |           |        |          |  |
| 8        | Cone                            | olidat   | ion te  | net (to       | he de    | mons     | tratod   | Ð            |         |           |        |          |  |
| 0.<br>0  | Direc                           | of Sho   |         | .sc (co<br>+  | be de    |          | liatet   | -)           |         |           |        |          |  |
| 9.<br>10 |                                 |          | ai tes  |               | aaiam    | toat (   |          | a <b>t</b> ) |         |           |        |          |  |
| 11       | J.<br>1                         | IIIaz    |         |               | 551011   |          |          | SLJ          |         |           |        |          |  |
| 11       | 11. Unconfined Compression test |          |         |               |          |          |          |              |         |           |        |          |  |
| 12       | 2.                              | vane     | Snea    | r test        |          |          |          |              |         |           |        |          |  |
| 13       | 3.                              | Diffe    | rentia  | l free        | swell    | (DFS)    |          |              |         |           |        |          |  |
| 14       | <b>1</b> .                      | CBR      | Test    |               |          |          |          |              |         |           |        |          |  |
|          |                                 |          |         |               |          |          |          |              |         |           |        |          |  |
| TEXT     | г воо                           | KS:      |         |               |          |          |          |              |         |           |        |          |  |
| 1. K.    | R. Are                          | ora, So  | oil Mea | chanic        | s and    | Found    | dation   | Engg         | ., Stan | dard P    | ublis  | hers     |  |
| an       | nd Dist                         | ributo   | ors, De | elhi.         |          |          | -        |              |         |           |        | _        |  |
| 2. C.    | Venka                           | ataran   | niah, ( | <i>deotec</i> | hnical   | Engi     | neerin   | g, Nev       | v age I | nternat   | tional | Pvt.     |  |
| Lt       | d, (200                         | J2).     |         |               |          |          |          |              |         |           |        |          |  |

18A3101491-Soil Mechanics Lab

#### **REFERENCE BOOKS:**

- 1. 'Determination of Soil Properties' by J. E. Bowles.
- 2. IS Code 2720 relevant parts.

|        |          |                 | 81      | A310    | 1492-   | Conci   | ete T     | ecnno   | logy I  | ⊿ab      |        |      |
|--------|----------|-----------------|---------|---------|---------|---------|-----------|---------|---------|----------|--------|------|
| Lectu  | ıre – 1  | <b>`utori</b> a | al:     | 3-0 H   | ours    |         |           | I       | nterna  | al Mar   | ks:    | 40   |
| Credi  | ts:      |                 |         | 1.5     |         |         |           | E       | xterna  | al Mar   | ks:    | 60   |
| Prere  | quisit   | es: Co          | oncret  | e Tec   | hnolo   | gу      |           |         |         |          |        |      |
| Cours  | se Obj   | ective          | es:     |         |         |         |           |         |         |          |        |      |
| To tes | st the 1 | basic j         | proper  | ties in | Igredie | ents of | concr     | ete, fr | esh ar  | nd har   | dened  |      |
| concr  | ete      |                 |         |         |         |         |           |         |         |          |        |      |
| Cour   | se Out   | tcome           | s:      |         |         |         |           |         |         |          |        |      |
| Upon   | succe    | essful          | comp    | letion  | ı of th | e cou   | rse, tl   | 1e stu  | dent v  | will be  | able   | to:  |
| CO1    | Deter    | mine            | the co  | nsiste  | ncy ar  | nd fine | eness o   | of cem  | ent.    |          |        |      |
| CO2    | Deter    | mine            | the se  | tting t | imes c  | of cem  | ent.      |         |         |          |        |      |
| CO3    | Deter    | mine            | the sp  | ecific  | gravity | and a   | sound     | ness o  | of ceme | ent.     |        |      |
| CO4    | Deter    | mine            | the co  | mpres   | sive st | trengt  | h of ce   | ment.   |         |          |        |      |
| CO5    | Deter    | mine            | the wo  | orkabi  | lity of | cemer   | nt conc   | erete b | y com   | pactio   | n fact | or,  |
|        | slum     | p and           | Vee-1   | Bee te  | sts     |         |           |         |         |          |        |      |
| CO6    | Deter    | mine            | the sp  | ecific  | gravity | 7 of co | arse a    | ggrega  | ite and | l fine a | aggreg | gate |
|        | by Si    | eve an          | alysis  |         |         |         |           |         |         |          |        |      |
| CO7    | Deter    | mine            | the fla | kines   | s and o | elonga  | tion ir   | ndex o  | f aggre | egates.  | •      |      |
| CO7    | Deter    | mine            | the bu  | ılking  | of san  | d.      |           |         |         |          |        |      |
| CO8    | Unde     | erstand         | d the r | ion-de  | estruct | ive tes | sting p   | roced   | ures o  | n conc   | crete. |      |
| Cont   | ributi   | on of (         | Cours   | e Out   | comes   | s towa  | rds ac    | chieve  | ment    | of Pro   | ogram  | L    |
| Outc   | omes     | (1 - L)         | ow, 2-  | Medi    | um, 3   | – Hig   | <b>h)</b> |         |         |          |        |      |
|        | PO       | PO              | PO      | PO      | PO      | PO      | PO        | PO      | PO      | PO       | PO     | PO   |
|        | 1        | 2               | 3       | 4       | 5       | 6       | 7         | 8       | 9       | 10       | 11     | 12   |
| CO1    | 3        | 3               | -       | 3       | -       | 2       | -         | 2       | -       | -        | -      | -    |
| CO2    | 3        | 3               | -       | 3       | -       | 2       | -         | 2       | -       | -        | -      | -    |
| CO3    | 3        | 3               | -       | 3       | -       | 2       | -         | 2       | -       | -        | -      | -    |
|        |          |                 |         | L       | ist of  | Exper   | iment     | s       |         |          |        |      |

. . . . . . . . .

- 1. Determination of normal Consistency and fineness of cement.
- 2. Determination of initial setting time and final setting time of cement.
- 3. Determination of specific gravity and soundness of cement.
- 4. Determination of compressive strength of cement.
- 5. Determination of grading and fineness modulus of coarse aggregate by sieve analysis.
- 6. Determination of specific gravity of coarse aggregate
- 7. Determination of grading and fineness modulus of fine aggregate (sand) by sieve analysis.
- 8. Determination of bulking of sand.
- 9. Determination of workability of concrete by compaction factor method.
- Determination of workability of concrete by slump test 10.
- 11. Determination of workability of concrete by Vee-bee test.
- 12. Determination of compressive strength of cement concrete and its young's modulus.
- 13. Determination of split tensile strength of concrete.

14. Non-Destructive testing on concrete (for demonstration)

## **TEXT BOOKS:**

- 1. Properties of Concrete by A. M. Neville, ELBS publications Oct 1996.
- 2. Concrete Technology by M.S. Shetty, S.Chand & Co 2009.

## **REFERENCE BOOKS:**

1. Concrete: Micro Structure, Properties and Materials by P. K. Mehta and P. J.

Monteiro,. Mc. Graw-Hill Publishing Company Ltd. New Delhi 2. Design of Concrete Mixes by N. Krishna Raju, CBS Publications, 2000.

#### 18A3100801-INDIAN CONSTITUTION Type of Course: Audit Course

| Lectur | re –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tutor     | rial- 0-  | -1-2      |           |            |          | T         | nternal    | Marks   |          | 40     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|------------|----------|-----------|------------|---------|----------|--------|
| Practi | cal::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |           |           |           |            |          |           | iter nar i | via Ko. |          |        |
| Credit | ecture-Tutorial- $0-1-2$ Internal Marks:ractical::0External Marks:redits:0External Marks:course Objectives:ourse Objectives:ourse Outcomes:pon successful completion of the course, the student will be able to:01Understand the meaning, history, features and characteristics of Indian Constitution02Gain knowledge on fundamental rights duties and Principles and importance of State03Understand the powers of Union, the Statesand Indian President.04Know about amendments of the constitution and Emergency Provisionsontribution of Course Outcomes towards achievement of Program Outcomes (1 –Iedium, 3 – High)POPOPOPOPO12345678910110132 |           |           | 60        |           |            |          |           |            |         |          |        |
| Prereq | uisites:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           |           |           |            |          |           |            |         |          |        |
| Cours  | e Objec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tives:    |           |           |           |            |          |           |            |         |          |        |
| Course | e Outco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mes:      |           |           |           |            |          |           |            |         |          |        |
| Upon s | successf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ul comp   | oletion   | of the c  | ourse, tl | he stude   | ent will | be able   | to:        |         |          |        |
| CO1    | Under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rstand th | e meani   | ing, hist | ory, feat | tures and  | l charac | teristics | of India   | n Const | itution  |        |
| CO2    | Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | knowled   | lge on fi | indame    | ntal righ | ts duties  | and Pri  | nciples   | and imp    | ortance | of State | Policy |
| CO3    | Under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stand th  | e power   | rs of Un  | ion, the  | Statesar   | nd India | n Presid  | ent.       |         |          |        |
| CO4    | Know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | about a   | mendm     | ents of   | the const | titution a | and Eme  | ergency   | Provisio   | ons     |          |        |
| Contri | ibution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of Cou    | rse Ou    | tcomes    | toward    | s achie    | vement   | of Pro    | gram O     | utcome  | s (1 –   | Low, 2 |
| Mediu  | m, 3 – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | High)     |           |           |           |            |          |           |            |         |          | ,      |
|        | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PO        | PO        | PO        | PO        | PO         | PO       | PO        | PO         | PO      | PO       | PO     |
|        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | 3         | 4         | 5         | 6          | 7        | 8         | 9          | 10      | 11       | 12     |
| CO1    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | -         | -         | -         | -          | -        | -         | -          | -       | -        | 2      |
| CO2    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3         | 2         | -         | _         | _          | -        | 2         | _          | _       | _        | _      |

\_

\_

2

\_

2

2

\_

#### UNIT I

CO3

CO4

3

- Meaning of the constitution law and constitutionalism
- Historical perspective of the Constitution of India

2

3

• Salient features and characteristics of the Constitution of India

\_

#### UNIT II

- Scheme of the fundamental rights
- The scheme of the Fundamental Duties and its legal status
- The Directive Principles of State Policy Its importance and implementation

\_

#### UNIT III

- Federal structure and distribution of legislative and financial powers between the Union and the States
- Parliamentary Form of Government in India The constitution powers and status of the President of India

#### UNIT IV

- Amendment of the Constitutional Powers and Procedure
- The historical perspectives of the constitutional amendments in India
- Emergency Provisions : National Emergency, President Rule, Financial Emergency

#### **Reference Books**

- 1. DurgadasBasu Introduction to the Constitution of India
- 2. Sharma, Sharma B. K. Introduction to the Constitution of India
- 3. RandhirSarmaSrkar The Constitution of India
- 4. Govt. of India The Constitution of India

## **III-II SYLLABUS**

#### TIND AMION DNOINDEDIN

|                |                |         | 18A      | 32014   | +U1-F   | DOND    | ATIO    | N ENG   | INEE     | ang     |          |     |
|----------------|----------------|---------|----------|---------|---------|---------|---------|---------|----------|---------|----------|-----|
| Lectu<br>Tutor | ıre –<br>rial: |         | 2-       | 1 Hou   | rs      |         |         | I       | nterna   | ul Mar  | ks:      | 40  |
| Credi          | its:           |         | 3        |         |         |         |         | E       | xterna   | al Mar  | ks:      | 60  |
| Prere          | quisit         | es: So  | oil Me   | chanio  | cs      |         |         |         |          |         |          |     |
| Cours          | se Obj         | ective  | es:      |         |         |         |         |         |          |         |          |     |
| 1) To          | impa           | rt knov | wledge   | e on sc | oil exp | loratio | n.      |         |          |         |          |     |
| 2) To          | teach          | slope   | stabil   | ity and | d safe  | ty asse | essme   | nt of e | earth re | etainir | ng       |     |
| stı            | ructur         | es.     |          |         |         |         |         |         |          |         |          |     |
| 3) To          | impa           | rt kno  | wledge   | e on be | earing  | capac   | ity an  | d setti | lement   | of sha  | allow    |     |
| foi            | undati         | ons.    | _        |         | _       | _       | -       |         |          |         |          |     |
| 4) To          | throw          | v light | on pil   | e and   | well fo | undat   | tion de | esigns  |          |         |          |     |
| Cour           | se Ou          | tcome   | s:       |         |         |         |         | 0       |          |         |          |     |
| Upon           | succ           | essful  | comp     | letion  | of th   | e cou   | rse, tl | he stu  | dent     | vill be | able     | to: |
| CO1            | Unde           | rstand  | d the r  | nethod  | ls of s | oil exp | olorati | on.     |          |         |          |     |
| CO2            | Com            | oile so | il inve  | stigati | on rep  | ort     |         |         |          |         |          |     |
| CO3            | Asses          | ss stat | oility o | fslope  | es and  | earth   | retair  | ning st | ructu    | es      |          |     |
| CO4            | Deter          | mine    | safe b   | earing  | capad   | citv an | d sett  | lemen   | t of sh  | allow   |          |     |
|                | found          | lation  | s.       | 0       | -       | 5       |         |         |          |         |          |     |
| CO5            | Desig          | n pile  | found    | lations | S.      |         |         |         |          |         |          |     |
| CO6            | Desig          | n well  | found    | lation  | s.      |         |         |         |          |         |          |     |
| Cont           | ributi         | on of   | Cours    | e Outo  | comes   | s towa  | rds ad  | chieve  | ement    | of Pro  | ogram    |     |
| Outc           | omes           | (1 - L) | ow. 2-   | Medi    | um. 3   | – Hig   | (h)     |         |          | 01 1 10 | ·9· ···· |     |
|                | PO             | PO      | PO       | PO      | PÓ      | PO      | PO      | PO      | PO       | PO      | PO       | PO  |
|                | 1              | 2       | 3        | 4       | 5       | 6       | 7       | 8       | 9        | 10      | 11       | 12  |
| CO1            | 2              | _       | -        | -       | -       | -       | -       | -       | -        | -       | -        | -   |
| CO2            | 2              | 2       | -        | _       | -       | 2       | _       | -       | _        | -       | -        | _   |
| CO3            | 2              | 2       | -        | -       | -       | -       | -       | -       | -        | -       | -        | _   |
| CO4            | 2              | 2       | -        | _       | _       | _       | -       | -       | -        | -       | -        | _   |
| CO5            | 2              | 3       | 3        | -       | -       | 2       | -       | 1       | -        | -       | -        | -   |
| CO6            | 2              | 3       | 3        | -       | -       | 2       | -       | 1       | -        | -       | -        | -   |
|                |                |         |          |         | I       | UNIT    |         | 1       | 1        |         | 1        |     |

## Soil Exploration:

Methods of soil exploration – Boring and Sampling methods – Penetration Tests - Pressure meter - Programme planning and preparation of soil investigation report.

LO: 1. Identify importance of soil exploration

2. Distinguish different soil exploration methods

## 3. Compile soil investigation report

## **Earth Retaining Structures**:

Infinite and finite earth slopes in sand and clay - types of failures - factor of safety of infinite slopes - stability analysis by Swedish arc method, standard method of slices - Taylor's Stability Number-Stability of slopes of dams and embankments - different conditions. Rankine's & Coulomb's theory of earth pressure - Culmann's graphical method - earth pressures in layered soils.

## LO: 1. Understand different types of failures

2. Explain different types of stability analysis

3. Estimation of earth pressure in different types of soils and conditions

4. Design of earth retaining structures according to stability concepts.

#### UNIT II

#### Shallow Foundations:

Types of foundations and influencing factors - Bearing capacity - determination of bearing capacity - factors influencing bearing capacity - analytical methods to determine bearing capacity - Terzaghi's theory - settlements - Design aspects of shallow foundations-IS Methods.

