ŀ	[al	l Ti	cke	t N	um	ıbeı	r:			_	NIDIAGO
											NRIA23
									1		

23A2200103

IIB.Tech.II Semester Regular Examinations OPTIMIZATION TECHNIQUES

(Common to CSE, IT, CSE (AIML), CSE (DS), AIML&CSE-RL)

Time: 3Hours Max.Marks:70

Question paper contains two parts A and B. Part A is compulsory

Part B consists of 5Units. Answer any one full question from each unit.

	PARTA	10X2M	=20M
Q.No.	Questions	Marks	BTL
1.a)	Define objective function.	2M	1
b)	Define infeasible solution.	2M	1
c)	What is meant by a balance transportation problem?	2M	2
d)	Briefly explain about unbalanced assignment problem.	2M	2
e)	Define Gantt chart.	2M	1
f)	Explain about PERT model.	2M	2
g)	Define Economic Order Quantity (EOQ).	2M	1
h)	What is break-even analysis?	2M	2
i)	Define payoff matrix.	2M	1
j)	Can a game have multiple Nash Equilibria? Explain briefly.	2M	2

	PARTB	5x10M	=50M
Q.No.	Questions	Marks	BTL
	UNITI		
2. a)	Write few applications of operations research.	5M	2
b)	Solve the LPP graphically, $Max z = 3x_1 + 9x_2$, subjected to the	5M	3
	constraints $x_1 + 4x_2 \le 8$, $x_1 + 2x_2 \le 4$, for all $x_1, x_2 \ge 0$.		
	OR		
3. a)	Draw the algorithm flow chart of simplex method.	5M	2
b)	Solve the LPP using Simplex method, $Max z = x_1 + x_2$, subjected to	5M	3
	the constraints $2x_1 + 3x_2 \le 6$, $x_1 + 7x_2 \le 14$, for all $x_1, x_2 \ge 0$.		
	UNITII		
4. a)	Write the various steps involved in finding the initial basic feasible solution in Vogel's method.	5M	2

b)	Find Initia	On	5M	3										
	problem b	y matrix M			1		_	T~ .	۱					
			D_1	D ₂	D ₃	D ₄	D ₅	Supply						
		O_1	10	2	3	15	9	35						
		O_2	5	10	15	2	4	40						
		O ₃	15	5	14	7	15	20]					
		O ₄	20	15	13	25	8	30						
		Demand	20	20	40	10	35	125						
	<u> </u>					OR								
5. a)		the steps in ty in the tr						to find che	ck the	5M	2			
b)		optimal as						ata		5M	3			
		Job	S	1	Mac	hines								
		1	A				D2	<u>E</u> 7						
		$\frac{1}{2}$	1					16						
		3	4				1	5						
		4	8	3			9	6						
	7.47					IITIII								
6. a)	What ar		5M	2										
b)	There ar	nines A	5M	3										
	and B in	and B in the order AB. The processing times (in hours) are given as												
		Job		J_1	J ₂	J ₃	J ₄	J 5						
		Machine	e A	2	4	5	7	1						
		Machine		3	6	1	4	8						
	Determi	ne a seque		these	iobs 1	hat w	ill mir	imize the	total					
	elapsed	-			,000									
	•	ain: i) the	minim	um el	ansed	time:								
		he idle tim			•									
	and ny ti	ile fule tilli	- 101 6	acii oi			.03							
				- CDE		OR				5M	2			
7. a)	What ar	o tho limit	atione	OT PH	K I /				l l	SIVI	,			

		Activity	Predecessor Activity	Duration (Weeks	s)				
		A	-	3					
	l †	В	A	5					
	-	С	A	7					
		D	В	10					
		E F	C D,E	5					
	Determine the criti Completion time.	cal path			the project				
	T =			UNITIV					
8. a)	Explain the concept operations research	=	entory mar	nagement and it	s importance in	5M	2		
b)	-		erministic :	and probabilisti	c inventory models.	5M	3		
U)	Provide examples			ina probabilisti	c mivemony moders.	J1 11	3		
	1			OR	L				
9. a)	Discuss the assum	ptions	of Break-Ev	en Analysis.		5M	2		
b)	Derive the Break-	Even Po	int formula	and evnlain ea	ch component in	5M	3		
- Uj	detail. Provide an			-	_	514	3		
		опентр	2 101 200001	UNITV	I				
10. a)	Solve the following	pay-off	matrix.			5M	3		
	_		Γ3 2	4 0]					
			$\begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$	2 4					
			4 2	4 0					
			0 4	0 8					
- 13	r (1 1		LO 4	0 0]	1 1		0		
b)	In game theory he terms briefly.	iow ma	ny strateg	ies are there a	nu expiain the	5M	2		
	terms briefly.			OR					
11. a)	Write few advan	tages	f Decision		er uncertainty	5M	2		
						5M	3		
b)	b) A company is considering three investment projects. The returns from each project under different market conditions are as follows:								
	Investment		Good rket (₹)	Moderate Market (₹)	Poor Market (₹)				
	Project A		00,000	60,000	10,000				
	Project B	_	0,000	70,000	50,000				
	Project C	9	0,000	40,000	5,000				
	Using the Maximi Choose?	n Crite	rion, which	h project should	I the company				

all Ti	icke	et N	um	ıbe	r:		

23A2200103

IIB.Tech.II Semester Regular Examinations OPTIMIZATION TECHNIQUES

(Common to CSE, IT, CSE (AIML), CSE (DS), AIML&CSE-RL)

Time: 3Hours Max.Marks:70

Question paper contains two parts A and B. Part A is compulsory

Part B consists of 5 Units. Answer any one full question from each unit.