## LO: 1. Understand the different types of foundations

## 2. Determine the bearing capacity of soils.

## 3. Interpret settlements under different conditions

#### UNIT III

### **Pile Foundations**:

Types of piles – Load carrying capacity based on static and Dynamic formulae– Pile load tests - pile groups in sands and clays- pile cap design.

## LO: 1. Classify different types of piles

- 2. Assess load bearing capacity of different types of piles
- 3. Demonstrate pile load tests and to assess strength of pile
- 4. Understand functioning of different combinations of pile in groups
- 5. Design piles and pile caps in different soils.

## UNIT IV

## Well Foundations:

Types – Different shapes – Components of well foundation – forces acting on well foundations - Design Criteria – Determination of staining thickness and plug - construction and Sinking of wells – Tilt and shift.

## LO: 1. Classify different types of wells based on shape

## 2. Assess loads acting on well foundations

## 3. Understand procedures like well sinking and tilts and shifts TEXT BOOKS:

- 1. C. Venkataramiah, Geotechnical Engineering, New age International Pvt . Ltd, (2002).
- 2. B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, Soil Mechanics and Foundation by, Laxmi, publications Pvt. Ltd., New Delhi

## **REFERENCE BOOKS:**

- 1. T. N. Ramamurthy, A Textbook Of Geotechnical Engineering (Soil Mechanics), S. Chand and Company Limited, New Delhi
- 2. Purushtoma Raj, Soil Mechanics and Foundation Engineering, Pearson Publications

- <u>http://www.nptelvideos.in/2012/11/foundation-engineering.html</u>
- <u>http://www.btechmaterials.com/download/foundation-engineering-fe-material-notes/</u>

### **18A3201402-HIGHWAY ENGINEERING**

| Lectu      | ire –  |          | 3-      | 0 Hou    | rs       |          |         | Iı       | nterna | ul Marl | ks:   | 40  |
|------------|--------|----------|---------|----------|----------|----------|---------|----------|--------|---------|-------|-----|
| Credi      | te.    |          | 3       |          |          |          |         | E        | vtern  | al Mar  | ke    | 60  |
| Prere      | auisit | es:      |         |          |          |          |         | <u> </u> |        | ai mai  | 11.51 | 00  |
| Cours      | se Obi | ective   | es:     |          |          |          |         |          |        |         |       |     |
| 1) To      | impai  | t knov   | wledge  | e on hi  | ighway   | y devel  | lopmei  | nt and   | mate   | rials.  |       |     |
| 2) To      | teach  | conce    | pts of  | Geom     | ietric d | design   | and a   | lignme   | ent.   |         |       |     |
| ,<br>З) То | throw  | ' light  | on tra  | ffic vo  | lume     | studie   | s and   | regula   | tion.  |         |       |     |
| 4) To      | teach  | desig    | n of hi | ghway    | y inter  | section  | ns      | C        |        |         |       |     |
| 5) To      | impaı  | t know   | wledge  | e on de  | esign o  | of pave  | ements  | 8        |        |         |       |     |
| Cour       | se Out | tcome    | s:      |          |          |          |         |          |        |         |       |     |
| Upon       | succe  | essful   | comp    | letior   | n of th  | e cou    | rse, tl | ne stu   | dent v | vill be | able  | to: |
| CO1        | Carry  | v out h  | ighwa   | y surv   | veying   | and p    | lannir  | ıg.      |        |         |       |     |
| CO2        | Unde   | rstand   | l char  | acteris  | stics o  | f highv  | way m   | aterial  | s.     |         |       |     |
| CO3        | Geon   | netric ( | design  | and a    | alignm   | ent      |         |          |        |         |       |     |
| CO4        | Desig  | gn com   | poner   | nts of I | highwa   | ay.      |         |          |        |         |       |     |
| CO5        | Desig  | gn higł  | iway i  | nterse   | ections  | <b>.</b> |         |          |        |         |       |     |
| CO6        | Desig  | gn higł  | iway p  | bavem    | ents     |          |         |          |        |         |       |     |
| Cont       | ributi | on of (  | Cours   | e Out    | comes    | s towa   | rds ac  | chieve   | ment   | of Pro  | gran  | 1   |
| Outc       | omes   | (1 - L)  | ow, 2-  | Medi     | um, 3    | – Hig    | h)      |          |        |         |       |     |
|            | PO     | PO       | PO      | PO       | PO       | PO       | PO      | PO       | PO     | PO      | PO    | PO  |
|            | 1      | 2        | 3       | 4        | 5        | 6        | 7       | 8        | 9      | 10      | 11    | 12  |
| CO1        | 2      | -        | -       | -        | -        | -        | -       | -        | -      | -       | -     | -   |
| CO2        | 2      | -        | -       | -        | -        |          | -       |          | -      | -       | -     | -   |
| CO3        | 2      | 3        | 3       | -        | -        | 2        | -       | 1        | -      | -       | -     | -   |
| CO4        | 2      | 3        | 3       | -        | -        | 2        | -       | 1        | -      | -       | -     | -   |
| CO5        | 2      | 3        | 3       | -        | -        | 2        | -       | 1        | -      | -       | -     | -   |
| CO6        | 2      | 3        | 3       | -        | -        | 2        | -       | 1        | -      | -       | -     | -   |
|            |        |          |         |          |          | UNIJ     | ľ I     |          |        |         |       |     |

#### UNIT -I

#### Highway development and planning:

Highway development in India – Necessity for Highway Planning- Road Development Plans- Classification of Roads- Road Network Patterns – Highway Alignment and influencing Factors - Engineering Surveys – highway materials and testing.

LO: 1. Understand importance of highway development

2. Classify highways based in field conditions and alignment

## 3. Carryout highway materials and testing

## **Basic Concepts of Geometric Design**

Geometric Design- Design Criteria- Cross Section Elements

UNIT II

## Highway geometric design:

Sight Distance - Stopping sight Distance, Overtaking Sight Distance and intermediate Sight Distance- Design of Horizontal Alignment- Design of Super elevation and Extra widening- Design of Transition Curves-Design of Vertical alignment-Gradients- Vertical curves.

LO: 1. Understand different aspects govern highway design

2. Design highway features like alignment and super elevation

## 3. Design vertical and horizontal alignment of highways

#### UNIT III

## Traffic engineering and regulation:

Basic Parameters - Traffic Volume Studies- Data Collection and Presentationspeed studies- Data Collection and Presentation- Parking Studies and characteristics- Road Accidents-Causes and Preventive measures- Accident Data Recording – Condition Diagram and Collision Diagrams- Road Traffic Signs – Road markings- Design of Traffic Signals –Webster Method –Saturation flow – phasing and timing diagrams.

## LO: 1. Identify need and basic parameters of traffic channelling

## 2. Understand traffic volume and regulation.

## 3. Visualize causes for road accidents

## 4. Design safety features traffic using different methodologies Intersection design:

Conflicts at Intersections- Channelization –Traffic Islands and Design - Types of Intersections – Rotary Intersection and Design.

## LO: 1. Study causes for conflicts at intersections

## 2. Plan types and positioning of traffic intersections on highway.

#### UNIT IV

## Pavement design:

Flexible and rigid pavements – Components and Functions – design of Flexible pavement (G.I method and CBR Method as per IRC 37-2018 –Design of Rigid pavements – Westergaard's stress equations – CC pavements - Design of Expansion and contraction joints - Design of Dowel bars and Tie bars.

## LO: 1. Distinguish flexible and rigid pavements

## 2. Design of pavements using different methods

## **3. Study expansion and contraction joints and their importance TEXT BOOKS:**

- 1. S. K. Khanna and C. E. G. Justo, Highway Engineering, Nemchand & Bros., 7th edition (2000).
- 2. R. Srinivasa Kumar, Text Book of Highway Engineering, Universities Press Pvt Ltd, Hyderabad. 2011.

## **REFERENCE BOOKS:**

- 1. S K Sharma, A Textbook Of Highway Engineering, S. Chand and Company Limited, New Delhi
- 2. L. R. Kadiyali and Lal, Principles and Practice of Highway Engineering Design, Khanna Publications.

- <u>http://www.btechmaterials.com/download/transportation-engineering-materials-notes/</u>
- <u>http://www.nptelvideos.in/2012/11/introduction-to-transportation.html</u>
- <u>https://www.alljntuworld.in/download/transportation-engineering-ii-materials-notes/</u>
- <u>http://www.nptelvideos.in/2012/11/transportation-engineering-ii.html</u>
- <u>http://www.nptelvideos.in/2012/11/urban-transportation-planning.html</u>
- <u>http://www.nptelvideos.in/2012/11/transportation-engineering-ii.html</u>

|       |         | ]       | L8A3201       | L403-    | ENVIE    | RONM     | ENTA    | L ENG    | INEE   | RING    |        |    |
|-------|---------|---------|---------------|----------|----------|----------|---------|----------|--------|---------|--------|----|
| Lectu | 1re – 1 | `utori  | <b>al:</b> 3- | -0 Hou   | ırs      |          |         | I        | nterna | al Mar  | ks:    | 40 |
| Credi | its:    |         | 3             |          |          |          |         | E        | xtern  | al Mar  | ks:    | 60 |
| Prere | quisit  | es: Eı  | nvironm       | ental    | Studi    | es       |         |          |        |         |        |    |
| Cour  | se Obj  | ective  | es:           |          |          |          |         |          |        |         |        |    |
| 1) To | teach   | requi   | rements       | of wat   | ter and  | d its tr | reatme  | ent.     |        |         |        |    |
| 2) To | impa    | rt kno  | wledge o      | n sewa   | age tre  | eatmer   | nt met  | hodolo   | ogies. |         |        |    |
| 3) To | provi   | de fact | ts on Air     | pollut   | ion ar   | nd con   | trol.   |          |        |         |        |    |
| 4) To | enabl   | e with  | design        | concep   | ots of v | wastev   | vater t | reatm    | ent ur | its     |        |    |
| 5) To | throw   | v light | on impo       | rtance   | e of plu | umbin    | g.      |          |        |         |        |    |
| Cour  | se Ou   | tcome   | es:           |          |          |          |         |          |        |         |        |    |
| Upon  | succ    | essful  | comple        | tion o   | f the    | cours    | e, the  | stude    | nt wil | l be al | ble to | ): |
| CO1   | Unde    | rstan   | d about       | quality  | v of wa  | iter an  | d puri  | ficatio  | n proc | cess    |        |    |
| CO2   | Selec   | t appr  | opriate       | technie  | que fo   | r treat  | ment o  | of was   | te wat | er.     |        |    |
| CO3   | Asses   | ss the  | impact of     | of air p | ollutio  | on       |         |          |        |         |        |    |
| CO4   | Unde    | rstan   | d conseq      | uence    | s of so  | olid wa  | iste an | d its r  | nanag  | ement   | •      |    |
| CO5   | Desig   | gn don  | nestic pl     | umbin    | g syst   | ems.     |         |          |        |         |        |    |
| CO6   | Select  | tion of | suitable      | treatm   | ent flov | w for ra | aw wate | er treat | tments | •       |        |    |
| Cont  | ributi  | on of   | Course        | Outco    | mes t    | oward    | s achi  | ievem    | ent of | Progr   | am     |    |
| Outc  | omes    | (1 – L  | ow, 2- N      | Iediun   | n, 3 –   | High)    |         |          |        | 8-      |        |    |
|       | PO      | PO      | PO            | PO       | PO       | PO       | ΡΟ      | PO       | PO     | PO      | PO     | PO |
|       | 1       | 2       | 3             | 4        | 5        | 6        | 7       | 8        | 9      | 10      | 11     | 12 |
| CO1   | 2       | -       | -             | -        | -        | -        | -       | 1        | -      | -       | -      | -  |
| CO2   | 2       | -       | _             | -        | -        | -        | -       | 1        | -      | -       | _      | _  |
| CO3   | 2       | _       | -             | -        | -        | -        | _       | 1        | -      | -       | _      |    |

**Estimation of quality and quantity of water**- Importance and Necessity of Protected Water Supply systems; Routine water analysis - physical, chemical and bacteriological tests; Standards for drinking water; Water borne diseases, Sources of Water: Surface and Ground water, comparison of sources with reference to quality, quantity and other considerations

\_

\_

UNIT I

\_

\_

1

1

1

\_

-

-

\_

-

-

\_

\_

-

\_

\_

-

**Flow chart of public water supply system,** Water Demand and Quantity Estimation: Estimation of water demand for a town or city, Per capita Demand and factors influencing it - Types of water demands and its variations factors affecting water demand, Design Period Population Forecasting. - Capacity of storage reservoirs, Mass curve analysis.

**LO: 1** Teach causes for water borne diseases.

CO4

CO5

CO6

2

2

2

\_

2

\_

\_

3

-

\_

\_

-

\_

\_

-

- **2**. Estimation of water demand for a colony /town/city.
- **3.** Able to identify the sources of water.

## UNIT II

**Treatment of Water and distribution**: Flowchart of water treatment plant, Treatment methods: Theory and Design of Sedimentation, Coagulation, Sedimentation with Coagulation, Filtration-Slow sand and rapid sand filters; Construction and Operation; Disinfection methods-chlorination; Removal of hardness.

Distribution of Water: Requirements- Methods of Distribution system, Layouts of Distribution networks.

LO: 1. Enlightens the efforts involved in converting raw water into clean potable water.

- **2.** Able to apply treatment methods
- **3.** Impart knowledge on water distribution network

### UNIT III

**Estimation of quantity and quality of sewage** - Estimation of sewage flow and storm water drainage – fluctuations- classification of sewerage systems – types of sewers - Hydraulics of sewers and storm drains- design diameter of sewers – appurtenances in sewerage – Man holes, Street Inlets

Sewage characteristics – Sampling and analysis of wastewater - Physical, Chemical and Biological Examination- Measurement of BOD and COD - BOD equations.

**LO: 1.** Outline planning and the design of wastewater collection, conveyance and treatment systems for a community/town/city

**2.** Summarize the appurtenance in sewerage systems and their necessity

**3.** Provide knowledge of characterization of wastewater generated in a community.

#### UNIT IV

**Treatment of sewage and disposal**: Primary treatment-Screens-grit chambers-grease traps– floatation– sedimentation – design of preliminary and primary treatment units. Design of septic tank

**Secondary treatment**: Aerobic and anaerobic treatment process comparison. Suspended growth process: Activated Sludge Process, principles, and operational problems, Activated Sludge Processes, Attached Growth Process: Trickling Filters– mechanism of impurities removal- classification–operation and maintenance problems. Methods of disposal – disposal into water bodies-Oxygen Sag Curve-Disposal into sea, disposal on land- sewage sickness

**LO: 1** Impart understanding of treatment of sewage and the need for its treatment.

**2.** Teach planning, and design of septic tank.

**3**. Effluent disposal method and realize the importance of regulations in the disposal of effluents in Rivers.

## TEXT BOOKS:

- Elements of Environmental Engineering K. N. Duggal, S. Chand & Company Ltd., New Delhi, 2012.
- **2.** Environmental Engineering water supply Engineering- vol. 1 Santosh kumar Garg ,Khanna Publishers 2018 edition
- **3.** Sewage waste disposal and Air pollution Engineering Santosh kumar Garg ,Khanna Publishers 2018 edition

## **REFERENCE BOOKS:**

- 1. Environmental Engineering, D. Srinivasan, PHI Learning Private Limited, New Delhi, -2011 edition.
- 2. Wastewater engineering treatment and reuse Metclff & Eddy MCGraw Hill Education (India) private Limited- 2003 edition

## **E-RESOURCES:**

<u>https://www.alljntuworld.in/download/environmental-engineering-ee-materials-notes/</u>

#### **PROFESSIONAL ELECTIVE-II**

#### **18A3201511-GROUND IMPROVEMENT TECHNIQUES**

| Credits: 3 External Marks: 60                                             |      |
|---------------------------------------------------------------------------|------|
| Prerequisites: Soil Mechanics and Foundation Engineering                  |      |
| Course Objectives:                                                        |      |
| 1) To understand need for different ground improvement methods adopted    | for  |
| improving the properties of remoulded and in-situ soils by adopt          | ing  |
| different techniques                                                      |      |
| 2) To make the student understand how the reinforced earth technology a   | and  |
| soil nailing can obviate the problems posed by the conventional retain    | ing  |
| walls.                                                                    |      |
| 3) To know geo-textiles and geo-synthetics can to improve the performance | e of |
| soils.                                                                    |      |
| 4) To learn the concepts, purpose and effects of grouting.                |      |
| Course Outcomes:                                                          |      |
| Upon successful completion of the course, the student will be able to:    |      |
| CO1 Perceive the knowledge of various methods of ground improvement a     | and  |
| their suitability to different field situations.                          |      |
| CO2 Design a reinforced earth embankment and check its stability.         |      |
| CO3 Understand the functions of Geo-synthetics and their applications     | in   |
| Civil Engineering practice.                                               |      |
| CO4 Understand the concepts and applications of grouting.                 |      |
| CO5 Concept of dewatering                                                 |      |
| CO6 Stabilization of soils                                                |      |
| Contribution of Course Outcomes towards achievement of Program            |      |
| Outcomes (1 – Low, 2- Medium, 3 – High)                                   |      |
| PO                                    | PO   |
| 1 2 3 4 5 6 7 8 9 10 11                                                   | 12   |
| CO1 2 1 - 1                                                               | -    |
| CO2 2 1 - 1                                                               | -    |
| CO3 2 1 - 1                                                               | -    |
| CO4 2 1 - 1                                                               | -    |
| CO5 2 1 - 1                                                               | -    |
| CO6 2 1 - 1                                                               | -    |
| UNIT I                                                                    |      |

UNIT- I

**In situ densification methods**- in situ densification of granular soilsvibration at ground surface and at depth, impact at ground and at depth – in situ densification of cohesive soils – pre loading – vertical drains – sand drains and geo drains – stone columns.

## LO: 1. Understand methods of insitu densification

## 2. Study different types of drains for soil densification

**Dewatering** – sumps and interceptor ditches – single and multi stage well points – vacuum well points – horizontal wells – criteria for choice of filler material around drains – electro osmosis

#### LO: 1. Understand methods of dewatering

2. Study different types of dewatering and working criteria

UNIT II

## UNIT- II

**Stabilization of soils** – methods of soil stabilization – mechanical – cement – lime – bitumen and polymer stabilization – use of industrial wastes like fly ash and granulated blast furnace slag.

## LO: 1. Study different methods of stabilization of soils

## 2. Study utilization of industrial wastes to stabilize soils

## UNIT III

**Reinforced earth** – Principles – components of reinforced earth – design principles of reinforced earth walls – stability checks – soil nailing

## LO: 1. Understand principles of reinforced earth in ground improvement 2. Study procedures for verification of stability of slopes

**Geosynthetics** – Geotextiles – types – functions, properties and applications – Geogrids, Geomembranes and gabions - properties and applications.

## LO: 1. Utilization of advanced materials for ground improvement

## 2. Compare different types of synthetic based soil stabilization material and understand performance

## UNIT IV

**Grouting** – objectives of grouting – grouts and their applications – methods of grouting – stage of grouting – hydraulic fracturing in soils and rocks – post grout tests

## LO: 1. Understand methods of grouting

## 2. Assess efficiency of grouting adopting different tests TEXT BOOKS:

- 1. Purushotham Raj, Ground Improvement Techniques, Laxmi Publications, New Delhi.
- 2. Nihar Ranjan Patro, Ground Improvement Techniques, Vikas Publishing House (p) Limited, New Delhi.

## **REFERENCE BOOKS:**

- 1. M. P. Moseley, Ground Improvement, Blackie Academic and Professional, USA.
- 2. R. M. Koerner, Designing with Geosynethetics, Prentice Hall.

- <u>http://www.btechmaterials.com/download/ground-improvement-techniques-git-material-notes/</u>
- <u>http://www.btechmaterials.com/download/ground-improvement-techniques-git-material-notes/</u>

#### **PROFESSIONAL ELECTIVE-II**

#### **18A3201512-WATER RESOURCE ENGINEERING-II**

| Lecture<br>Tutoria | e –<br>al: |                 | 3-       | 0 Hou   | rs                     |         |          | I       | nterna  | al Mar  | ks:      | 40       |
|--------------------|------------|-----------------|----------|---------|------------------------|---------|----------|---------|---------|---------|----------|----------|
| Credits            | 5:         |                 | 3        |         |                        |         |          | E       | xterna  | al Mar  | ks:      | 60       |
| Prerequ            | uisit      | es: Hy          | ydraul   | lics, W | /ater 1                | resou   | rce en   | ginee   | ring-I  |         |          |          |
| Course             | Obj        | ective          | es:      |         |                        |         |          |         |         |         |          |          |
| 1) To d            | iscu       | ss the          | impor    | rtance  | of site                | e inves | stigatio | on,     |         |         |          |          |
| 2) To n            | arra       | te vari         | ious e   | xplora  | tion te                | echniq  | ues      |         |         |         |          |          |
| 3) To d            | escr       | ibe soi         | il sam   | pling t | echnie                 | ques.   |          |         |         |         |          |          |
| 4) To ti           | rain       | with 11         | nsitu s  | sub so  | il expl                | oratio  | n met    | hods    |         |         |          |          |
| 5) 10 a            | emo        | nstrat          |          | rumen   | tation                 | IOT SU  | ad son   | explo   | ration  | •       |          |          |
| Upon s             |            | lcome<br>seeful | :S:<br>  | lation  | ofth                   | A CO11  | +ea +1   | ho etu  | dent .  | will he | ahla     | to:      |
| CO1 F              | Estin      | ate ir          | rigatio  | n wat   | er reai                | uirem   | ents     | ic scu  | uciit   |         |          |          |
| CO2                | )esio      | n irric         | ration   | canal   | s and                  | canal   | netwo    | rb      |         |         |          |          |
| CO2                |            | n irric         | ration   | canal   | otmiot                 |         | 110100   | IK      |         |         |          |          |
| CO3 L              |            |                 |          | linomai | su uci                 |         | u1-0     |         |         |         |          |          |
| CO4 P              | han        |                 |          | liversi | $\frac{1011}{100}$ nea | ad wo   |          |         |         |         |          |          |
| CO5 A              | Inaly      | vse sta         | bility   | of grav | vity an                | id ear  | th dan   | 18      |         |         |          |          |
| CO6 1              | Desig      | gn ogee         | e spillv | ways a  | ind en                 | ergy c  | lissipa  | tion w  | orks    |         |          |          |
| Contril            | buti       | on of (         | Cours    | e Out   | comes                  | s towa  | irds ad  | chieve  | ement   | of Pro  | ogram    |          |
| Outcor             | nes        | (1 - L)         | ow, 2-   | Med1    | um, 3                  | – H1g   | (n)      | DO      | DO      | DO      | DO       | DO       |
| 1                  | 1          | PU<br>2         | PU<br>2  | PU<br>4 | P0<br>5                | PU<br>6 | PO<br>7  | PU<br>8 | PU<br>Q | 10      | PU<br>11 | PO<br>12 |
| CO1                | ⊥<br>0     | <b>4</b>        | J        | -       | 3                      | 0       | -        | 1       | ,       | 10      | 11       | 14       |
|                    | 4          | 4               | -        | -       | -                      | 2       | -        | 1       | -       | -       | -        | -        |
| CO2                | 2          | 3               | 3        | -       | -                      | 2       | -        |         | -       | -       | -        | -        |
| CO3                | 2          | 3               | 3        | -       | -                      | 2       | -        | 1       | -       | -       | -        | -        |
| CO4                | 2          | 3               | 3        | -       | -                      | 2       | -        | 1       | -       | -       | -        | -        |
| CO5                | 2          | 2               | -        | -       | -                      | 2       | -        | 1       | -       | -       | -        | -        |
| CO6                | 2          | 3               | 3        | -       | -                      | 2       | -        | 1       | -       | -       | -        | -        |
| <b>.</b>           |            | NT              | •,       | 1 •     | 1                      | UNIT    | L        | 1       |         | 1       |          |          |

**Irrigation:** Necessity and importance, principal crops and crop seasons, types, methods of application, soil-water-plant relationship, soil moisture constants, consumptive use, estimation of consumptive use, crop water requirement, duty and delta, factors affecting duty, depth and frequency of irrigation, irrigation efficiencies, water logging and drainage, standards of quality for irrigation water, crop rotation.

#### UNIT II

**Canals:** Classification, design of non-erodible canals - methods of economic section and maximum permissible velocity, economics of canal lining, design of erodible

Canals -Kennedy's silt theory and Lacey's regime theory, balancing depth of cutting.

#### **Canal Structures:**

**Falls:** Types and location, design principles of Sarda type fall and straight glacis fall.

**Regulators:** Head and cross regulators, design principles

#### UNIT III

**Cross Drainage Works:** Types, selection, design principles of aqueduct, siphon aqueduct and super passage. **Outlets**: types, proportionality, sensitivity and flexibility

**River Training:** Objectives and approaches

**Diversion Head Works:** Types of diversion head works, weirs and barrages, Layout of diversion head works, components. causes and failures of weirs on permeable

foundations, Bligh's creep theory, Khosla's theory, design of impervious floors for

Subsurface flow, exit gradient.

### UNIT IV

**Reservoir Planning:** Investigations, site selection, zones of storage, yield and

Storage capacity of reservoir, reservoir sedimentation.

**Dams:** Types of dams, selection of type of dam, selection of site for a dam. **Gravity dams:** Forces acting on gravity dam, causes of failure of a gravity

dam,

Elementary profile and practical profile of a gravity dam, limiting height of a dam, stability analysis, drainage galleries, grouting.

**Earth Dams:** Types, causes of failure, criteria for safe design, seepage, measures

For control of seepage-filters, stability analysis-stability of downstream slope during steady seepage and upstream slope during sudden drawdown conditions.

**Spillways**: Types, design principles of Ogee spillways, types of spillways crest gates. Energy dissipation below spillways-stilling basin and its appurtenances.

## TEXT BOOKS:

1. Irrigation and Water Power Engineering, B. C. Punmia, Pande B. B. Lal, Ashok

Kumar Jain, Arun Kumar Jain, Lakshmi Publications (P) Ltd.

2. Irrigation Engineering and Hydraulic Structure, Santosh Kumar Garg, Khanna

Publishers.

## **REFERENCE BOOKS:**

1. Irrigation and Water Resources Engineering, Asawa G L (2013), New Age International Publishers

2. Irrigation Water Resources and Water Power Engineering, Modi P N (2011), Standard Book House, New Delhi

- <u>http://www.nptelvideos.in/2012/11/water-resources-systemsmodeling.html</u>
- <u>http://www.nptelvideos.in/2012/11/advanced-hydrology.html</u>
- http://freevideolectures.com/Course/100/Water-Resources-Engineering
- <u>http://www.btechmaterials.com/download/water-resources-engineering-materials-notes/</u>
- <u>http://www.btechmaterials.com/download/water-resources-engineering-ii-materials-notes/</u>

#### **PROFESSIONAL ELECTIVE-II**

#### **18A3201513**-AIR POLLUTION ENGINEERING

| Lectu<br>Tutor | ıre –<br>rial: |          | 3-      | 0 Hou    | rs       |         |         | I       | nterna   | l Mar   | ks:    | 40     |
|----------------|----------------|----------|---------|----------|----------|---------|---------|---------|----------|---------|--------|--------|
| Credi          | ts:            |          | 3       |          |          |         |         | Е       | xterna   | al Mar  | ks:    | 60     |
| Prere          | quisit         | es:      |         |          |          |         |         |         |          |         |        |        |
| Cours          | se Obj         | ective   | es:     |          |          |         |         |         |          |         |        |        |
| 1) To          | teach          | the ba   | asics o | of air p | olluti   | on      |         |         |          |         |        |        |
| 2) To          | impar          | t the    | behavi  | iour of  | air du   | le to r | netrol  | ogical  | influe   | nce     |        |        |
| 3) To          | throw          | ' light  | on air  | qualit   | ty mar   | nagem   | ent     |         |          |         |        |        |
| 4) To          | teach          | the de   | esign ( | of air p | olluti   | on cor  | ntrol n | nethod  | ls       |         |        |        |
| Cour           | se Out         | tcome    | s:      |          |          |         |         |         |          |         |        |        |
| Upon           | succe          | essful   | comp    | letion   | of th    | e cou   | rse, tl | ne stu  | dent v   | vill be | able   | to:    |
| CO1            | Evalu          | ating    | the     | ambie    | nt air   | qual    | ity ba  | sed c   | on the   | anal    | ysis d | of air |
|                | pollu          | tants    |         |          |          | _       | -       |         |          |         | -      |        |
| CO2            | Desig          | n part   | ticulat | e and    | gaseo    | us cor  | ntrol m | neasur  | res for  | an ind  | lustry |        |
| CO3            | Judg           | e the p  | olume   | behav    | viour in | n a pr  | evailin | g envi  | ronme    | ntal c  | onditi | on     |
| CO4            | Estin          | ate ca   | arbon   | credit   | s for v  | arious  | day t   | o day i | activiti | ies     |        |        |
| CO5            | Pollut         | ion co   | ntrol m | ethods   | 8        |         |         |         |          |         |        |        |
| CO6            | Prope          | rties of | f atmos | sphere   |          |         |         |         |          |         |        |        |
| Cont           | ributi         | on of (  | Cours   | e Out    | comes    | s towa  | rds ac  | hieve   | ement    | of Pro  | ogram  | L      |
| Outc           | omes           | (1 - L)  | ow, 2-  | Medi     | um, 3    | – Hig   | ;h)     |         |          |         | 0      |        |
|                | PO             | PO       | PO      | PO       | PO       | PO      | PO      | PO      | PO       | PO      | PO     | PO     |
|                | 1              | 2        | 3       | 4        | 5        | 6       | 7       | 8       | 9        | 10      | 11     | 12     |
| CO1            | 2              | 2        | -       | -        | -        | -       | -       | -       | -        | -       | -      | -      |
| CO2            | 2              | 3        | 3       | -        | -        | 1       | -       | 1       | -        | -       | -      | -      |
| CO3            | 2              | -        | -       | -        | -        | -       | -       | -       | -        | -       | -      | -      |
| CO4            | 2              | 2        | -       | -        | -        | 1       | -       | 1       | -        | -       | -      | -      |
| CO5            | 2              | -        | -       | -        | -        | -       | -       | -       | -        | -       | -      | -      |
| CO6            | 2              | -        | -       | -        | -        | _       | -       | -       | -        | -       | -      | -      |
|                |                |          |         |          | 1        | UNIT    | [       |         |          |         |        |        |

Air Pollution:

Sampling and analysis of air pollutants, conversion of ppm into  $\mu g/m^3$ . Definition of terms related to air pollution and control - secondary pollutants - Indoor air pollution – Ozone holes and Climate Change and its impact - Carbon Trade.

## LO: 1. Learn the basics of air pollutants.

#### 2. Estimate the impact of air pollution

#### UNIT II

## Thermodynamics and Kinetics of Air-pollution:

Applications in the removal of gases like SOx, NOx, CO and HC - Air-fuel ratio- Computation and Control of products of combustion, Automobile pollution. Odour pollution control, Flares.

## LO: 1 Analyse and compute the parameters of air pollutants2. Evaluate procedures for control of pollution

UNIT III

## Meteorology and Air Pollution:

Properties of atmosphere: Heat, Pressure, Wind forces, Moisture and relative Humidity, Lapse Rates - Influence of Terrain and Meteorological phenomena on plume behavior and Air Quality - Wind rose diagrams and Isopleths Plume Rise Models

#### LO: 1. Study properties of atmosphere

## 2. Learn plume behaviour in different environmental conditions

## UNIT IV

#### Air Pollution Control Methods:

Control of particulates – Control at Sources, Process Changes, Equipment modifications, Design and operation of Control Equipments –Control of NOx and SOx emissions – Environmental friendly fuels - In-plant Control Measures, process changes, methods of removal and recycling. Environmental criteria for setting industries and green belts.