	PARTA	10X2M:	=20M
Q.No.	Questions	Marks	BTL
1.a)	Define unbounded solution.	2M	1
b)	Explain degeneracy in simplex method.	2M	2
c)	What is meant by a unbalance transportation problem?	2M	1
d)	Briefly explain about balanced assignment problem.	2M	2
e)	What is the main purpose of a Gantt Chart?	2M	1
f)	Explain about CPM model.	2M	2
g)	What are the assumptions of the EOQ model?	2M	1
h)	Define the break-even point.	2M	1
i)	What is a dominant strategy?	2M	1
j)	Define Nash Equilibrium.	2M	1

	PARTB	5x10M	=50M
Q.No.	Questions	Marks	BTL
	UNITI		
2.a)	Explain the concepts of slack, surplus, and artificial variables in the	5M	2
	context of Linear Programming.		
b)	Solve the LPP using graphical method, $Max z = 8x + y$ Subjected to	5M	3
	the constraints $x + y \le 40$, $2x + y \le 60$ for all $x, y \ge 0$.		
	OR		
3.a)	Explain the graphical method of solving a Linear Programming	5M	2
	problem with an example.		
b)	Solve the LPP using graphical method, $Max z = 2x_1 + x_2$, subjected	5M	3
	to the constraints $x_1 + 2x_2 \le 10$, $x_1 + x_2 \le 6$, for all $x_1, x_2 \ge 0$.		

						UN	ITII									
4.a)	Write th	n	5M	2												
	by Matr															
b)	Find the	Find the initial basic feasible solution by North west corner rule														
			D_1	D_2	D_3	D_4	D_5]	D_6	Supply						
		O_1	1	2	1	4	5		2	30						
		O_2	3	3	2	1	4		3	50						
		O ₃	4	2	5	9	6		2	75						
		O_4	3	1	7	3	4		6	20						
		mand	20	40	30	10	50		25	175						
	Вс	mana	20	10	30				23	173						
5.a)	Discuss	ahout t	he onti	malit	v crit		R 1 the 1	ransı	norta	tion mode	2]	5M	2			
olaj	2100000	about	no opti	,	<i>y</i> 0110	.011011		er arroj	porta	cross silvac		51-1				
b)												5M	3			
			Jobs		A	Machi B	nes C	D	1							
			I		0	5	13	15								
			II	3	3	9	18	3								
			III	1	0	7	3	2								
			IV		5	11	9	7								
			1,				TIII									
6.a)	Write a	nv five a	applica	tions	of sec			odels				5M	2			
						900110						011				
b)	Find an o	ptimal s	sequenc	e for t	he fo	llowin	ıg seqi	uencii	ng pro	blem of		5M	3			
	four jobs															
					_	_		t anov	wed, c	or which						
	processin	Job	ın nour	s) is g		delow Machi										
			A	l I		С		D	Е							
		1														
		1	7		5	2		3	9							
		2	6	6	5	4		5	10)						
		2			4	~			0							
		3	5		1	5		6	8							
		4	8	3	3	3		2	6							
	Also find	the tot	al elaps	ed tim	ne.		•		•							
	1		_													

7.a)	What are the adva	ntages of PERT	1		5M	
b)	Find out the comp	etion time and	the critical act	ivities for the	5M	3
	following project:	D				
		D 20				
	A A	20	$G \setminus 8$			
	8 B	E	→ H 11 →	K 6		
	1					
	7		1 14	L		
	c		J -	9		
	\	F	7 10			
		25	<u> </u>			
			UNITIV			
8.a)	What are the assu	mptions in Eco	nomic Order Q	uantity model?	5M	2
L)	Diamenth and a fa	- Cotor ot a alain in			EN4	2
b)	Discuss the role of s calculated?	arety stock in in	ventory manage	ment. How is it	5M	2
	- Carcaracea.		OR			
9.a)	Discuss the limitation	ons of Break-Eve			5M	2
b)	How does Break-Ev	5M	3			
	decisions? Provide	oractical exampl	es. UNITV			
10.a)	Solve the followin	a now off matri			5M	3
10.aj	Solve the followin	SM	3			
		0 15 90 20				
L)	E-mlain in datail a	L			EN4	2
b)	Explain in detail a	bout the Minim	iax and Maximi	in principies.	5M	2
			OR			
11.a)	Write few limitation	ons of Decision	- Making unde	er uncertainty.	5M	2
b)	A company has three	a nossible invest	tment projects	and the returns are	5M	3
Uj	shown below under		1 0	and the returns are	JM	3
	Investment	Good	Moderate	Poor		
		Market (₹)	Market (₹)	Market (₹)		
	Project X	150,000 200000	80,000 50,000	20,000 30,000		
	Project Y					
	Using the Maximax	Criterion whi	ch project shoul	50,000		
	choose?	Criterion, will	en project snou	id the company		
	I.				ı	-

-00000-