# LO: 1. Acquire the design principles of particulate and gaseous control.2. Develop environmental friendly fuels and study propertiesTEXT BOOKS:

- 1. M. N. Rao and H. V. N. Rao, Air Pollution, Tata McGraw Hill Company.
- 2. K. V. S. G. Murali Krishna, Air Pollution and Control Laxmi Publications, New Delhi, 2015.

#### **REFERENCE BOOKS:**

- 1. R. K. Trivedy and P. K. Goel, An Introduction to Air pollution, B.S. Publications.
- 2. Wark and Warner, Air Pollution, Harper & Row, New York.

#### **E-RESOURCES:**

http://www.nptelvideos.in/2012/11/environmental-air-pollution.html

## **PROFESSIONAL ELECTIVE-II**

| Lectu  | <b>#e</b> _ |              | 3_          | 0 Hou   | re      |         |         |             |         | -       |        | 40     |
|--------|-------------|--------------|-------------|---------|---------|---------|---------|-------------|---------|---------|--------|--------|
| Tuto   | ial:        |              | 0           | 0 1100  | 15      |         |         | I           | nterna  | l Mar   | ks:    | 10     |
| Credi  | ts:         |              | 3           |         |         |         |         | Е           | xterna  | al Mar  | ks:    | 60     |
| Prere  | quisit      | es: Hi       | ghway       | y Engi  | ineeri  | ng      |         |             |         |         |        |        |
| Cours  | se Obj      | ective       | es:         | U       |         |         |         |             |         |         |        |        |
| 1) Co  | mpreł       | nend d       | ifferer     | nt part | s of ra | ailway  | track   | their f     | unctio  | ons and | d oper | rating |
| sys    | stem        |              |             |         |         |         |         |             |         |         |        |        |
| 2) Tea | ach tr      | ack co       | nstru       | ction a | and en  | igineer | ring ap | plicat      | ions    |         |        |        |
| 3) Ex  | plain       | differe      | nt ess      | ential  | featu   | res an  | d requ  | -<br>iireme | nts of  | differe | ent ty | pes of |
| , cro  | ssing       | s            |             |         |         |         | 1       |             |         |         | 51     |        |
| 4) De  | mons        | trate s      | signall     | ing sv  | stem a  | and m   | ainten  | ance        | of trac | ks      |        |        |
| Cours  | se Out      | tcome        | s:          | 8-5     |         |         |         |             |         |         |        |        |
| Upon   | succe       | essful       | comp        | letion  | ofth    | e cou   | rse. tl | 1e stu      | dent v  | vill be | able   | to:    |
| C01    | Expla       | ain cor      | npone       | nts of  | Railw   | ay tra  | ck, dif | ferent      | Gauge   | es.     |        |        |
| CO2    | Desig       | gn Trao      | -<br>ck Gra | dients  | s as pe | er give | n requ  | lireme      | nts.    |         |        |        |
| CO3    | Desig       | ,<br>gning v | variou      | s types | s of Tr | ack Ti  | arnout  | ts.         |         |         |        |        |
| CO4    | Disco       | ver pu       | irpose      | s and   | facilit | ies at  | railwa  | v stati     | ons.    |         |        |        |
| CO5    | Expla       | ain inte     | erlock      | ing an  | d mod   | lern si | ignal s | vstem       | s.      |         |        |        |
| C06    | Ident       | ifv sı       | ırface      | defe    | cts of  | n Ra    | ilwav   | Track       | and     | their   | · ren  | nedial |
|        | meas        | ures.        |             |         |         |         |         |             |         |         |        |        |
| Cont   | ributi      | on of (      | Cours       | e Out   | comes   | s towa  | rds ac  | hieve       | ment    | of Pro  | oram   |        |
| Outc   | omes        | (1 - L)      | ow. 2-      | Medi    | um. 3   | – Hig   | 'h)     |             |         | 01 1 10 | .9     | •      |
|        | PO          | PO           | PO          | PO      | PO      | PO      | PO      | PO          | PO      | PO      | PO     | PO     |
|        | 1           | 2            | 3           | 4       | 5       | 6       | 7       | 8           | 9       | 10      | 11     | 12     |
| CO1    | 2           | -            | -           | -       | -       | -       | -       | -           | -       | -       | -      | -      |
| CO2    | 3           | 3            | 3           | -       | -       | 2       | -       | 1           | -       | -       | -      | -      |
| CO3    | 3           | 3            | 3           | -       | -       | 2       | -       | 1           | -       | -       | -      | -      |
| CO4    | 2           | -            | -           | -       | -       | -       | -       | -           | -       | -       | -      | -      |
| CO5    | 2           | -            | -           | -       | -       | -       | -       | -           | -       | -       | -      | -      |
| C06    | 2           | -            | -           | -       | -       | -       | -       | -           | -       | -       | -      | -      |
|        |             |              |             |         | 1       | UNIT    | [       |             |         |         |        |        |
| Comn   | onent       | e of Ra      | ilwav       | Track   | •       |         |         |             |         |         |        |        |

#### **18A3201514-RAILWAY ENGINEERING**

#### Components of Railway Track:

History and Importance of Indian Railways Construction and Maintenance-Components- Gauges, Types, Uniformity of Gauge- Different Gauges in Indian Railways- Associated problems- Ideal Alignment- Standard rail Sections- Causes and Effects of Creep- Measurement to reduce Creep-Fittings and Fastening- Factors effecting on tracks Coning

LO: 1. Understand the basics of railway components.

2. Examine gauges, alignment and standard rail sections

3. Explain different types of fittings and fastenings

UNIT II

## **Sleepers and Geometric Design of Tracks:**

Functions and Requirements of sleepers- Types and Spacing- Methods of fixing rails with presressed Concrete and Wooden Sleepers- Details of Geometric Design of track-Gradient Grade compensation on curves- Curves and Super Elevation

## LO: 1. Learn functions and requirements of sleepers

#### 2. Design sleepers and tracks.

#### UNIT III

#### **Resistance to Traction Points and Crossings:**

Resistance to friction, wave action, track irregularity, wind- Resistance to Gradient, Curvature, Starting and acceleration- Stress in rails, sleepers, ballast and formations- Necessity of Points & Crossings- Track Layout and Turnouts- Types of crossings and Track Turnouts

#### LO: 1. Study causes of resistance to tracks

#### 2. Evaluate stresses in rails

### 3. Design track layout and turnouts

**Railway Stations and Yards**: Purposes- Facilities required at Railway stations- Requirements of Station Yard- Classification of Yards

#### LO: 1. Study basics on railway stations and yards.

#### UNIT IV

**Signalling and Interlocking Maintenance of Railway Track:** Maintenance Programme- Monsoon, Pre Monsoon, Post Monsoon Maintenance- Causes for maintenance- Tools for Railway Track Maintenance & Their Functions-Surface defects and their remedial Measures

## LO: 1. Develop knowledge on signalling and maintenance in railways.3. Study requirements and different types of maintenance of tracks

**Metro rails** -History of metro rail in India -Types of metros -Classification of metro rails world wide - Reliability of metro rail than other modes of transport

#### TEXT BOOKS:

- 1. S. C. Saxena and S. P. Arora, A Text book of Railway Engineering, Dhanpatrai & Sons, Delhi
- 2. Satish Chandra and M. M. Agarwal, Railway Engineering- Oxford University Press, New Delhi

#### **REFERENCE BOOKS:**

- 1. R. Srinivasa Kumar, Transportation Engineering: Railways, Airports, Docks and Harbors Universities Press Pvt Ltd, Hyderabad. 2014.
- 2. Vazirani & Chandola, Transportation Engineering Vol I & II

- <u>http://www.nptelvideos.in/2012/11/urban-transportation-planning.html</u>
- <u>http://www.nptelvideos.in/2012/11/transportation-engineering-ii.html</u>

#### **PROFESSIONAL ELECTIVE-II**

#### **18A3201515-GREEN BUILDINGS AND SUSTAINABILITY**

| Lecture – Tutorial:          | 3-0 H    | ours    |         |             | I        | nterna | al Mari  | ks:     | 40    |  |  |
|------------------------------|----------|---------|---------|-------------|----------|--------|----------|---------|-------|--|--|
| Credits:                     | 3        |         |         |             | E        | xterna | al Mar   | ks:     | 60    |  |  |
| <b>Prerequisites: Basics</b> | of Civi  | l engi  | neeri   | ng          |          |        |          |         |       |  |  |
| <b>Course Objectives:</b>    |          |         |         |             |          |        |          |         |       |  |  |
| 1) Teach Students wit        | h conc   | epts o  | f Powe  | er pote     | ntial i  | n the  | world    | and Ir  | ndia  |  |  |
| 2) Impart with differen      | t types  | of Hy   | dropo   | wer Pla     | ants a   | nd Cla | assifica | ation   |       |  |  |
| 3) demonstrate differen      | nt Wate  | er Con  | iveyan  | ce sys      | tems     |        |          |         |       |  |  |
| 4) Teach turbines draf       | t tubes  | and v   | water l | namm        | ers      |        |          |         |       |  |  |
| 5) Throw light on Desi       | gn of Po | ower ł  | nouse   | planni      | ng       |        |          |         |       |  |  |
| Course Outcomes:             |          |         |         | -           | 0        |        |          |         |       |  |  |
| Upon successful com          | oletion  | of th   | e cou   | rse, tł     | ie stu   | dent v | will be  | able    | to:   |  |  |
| CO1 Recognize what           | s a gre  | en bu   | ilding  | and g       | reen b   | uildin | g mate   | rials.  |       |  |  |
| CO2 Understand the           | Green l  | Buildi  | ng Op   | portur      | nities a | and Be | enefits  |         |       |  |  |
| CO3 Differentiate diff       | erent ra | ating a | agenci  | es and      | featu    | res of | green    | buildi  | ngs.  |  |  |
| CO4 Recognize source         | es of ca | arbon   | emiss   | ions a      | nd its   | impac  | ct on c  | limate  | 2.    |  |  |
| CO5 Understand the           | concep   | ot of S | ustair  | able d      | levelop  | oment  | and se   | ocial e | thics |  |  |
| CO6 Plan land use co         | onfirmi  | ng to a | zonal   | regula      | tions    |        |          |         |       |  |  |
| <b>Contribution of Cours</b> | se Outo  | comes   | s towa  | rds ac      | chieve   | ment   | of Pro   | ogram   | L     |  |  |
| Outcomes (1 – Low, 2         | - Medi   | um, 3   | – Hig   | ; <b>h)</b> |          |        |          |         |       |  |  |
| PO PO PO                     | PO       | PO      | PO      | PO          | PO       | PO     | PO       | PO      | PO    |  |  |
| 1 2 3                        | 4        | 5       | 6       | 7           | 8        | 9      | 10       | 11      | 12    |  |  |
| COI 2                        | -        | -       | -       | 2           | 1        | -      | -        | -       | -     |  |  |
| CO2 2                        | -        | -       | -       | 2           | 1        | -      | -        | -       | -     |  |  |
| CO3 2                        | -        | -       | -       | 2           | 1        | -      | -        | -       | -     |  |  |
| CO4 2                        | -        | -       | -       | 2           | 1        | -      | -        | -       | -     |  |  |
| CO5 2                        | -        | -       | -       | 2           | 1        | -      | -        | -       | -     |  |  |
| CO6 2                        | -        | -       | -       | 2           | 1        | -      | -        | -       | -     |  |  |
|                              |          |         |         |             |          |        |          |         |       |  |  |

**Green Building**-Benefits of Green Buildings- Green Building Materials and Equipment in India- Key Requisites for Constructing a Green Building, Important Sustainable features for Green Building

**Green building concepts** Indian Green Building Council, Green Building Moment in India, Benefits Experienced in Green Buildings

#### UNIT II

**Green Building Opportunities and Benefits:** Opportunities of Green Building, Green Building Features, Material and Resources, Water Efficiency, Optimum Energy Efficiency, Typical Energy Saving Approach in Buildings,

**Green Building Rating Systems-** LEED India Rating System and Energy Efficiency

#### UNIT III

**SUSTAINABILITY** -Human development index, Sustainable development and social ethics, definitions of sustainability, populations and

consumptions.

**THE CARBON CYCLE AND ENERGY BALANCES**- Introduction, Climate science history, carbon sources and emissions, The carbon cycle, carbon flow pathways, and repositories, Global energy balance, Global energy balance and temperature model, Greenhouse gases and Effects, Climate change projections and impacts

#### UNIT IV

## SUSTAINABILITY AND BUILT ENVIRONMENT

Introduction, Land use and land cover change, Land use planning and its role in sustainable development-Zoning and land use planning, smart growth, Environmentally sensitive design- low impact development, green infrastructure and conservation design, Green buildings and land use planning, Energy use and buildings

## TEXT BOOKS:

- 1. Standard for the Design of High-Performance Green Buildings by ASHRAE
- 2. Engineering Applications in Sustainable Design and Development by Bradley A.Striebig, Adebayo A.Ogundipe and Maria Papadakis. First edition, 2016, CENGAGE Learning.

## **REFERENCE BOOKS:**

- 1. Handbook on Green Practices published by Indian Society of Heating Refrigerating and Air conditioning Engineers, 2009.
- 2. Green Building Hand Book by Tomwoolley and Samkimings, 2009.

#### **PROFESSIONAL ELECTIVE-III**

#### 18A3201521-EXPANSIVE SOILS

| Lectu | ıre – T                                                              | <b>`utori</b> a | <b>al:</b> 3 | 8-0 Ho  | urs      |          |              | Ι        | nterna   | al Mar  | ks:   | 40  |  |  |
|-------|----------------------------------------------------------------------|-----------------|--------------|---------|----------|----------|--------------|----------|----------|---------|-------|-----|--|--|
| Credi | ts:                                                                  |                 | Э            | }       |          |          |              | E        | xterna   | al Mar  | ks:   | 60  |  |  |
| Prere | quisit                                                               | es: So          | oil Me       | chani   | cs and   | l Four   | ıdatio       | n Eng    | ineeri   | ng      |       |     |  |  |
| Cour  | se Obj                                                               | ective          | es:          |         |          |          |              |          |          |         |       |     |  |  |
| 1) Fa | miliar                                                               | ize Stı         | adents       | with    | Nature   | e of Sc  | oils and     | d Soil   | Struct   | ure     |       |     |  |  |
| 2) Eq | Equip student with concepts of Swelling and methods of determination |                 |              |         |          |          |              |          |          |         |       |     |  |  |
| 3) Ur | ndersta                                                              | and fo          | undat        | ion pr  | actices  | s in ex  | pansiv       | ve soil  | S        |         |       |     |  |  |
| 4) Fa | miliar                                                               | ize dif         | ferent       | mater   | ials ar  | nd tecl  | hnique       | es for   | stabili  | zation  |       |     |  |  |
| 5) Ur | ndersta                                                              | and pr          | ocedu        | re to i | mprov    | ve shea  | ar stre      | ngth o   | of expa  | nsive   | soils |     |  |  |
| Cour  | se Out                                                               | tcome           | es:          |         |          |          |              |          |          |         |       |     |  |  |
| Upon  | succ                                                                 | essful          | comp         | letior  | n of th  | e cou    | rse, tl      | 1e stu   | dent v   | will be | able  | to: |  |  |
| CO1   | Demo                                                                 | onstra          | te beh       | aviou   | r of exp | pansiv   | ve soils     | 8.       |          |         |       |     |  |  |
| CO2   | Expla                                                                | ain neo         | ed of f      | ounda   | tion p   | ractice  | e on es      | rpansi   | ive soil | s.      |       |     |  |  |
| CO3   | Perfo                                                                | rm me           | ethods       | of sta  | bilizat  | ion of   | expan        | sive s   | oils.    |         |       |     |  |  |
| CO4   | Selec                                                                | t addi          | tives a      | nd me   | ethodo   | ology fo | or stab      | oilizati | on.      |         |       |     |  |  |
| CO5   | Apply                                                                | v the g         | gained       | know    | ledge f  | or sui   | table p      | perform  | mance    | •       |       |     |  |  |
| CO6   | Conce                                                                | epts of         | swellir      | ng      |          |          |              |          |          |         |       |     |  |  |
| Cont  | ributi                                                               | on of           | Cours        | e Out   | comes    | s towa   | rds ac       | hieve    | ement    | of Pro  | ogram |     |  |  |
| Outc  | omes                                                                 | (1 – L          | ow, 2-       | Medi    | um, 3    | – Hig    | ; <b>h</b> ) |          |          |         | -     |     |  |  |
|       | PO                                                                   | PO              | PO           | PO      | PO       | PO       | PO           | PO       | PO       | PO      | PO    | PO  |  |  |
|       | 1                                                                    | 2               | 3            | 4       | 5        | 6        | 7            | 8        | 9        | 10      | 11    | 12  |  |  |
| CO1   | 2                                                                    | -               | -            | -       | -        | -        | 1            | 1        | -        | -       | -     | -   |  |  |
| CO2   | 2                                                                    | -               | -            | -       | -        | -        | 1            | 1        | -        | -       | -     | -   |  |  |
| CO3   | 2                                                                    | -               | -            | -       | -        | -        | 1            | -        | -        | -       | -     | -   |  |  |
| CO4   | 2                                                                    | -               | -            | -       | -        | -        | 1            | -        | -        | -       | -     | -   |  |  |
| CO5   | 2                                                                    | -               | -            | -       | -        | -        | 1            | -        | -        | -       | -     | -   |  |  |
| CO6   | 2                                                                    | -               | -            | -       | -        | -        | 1            | -        | -        | -       | -     | -   |  |  |
|       |                                                                      |                 |              |         | I        | UNIT     | [            |          |          |         |       |     |  |  |

**Clay Mineralogy:** Nature of Soils-Clay mineral structure- Cation exchange – Soil water- Soil Structure-Soil water interaction

LO: 1. Understand mineralogical structure of soil.

2. Explain effects of soil water interaction

#### UNIT II

**Swelling Characteristics-** Swelling- Factors effecting Swelling- Swelling Potential- Swell Pressure- Methods of Determination-Factors effecting Swelling potential and swell pressure- Heave- Factors effecting Heave-Methods of determination of heave.

## LO: 1. Understand swelling and its effects

2. Understand heave and its effects

#### UNIT III

**Foundation Practices in Expansive Clays:** Sand Cushion-Belled Piers-CNS layer technique-Under reamed Pile foundation- Construction Techniques- Design Specifications- Load-carrying capacity in compressive and uplift of single and multi under reamed piles in clays and sands-Granular pile Anchors.

LO: 1. Understand inconveniences with expansive soils

## 2. Design of foundation on expansive soils.

#### UNIT IV

Lime Soil columns and Lime Slurry pressure injection- Stabilization with admixtures-Propounding- Vertical and Horizontal Moisture barriers.

## LO: Design of stability concepts with various admixtures.

**Shear strength of expansive soils**- Katti's concept of bilinear envelope-Stress –state variables in partly saturated soils- Frelend's strength parameters- Determination of matrix suction by axis translation techniquefield suction measurement.

## LO: 1. Determine shear strength of expansive soils by different techniques

## TEXT BOOKS:

- 1. F. C. Chen, Foundation on Expansive Soils, Elsevier Scientific Publishing Company, Newyork
- 2. J. D. Nelson and D. I. Miller, Expansive soils- Problems and Practice in Foundation and pavement Engineering, John Wiley & Sons Inc

## **REFERENCE BOOKS:**

- 1. D. G. Fredlund and H. Rhardjo, Soil Mechanics for Unsaturated Soils, WILEY Inter Science Publication, John Wiley & Sons, Inc
- 2. D. R. Katti, A. R. Katti, Behavior of Saturated Expansive Soils and Control Methods, Taylor and Francis

- <u>http://www.btechmaterials.com/download/geotechnical-engineering-gte-material-notes/</u>
- <u>http://www.nptelvideos.in/2012/11/soil-mechanics.html</u>

#### **PROFESSIONAL ELECTIVE-III**

#### **18A3201522-REPAIR AND REHABILITATION OF STRUCTURES**

| Lectu       | ture – 3-0 Hours Internal Marks:                                        |               |              |                 |                |             |                 |        |         |        |         |          |  |
|-------------|-------------------------------------------------------------------------|---------------|--------------|-----------------|----------------|-------------|-----------------|--------|---------|--------|---------|----------|--|
| Credi       | te.                                                                     |               | 3            |                 |                |             |                 | E      | vtern   | al Mar | ke      | 60       |  |
| Prere       | anisit                                                                  | es: Re        | einfor       | ced co          | ncret          | e stru      | icture          | s. Cor | crete   | Tech   | nolog   | 00<br>V  |  |
| Cours       | se Obi                                                                  | ective        | es:          |                 | /110100        |             | loculo          | 5, 001 |         | 10011  |         | <b>y</b> |  |
| 1) To       | desci                                                                   | ribe ca       | auses        | of dis          | stress         | in co       | ncrete          | struc  | tures   | and 1  | plan 1  | epair    |  |
| ,<br>str    | ategie                                                                  | s.            |              |                 |                |             |                 |        |         | -      | L       | 1        |  |
| 2) To       | ) To explain issues on serviceability and durability of concrete.       |               |              |                 |                |             |                 |        |         |        |         |          |  |
| -,<br>3) To | To throw light on various repair materials and their characteristics.   |               |              |                 |                |             |                 |        |         |        |         |          |  |
| 4) To       | To demonstrate repair techniques and protection measures.               |               |              |                 |                |             |                 |        |         |        |         |          |  |
| 5) To       | To illustrate suitable retrofitting schemes                             |               |              |                 |                |             |                 |        |         |        |         |          |  |
|             | rse Outcomes:                                                           |               |              |                 |                |             |                 |        |         |        |         |          |  |
| Unon        | successful completion of the course, the student will be able to:       |               |              |                 |                |             |                 |        |         |        |         |          |  |
| CO1         | Understand evaluation procedure and plan for repair.                    |               |              |                 |                |             |                 |        |         |        |         |          |  |
| CO2         | Design suitable rehabilitation scheme for serviceability and durability |               |              |                 |                |             |                 |        |         |        |         |          |  |
| CO3         | Choo                                                                    | se sili       | table r      | renair          | mater          | ial for     | differe         | ent ma | onitu   | les of | distre  | 89       |  |
| CO4         | Apply                                                                   |               | ent rei      | opan<br>Dair ai | nd retr        | ofittir     | amere<br>a sche | mes    | gintu   | 105 01 | uistic  | 30.      |  |
| CO7         | Under                                                                   | retand        | the me       | ethods          | ofstre         | ngther      | ing scin        | ethode | for cor | oretes | structu | ires     |  |
| CO5         | Dhuo                                                                    |               |              | n on o          | onditio        | $n_{of th}$ |                 |        |         |        | silucit | 1105     |  |
| 000         | Filys                                                                   |               |              |                 | Jiano          |             |                 |        |         | 6 D    |         |          |  |
| Cont        | ributi                                                                  | on of (       | Cours        | e Out           | comes          | s towa      | rds ac          | chieve | ment    | of Pro | ogram   |          |  |
| Oute        | PO                                                                      | $\mathbf{PO}$ | υw, 2-<br>ΡΟ | PO              | $\frac{1}{PO}$ |             | ш)<br>РО        | PO     | ΡO      | ΡO     | ΡO      | ΡO       |  |
|             | 1                                                                       | 2             | 3            | 4               | 5              | 6           | 7               | 8      | 9       | 10     | 11      | 12       |  |
| CO1         | 2                                                                       | _             | -            | _               | 2              | -           | _               | _      | _       | _      | _       |          |  |
| CO2         | 2                                                                       | 3             | 3            |                 | -              | 1           |                 | 1      |         |        |         |          |  |
| CO2         | 2                                                                       | -             | -            | -               | 2<br>2         | -           | _               | 1      | -       | _      | _       | _        |  |
| $CO_{4}$    | 2                                                                       | _             | -            | -               | 2              | _           | _               | _      | -       | -      | _       | _        |  |
| $CO^{+}$    | 2                                                                       | _             | _            | _               | 2              | _           | _               | _      | _       | _      | _       | _        |  |
| C06         |                                                                         |               |              |                 |                |             |                 |        |         |        |         |          |  |
|             |                                                                         |               |              |                 |                |             |                 |        |         |        |         |          |  |
|             |                                                                         |               | _            |                 |                |             | -               |        |         |        |         |          |  |

Maintenance and repair strategies:

Maintenance, Repair and Rehabilitation, Facets of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration.

## LO: 1. Understand importance and requirement of maintenance 2. Gain knowledge on quantification of repairs and documentation

#### UNIT II

#### **Materials for Repair**

Special concretes and mortar, concrete chemicals, special elements for accelerated strength gain, Expansive cement, polymer concrete, sulphur infiltrated concrete, Ferro cement, Fiber reinforced concrete.

## LO: 1. List characteristics of materials used for repair.

2. Understand suitability of certain materials for a specific type of repair

#### UNIT III

#### **Techniques for Repair And Protection Methods**

Rust eliminators and polymers coating for rebars during repair, foamed

concrete, mortar and drypack, vacuum concrete, Gunite and Shotcrete, Epoxy injection, Mortar repair for cracks, shoring and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosion resistant steels, coatings and cathodic protection. Engineered demolition techniques for dilapidated structures – case studies

LO: 1. Explain techniques for repair and rehabilitation.

## 2. Understand methods of corrosion protection and inhibition

#### UNIT IV

## **Retrofitting of Structures**

Repairs to overcome low member strength. Deflection, Cracking, Chemical disruption, weathering corrosion, wear, fire, leakage and marine exposure.

#### LO: Develop effective strategies for retrofitting.

## TEXT BOOKS:

- 1. Dension Campbell, Allen and Harold Roper, Concrete Structures, Materials,
- 2. Maintenance and Repair, Longman Scientific and Technical, U.K.

## **REFERENCE BOOKS:**

- 1. R T. Allen and S.C. Edwards, Repair of concrete Structures, Blakie and sons, UK.
- 2. Santhakumar, A. R. Training Course notes on damage assessment and Repair in Structures

#### **E-RESOURCES:**

• <u>http://www.btechmaterials.com/download/rehabilitation-retrofitting-structures-materials-notes/</u>

#### **PROFESSIONAL ELECTIVE-III**

#### **18A3201523-INDUSTRIAL WASTE & WASTE-WATER ENGINEERING**

| Lectu                                               | ıre – 1                                                                 | utoria  | <b>al:</b> 3 | 8-0 Ho  | urs                |         |          | Ι      | nterna   | al Mar  | ks:    | 40     |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------|---------|--------------|---------|--------------------|---------|----------|--------|----------|---------|--------|--------|--|--|
| Credi                                               | i <b>ts:</b>                                                            |         | 3            | 3       |                    |         |          | E      | xtern    | al Mar  | ks:    | 60     |  |  |
| Prere                                               | quisit                                                                  | es:     |              |         |                    |         |          |        |          |         |        |        |  |  |
| Course Objectives:                                  |                                                                         |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| 1) To                                               | teach                                                                   | Healt   | h and        | Envir   | onmer              | nt Cor  | icerns   | in wa  | ste wa   | ter ma  | nager  | nent   |  |  |
| 2) To                                               | ?) To teach material balance and design aspects of the reactors used in |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| wa                                                  | waste water treatment.                                                  |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| 3) To                                               | To impart knowledge on selection of treatment methods for industrial    |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| wa                                                  | waste water                                                             |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| 4) To                                               | ) To teach common methods of treatment in different industries          |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| 5) To                                               | ;) To provide knowledge on operational problems of common effluent      |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| tre                                                 | reatment plant                                                          |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| Cour                                                | se Out                                                                  | tcome   | s:           |         |                    |         |          |        |          |         |        |        |  |  |
| Upon                                                | succ                                                                    | essful  | comp         | letior  | ı of th            | e cou   | rse, tl  | ne stu | ident v  | will be | able   | to:    |  |  |
| CO1                                                 | Desig                                                                   | gn trea | tment        | : meth  | ods fo             | r any   | indust   | rial w | astewa   | ater.   |        |        |  |  |
| CO2                                                 | Exan                                                                    | nine th | ie mai       | nufact  | uring <sub>l</sub> | proces  | ss of va | arious | indus    | tries.  |        |        |  |  |
| CO3                                                 | Asses                                                                   | ss nee  | d for c      | ommo    | on efflu           | ient ti | reatme   | nt pla | nt for   | an ind  | ustry  |        |  |  |
| CO4                                                 | Test                                                                    | and ar  | nalyse       | BOD,    | COD,               | TSS a   | and Ml   | PN in  | wastev   | vater.  |        |        |  |  |
| CO5                                                 | Unde                                                                    | rstanc  | l optic      | ons for | · waste            | e wate  | r dispo  | osal.  |          |         |        |        |  |  |
| CO6                                                 | Unde                                                                    | erstanc | 1 the        | chara   | acter              | of wa   | ste w    | ater   | from S   | Steel p | olants | and    |  |  |
|                                                     | refine                                                                  | eries   |              |         |                    |         |          |        |          |         |        |        |  |  |
| Cont                                                | ributi                                                                  | on of ( | Cours        | e Out   | comes              | s towa  | rds ac   | chieve | ement    | of Pro  | ogram  | L      |  |  |
| Outc                                                | omes                                                                    | (1 - L) | ow, 2-       | Medi    | um, 3              | – Hig   | (h)      |        |          |         |        |        |  |  |
|                                                     | PO                                                                      | PO      | PO           | PO      | PO                 | PO      | PO       | PO     | PO       | PO      | PO     | PO     |  |  |
| <b>a a 1</b>                                        | 1                                                                       | 2       | 3            | 4       | 5                  | 6       | 7        | 8      | 9        | 10      | 11     | 12     |  |  |
| CO1                                                 | 3                                                                       | 3       | 3            | -       | -                  | 1       | -        | 1      | -        | -       | -      | -      |  |  |
| CO2                                                 | 2                                                                       | -       | -            | -       | -                  | -       | -        | -      | -        | -       | -      | -      |  |  |
| CO3                                                 | 2                                                                       | -       | -            | -       | -                  | -       | -        | -      | -        | -       | -      | -      |  |  |
| CO4                                                 | 2                                                                       | -       | -            | -       | -                  | -       | -        | -      | -        | -       | -      | -      |  |  |
| CO5                                                 | 2                                                                       | 2       | -            | -       | -                  | -       | -        | -      | -        | -       | -      | -      |  |  |
| CO6                                                 | CO6 2                                                                   |         |              |         |                    |         |          |        |          |         |        |        |  |  |
|                                                     |                                                                         |         |              |         |                    | UNIT    |          |        |          |         |        |        |  |  |
| Industrial water Quantity and Quality requirements: |                                                                         |         |              |         |                    |         |          |        |          |         |        |        |  |  |
| Boiler                                              | r and                                                                   | cooli   | ng wa        | aters-l | Proces             | s wat   | ter for  | Text   | tiles, l | Food 1  | proces | ssing, |  |  |

Brewery Industries, power plants, fertilizers, sugar mills Selection of source based on quality, quantity and economics. Use of Municipal wastewater in Industries – Adsorption, Reverse Osmosis, Ion Exchange, Ultra filtration, Freezing, Elutriation, Removal of Colour, Odour and Taste.

## LO: 1. Learn the procedures for assessment of quality of Industrial water

2. Suggest different processes of handling waste water

**Basic theories of Industrial Wastewater Management:** Industrial waste survey - Measurement of industrial wastewater Flow-generation rates – Industrial wastewater sampling and preservation of samples for analysis -Wastewater characterization-Toxicity of industrial effluents-Treatment of wastewater-unit operations and processes-Volume and Strength reduction – Neutralization and Equalization, Segregation and proportioning- recycling, reuse and resources recovery

## LO: 1. Measurement of Industrial waste water

## 2. Characterize waste water

## 3. Suggest techniques for treatment of waste water.

#### UNIT III

**Industrial wastewater disposal management**: Discharges into Streams, Lakes and oceans and associated problems, Land treatment - Common Effluent Treatment Plants: advantages and suitability, Limitations and challenges-Recirculation of Industrial Wastes- Effluent Disposal Method

#### LO: 1. Understand options for waste water disposal.

## 2. Explain functioning of common effluent treatment plants

#### UNIT IV

**Process and Treatment of specific Industries-1:** Manufacturing Process and origin, characteristics, effects and treatment methods of liquid waste from Steel plants, Fertilizers, Textiles, Paper and Pulp industries, Oil Refineries, Coal and Gas based Power Plants

## LO: 1. Understand the character of waste water from Steel plants and refineries

## 2. Suggest suitable waste water treatment techniques

## **TEXT BOOKS:**

- 1. M. N. Rao and A. K. Dutta, Wastewater Treatment, Oxford & IBH, New Delhi.
- 2. K.V. S. G. Murali Krishna, Industrial Water and Wastewater Management

## **REFERENCE BOOKS:**

- 1. A. D. Patwardhan, Industrial Wastewater treatment, PHI Learning, Delhi
- 2. Metcalf and Eddy Inc., Wastewater Engineering, Tata McGraw Hill co., New Delhi.
- 3. G. L. Karia & R.A. Christian Wastewater Treatment- Concepts and Design Approach, Prentice Hall of India.

#### **PROFESSIONAL ELECTIVE-III**

#### 18A3201524-docks and harbour engineering

| Lectu            | ıre – T                                                                | <b>`utori</b> a | a1:      | 3-0 I   | Hours   |         |         | ]      | nterna  | al Mari | ks:     | 40    |  |  |
|------------------|------------------------------------------------------------------------|-----------------|----------|---------|---------|---------|---------|--------|---------|---------|---------|-------|--|--|
| Credi            | its:                                                                   |                 |          | 3       |         |         |         | F      | Externa | al Mar  | ks:     | 60    |  |  |
| Prere            | quisit                                                                 | es:             |          |         |         |         |         |        |         |         |         |       |  |  |
| Cour             | se Obj                                                                 | ective          | es:      |         |         |         |         |        |         |         |         |       |  |  |
| 1) To            | teach                                                                  | Wate            | r Tran   | sporta  | tion in | 1 India | a       |        |         |         |         |       |  |  |
| 2) To            | impa                                                                   | rt kn           | lowled   | ge on   | wate    | er wa   | ves ai  | nd ef  | ffects  | on ha   | rbour   | and   |  |  |
| stı              | structure design                                                       |                 |          |         |         |         |         |        |         |         |         |       |  |  |
| 3) De            | ) Development of facilities that are required for setting up of a port |                 |          |         |         |         |         |        |         |         |         |       |  |  |
| 4) Pla           | 1) Planning of ports for effective cargo handling and economical       |                 |          |         |         |         |         |        |         |         |         |       |  |  |
| co               | considerations                                                         |                 |          |         |         |         |         |        |         |         |         |       |  |  |
| Course Outcomes: |                                                                        |                 |          |         |         |         |         |        |         |         |         |       |  |  |
| Upon             | succ                                                                   | essful          | comp     | letion  | of th   | e cou   | rse, tł | 1e sti | ident v | will be | able    | to:   |  |  |
| CO1              | Enha                                                                   | nce th          | ne kno   | wledg   | e on D  | ocks    | and H   | arbou  | ır Engi | neerin  | g for v | water |  |  |
|                  | trans                                                                  | portat          | tion i   | n the   | e con   | text    | of reg  | gional | and     | inter   | contin  | ental |  |  |
|                  | trans                                                                  | portat          | ion.     |         |         |         |         |        |         |         |         |       |  |  |
| CO2              | Know                                                                   | v techr         | niques   | of pla  | nning   | the Ir  | nfrastr | uctur  | es requ | ired f  | or Hai  | bour  |  |  |
|                  | and I                                                                  | Port ar         | ea.      |         |         |         |         |        |         |         |         |       |  |  |
| CO3              | Know                                                                   | v tech          | nnique   | s of    | desig   | ning    | the I   | nfras  | tructur | es re   | quired  | l for |  |  |
|                  | Harb                                                                   | our ar          | nd Port  | t area. |         |         |         |        |         |         |         |       |  |  |
| CO4              | Analy                                                                  | ze ca           | rgo a    | nd pa   | asseng  | er de   | mand    | fored  | casting | cargo   | o han   | dling |  |  |
|                  | capao                                                                  | city of         | ports    | and eo  | conom   | ic eva  | luation | n of p | ort pro | ject.   |         |       |  |  |
| CO5              | Unde                                                                   | rstand          | l envii  | ronme   | ntal a  | nd ot   | her im  | pact   | impene  | ded di  | ie to v | water |  |  |
|                  | trans                                                                  | portat          | tion an  | id port | t activ | ities.  |         | -      | -       |         |         |       |  |  |
| CO6              | Proce                                                                  | -<br>dure 1     | to follo | w dur   | ing pla | annin   | g of po | rts.   |         |         |         |       |  |  |
| Cont             | ributi                                                                 | on of           | Cours    | e Out   | comes   | s towa  | rds ac  | hiev   | ement   | of Pro  | ogram   |       |  |  |
| Outc             | omes                                                                   | (1 – L          | ow, 2-   | Medi    | um, 3   | – Hig   | (h)     |        |         |         | 0       |       |  |  |
|                  | PO                                                                     | PO              | РО       | PO      | PO      | PO      | PO      | PO     | PO      | PO      | PO      | PO    |  |  |
|                  | 1                                                                      | 2               | 3        | 4       | 5       | 6       | 7       | 8      | 9       | 10      | 11      | 12    |  |  |
| CO1              | 2                                                                      | -               | -        | -       | -       | -       | -       | -      | -       | -       | -       | -     |  |  |
| CO2              | 2                                                                      | -               | -        | -       | -       | -       | -       | -      | -       | -       | -       | -     |  |  |
| CO3              | 2                                                                      | -               | -        | -       | -       | -       | -       | -      | -       | -       | -       | -     |  |  |
| CO4              | 2                                                                      | 2               | -        | -       | -       | -       | -       | -      | _       | -       | -       | -     |  |  |
| CO5              | 2                                                                      | -               | -        | -       | -       | -       | -       | -      | -       | -       | -       | -     |  |  |
| CO6              | 2                                                                      | -               | -        | -       | -       | -       | -       | -      | -       | -       | -       | -     |  |  |
|                  |                                                                        |                 |          |         |         | UNIT I  | [       |        |         |         |         |       |  |  |
| Wate             | r Tran                                                                 | sport           | ation:   |         |         |         |         |        |         |         |         |       |  |  |

Scope, Merits, Developments of Water Transportation in India, Inland waterways, River, canal, Inland water Transportation, Development of Port & Harbors, Harbor Classification, Site Selection, Harbor Dimensioning

LO: 1. Classify different modes of transportation by water

2. Explain development and classification of ports and harbors

UNIT II

**Natural Phenomena**: Wind, Ties, Water waves, Wave decay & Ports, Wave Diffraction Breaking, Reflection, Littoral drift, Sedimentation transport, Effects on Harbor and Structure Design

## LO: 1. Understand effects of natural forces

## 2. Understand conditions for design of harbors

## Harbor Infrastructure:

Types of Break Waters, Jetty, Dock Fenders, Wharves, Dolphin Mooring accessories, Repair facilities, Wet Docks, Lift Docks, Dry Docks, Gates for Graving docks, Floating Docks, Slipways, Locks and Gates

## LO: 1. Understand components of harbor.

#### UNIT III

## **Port Facility**:

Transit Shed, Warehouses, Cargo handling, Container Handling, Inland pot facility, Navigational Aids, Types, Requirements of Signals, Lighthouses, Bean lights, Buoys, Dredging & Coastal protection, Types of Dredges, Choices, usage of dredge material, Sea wall protection, Sea wall revetments, bulkhead.

## LO: 1. Knowledge on facilities to be developed in ports.2. Decide different features to be incorporated in ports

#### UNIT IV

## Planning of Ports:

Regional and intercontinental transportation development, forecasting cargo & Passenger demand, regional connectivity, Cargo handling, Capacity of Port, Economic Evaluation of Port projects, Impact of Port activities.

## LO: 1. Study procedure to follow during planning of ports.

## TEXT BOOKS:

- 1. Bindra, S.P, A Course in Docks and Harbor Engineering, Dhanpat Rai and Sons, New Delhi, India, 1992.
- 2. R. Srinivasa Kumar, Transportation Engineering: Railways, Airports, Docks and Harbors, Universities Press Pvt Ltd, Hyderabad. 2014.

## **REFERENCE BOOKS:**

- 1. Seetharaman, S., Dock and Harbour Engineering, Umesh Publications, New Delhi, India, 1999.
- 2. V.N. Vazirani and S.P. Chandola, Docks and Harbour Engineering Text book of Transport Engineering Vol. II, Khanna Publishers, New Delhi.

#### **PROFESSIONAL ELECTIVE-III**

#### 18A3201525-WATER RESOURCES SYSTEM ANALYSIS

| Lectu<br>Tutor | cture -<br>torial:3-0 HoursInternal Marks:adits:3External Marks:       |               |               |               |          |         |          |         |         |          |        |       |  |
|----------------|------------------------------------------------------------------------|---------------|---------------|---------------|----------|---------|----------|---------|---------|----------|--------|-------|--|
| Credi          | ts:                                                                    |               | 3             |               |          |         |          | E       | xtern   | al Mar   | ks:    | 60    |  |
| Prere          | quisit                                                                 | es: Wa        | ater R        | esour         | ce En    | ginee   | ring     |         |         |          |        |       |  |
| Cours          | se Obj                                                                 | ective        | es:           |               |          |         |          |         |         |          |        |       |  |
| 1) Te          | ach Co                                                                 | oncept        | s of sy       | /stems        | s techr  | niques  | s in wa  | ter re  | source  | s engi   | neerir | ıg    |  |
| 2) Te          | ach Li                                                                 | near C        | )ptimi        | zation        | conce    | pts     |          |         |         |          |        |       |  |
| 3) De          | Demonstrate the Development system approach to reservoir operation     |               |               |               |          |         |          |         |         |          |        |       |  |
| 4) Pla         | Planning water allocation to different crops                           |               |               |               |          |         |          |         |         |          |        |       |  |
| 5) Ex          | Expertise on River operation policies                                  |               |               |               |          |         |          |         |         |          |        |       |  |
| Cour           | se Out                                                                 | tcome         | s:            |               |          |         |          |         |         |          |        |       |  |
| Upon           | succe                                                                  | essful        | comp          | letior        | n of th  | e cou   | rse, tl  | ne stu  | dent    | will be  | able   | to:   |  |
| CO1            | Apply                                                                  | 7 basic       | e princ       | iples o       | of syste | em ap   | proacl   | h.      |         |          |        |       |  |
| CO2            | Judg                                                                   | ing Ec        | onomi         | ics of v      | water 1  | resour  | ces of   | multi   | purpo   | se proj  | jects. |       |  |
| CO3            | 3 Apply optimization principles to single and multi crop applications. |               |               |               |          |         |          |         |         |          |        |       |  |
| CO4            | Desig                                                                  | gning         | reser         | voir (        | operati  | ion 1   | eading   | g to    | optim   | um c     | rop    | water |  |
|                | appli                                                                  | cation        |               |               |          |         |          |         |         |          |        |       |  |
| CO5            | Apply                                                                  | optim         | ization       | metho         | ods to s | olve p  | roblem   | s relat | ed to w | vater re | source | 2     |  |
|                | syster                                                                 | ns            |               |               |          |         |          |         |         |          |        |       |  |
| CO6            | Form                                                                   | ulate o       | ptimiza       | ation n       | nodels   | for dec | cision n | naking  | in wat  | er reso  | urces  |       |  |
| Cont           | syster                                                                 | ns.           | Course        | o 011t        | <b></b>  | tom     | and a co | hiorre  | mont    | of Dre   |        |       |  |
| Outo           | omes                                                                   | $(1 - T_{4})$ | $\sim 2^{-1}$ | e Out<br>Modi | 11m 3    | – Hia   | (rus ac  | meve    | ment    | OI FIG   | gram   |       |  |
| Oute           | PO                                                                     | PO            | PO            | PO            | PO       | PO      | PO       | PO      | PO      | PO       | PO     | PO    |  |
|                | 1                                                                      | 2             | 3             | 4             | 5        | 6       | 7        | 8       | 9       | 10       | 11     | 12    |  |
| CO1            | 2                                                                      | -             | -             | -             | -        | -       | -        | -       | -       | -        | -      | -     |  |
| CO2            | 2                                                                      | _             | _             | -             | _        | -       | -        | _       | _       | _        | _      | _     |  |
| CO3            | 2                                                                      | _             | -             | -             | _        | -       | -        | _       | _       | _        | -      | _     |  |
| CO4            | 2                                                                      | 2             | 3             | -             | -        | -       | -        | 1       | _       | -        | -      | _     |  |
| CO5            | 2                                                                      | _             | -             | -             | -        | -       | -        | _       | _       | -        | -      | _     |  |
| CO6            | <u>2</u> 2 1                                                           |               |               |               |          |         |          |         |         |          |        |       |  |
|                |                                                                        |               |               |               | τ        | JNIT    | [        |         | 1       | 1        | 1      |       |  |

#### UNIT 1

**Concept of System and System Analysis** - Definition and Types of Systems - Basic Principles of Systems Approach and Analysis. Systems Techniques in Water Resources.

LO: 1. Understand the concepts of water resource system.

**Introduction to Optimization** - Linear and Dynamic Programming -Simulation - Combined Simulation and Optimization. Economics of Water Resources Projects - Cost Benefit Analysis - Cost Allocation among various projects in a Multi-purpose Project.

LO: 1. Explain optimization of water resource projects.

2. Carryout cost analysis on different projects

UNIT II

Systems Approach to Reservoir - Deterministic Flows - Reservoir Sizing and Reservoir Operations. Basic Concepts of Random Flows Reliability.

#### LO: 1. Learn types of operations in water resource system.

#### UNIT III

Application of Linear Programming to Water Resources Systems - Irrigation Water Allocation for Single and Multiple Crops. Reservoir Operation for Irrigation and Hydropower Generation.

LO: 1. Understand applications of linear programming on applications of water resource system for crops.

#### UNIT IV

Applications of Dynamic Programming to Water Resources Systems -Optimal Crop Water Application - Steady State Reservoir Operating Policy for Irrigation. Real Time Reservoir Operation for Irrigation.

## LO: 1. Develope knowledge on operating systems for irrigation. TEXT BOOKS:

- 1. Loucks, D. P. and Eelco Van Beek, Water Resources systems planning and management: An Introduction to methods, models and applications. (2005), UNESCO.
- 2. Vedula, S. and Mujumdar, P. P., Water resources Systems: Modeling techniques and analysis, (2005), Tata McGraw Hill, New Delhi.

#### **REFERENCE BOOKS:**

- 1. Simonovic, S.P., Managing water resources: Methods and tools for a systems approach, (2009). UNESCO Publishing, France.
- 2. R. K. Sharma & T. K. Sharma, A Textbook Of Irrigation Engineering, S. Chand and Company Limited, New Delhi

- <u>http://www.nptelvideos.in/2012/11/water-resources-systemsmodeling.html</u>
- <u>http://www.nptelvideos.in/2012/11/advanced-hydrology.html</u>
- <u>http://freevideolectures.com/Course/100/Water-Resources-Engineering</u>
- <u>http://www.btechmaterials.com/download/water-resources-engineering-materials-notes/</u>
- <u>http://www.btechmaterials.com/download/water-resources-engineering-ii-materials-notes/</u>

## **Open Elective-3 (Offered by Department of civil engineering)**

#### 18A3201601-GREEN BUILDINGS

| Lectu                                                                                                       | re – T        | utoria     | <b>1:</b> 2- | 0 Hou    | rs              |          |           | I         | nterna   | al Marl   | ks:     | 40     |  |
|-------------------------------------------------------------------------------------------------------------|---------------|------------|--------------|----------|-----------------|----------|-----------|-----------|----------|-----------|---------|--------|--|
| Credi                                                                                                       | ts:           |            | 2            |          |                 |          |           | E         | xtern    | al Mar    | ks:     | 60     |  |
| Prere                                                                                                       | quisit        | es: En     | ginee        | ring cl  | hemist          | try, er  | nginee    | ring g    | eology   | 7 and 1   | physic  | s      |  |
| Course Objectives:                                                                                          |               |            |              |          |                 |          |           |           |          |           |         |        |  |
| This course aims to highlight importance of Energy- Efficient Buildings within the                          |               |            |              |          |                 |          |           |           |          |           |         |        |  |
| context of Energy issues in the 21st century.                                                               |               |            |              |          |                 |          |           |           |          |           |         |        |  |
| > To familiarize students with the concept of Energy efficiency, Renewable sources of                       |               |            |              |          |                 |          |           |           |          |           |         |        |  |
| energy and their effective adaptation in green buildings                                                    |               |            |              |          |                 |          |           |           |          |           |         |        |  |
| <ul> <li>To give a fuller understanding of Building Form and Fabric, Infiltration,</li> </ul>               |               |            |              |          |                 |          |           |           |          |           |         |        |  |
| <ul> <li>To give a fuller understanding of ventilation, Lighting, cooling and water conservation</li> </ul> |               |            |              |          |                 |          |           |           |          |           |         |        |  |
| Cours                                                                                                       | se Out        | comes      | s:           |          |                 |          |           |           |          |           |         |        |  |
| Upon                                                                                                        | succe         | essful (   | compl        | etion    | of the          | cours    | se, the   | stude     | ent wi   | ll be     |         |        |  |
| able to:                                                                                                    |               |            |              |          |                 |          |           |           |          |           |         |        |  |
| CO1                                                                                                         | Under         | stand w    | /hy bui      | ldings s | hould b         | be mad   | e energ   | y efficie | ent.     |           |         |        |  |
| CO2                                                                                                         | Have a        | a fuller g | grasp o      | n Rene   | wable E         | Energy   | mechan    | isms sı   | ich as F | Passive S | Solar h | eating |  |
| CO3                                                                                                         | Have a        | a fuller g | grasp o      | n Groui  | nd sour         | ce heat  | , pumps   | , and th  | ieir ada | ption to  | o green |        |  |
| CO4                                                                                                         | Under         | stand tl   | ne conc      | epts of  | Site an         | d Clima  | ite, Buil | ding Fo   | rm, Bu   | ilding F  | abric.  |        |  |
| CO5                                                                                                         | Under         | stand tl   | ne conc      | epts of  | Infiltra        | tion an  | d ventil  | ation, I  | lighting | g, Heatir | ıg.     |        |  |
| CO6                                                                                                         | Under         | stand tl   | ne conc      | epts of  | Cooling         | g, Energ | gy Mana   | igemen    | t and w  | vater co  | nserva  | tion.  |  |
| Cont                                                                                                        | ributio       | on of C    | Course       | Outc     | omes            | towar    | ds ach    | ievem     | ent of   | f Progi   | ram     |        |  |
| Outc                                                                                                        | omes          | (1 – Lo    | w, 2-        | Mediu    | . <b>m, 3</b> - | - High   | l)        |           | _        | _         | _       |        |  |
|                                                                                                             | PO            | PO         | PO           | PO       | PO              | PO       | PO        | PO        | PO       | PO        | PO      | PO     |  |
|                                                                                                             | 1             | 2          | 3            | 4        | 5               | 6        | 7         | 8         | 9        | 10        | 11      | 12     |  |
| CO1                                                                                                         | 3             | -          | -            | -        | -               | 2        | -         | 2         | -        | -         | -       | -      |  |
| CO2                                                                                                         | 3             | 2          | _            | _        | _               | 1        | _         | 2         | -        | _         | _       | _      |  |
| CO3                                                                                                         | 2             | 2          | -            | -        | _               | 1        | -         | 2         | _        | -         | _       | -      |  |
| CO4                                                                                                         | 3             | -          | -            | -        | -               | 1        | -         | 2         | -        | -         | -       | -      |  |
| CO5                                                                                                         | CO5 2 2 2     |            |              |          |                 |          |           |           |          |           |         |        |  |
| CO6                                                                                                         | CO6 3 1 2 - 2 |            |              |          |                 |          |           |           |          |           |         |        |  |
|                                                                                                             |               |            |              |          |                 | UNIT     | [         |           |          |           |         |        |  |

**Green Buildings** within the Indian Context, Types of Energy, Energy Efficiency and Pollution, Better Buildings, Reducing energy consumption, Low energy design.

#### UNIT II

**Renewable Energy** sources that can be used in Green Buildings – Solar energy, Passive Solar Heating, Passive Solar collection, Wind and other renewable. A passive solar strategy, Photovoltaic's, Climate and Energy, Macro and Microclimate. Indian Examples.

#### UNIT III

**Building Form** – Surface area and Fabric Heat Loss, utilizing natural energy, Internal Planning, rouping of buildings.

**Building Fabrics**- Windows and doors, Floors, Walls, Masonry, Ecological walling systems, Thermal Properties of construction material.

#### UNIT IV

**Infiltration and ventilation**, Natural ventilation in commercial buildings, passive cooling, odelling air flow and ventilation, Concepts of daylight factors and day lighting, daylight assessment, artificial lighting, New light sources. Cooling buildings, passive cooling, and

mechanical cooling. Water conservation- taps, toilets and urinals, novel systems, collection and utilization of rain water.

## **TEXT BOOKS:**

- 1. William T. Meyer., Energy Economics and Building Design., New York: McGraw-Hill, Inc Indian Green Building Council
- 2. Public Technology, Inc. (1996). Sustainable Building Technical Manual: Green Building Design, Construction, and Operations. Public Technology, Inc., Washington, DC.

#### **REFERENCE BOOKS:**

- 1. Richard D. Rush, . Building System Integration Handbook., New York: John Wiley & Sons
- 2. Ben Farmer & Hentie Louw., Companion to Contemporary Architectural Thought, London & New York: Routledge
- 3. Peter Noever (ed)., Architecture in Transition: Between Deconstruction and New Modernism., Munich: Prestel.

#### **E-RESOURCES:**

http://nptel.ac.in/courses.php http://jntuk-coeerd.in/

#### **Open Elective-3 (Offered by Department of civil engineering)** 18A3201602-BUILDING CONSTRUCTION

| Lectu                                                        | ıre – T                                                                            | utoria   | <b>1:</b> 2- | 0 Hou     | rs              |          |          | I        | nterna  | l Marl          | KS:      | 40    |
|--------------------------------------------------------------|------------------------------------------------------------------------------------|----------|--------------|-----------|-----------------|----------|----------|----------|---------|-----------------|----------|-------|
| Credi                                                        | ts:                                                                                |          | 2            |           |                 |          |          | E        | xterna  | al Mari         | ks:      | 60    |
| Prere                                                        | quisit                                                                             | es: Eng  | gineerin     | ng chen   | nistry, e       | enginee  | ring geo | ology a  | nd phys | ics             |          |       |
| Cours                                                        | se Obj                                                                             | ective   | s:           |           |                 |          |          |          |         |                 |          |       |
| ≻ To                                                         | know a                                                                             | bout ac  | tivities     | in buil   | ding co         | nstruct  | ion.     |          |         |                 |          |       |
| Cour                                                         | se Out                                                                             | comes    | 5:           |           |                 |          |          |          |         |                 |          |       |
| Upon                                                         | succe                                                                              | essful ( | compl        | etion     | of the          | cours    | se, the  | stude    | ent wi  | ll be al        | ble to:  |       |
| CO1                                                          | Under                                                                              | stand ty | vpes of      | founda    | tion            |          |          |          |         |                 |          |       |
| CO2                                                          | Under                                                                              | stand st | tone an      | d brick   | mason           | ry for t | he diffe | rent co  | nstruct | ion acti        | vities i | n the |
| CO3                                                          | Understand block masonry for the different construction activities in the building |          |              |           |                 |          |          |          |         |                 |          |       |
| CO4                                                          | CO4 Comprehend the floors & roofs and their types                                  |          |              |           |                 |          |          |          |         |                 |          |       |
| CO5 Comprehend the application of damp proofing, scaffolding |                                                                                    |          |              |           |                 |          |          |          |         |                 |          |       |
| CO6                                                          | Comp                                                                               | rehend   | the app      | olication | n of sho        | ring, ui | nderpin  | ining ar | nd form | work.           |          |       |
| Cont                                                         | ributio                                                                            | on of C  | ourse        | Outc      | omes            | towar    | ds ach   | ievem    | ent of  | f <b>Prog</b> r | am       |       |
| Outc                                                         | omes                                                                               | (1 – Lo  | w, 2-        | Mediu     | . <b>m, 3</b> - | - High   | .)       |          | I       |                 |          | 1     |
|                                                              | PO                                                                                 | PO       | PO           | PO        | PO              | PO       | PO       | PO       | PO      | PO              | PO       | PO    |
|                                                              | 1                                                                                  | 2        | 3            | 4         | 5               | 6        | 7        | 8        | 9       | 10              | 11       | 12    |
| CO1                                                          | 3                                                                                  | 2        | -            | -         | -               | -        | -        | 2        | -       | -               | -        | -     |
| CO2                                                          | 2                                                                                  | 2        | -            | _         | _               | 2        | -        | _        | _       | _               | _        | -     |
| CO3                                                          | 3                                                                                  | 2        | _            | _         | _               | _        | -        | 1        | _       | -               | _        | -     |
| CO4                                                          | 3                                                                                  | 2        | _            | -         | -               | _        | -        | 1        | _       | -               | _        | -     |
| CO5                                                          | 2                                                                                  | -        | -            | -         | -               | -        | -        | -        | -       | -               | -        | -     |
| CO6                                                          | 2                                                                                  | 1        | -            | -         | -               | 1        | -        | 1        | -       | -               | -        | -     |
|                                                              |                                                                                    |          |              |           | 1               | UNIT     | Γ        |          |         |                 |          |       |

**FOUNDATIONS**: Concept of foundations; Factors affecting selection of foundations; Types of foundations; Strip, Isolated, Strap, Combined Footings, Grillage foundations, Piles and their classification; Foundation on black cotton soils.

#### UNIT II

**STONE, BRICK & BLOCK MASONRY**: Technical terms; Classification of stone masonry; Types of bonds in brickwork and their suitability, Plan, elevation and section of brick bonds up to two bricks thickness; Classification of walls, Block masonry – Hollow concrete blocks – FAL- G Blocks, Hollow clay Blocks.

#### UNIT III

FLOORS & ROOFS: Technical terms; Types of ground floors; Classification of roofs.

#### UNIT IV

**DAMP PROOFING, SCAFFOLDING, SHORING, UNDER PINNING & FORMWORK**: Causes of dampness; Methods of preventing dampness; Types of scaffolding; Types of shoring; Methods of underpinning; Types of formwork

#### **TEXT BOOKS:**

1. Building construction, (10th edition) by Punmia, B. C., Laxmi Publications, Bangalore, 2009.

#### **REFERENCE BOOKS:**

1. Building construction and construction materials by Birdie, G.S. and Ahuja, T.D., Dhanpath Rai Publishing company, New Delhi, 1986.

http://nptel.ac.in/courses.php http://jntuk-coeerd.in/

|       |              |         | 18A3           | 32014   | 91-HI   | GHW      | AY EN         | GINE     | ERING    | LAB     |                                        |        |
|-------|--------------|---------|----------------|---------|---------|----------|---------------|----------|----------|---------|----------------------------------------|--------|
| Pract | ical's       |         | 3              | Hours   |         |          |               | I        | nterna   | ul Mari | ks: 4                                  | 40     |
| Credi | i <b>ts:</b> |         | 1.             | 0       |         |          |               | E        | xterna   | al Mar  | ks:                                    | 60     |
| Prere | quisit       | es: Hi  | ighway         | y Engi  | ineeri  | ng       |               |          |          |         |                                        |        |
| Cour  | se Obj       | ective  | es:            |         |         |          |               |          |          |         |                                        |        |
| ≻ To  | test         | crushi  | ing va         | lue, i  | mpact   | resis    | stance        | , spec   | ific g   | ravity  | and                                    | water  |
| ab    | sorpti       | on,     |                |         |         |          |               |          |          |         |                                        |        |
| perce | ntage        | attriti | ion, p         | ercent  | age a   | brasio   | n, fla        | kiness   | index    | k and   | elong                                  | ation  |
| index | for th       | e       |                |         |         |          |               |          |          |         |                                        |        |
| given | road a       | aggreg  | ates.          |         |         |          |               |          |          |         |                                        |        |
| ≻ To  | know         | penet   | ration         | value   | , duct  | ility va | alue, s       | ofteni   | ng poi   | nt, fla | sh an                                  | d fire |
| po    | int, vi      | scosity | y and s        | strippi | ng for  | the g    | iven bi       | tumer    | n grade  | e.      |                                        |        |
| ≻ To  | test th      | ie stat | ,<br>oility fo | or the  | given   | bitum    | en miz        | K        | U        |         |                                        |        |
| ≻ To  | carrv        | out su  | irvevs         | for tra | ffic vo | lume.    | speed         | and r    | parkin   | g.      |                                        |        |
| Cour  | se Out       | tcome   | es:            |         |         | ,        | -1            | <b>I</b> |          | 5       |                                        |        |
| Upon  | succ         | essful  | comp           | letion  | of th   | e cou    | rse, tl       | ne stu   | dent v   | will be | able                                   | to:    |
| CO1   | Abilit       | y to te | est age        | regate  | es and  | judge    | the su        | Jitabil  | ity of 1 | nateria | als for                                | the    |
|       | road         | Const   | ructio         | n       |         |          |               |          | U        |         |                                        |        |
| CO2   | Abilit       | v to te | est the        | given   | bitum   | ien sa   | mples         | and it   | udge ti  | heir su | uitabili                               | itv    |
|       | for th       | e road  | 1 cons         | tructio | n       |          | 1             | 5        | 0        |         |                                        | 5      |
| CO3   | Abilit       | v to o  | btain t        | he opt  | timum   | ı bitur  | nen co        | ntent    | for the  | e mix o | lesign                                 |        |
| CO4   | Abilit       | v to d  | etermi         | ne the  | traffi  |          | me sr         | need at  | nd nar   | king    |                                        |        |
| 001   | chara        | octeris | tics           |         | , train | c voiu   | , op          |          | nu pui   | 11118   |                                        |        |
| Cont  | rihuti       | on of   |                |         | <b></b> | town     | rde or        | hiora    | mont     | of Dre  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |        |
| Oute  | omes         | (1 - L) | ow. 2-         | Medi    | 10m.3   | – Hig    | nus av<br>rh) |          | ment     | of Fit  | gram                                   |        |
|       | PO           | PO      | PO             | PO      | PO      | PO       | PO            | PO       | PO       | PO      | PO                                     | ΡΟ     |
|       | 1            | 2       | 3              | 4       | 5       | 6        | 7             | 8        | 9        | 10      | 11                                     | 12     |
| CO1   | 3            | 3       | -              | 3       | -       | 2        | -             | 2        | -        | -       | -                                      | -      |
| CO2   | 3            | 3       | -              | 3       | -       | 2        | -             | 2        | _        | -       | -                                      | -      |
| CO3   | 3            | 3       | -              | 3       | -       | 2        | -             | 2        | _        | -       | -                                      | -      |
| CO4   | 3            | 3       | -              | 3       | -       | 2        | -             | 2        | -        | -       | -                                      | -      |
|       |              |         | 1              | Li      | st of   | Expe     | rimen         | ts       |          |         |                                        |        |
| ROA   | D AGG        | REGA    | TES:           |         |         |          |               |          |          |         |                                        |        |
| 1. Ag | gregat       | e Crus  | shing v        | value   |         |          |               |          |          |         |                                        |        |
| 2. Ag | gregat       | e Impa  | act Tes        | st.     |         |          |               |          |          |         |                                        |        |
| 3. Sp | ecific (     | Gravit  | v and          | Water   | Absor   | ption.   |               |          |          |         |                                        |        |

- 4. Attrition Test
- 5. Abrasion Test.
- 6. Shape tests

## **II. BITUMINOUS MATERIALS:**

- 1. Penetration Test.
- 2. Ductility Test.
- 3. Softening Point Test.
- 4. Flash and fire point tests.
- 5. Stripping Test
- 6. Viscosity Test.

## **III. BITUMINOUS MIX:**

1. Marshall Stability test.

## **IV. TRAFFIC SURVEYS:**

1. Traffic volume study at mid blocks.

- 2. Traffic Volume Studies (Turning Movements) at intersection.
- 3. Spot speed studies.
- 4. Parking study.

## V. DESIGN & DRAWING:

- 1. Earthwork calculations for road works.
- 2. Drawing of road cross sections.
- 3. Rotors intersection design.

## **TEXT BOOKS:**

Highway Material Testing Manual' by S.K. Khanna, C.E.G Justo and A.Veeraraghavan, Neam Chan Brothers New Chand Publications, New Delhi.

## **REFERENCE BOOKS:**

- 1. IRC Codes of Practice
- 2. Asphalt Institute of America Manuals
- 3. Code of Practice of B.I.S.

#### **18A3201391-COMPUTER AIDED CIVIL ENGINEERING DRAWING**

| Pract                                                                                                                                                      | ical's                                                          |              | 3            | Hours  |             |               |          | I      | nterna   | l Mari  | ks:   | 40        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|--------------|--------|-------------|---------------|----------|--------|----------|---------|-------|-----------|--|--|
| Credi                                                                                                                                                      | ts:                                                             | an D         | 1.           |        |             |               |          | Ľ      | xterna   | al Mar  | KS:   | 60<br>n n |  |  |
| Cour                                                                                                                                                       | quisit                                                          | es: Re       |              | cea Co | oncre       | te str        | ucture   | es and |          | ling Pi | anni  | ng        |  |  |
| 1) To                                                                                                                                                      | mak<br>mak                                                      | e the        | stud         | lent p | orepar      | e eng<br>ters | ineeri   | ng di  | rawing   | s con   | venti | onally    |  |  |
| 2) To                                                                                                                                                      | intr                                                            | oduce        | fund         | lamen  | tale d      | $of co^{-1}$  | mnute    | r aid  | led d    | rawing  | r in  | Civil     |  |  |
| 2) IO<br>Er                                                                                                                                                | oinee                                                           | ring         | Tune         | amen   | tais v      | 01 00.        | mputt    | i an   | icu u    | 1411112 | 5 111 | CIVII     |  |  |
| 3) to                                                                                                                                                      | enable                                                          | - the s      | tuden        | t deve | lon dr      | awing         | of hui   | Iding  | compo    | nents   |       |           |  |  |
| $\frac{3}{4}$ to                                                                                                                                           | 4) to train the student in Producing 2D & 3D drawings           |              |              |        |             |               |          |        |          |         |       |           |  |  |
| 5) to enable the students Communicate designs graphically                                                                                                  |                                                                 |              |              |        |             |               |          |        |          |         |       |           |  |  |
| <ul> <li>5) to enable the students Communicate designs graphically</li> <li>6) to teach methodologies for understanding and verification of CAD</li> </ul> |                                                                 |              |              |        |             |               |          |        |          |         |       |           |  |  |
| 6) to teach methodologies for understanding and verification of CAD                                                                                        |                                                                 |              |              |        |             |               |          |        |          |         |       |           |  |  |
| Course Outcomes:<br>Upon successful completion of the course, the student will be able to:                                                                 |                                                                 |              |              |        |             |               |          |        |          |         |       |           |  |  |
| CO1                                                                                                                                                        | Deve                                                            | lon dr       | awing        | skills | for eff     | ective        | demor    | nstrat | ion of 1 | ouildin | g det | ails      |  |  |
| CO2                                                                                                                                                        | Draw                                                            | build        | ling r       | lans   | ileina      | Com           | niter    | Aideo  | l Desi   | on an   | d Dr  | afting    |  |  |
| 002                                                                                                                                                        | softw                                                           | are's.       | ing P        | Jans   | using       | com           | puter    | muce   |          | gii aii | u Di  | anng      |  |  |
| CO3                                                                                                                                                        | Devel                                                           | lop en       | gineer       | ing pr | oject d     | lrawin        | gs inc   | orpor  | ating d  | etails  | and o | lesign    |  |  |
|                                                                                                                                                            | parar                                                           | neters       | in 2D        | 8 3D   | ).          |               |          |        |          |         |       |           |  |  |
| CO4                                                                                                                                                        | Exan                                                            | nine ef      | ficacy       | of CA  | D desi      | gn.           |          |        |          |         |       |           |  |  |
| Cont                                                                                                                                                       | ributi                                                          | on of        | Cours        | e Outo | comes       | s towa        | rds ac   | chieve | ement    | of Pro  | gran  | 1         |  |  |
| Oute                                                                                                                                                       |                                                                 | $\mathbf{D}$ | 0w, ⊿-<br>₽∩ |        | um, s<br>PO |               | п)<br>РО | PΛ     | PO       | PO      | PΩ    | ΡO        |  |  |
|                                                                                                                                                            | 1                                                               | 2            | 3            | 4      | 5           | 6             | 7        | 8      | 9        | 10      | 11    | 12        |  |  |
| CO1                                                                                                                                                        | 3                                                               | 3            | -            | 3      | -           | 2             | -        | 2      | _        | -       | _     | -         |  |  |
| CO2                                                                                                                                                        | 3                                                               | 3            | _            | 3      | _           | 2             | _        | 2      | _        | _       | _     | _         |  |  |
| CO3                                                                                                                                                        | 3                                                               | 3            | -            | 3      | -           | 2             | -        | 2      | _        | -       | _     | _         |  |  |
| CO4                                                                                                                                                        | 3                                                               | 3            | -            | 3      | -           | 2             | -        | 2      | _        | _       | _     | _         |  |  |
|                                                                                                                                                            |                                                                 |              |              | Li     | st of       | Expe          | imen     | ts     |          |         |       |           |  |  |
| 1. Si                                                                                                                                                      | gn coi                                                          | nventi       | ions a       | nd sy  | mbols       | -             |          |        |          |         |       |           |  |  |
| 2. M                                                                                                                                                       | asonry                                                          | y bond       | ls           |        |             |               |          |        |          |         |       |           |  |  |
| 3. Do                                                                                                                                                      | oors a                                                          | nd wi        | ndows        |        |             |               |          |        |          |         |       |           |  |  |
| 4. Bı                                                                                                                                                      | uilding                                                         | gs wit       | h load       | beari  | ng wa       | lls ind       | cludin   | g det  | ails of  | doors   | and   |           |  |  |
| wi                                                                                                                                                         | ndow                                                            | s.           |              |        | -           |               |          | -      |          |         |       |           |  |  |
| 5. Ta                                                                                                                                                      | king :                                                          | standa       | ard dr       | awing  | s of a      | typic         | al two   | stori  | ied bui  | ilding  | inclu | ding      |  |  |
| al                                                                                                                                                         |                                                                 | •            |              | U      |             | • -           |          |        |          | U       |       | U         |  |  |
| 6. Jo                                                                                                                                                      | inerv                                                           | , reba       | rs, fin      | ishing | g and       | other         | detail   | ls and | writi    | ng out  | a     |           |  |  |
| de                                                                                                                                                         | script                                                          | tion o       | f the I      | RCC fi | ramed       | struc         | tures    |        |          | 5       |       |           |  |  |
| 7. Re                                                                                                                                                      | 7. Reinforcement drawings for typical slabs, beams, columns and |              |              |        |             |               |          |        |          |         |       |           |  |  |
| spread footings. Industrial buildings - North light roof structures -                                                                                      |                                                                 |              |              |        |             |               |          |        |          |         |       |           |  |  |
| Trusses                                                                                                                                                    |                                                                 |              |              |        |             |               |          |        |          |         |       |           |  |  |
| 8. Pe                                                                                                                                                      | 8. Perspective view of one and two storey buildings             |              |              |        |             |               |          |        |          |         |       |           |  |  |
|                                                                                                                                                            | _ · · ·                                                         |              |              |        |             |               |          |        |          |         |       |           |  |  |
| TEXT                                                                                                                                                       | r BOO                                                           | KS:          | a 1.         |        |             |               | 1 1.     |        |          |         |       |           |  |  |

Engineering Graphics, K.C. john, PHI Publications.
 Engineering drawing by N.D Bhatt, Charotar publications.

#### **REFERENCE BOOKS:**

- 1. Mastering Auto CAD 2013 and Auto CAD LT 2013 George Omura, Sybex.
- 2. Auto CAD 2013 fundamentals- Elisemoss, SDC Publ.
- 3. Engineering Drawing and Graphics using Auto Cad-T Jeyapoovan, vikas
- 4. Engineering Drawing + AutoCAD K Venugopal, V. Prabhu Raja, New Age.
- 5. Engineering Drawing RK Dhawan, S Chand
- 6. Engineering Drawing MB Shaw, BC Rana, Pearson
- **E-RESOURCES:**

## **18A3200801-ESSENCE OF INDIAN KNOWLEDGE AND TRADITIONS**

| Lectu                                                                                 | re – Tu                                                                    | torial:    | 2-       | 0 Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S        |               |                                              |          | Interna   | al Mark   | ks:     | 40       |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|----------------------------------------------|----------|-----------|-----------|---------|----------|--|
| Credi                                                                                 | Credits:0External Marks:60                                                 |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           | 60      |          |  |
| Prere                                                                                 | quisite                                                                    | es:        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| Course Objectives:                                                                    |                                                                            |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| 6.                                                                                    | To de                                                                      | velop k    | nowlee   | dge of f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | undam    | ental n       | nanager                                      | nent c   | oncepts   | s, skills | and to  | ols, to  |  |
|                                                                                       | aid in                                                                     | proble     | m solvi  | ng and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | decisio  | on mak        | ing.                                         |          |           |           |         |          |  |
| 7.                                                                                    | To d                                                                       | evelop     | and      | unders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | standin  | g abo         | ut the                                       | orga     | nizatio   | nal str   | ucture  | e and    |  |
| relationship between authority and responsibility in various structures.              |                                                                            |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| 8. To discuss the evolution of principles that make it possible to design facilities, |                                                                            |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| processes, and control systems with a degree of predictability as to their            |                                                                            |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| performance.                                                                          |                                                                            |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| 9. To develop comprehensive skills in planning selecting motivating and               |                                                                            |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
|                                                                                       | 9. To develop comprehensive skills in planning, selecting, motivating, and |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| 10                                                                                    |                                                                            | dorstai    | nd the   | hroad a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cone o   | of mark       | oting s                                      |          | l othics  | ol and o  | thor d  | ivorco   |  |
| 10                                                                                    | acport                                                                     | te of m    | nu the   | or of the second s | scope u  |               | eting, s                                     | ocicia   | i, etinea |           | uner u  | 100130   |  |
|                                                                                       | aspect                                                                     | 15 01 1116 | arketiii | g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |               |                                              |          |           |           |         |          |  |
| Cours                                                                                 | se Outc                                                                    | omes:      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| Upon                                                                                  | succes                                                                     | sful co    | mplet    | ion of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the cou  | irse, th      | e stude                                      | ent wi   | ll be ab  | le to:    |         |          |  |
| CO1                                                                                   | Under                                                                      | rstand     | the con  | cept of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tradit   | ional k       | nowled                                       | ge and   | its imp   | ortance   | e       |          |  |
| CO2                                                                                   | Know                                                                       | the ne     | ed and   | import                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ance of  | f prote       | cting tra                                    | dition   | al knov   | vledge    |         |          |  |
| CO3                                                                                   | Know                                                                       | the va     | rious e  | nactme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nts rela | ated to       | the pro                                      | tection  | n of tra  | ditional  | know    | ledge    |  |
| CO4                                                                                   | Under                                                                      | rstand     | the con  | cepts o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f Intell | ectual        | propert                                      | y to pr  | otect th  | ne tradi  | tional  |          |  |
| 00 <b>-</b>                                                                           | know                                                                       | ledge      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| CO5                                                                                   | Devel                                                                      | op con     | iprehei  | nsive sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alls in  | plannii       | ng, sele                                     | cting, i | notivat   | ing, and  | d devel | oping    |  |
| C06                                                                                   | the ht                                                                     | iman re    | esource  | es for o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rganisa  | arkotin       |                                              | eness.   | nical an  | d othor   | divore  | 0        |  |
| 200                                                                                   | aspec                                                                      | ts of m    | arketin  | au scof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | arketin       | ig, socie                                    | tal, eti | iicai ali | u otnei   | uiveis  | e        |  |
| Contr                                                                                 | <b>ibutio</b>                                                              | n of Co    | urse O   | utcom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es tow   | ards a        | chiever                                      | nent o   | of Prog   | ram Ou    | tcome   | es (1    |  |
| - Low                                                                                 | , <b>2- Me</b>                                                             | dium,      | 3 – Hig  | gh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |                                              |          |           |           |         |          |  |
|                                                                                       | PO                                                                         | PO         | PO       | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PO       | PO            | PO                                           | PO       | PO        | PO        | PO      | РО       |  |
|                                                                                       | 1                                                                          | 2          | 3        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        | 6             | 7                                            | 8        | 9         | 10        | 11      | 12       |  |
| C01                                                                                   | 2                                                                          | -          | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | -             | -                                            | 2        |           | -         | -       | -        |  |
| CO2                                                                                   | 2                                                                          | -          | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | _             | -                                            | 2        |           | -         | -       | -        |  |
| CO3                                                                                   | 2                                                                          | -          | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | -             | -                                            | 2        |           | -         | -       | -        |  |
| C04                                                                                   | )4 2 2                                                                     |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| C05                                                                                   | 05     2     -     -     -     2     -     -                               |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |               |                                              |          |           |           |         |          |  |
| C06                                                                                   | 2                                                                          | -          | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        | -             | -                                            | 2        |           | -         | -       | -        |  |
|                                                                                       | 1                                                                          | 1          | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | UNIT I        | <u>                                     </u> |          | 1         |           |         | <u> </u> |  |
| Intro                                                                                 | ductio                                                                     | n to tr    | aditio   | nal kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | owled    | <b>ge:</b> De | fine tra                                     | dition   | al knov   | wledge,   | natur   | e and    |  |

**Introduction to traditional knowledge:** Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge

**Protection of traditional knowledge:** the need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

**Legal framework and TK: A:** The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmers Rights Act, 2001 (PPVFR Act);B: The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016. Geographical indications act 2003.

#### UNIT III

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.

#### UNIT IV

Traditional knowledge in different sectors: Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK.

#### **TEXT BOOKS:**

- 1. Traditional Knowledge System in India, by Amit Jha, 2009.
- 2. Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, PratibhaPrakashan 2012.

#### **REFERENCE BOOKS:**

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor, Michel Danino